JP2001052735A - Nonaqueous electrolytic solution and lithium secondary battery using the same - Google Patents

Nonaqueous electrolytic solution and lithium secondary battery using the same

Info

Publication number
JP2001052735A
JP2001052735A JP11219708A JP21970899A JP2001052735A JP 2001052735 A JP2001052735 A JP 2001052735A JP 11219708 A JP11219708 A JP 11219708A JP 21970899 A JP21970899 A JP 21970899A JP 2001052735 A JP2001052735 A JP 2001052735A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
aqueous electrolyte
battery
disulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11219708A
Other languages
Japanese (ja)
Other versions
JP3444243B2 (en
Inventor
Shunichi Hamamoto
俊一 浜本
Koji Abe
浩司 安部
Tsutomu Takai
勉 高井
Yasuo Matsumori
保男 松森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP21970899A priority Critical patent/JP3444243B2/en
Priority to CNB00129234XA priority patent/CN1193450C/en
Publication of JP2001052735A publication Critical patent/JP2001052735A/en
Priority to US10/021,130 priority patent/US6866966B2/en
Application granted granted Critical
Publication of JP3444243B2 publication Critical patent/JP3444243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an excellent battery cycle characteristic and provide excel lent battery characteristics such as electrical capacity and a storage characteris tic in a charged state by including a specific wt.% of a disulfide derivative containing oxygen in its substituted group in a nonaqueous electrolytic solution. SOLUTION: This nonaqueous electrolytic solution contains 0.01-5 wt.% of a disulfide derivative containing oxygen in its substituted group expressed by formula I. In formula I, X1 and X2 each independently represents a 1-6C alkyl group, 2-6C alkenyl group, 3-6C cycloalkyl group, aryl group, 2-7C acyl group, 1-7C alkanesulfonyl group, 6-10C arylsulfonyl group or 2-7C ester group. It is also preferable that 0.01-5 wt.% of a disulfide derivative containing halogen in a substituted group expressed by formula II instead of formula I is included in the electrolytic solution. In formula II, X3 and X4 each independently represents F, Cl, Br, I, CF3, CCl3 or CBr3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池のサイクル特
性や電気容量、保存特性などの電池特性にも優れたリチ
ウム二次電池を提供することができる非水電解液、およ
びそれを用いたリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte capable of providing a lithium secondary battery having excellent battery characteristics such as cycle characteristics, electric capacity and storage characteristics of a battery, and lithium using the same. Related to secondary batteries.

【0002】[0002]

【従来の技術】近年、リチウム二次電池は小型電子機器
などの駆動用電源として広く使用されている。リチウム
二次電池は、主に正極、非水電解液及び負極から構成さ
れており、特に、LiCoO2などのリチウム複合酸化
物を正極とし、炭素材料又はリチウム金属を負極とした
リチウム二次電池が好適に使用されている。そして、そ
のリチウム二次電池用の非水電解液としては、エチレン
カーボネート(EC)、プロピレンカーボネート(P
C)などのカーボネート類が好適に使用されている。
2. Description of the Related Art In recent years, lithium secondary batteries have been widely used as power sources for driving small electronic devices and the like. Lithium secondary batteries are mainly composed of a positive electrode, a non-aqueous electrolyte, and a negative electrode. In particular, a lithium secondary battery using a lithium composite oxide such as LiCoO 2 as a positive electrode and a carbon material or lithium metal as a negative electrode has been developed. It is preferably used. As the non-aqueous electrolyte for the lithium secondary battery, ethylene carbonate (EC), propylene carbonate (P
Carbonates such as C) are preferably used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、電池の
サイクル特性および電気容量などの電池特性について、
さらに優れた特性を有する二次電池が求められている。
正極として、例えばLiCoO2、LiMn24、Li
NiO2などを用いたリチウム二次電池は、非水電解液
中の溶媒が充電時に局部的に一部酸化分解することによ
り、該分解物が電池の望ましい電気化学的反応を阻害す
るために電池性能の低下を生じる。これは正極材料と非
水電解液との界面における溶媒の電気化学的酸化に起因
するものと思われる。また、負極として例えば天然黒鉛
や人造黒鉛などの高結晶化した炭素材料を用いたリチウ
ム二次電池は、非水電解液中の溶媒が充電時に負極表面
で還元分解し、非水電解液溶媒として一般に広く使用さ
れているECにおいても充放電を繰り返す間に一部還元
分解が起こり、電池性能の低下が起こる。このため、電
池のサイクル特性および電気容量などの電池特性は必ず
しも満足なものではないのが現状である。
However, regarding the battery characteristics such as the cycle characteristics and the electric capacity of the battery,
There is a demand for a secondary battery having more excellent characteristics.
As the positive electrode, for example, LiCoO 2 , LiMn 2 O 4 , Li
Lithium secondary batteries using NiO 2 or the like have a problem in that the solvent in the non-aqueous electrolyte partially oxidizes and decomposes at the time of charging, and the decomposition products hinder a desirable electrochemical reaction of the battery. This results in reduced performance. This is thought to be due to electrochemical oxidation of the solvent at the interface between the positive electrode material and the non-aqueous electrolyte. In addition, in a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as the negative electrode, the solvent in the nonaqueous electrolyte is reductively decomposed on the surface of the negative electrode during charging, and as a nonaqueous electrolyte solvent Even in ECs that are generally widely used, reductive decomposition occurs partially during repetition of charge / discharge, and battery performance deteriorates. Therefore, at present, the battery characteristics such as the cycle characteristics and the electric capacity of the battery are not always satisfactory.

【0004】本発明は、前記のようなリチウム二次電池
用非水電解液に関する課題を解決し、電池のサイクル特
性に優れ、さらに電気容量や充電状態での保存特性など
の電池特性にも優れたリチウム二次電池を構成すること
ができるリチウム二次電池用の非水電解液、およびそれ
を用いたリチウム二次電池を提供することを目的とす
る。
The present invention solves the above-mentioned problems relating to the non-aqueous electrolyte for a lithium secondary battery, and is excellent in battery cycle characteristics, and is also excellent in battery characteristics such as electric capacity and storage characteristics in a charged state. It is an object of the present invention to provide a non-aqueous electrolyte for a lithium secondary battery that can constitute a lithium secondary battery, and a lithium secondary battery using the same.

【0005】[0005]

【課題を解決するための手段】本発明は、非水溶媒に電
解質が溶解されている非水電解液において、該非水電解
液中に下記式(I)
The present invention relates to a non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte contains the following formula (I):

【0006】[0006]

【化5】 (ただし、X1、X2はそれぞれ独立して炭素数1〜6の
アルキル基、炭素数2〜6のアルケニル基、炭素数2〜
6のアルキニル基、炭素数3〜6のシクロアルキル基、
アリール基、炭素数2〜7のアシル基、炭素数1〜7の
アルカンスルホニル基、炭素数6〜10のアリールスル
ホニル基、炭素数2〜7のエステル基を示す。)で表さ
れる置換基に酸素を含有したジスルフィド誘導体、およ
び下記式(II)
Embedded image (However, X 1 and X 2 are each independently an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms,
6, an alkynyl group, a cycloalkyl group having 3 to 6 carbon atoms,
An aryl group, an acyl group having 2 to 7 carbon atoms, an alkanesulfonyl group having 1 to 7 carbon atoms, an arylsulfonyl group having 6 to 10 carbon atoms, and an ester group having 2 to 7 carbon atoms are shown. A disulfide derivative containing oxygen in the substituent represented by the following formula (II):

【0007】[0007]

【化6】 (ただし、X3、X4はそれぞれ独立してF、Cl、B
r、I、CF3、CCl3、CBr3を示す。)で表され
る置換基にハロゲンを含有したジスルフィド誘導体が
0.01〜5重量%含有されていることを特徴とする非
水電解液に関する。また、正極、負極および非水溶媒に
電解質が溶解されている非水電解液からなるリチウム二
次電池において、該非水電解液中に下記式(I)
Embedded image (However, X 3 and X 4 are each independently F, Cl, B
r, I, CF 3 , CCl 3 , and CBr 3 are shown. The present invention relates to a non-aqueous electrolyte solution characterized by containing 0.01 to 5% by weight of a disulfide derivative containing halogen in the substituent represented by the formula (1). In a lithium secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, the following formula (I) is contained in the non-aqueous electrolyte.

【0008】[0008]

【化7】 (ただし、X1、X2はそれぞれ独立して炭素数1〜6の
アルキル基、炭素数2〜6のアルケニル基、炭素数2〜
6のアルキニル基、炭素数3〜6のシクロアルキル基、
アリール基、炭素数2〜7のアシル基、炭素数1〜7の
アルカンスルホニル基、炭素数6〜10のアリールスル
ホニル基、炭素数2〜7のエステル基を示す。)で表さ
れる置換基に酸素を含有したジスルフィド誘導体、およ
び下記式(II)
Embedded image (However, X 1 and X 2 are each independently an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms,
6, an alkynyl group, a cycloalkyl group having 3 to 6 carbon atoms,
An aryl group, an acyl group having 2 to 7 carbon atoms, an alkanesulfonyl group having 1 to 7 carbon atoms, an arylsulfonyl group having 6 to 10 carbon atoms, and an ester group having 2 to 7 carbon atoms are shown. A disulfide derivative containing oxygen in the substituent represented by the following formula (II):

【0009】[0009]

【化8】 (ただし、X3、X4はそれぞれ独立してF、Cl、B
r、I、CF3、CCl3、CBr3を示す。)で表され
る置換基にハロゲンを含有したジスルフィド誘導体が
0.01〜5重量%含有されていることを特徴とするリ
チウム二次電池に関する。
Embedded image (However, X 3 and X 4 are each independently F, Cl, B
r, I, CF 3 , CCl 3 , and CBr 3 are shown. The present invention relates to a lithium secondary battery comprising 0.01 to 5% by weight of a disulfide derivative containing a halogen in a substituent represented by the formula (1).

【0010】本発明の非水電解液は、リチウム二次電池
の構成部材として使用される。二次電池を構成する非水
電解液以外の構成部材については特に限定されず、従来
使用されている種々の構成部材を使用できる。
The non-aqueous electrolyte of the present invention is used as a component of a lithium secondary battery. The constituent members other than the non-aqueous electrolyte constituting the secondary battery are not particularly limited, and various constituent members conventionally used can be used.

【0011】[0011]

【発明の実施の形態】非水溶媒に電解質が溶解されてい
る電解液に含有される前記式(I)で表されるジスルフ
ィド誘導体において、X1、X2はメチル基、エチル基、
プロピル基、ブチル基、ペンチル基、ヘキシル基のよう
な炭素数1〜6のアルキル基が好ましい。アルキル基は
イソプロピル基、イソブチル基、イソペンチル基のよう
な分枝アルキル基でもよく、シクロプロピル基、シクロ
ヘキシル基のようなシクロアルキル基でもよい。また、
ビニル基、1−プロペニル基、アリル基のようなアルケ
ニル基でもよく、エチニル基、2−プロピニル基のよう
なアルキニル基でもよい。また、フェニル基、p−トリ
ル基などのアリール基でもよい。また、アセチル基、プ
ロピオニル基、アクリロイル基、ベンゾイル基などのア
シル基でもよく、メタンスルホニル基、エタンスルホニ
ル基、ベンゼンスルホニル基などのスルホニル基でもよ
い。さらに、メトキシカルボニル基、エトキシカルボニ
ル基、フェノキシカルボニル基、ベンジルオキシカルボ
ニル基などのエステル基でもよい。また、前記式(I
I)で表されるジスルフィド誘導体において、X3、X4
はF、Cl、Br、Iのようなハロゲン原子、あるい
は、CF3、CCl3、CBr3のようなハロゲン原子を
含有した置換基が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In a disulfide derivative represented by the above formula (I) contained in an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, X 1 and X 2 represent a methyl group, an ethyl group,
An alkyl group having 1 to 6 carbon atoms such as a propyl group, a butyl group, a pentyl group and a hexyl group is preferred. The alkyl group may be a branched alkyl group such as an isopropyl group, an isobutyl group or an isopentyl group, or a cycloalkyl group such as a cyclopropyl group or a cyclohexyl group. Also,
It may be an alkenyl group such as a vinyl group, a 1-propenyl group or an allyl group, or an alkynyl group such as an ethynyl group or a 2-propynyl group. Further, an aryl group such as a phenyl group and a p-tolyl group may be used. Further, an acyl group such as an acetyl group, a propionyl group, an acryloyl group, and a benzoyl group may be used, and a sulfonyl group such as a methanesulfonyl group, an ethanesulfonyl group, and a benzenesulfonyl group may be used. Further, an ester group such as a methoxycarbonyl group, an ethoxycarbonyl group, a phenoxycarbonyl group, and a benzyloxycarbonyl group may be used. Further, the formula (I)
In the disulfide derivative represented by I), X 3 and X 4
Is preferably a halogen atom such as F, Cl, Br and I, or a substituent containing a halogen atom such as CF 3 , CCl 3 and CBr 3 .

【0012】前記一般式(I)で表されるジスルフィド
誘導体の具体例としては、例えば、ビス(4−メトキシ
フェニル)ジスルフィド〔X1、X2=メチル基〕、ビス
(3−メトキシフェニル)ジスルフィド〔X1、X2=メ
チル基〕、ビス(2−メトキシフェニル)ジスルフィド
〔X1、X2=メチル基〕、ビス(4−エトキシフェニ
ル)ジスルフィド〔X1、X2=エチル基〕、ビス(4−
イソプロポキシフェニル)ジスルフィド〔X1、X2=イ
ソプロピル基〕、ビス(4−シクロヘキシルオキシフェ
ニル)ジスルフィド〔X1、X2=シクロヘキシル基〕、
ビス(4−アリルオキシフェニル)ジスルフィド
〔X1、X2=アリル基〕、ビス〔4−(2−プロピニル
オキシ)フェニル〕ジスルフィド〔X1、X2=2−プロ
ピニル基〕、ビス(4−フェノキシフェニル)ジスルフ
ィド〔X1、X2=フェニル基〕、ビス(4−アセトキシ
フェニル)ジスルフィド〔X1、X2=アセチル基〕、ビ
ス(4−ベンゾイルオキシフェニル)ジスルフィド〔X
1、X2=ベンゾイル基〕、ビス(4−メタンスルホニル
オキシフェニル)ジスルフィド〔X1、X2=メタンスル
ホニル基〕、ビス(4−ベンゼンスルホニルオキシフェ
ニル)ジスルフィド〔X1、X2=ベンゼンスルホニル
基〕、ビス(4−メトキシカルボニルオキシフェニル)
ジスルフィド〔X1、X2=メトキシカルボニル基〕、ビ
ス(4−フェノキシカルボニルオキシフェニル)ジスル
フィド〔X1、X2=フェノキシカルボニル基〕などが挙
げられる。また、前記一般式(II)で表されるジスル
フィド誘導体の具体例としては、例えば、ビス(4−フ
ルオロフェニル)ジスルフィド〔X3、X4=F〕、ビス
(4−クロロフェニル)ジスルフィド〔X3、X4=C
l〕、ビス(4−ブロモフェニル)ジスルフィド
〔X3、X4=Br〕、ビス(4−ヨードフェニル)ジス
ルフィド〔X3、X4=I〕、ビス(4−トリフルオロメ
チルフェニル)ジスルフィド〔X3、X4=CF3〕、ビ
ス(4−トリクロロメチルフェニル)ジスルフィド〔X
3、X4=CCl3〕、ビス(4−トリブロモメチルフェ
ニル)ジスルフィド〔X3、X4=CBr3〕が挙げられ
る。
Specific examples of the disulfide derivative represented by the general formula (I) include, for example, bis (4-methoxyphenyl) disulfide [X 1 , X 2 = methyl group], bis (3-methoxyphenyl) disulfide [X 1 , X 2 = methyl group], bis (2-methoxyphenyl) disulfide [X 1 , X 2 = methyl group], bis (4-ethoxyphenyl) disulfide [X 1 , X 2 = ethyl group], bis (4-
Isopropoxyphenyl) disulfide [X 1 , X 2 = isopropyl group], bis (4-cyclohexyloxyphenyl) disulfide [X 1 , X 2 = cyclohexyl group],
Bis (4-allyloxyphenyl) disulfide [X 1 , X 2 = allyl group], bis [4- (2-propynyloxy) phenyl] disulfide [X 1 , X 2 = 2-propynyl group], bis (4- Phenoxyphenyl) disulfide [X 1 , X 2 = phenyl group], bis (4-acetoxyphenyl) disulfide [X 1 , X 2 = acetyl group], bis (4-benzoyloxyphenyl) disulfide [X
1, X 2 = benzoyl group], bis (4-methanesulfonyloxy-phenyl) disulfide [X 1, X 2 = methanesulfonyl group], bis (4-benzenesulfonyloxy-phenyl) disulfide [X 1, X 2 = benzenesulfonyl Group], bis (4-methoxycarbonyloxyphenyl)
Disulfide [X 1 , X 2 = methoxycarbonyl group], bis (4-phenoxycarbonyloxyphenyl) disulfide [X 1 , X 2 = phenoxycarbonyl group] and the like. Specific examples of the disulfide derivative represented by the general formula (II) include, for example, bis (4-fluorophenyl) disulfide [X 3 , X 4 = F] and bis (4-chlorophenyl) disulfide [X 3 , X 4 = C
l], bis (4-bromophenyl) disulfide [X 3 , X 4 = Br], bis (4-iodophenyl) disulfide [X 3 , X 4 = I], bis (4-trifluoromethylphenyl) disulfide [ X 3 , X 4 = CF 3 ], bis (4-trichloromethylphenyl) disulfide [X
3, X 4 = CCl 3], and a bis (4-bromomethylphenyl) disulfide [X 3, X 4 = CBr 3].

【0013】非水電解液中に含有される前記式(I)で
表される置換基に酸素を含有したジスルフィド誘導体の
含有量は、過度に多いと電池性能が低下することがあ
り、また、過度に少ないと期待した十分な電池性能が得
られない。したがって、その含有量は非水電解液の重量
に対して0.01〜5重量%の範囲がサイクル特性が向
上するのでよい。
If the content of the disulfide derivative containing oxygen in the substituent represented by the formula (I) contained in the non-aqueous electrolyte is too large, the battery performance may be deteriorated. Sufficient battery performance, which is expected to be excessively small, cannot be obtained. Therefore, the content thereof is preferably in the range of 0.01 to 5% by weight based on the weight of the non-aqueous electrolyte, because cycle characteristics are improved.

【0014】本発明で使用される非水溶媒としては、高
誘電率溶媒と低粘度溶媒とからなるものが好ましい。高
誘電率溶媒としては、例えば、エチレンカーボネート
(EC)、プロピレンカーボネート(PC)、ブチレン
カーボネート(BC)などの環状カーボネート類が好適
に挙げられる。これらの高誘電率溶媒は、一種類で使用
してもよく、また二種類以上組み合わせて使用してもよ
い。
The non-aqueous solvent used in the present invention is preferably a solvent composed of a high dielectric constant solvent and a low viscosity solvent. Preferred examples of the high dielectric constant solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). These high dielectric constant solvents may be used alone or in combination of two or more.

【0015】低粘度溶媒としては、例えば、ジメチルカ
ーボネート(DMC)、メチルエチルカーボネート(M
EC)、ジエチルカーボネート(DEC)などの鎖状カ
ーボネート類、テトラヒドロフラン、2−メチルテトラ
ヒドロフラン、1,4−ジオキサン、1,2−ジメトキ
シエタン、1,2−ジエトキシエタン、1,2−ジブト
キシエタンなどのエーテル類、γ−ブチロラクトンなど
のラクトン類、アセトニトリルなどのニトリル類、プロ
ピオン酸メチルなどのエステル類、ジメチルホルムアミ
ドなどのアミド類が挙げられる。これらの低粘度溶媒は
一種類で使用してもよく、また二種類以上組み合わせて
使用してもよい。高誘電率溶媒と低粘度溶媒とはそれぞ
れ任意に選択され組み合わせて使用される。なお、前記
の高誘電率溶媒および低粘度溶媒は、容量比(高誘電率
溶媒:低粘度溶媒)で通常1:9〜4:1、好ましくは
1:4〜7:3の割合で使用される。
Examples of the low-viscosity solvent include dimethyl carbonate (DMC) and methyl ethyl carbonate (M
EC), chain carbonates such as diethyl carbonate (DEC), tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane And lactones such as γ-butyrolactone, nitriles such as acetonitrile, esters such as methyl propionate, and amides such as dimethylformamide. These low-viscosity solvents may be used alone or in combination of two or more. The high dielectric constant solvent and the low viscosity solvent are arbitrarily selected and used in combination. The high dielectric constant solvent and the low viscosity solvent are used in a volume ratio (high dielectric constant solvent: low viscosity solvent) of usually 1: 9 to 4: 1, preferably 1: 4 to 7: 3. You.

【0016】本発明で使用される電解質としては、例え
ば、LiPF6、LiBF4、LiClO4、LiN(S
2CF32、LiN(SO2252、LiC(SO2
CF33などが挙げられる。これらの電解質は、一種類
で使用してもよく、二種類以上組み合わせて使用しても
よい。これら電解質は、前記の非水溶媒に通常0.1〜
3M、好ましくは0.5〜1.5Mの濃度で溶解されて
使用される。
As the electrolyte used in the present invention, for example, LiPF 6 , LiBF 4 , LiClO 4 , LiN (S
O 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2
CF 3 ) 3 and the like. These electrolytes may be used alone or in combination of two or more. These electrolytes are usually 0.1 to
It is used after being dissolved at a concentration of 3M, preferably 0.5 to 1.5M.

【0017】本発明の非水電解液は、例えば、前記の高
誘電率溶媒や低粘度溶媒を混合し、これに前記の電解質
を溶解し、前記式(I)で表される置換基に酸素を含有
したジスルフィド誘導体を溶解することにより得られ
る。
The nonaqueous electrolytic solution of the present invention is prepared by, for example, mixing the above-mentioned high dielectric constant solvent or low-viscosity solvent, dissolving the above-mentioned electrolyte therein, and adding oxygen to the substituent represented by the above formula (I). Is obtained by dissolving a disulfide derivative containing

【0018】例えば、正極活物質としてはコバルト、マ
ンガン、ニッケル、クロム、鉄およびバナジウムからな
る群より選ばれる少なくとも一種類の金属とリチウムと
の複合金属酸化物が使用される。このような複合金属酸
化物としては、例えば、LiCoO2、LiMn24
LiNiO2などが挙げられる。
For example, as the positive electrode active material, a composite metal oxide of lithium and at least one metal selected from the group consisting of cobalt, manganese, nickel, chromium, iron and vanadium is used. Examples of such a composite metal oxide include LiCoO 2 , LiMn 2 O 4 ,
LiNiO 2 and the like.

【0019】正極は、前記の正極活物質をアセチレンブ
ラック、カーボンブラックなどの導電剤、ポリテトラフ
ルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVDF)などの結着剤および溶剤と混練して正極合
剤とした後、この正極材料を集電体としてのアルミニウ
ム箔やステンレス製のラス板に塗布して、乾燥、加圧成
型後、50℃〜250℃程度の温度で2時間程度真空下
で加熱処理することにより作製される。
The positive electrode is prepared by kneading the positive electrode active material with a conductive agent such as acetylene black and carbon black, a binder such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) and a solvent, and mixing the mixture with a solvent. After that, this positive electrode material is applied to an aluminum foil or a stainless steel lath plate as a current collector, dried and pressed, and then heat-treated under a vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. It is produced by doing.

【0020】負極活物質としては、リチウム金属やリチ
ウム合金、およびリチウムを吸蔵・放出可能な黒鉛型結
晶構造を有する炭素材料〔熱分解炭素類、コークス類、
グラファイト類(人造黒鉛、天然黒鉛など)、有機高分
子化合物燃焼体、炭素繊維〕や複合スズ酸化物などの物
質が使用される。特に、格子面(002)の面間隔(d
002)が0.335〜0.340nm(ナノメータ)で
ある黒鉛型結晶構造を有する炭素材料を使用することが
好ましい。なお、炭素材料のような粉末材料はエチレン
プロピレンジエンターポリマー(EPDM)、ポリテト
ラフルオロエチレン(PTFE)、ポリフッ化ビニリデ
ン(PVDF)などの結着剤と混練して負極合剤として
使用される。
Examples of the negative electrode active material include lithium metals, lithium alloys, and carbon materials having a graphite type crystal structure capable of inserting and extracting lithium (pyrolytic carbons, cokes,
Materials such as graphites (artificial graphite, natural graphite, etc.), organic polymer compound burners, carbon fibers] and composite tin oxide are used. In particular, the spacing (d) of the lattice plane (002)
( 002 ) is preferably a carbon material having a graphite-type crystal structure having a diameter of 0.335 to 0.340 nm (nanometers). A powder material such as a carbon material is used as a negative electrode mixture by kneading with a binder such as ethylene propylene diene terpolymer (EPDM), polytetrafluoroethylene (PTFE), or polyvinylidene fluoride (PVDF).

【0021】リチウム二次電池の構造は特に限定される
ものではなく、正極、負極および単層又は複層のセパレ
ータを有するコイン型電池、さらに、正極、負極および
ロール状のセパレータを有する円筒型電池や角型電池な
どが一例として挙げられる。なお、セパレータとしては
公知のポリオレフィンの微多孔膜、織布、不織布などが
使用される。
The structure of the lithium secondary battery is not particularly limited. A coin-type battery having a positive electrode, a negative electrode and a single-layer or multi-layer separator, and a cylindrical battery having a positive electrode, a negative electrode and a roll-shaped separator And a prismatic battery. As the separator, a known microporous polyolefin membrane, woven fabric, nonwoven fabric, or the like is used.

【0022】[0022]

【実施例】次に、実施例および比較例を挙げて、本発明
を具体的に説明する。 実施例1 〔非水電解液の調製〕EC:DMC(容量比)=1:2
の非水溶媒を調製し、これにLiPF6を1Mの濃度に
なるように溶解して非水電解液を調製した後、さらにビ
ス(4−メトキシフェニル)ジスルフィド〔X1、X2
メチル基〕を非水電解液に対して0.1重量%となるよ
うに加えた。
Next, the present invention will be specifically described with reference to examples and comparative examples. Example 1 [Preparation of non-aqueous electrolyte] EC: DMC (volume ratio) = 1: 2
Was prepared and a non-aqueous electrolyte solution was prepared by dissolving LiPF 6 to a concentration of 1 M, and then bis (4-methoxyphenyl) disulfide [X 1 , X 2 =
Methyl group] was added so as to be 0.1% by weight based on the non-aqueous electrolyte.

【0023】〔リチウム二次電池の作製および電池特性
の測定〕LiCoO2(正極活物質)を80重量%、ア
セチレンブラック(導電剤)を10重量%、ポリフッ化
ビニリデン(結着剤)を10重量%の割合で混合し、こ
れに1−メチル−2−ピロリドン溶剤を加えて混合した
ものをアルミニウム箔上に塗布し、乾燥、加圧成型、加
熱処理して正極を調製した。天然黒鉛(負極活物質)を
90重量%、ポリフッ化ビニリデン(結着剤)を10重
量%の割合で混合し、これに1−メチル−2−ピロリド
ン溶剤を加え、混合したものを銅箔上に塗布し、乾燥、
加圧成型、加熱処理して負極を調製した。そして、ポリ
プロピレン微多孔性フィルムのセパレータを用い、上記
の非水電解液を注入させてコイン電池(直径20mm、
厚さ3.2mm)を作製した。このコイン電池を用い
て、室温(20℃)下、0.8mAの定電流及び定電圧
で、終止電圧4.2Vまで5時間充電し、次に0.8m
Aの定電流下、終止電圧2.7Vまで放電し、この充放
電を繰り返した。初期充放電容量は、EC−DMC(1
/2)を非水電解液として用いた場合(比較例1)とほ
ぼ同等であり、60サイクル後の電池特性を測定したと
ころ、初期放電容量を100%としたときの放電容量維
持率は93.5%であった。また、低温特性も良好であ
った。コイン電池の作製条件および電池特性を表1に示
す。
[Preparation of Lithium Secondary Battery and Measurement of Battery Characteristics] 80% by weight of LiCoO 2 (positive electrode active material), 10% by weight of acetylene black (conductive agent), and 10% by weight of polyvinylidene fluoride (binder) % Of the mixture, a 1-methyl-2-pyrrolidone solvent was added to the mixture, and the mixture was applied onto an aluminum foil, dried, press-molded, and heat-treated to prepare a positive electrode. 90% by weight of natural graphite (negative electrode active material) and 10% by weight of polyvinylidene fluoride (binder) were added, and a 1-methyl-2-pyrrolidone solvent was added thereto. Applied, dried,
A negative electrode was prepared by pressure molding and heat treatment. Then, using a separator made of a polypropylene microporous film, the above non-aqueous electrolyte was injected, and a coin battery (20 mm in diameter,
(Thickness: 3.2 mm). This coin battery was charged at room temperature (20 ° C.) at a constant current and a constant voltage of 0.8 mA to a final voltage of 4.2 V for 5 hours, and then charged at a current of 0.8 m
Under the constant current of A, the battery was discharged to a final voltage of 2.7 V, and this charge / discharge was repeated. The initial charge / discharge capacity is EC-DMC (1
/ 2) as the non-aqueous electrolyte (Comparative Example 1), and the battery characteristics after 60 cycles were measured. The discharge capacity retention ratio when the initial discharge capacity was 100% was 93. 0.5%. Also, the low-temperature characteristics were good. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0024】実施例2 添加剤として、ビス(4−メトキシフェニル)ジスルフ
ィド〔X1、X2=メチル基〕を非水電解液に対して0.
05重量%使用したほかは実施例1と同様に非水電解液
を調製してコイン電池を作製し、60サイクル後の電池
特性を測定したところ、放電容量維持率は92.1%で
あった。コイン電池の作製条件および電池特性を表1に
示す。
Example 2 As an additive, bis (4-methoxyphenyl) disulfide [X 1 , X 2 = methyl group] was added to a non-aqueous electrolyte at a concentration of 0.1%.
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that the battery was used in an amount of 05% by weight, and a coin battery was manufactured. The battery characteristics after 60 cycles were measured. The discharge capacity retention was 92.1%. . Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0025】実施例3 添加剤として、ビス(4−メトキシフェニル)ジスルフ
ィド〔X1、X2=メチル基〕を非水電解液に対して0.
2重量%使用したほかは実施例1と同様に非水電解液を
調製してコイン電池を作製し、60サイクル後の電池特
性を測定したところ、放電容量維持率は92.4%であ
った。コイン電池の作製条件および電池特性を表1に示
す。
Example 3 As an additive, bis (4-methoxyphenyl) disulfide [X 1 , X 2 = methyl group] was added to a non-aqueous electrolyte at a concentration of 0.1%.
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that 2% by weight was used to prepare a coin battery, and the battery characteristics after 60 cycles were measured. The discharge capacity retention was 92.4%. . Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0026】実施例4 添加剤として、ビス(4−アセトキシフェニル)ジスル
フィド〔X1、X2=アセチル基〕を非水電解液に対して
0.1重量%使用したほかは実施例1と同様に非水電解
液を調製してコイン電池を作製し、60サイクル後の電
池特性を測定したところ、放電容量維持率は91.2%
であった。コイン電池の作製条件および電池特性を表1
に示す。
Example 4 The same as Example 1 except that bis (4-acetoxyphenyl) disulfide [X 1 , X 2 = acetyl group] was used as an additive in an amount of 0.1% by weight based on the non-aqueous electrolyte. A non-aqueous electrolyte solution was prepared to prepare a coin battery, and the battery characteristics after 60 cycles were measured. The discharge capacity retention ratio was 91.2%.
Met. Table 1 shows the coin battery fabrication conditions and battery characteristics.
Shown in

【0027】実施例5 添加剤として、ビス(4−メタンスルホニルオキシフェ
ニル)ジスルフィド〔X1、X2=メタンスルホニル基〕
を非水電解液に対して0.1重量%使用したほかは実施
例1と同様に非水電解液を調製してコイン電池を作製
し、60サイクル後の電池特性を測定したところ、放電
容量維持率は92.9%であった。コイン電池の作製条
件および電池特性を表1に示す。
Example 5 As an additive, bis (4-methanesulfonyloxyphenyl) disulfide [X 1 , X 2 = methanesulfonyl group]
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that 0.1% by weight was used in the non-aqueous electrolyte, a coin battery was manufactured, and the battery characteristics after 60 cycles were measured. The retention was 92.9%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0028】実施例6 添加剤として、ビス(4−メトキシカルボニルオキシフ
ェニル)ジスルフィド〔X1、X2=メトキシカルボニル
基〕を非水電解液に対して0.1重量%使用したほかは
実施例1と同様に非水電解液を調製してコイン電池を作
製し、60サイクル後の電池特性を測定したところ、放
電容量維持率は92.7%であった。コイン電池の作製
条件および電池特性を表1に示す。
Example 6 Example 2 was repeated except that bis (4-methoxycarbonyloxyphenyl) disulfide [X 1 , X 2 = methoxycarbonyl group] was used as an additive in an amount of 0.1% by weight based on the non-aqueous electrolyte. A coin battery was prepared by preparing a non-aqueous electrolyte solution in the same manner as in Example 1, and the battery characteristics after 60 cycles were measured. As a result, the discharge capacity retention ratio was 92.7%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0029】実施例7 添加剤として、ビス(4−フルオロフェニル)ジスルフ
ィド〔X3、X4=F〕を非水電解液に対して0.1重量
%使用したほかは実施例1と同様に非水電解液を調製し
てコイン電池を作製し、60サイクル後の電池特性を測
定したところ、放電容量維持率は92.8%であった。
コイン電池の作製条件および電池特性を表1に示す。
Example 7 As in Example 1, except that bis (4-fluorophenyl) disulfide [X 3 , X 4 = F] was used as an additive in an amount of 0.1% by weight based on the non-aqueous electrolyte. A coin battery was prepared by preparing a non-aqueous electrolyte, and the battery characteristics after 60 cycles were measured. As a result, the discharge capacity retention ratio was 92.8%.
Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0030】実施例8 添加剤として、ビス(4−クロロフェニル)ジスルフィ
ド〔X3、X4=Cl〕を非水電解液に対して0.1重量
%使用したほかは実施例1と同様に非水電解液を調製し
てコイン電池を作製し、60サイクル後の電池特性を測
定したところ、放電容量維持率は91.6%であった。
コイン電池の作製条件および電池特性を表1に示す。
Example 8 The same procedure as in Example 1 was repeated except that bis (4-chlorophenyl) disulfide [X 3 , X 4 = Cl] was used as an additive in an amount of 0.1% by weight based on the nonaqueous electrolyte. A coin battery was prepared by preparing an aqueous electrolyte, and the battery characteristics after 60 cycles were measured. As a result, the discharge capacity retention ratio was 91.6%.
Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0031】実施例9 添加剤として、ビス(4−トリフルオロメチルフェニ
ル)ジスルフィド〔X3、X4=CF3〕を非水電解液に
対して0.1重量%使用したほかは実施例1と同様に非
水電解液を調製してコイン電池を作製し、60サイクル
後の電池特性を測定したところ、放電容量維持率は9
2.5%であった。コイン電池の作製条件および電池特
性を表1に示す。
Example 9 Example 1 was repeated except that bis (4-trifluoromethylphenyl) disulfide [X 3 , X 4 = CF 3 ] was used as an additive in an amount of 0.1% by weight based on the non-aqueous electrolyte. A coin battery was prepared by preparing a non-aqueous electrolyte in the same manner as described above, and the battery characteristics after 60 cycles were measured.
2.5%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0032】実施例10 EC:PC:DMC(容量比)=1:1:2の非水溶媒
を調製し、これにLiPF6を1Mの濃度になるように
溶解して非水電解液を調整した後、さらにビス(4−メ
トキシフェニル)ジスルフィド〔X1、X2=メチル基〕
を非水電解液に対して0.1重量%となるように加え
た。この非水電解液を使用して実施例1と同様にコイン
電池を作製し、電池特性を測定したところ、初期放電容
量はEC−DMC(容量比1/2)のみを非水電解液と
して用いた場合(比較例1)とほぼ同等であり、60サ
イクル後の電池特性を測定したところ、初期放電容量を
100%としたときの放電容量維持率は93.0%であ
った。また、低温特性も良好であった。コイン電池の作
製条件および電池特性を表1に示す。
Example 10 A non-aqueous solvent of EC: PC: DMC (volume ratio) = 1: 1: 2 was prepared, and LiPF 6 was dissolved therein to a concentration of 1 M to prepare a non-aqueous electrolyte. Then, bis (4-methoxyphenyl) disulfide [X 1 , X 2 = methyl group]
Was added so as to be 0.1% by weight with respect to the non-aqueous electrolyte. Using this non-aqueous electrolyte, a coin battery was prepared in the same manner as in Example 1, and the battery characteristics were measured. The initial discharge capacity was only EC-DMC (capacity ratio 1/2) as the non-aqueous electrolyte. When the battery characteristics after 60 cycles were measured, the discharge capacity retention ratio when the initial discharge capacity was 100% was 93.0%. Also, the low-temperature characteristics were good. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0033】実施例11 負極活物質として、天然黒鉛に代えて人造黒鉛を使用し
たほかは実施例1と同様に非水電解液を調製してコイン
電池を作製し、60サイクル後の電池特性を測定したと
ころ、放電容量維持率は90.3%であった。コイン電
池の作製条件および電池特性を表1に示す。
Example 11 A coin battery was prepared by preparing a non-aqueous electrolyte in the same manner as in Example 1 except that artificial graphite was used instead of natural graphite as the negative electrode active material, and the battery characteristics after 60 cycles were evaluated. As a result of the measurement, the discharge capacity retention ratio was 90.3%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0034】実施例12 正極活物質として、LiCoO2に代えてLiMn24
を使用したほかは実施例1と同様に非水電解液を調製し
てコイン電池を作製し、60サイクル後の電池特性を測
定したところ、放電容量維持率は94.5%であった。
コイン電池の作製条件および電池特性を表1に示す。
Example 12 As a positive electrode active material, LiMn 2 O 4 was used instead of LiCoO 2.
A non-aqueous electrolyte solution was prepared in the same manner as in Example 1 to prepare a coin battery, and the battery characteristics after 60 cycles were measured. As a result, the discharge capacity retention ratio was 94.5%.
Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0035】比較例1 EC:DMC(容量比)=1:2の非水溶媒を調製し、
これにLiPF6を1Mの濃度になるように溶解した。
このときジスルフィドは全く添加しなかった。この非水
電解液を使用して実施例1と同様にコイン電池を作製
し、電池特性を測定した。初期放電容量に対し、60サ
イクル後の放電容量維持率は83.8%であった。コイ
ン電池の作製条件および電池特性を表1に示す。
Comparative Example 1 A non-aqueous solvent of EC: DMC (volume ratio) = 1: 2 was prepared.
LiPF 6 was dissolved therein to a concentration of 1M.
At this time, no disulfide was added. Using this non-aqueous electrolyte, a coin battery was produced in the same manner as in Example 1, and the battery characteristics were measured. The discharge capacity retention rate after 60 cycles was 83.8% of the initial discharge capacity. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0036】比較例2 添加剤として、ジフェニルジスルフィド〔X3、X4=な
し〕を非水電解液に対して0.1重量%使用したほかは
実施例1と同様に非水電解液を調製してコイン電池を作
製し、60サイクル後の電池特性を測定したところ、放
電容量維持率は88.7%であった。コイン電池の作製
条件および電池特性を表1に示す。以上のように、本発
明の添加剤を含有した電解液を用いると、無添加の系に
比べ、サイクル特性が飛躍的に向上した。これは、充電
時に添加剤が正極上で酸化分解し、電池の可逆性を良好
にする被膜を形成するためであると考えられる。また、
本発明の添加剤は、ベンゼン環に置換基を含有していな
いジフェニルジスルフィド添加系に比べても、より良好
なサイクル特性が得られた。この理由としては、ベンゼ
ン環に酸素、あるいはハロゲンなどの非共有電子対を多
く持つ原子が置換することで、充電時にそれらの原子か
ら正極へ電子が流れ込み、よりスムーズな酸化反応が起
こるためであると思われる。また、サイクル特性だけで
なく、本発明の添加剤はジフェニルジスルフィドに比べ
電解液への溶解性が良好であった。これは、ベンゼン環
に置換基を有することで、極性が上がるためであると思
われる。さらに、本発明の添加剤はジスルフィド化合物
特有の悪臭が、ジフェニルジスルフィドに比べ、明らか
に少ない。これも、ベンゼン環上の置換基の影響である
と思われる。このように、本発明の添加剤は、ベンゼン
環状に置換基を有さないジフェニルジスルフィドに比
べ、サイクル特性だけでなく、電解液への溶解性、悪臭
の少なさなどの取り扱い上の面からも優位性を持つの
で、電解液の添加剤としてより優れたものであると言え
る。
Comparative Example 2 A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that diphenyl disulfide [X 3 , X 4 = none] was used as an additive in an amount of 0.1% by weight based on the non-aqueous electrolyte. Then, a coin battery was manufactured, and the battery characteristics after 60 cycles were measured. As a result, the discharge capacity retention ratio was 88.7%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery. As described above, when the electrolytic solution containing the additive of the present invention was used, the cycle characteristics were dramatically improved as compared with the system without the additive. This is considered to be due to the fact that the additive is oxidatively decomposed on the positive electrode during charging to form a film that improves the reversibility of the battery. Also,
With the additive of the present invention, better cycle characteristics were obtained as compared with the diphenyl disulfide addition system having no substituent on the benzene ring. The reason for this is that substitution of atoms having a large number of lone pairs such as oxygen or halogen in the benzene ring causes electrons to flow from those atoms to the positive electrode during charging, resulting in a smoother oxidation reaction. I think that the. In addition to the cycle characteristics, the additive of the present invention had better solubility in the electrolytic solution than diphenyl disulfide. This is probably because the presence of a substituent on the benzene ring increases the polarity. Furthermore, the additive of the present invention has clearly less offensive odor peculiar to the disulfide compound than diphenyl disulfide. This also seems to be due to the effect of the substituent on the benzene ring. As described above, the additive of the present invention has not only cycle characteristics but also solubility in an electrolytic solution and low handling of odors, as compared with diphenyl disulfide having no substituent in the benzene ring. Since it has superiority, it can be said that it is more excellent as an additive for the electrolytic solution.

【0037】なお、本発明は記載の実施例に限定され
ず、発明の趣旨から容易に類推可能な様々な組み合わせ
が可能である。特に、上記実施例の溶媒の組み合わせは
限定されるものではない。更には、上記実施例はコイン
電池に関するものであるが、本発明は円筒形、角柱形の
電池にも適用される。
It should be noted that the present invention is not limited to the embodiments described above, and various combinations that can be easily inferred from the gist of the invention are possible. In particular, the combinations of the solvents in the above examples are not limited. Further, while the above embodiments relate to coin batteries, the present invention is also applicable to cylindrical and prismatic batteries.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【発明の効果】本発明によれば、電池のサイクル特性、
電気容量、保存特性などの電池特性に優れたリチウム二
次電池を提供することができる。
According to the present invention, the cycle characteristics of the battery,
A lithium secondary battery having excellent battery characteristics such as electric capacity and storage characteristics can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松森 保男 山口県宇部市大字小串1978番地の10 宇部 興産株式会社宇部ケミカル工場内 Fターム(参考) 5H029 AJ00 AJ05 AK03 AL07 AL08 AL12 AM03 AM04 AM05 AM07 DJ08 EJ11 HJ02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yasuo Matsumori 10-figure, 1978 Kogushi, Obe-shi, Ube-shi, Yamaguchi F-term in the Ube Chemical Plant Ube Chemical Plant (reference) 5H029 AJ00 AJ05 AK03 AL07 AL08 AL12 AM03 AM04 AM05 AM07 DJ08 EJ11 HJ02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非水溶媒に電解質が溶解されている非水
電解液において、該非水電解液中に下記式(I) 【化1】 (ただし、X1、X2はそれぞれ独立して炭素数1〜6の
アルキル基、炭素数2〜6のアルケニル基、炭素数2〜
6のアルキニル基、炭素数3〜6のシクロアルキル基、
アリール基、炭素数2〜7のアシル基、炭素数1〜7の
アルカンスルホニル基、炭素数6〜10のアリールスル
ホニル基、炭素数2〜7のエステル基を示す。)で表さ
れる置換基に酸素を含有したジスルフィド誘導体が0.
01〜5重量%含有されていることを特徴とする非水電
解液。
1. A non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte contains the following formula (I): (However, X 1 and X 2 are each independently an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms,
6, an alkynyl group, a cycloalkyl group having 3 to 6 carbon atoms,
An aryl group, an acyl group having 2 to 7 carbon atoms, an alkanesulfonyl group having 1 to 7 carbon atoms, an arylsulfonyl group having 6 to 10 carbon atoms, and an ester group having 2 to 7 carbon atoms are shown. The disulfide derivative containing oxygen in the substituent represented by the formula (1) is 0.1.
A non-aqueous electrolyte solution containing 0.1 to 5% by weight.
【請求項2】 非水溶媒に電解質が溶解されている非水
電解液において、該非水電解液中に下記式(II) 【化2】 (ただし、X3、X4はそれぞれ独立してF、Cl、B
r、I、CF3、CCl3、CBr3を示す。)で表され
る置換基にハロゲンを含有したジスルフィド誘導体が
0.01〜5重量%含有されていることを特徴とする非
水電解液。
2. A non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte contains the following formula (II): (However, X 3 and X 4 are each independently F, Cl, B
r, I, CF 3 , CCl 3 , and CBr 3 are shown. A non-aqueous electrolyte characterized by containing 0.01 to 5% by weight of a disulfide derivative containing a halogen in the substituent represented by the formula (1).
【請求項3】 正極、負極および非水溶媒に電解質が溶
解されている非水電解液からなるリチウム二次電池にお
いて、該非水電解液中に下記式(I) 【化3】 (ただし、X1、X2はそれぞれ独立して炭素数1〜6の
アルキル基、炭素数2〜6のアルケニル基、炭素数2〜
6のアルキニル基、炭素数3〜6のシクロアルキル基、
アリール基、炭素数2〜7のアシル基、炭素数1〜7の
アルカンスルホニル基、炭素数6〜10のアリールスル
ホニル基、炭素数2〜7のエステル基を示す。)で表さ
れる置換基に酸素を含有したジスルフィド誘導体が0.
01〜5重量%含有されていることを特徴とするリチウ
ム二次電池。
3. A lithium secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte contains the following formula (I): (However, X 1 and X 2 are each independently an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms,
6, an alkynyl group, a cycloalkyl group having 3 to 6 carbon atoms,
An aryl group, an acyl group having 2 to 7 carbon atoms, an alkanesulfonyl group having 1 to 7 carbon atoms, an arylsulfonyl group having 6 to 10 carbon atoms, and an ester group having 2 to 7 carbon atoms are shown. The disulfide derivative containing oxygen in the substituent represented by the formula (1) is 0.1.
A lithium secondary battery characterized by being contained in an amount of from 0.01 to 5% by weight.
【請求項4】 正極、負極および非水溶媒に電解質が溶
解されている非水電解液からなるリチウム二次電池にお
いて、該非水電解液中に下記式(II) 【化4】 (ただし、X3、X4はそれぞれ独立してF、Cl、B
r、I、CF3、CCl3、CBr3を示す。)で表され
る置換基にハロゲンを含有したジスルフィド誘導体が
0.01〜5重量%含有されていることを特徴とするリ
チウム二次電池。
4. A lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte contains the following formula (II): (However, X 3 and X 4 are each independently F, Cl, B
r, I, CF 3 , CCl 3 , and CBr 3 are shown. A lithium secondary battery comprising a disulfide derivative containing halogen in the substituent represented by the formula (1) in an amount of 0.01 to 5% by weight.
JP21970899A 1999-08-03 1999-08-03 Nonaqueous electrolyte and lithium secondary battery using the same Expired - Lifetime JP3444243B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP21970899A JP3444243B2 (en) 1999-08-03 1999-08-03 Nonaqueous electrolyte and lithium secondary battery using the same
CNB00129234XA CN1193450C (en) 1999-08-03 2000-08-03 Non-water secondary cell with high discharge capacitance
US10/021,130 US6866966B2 (en) 1999-08-03 2001-10-22 Non-aqueous secondary battery having enhanced discharge capacity retention

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21970899A JP3444243B2 (en) 1999-08-03 1999-08-03 Nonaqueous electrolyte and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2001052735A true JP2001052735A (en) 2001-02-23
JP3444243B2 JP3444243B2 (en) 2003-09-08

Family

ID=16739732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21970899A Expired - Lifetime JP3444243B2 (en) 1999-08-03 1999-08-03 Nonaqueous electrolyte and lithium secondary battery using the same

Country Status (2)

Country Link
JP (1) JP3444243B2 (en)
CN (1) CN1193450C (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025614A (en) * 2000-07-10 2002-01-25 Hitachi Maxell Ltd Nonaqueous secondary battery
EP1199766A2 (en) * 2000-10-20 2002-04-24 Ube Industries, Ltd. Non-aqueous secondary battery having enhanced discharge capacity retention
JP2003514356A (en) * 1999-11-12 2003-04-15 モルテック・コーポレーション lithium battery
KR100558842B1 (en) * 2001-05-16 2006-03-10 에스케이씨 주식회사 Organic electrolytic solution and lithium battery adopting the same
JP2007165126A (en) * 2005-12-14 2007-06-28 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
US7560195B2 (en) 2004-03-30 2009-07-14 Samsung Sdi Co., Ltd. Electrolyte for lithium battery and lithium battery comprising the same
JP2010186751A (en) * 2010-04-14 2010-08-26 Hitachi Maxell Ltd Nonaqueous secondary battery
WO2013005828A1 (en) 2011-07-07 2013-01-10 住友精化株式会社 Additive for nonaqueous electrolyte, nonaqueous electrolyte, and electricity storage device
WO2013147094A1 (en) * 2012-03-30 2013-10-03 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte cell using same
JP2014086379A (en) * 2012-10-26 2014-05-12 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and nonaqueous electrolyte battery using the same
KR20160138402A (en) 2014-03-28 2016-12-05 스미또모 세이까 가부시키가이샤 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
KR20180050373A (en) 2015-09-09 2018-05-14 스미토모 세이카 가부시키가이샤 An additive for a non-aqueous electrolyte, a non-aqueous electrolyte,
KR20180077262A (en) 2015-11-06 2018-07-06 스미토모 세이카 가부시키가이샤 An additive for a non-aqueous electrolyte, a non-aqueous electrolyte,

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866966B2 (en) * 1999-08-03 2005-03-15 Ube Industries, Ltd. Non-aqueous secondary battery having enhanced discharge capacity retention
KR100558846B1 (en) * 2003-08-19 2006-03-10 에스케이씨 주식회사 Electrolyte composition, lithium battery using the same and preparing method therefor
CN109962290B (en) * 2017-12-25 2020-12-11 张家港市国泰华荣化工新材料有限公司 Lithium battery electrolyte and lithium battery
CN108736067B (en) * 2018-05-28 2020-08-14 合肥国轩高科动力能源有限公司 Lithium ion battery electrolyte for improving flatulence and cycle performance under high voltage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636797A (en) * 1992-07-15 1994-02-10 Fuji Photo Film Co Ltd Lithium secondary battery
JPH07320779A (en) * 1994-05-20 1995-12-08 Sanyo Electric Co Ltd Nonaqueous electrolytic battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636797A (en) * 1992-07-15 1994-02-10 Fuji Photo Film Co Ltd Lithium secondary battery
JPH07320779A (en) * 1994-05-20 1995-12-08 Sanyo Electric Co Ltd Nonaqueous electrolytic battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514356A (en) * 1999-11-12 2003-04-15 モルテック・コーポレーション lithium battery
JP2002025614A (en) * 2000-07-10 2002-01-25 Hitachi Maxell Ltd Nonaqueous secondary battery
EP1199766A2 (en) * 2000-10-20 2002-04-24 Ube Industries, Ltd. Non-aqueous secondary battery having enhanced discharge capacity retention
EP1199766A3 (en) * 2000-10-20 2004-06-02 Ube Industries, Ltd. Non-aqueous secondary battery having enhanced discharge capacity retention
KR100558842B1 (en) * 2001-05-16 2006-03-10 에스케이씨 주식회사 Organic electrolytic solution and lithium battery adopting the same
US7560195B2 (en) 2004-03-30 2009-07-14 Samsung Sdi Co., Ltd. Electrolyte for lithium battery and lithium battery comprising the same
JP2007165126A (en) * 2005-12-14 2007-06-28 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
JP2010186751A (en) * 2010-04-14 2010-08-26 Hitachi Maxell Ltd Nonaqueous secondary battery
WO2013005828A1 (en) 2011-07-07 2013-01-10 住友精化株式会社 Additive for nonaqueous electrolyte, nonaqueous electrolyte, and electricity storage device
US10050304B2 (en) 2011-07-07 2018-08-14 Sumitomo Seika & Chemicals Co., Ltd. Additive for nonaqueous electrolyte, nonaqueous electrolyte, and electricity storage device
WO2013147094A1 (en) * 2012-03-30 2013-10-03 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte cell using same
US9780409B2 (en) 2012-03-30 2017-10-03 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery employing the same
JP2014086379A (en) * 2012-10-26 2014-05-12 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and nonaqueous electrolyte battery using the same
KR20160138402A (en) 2014-03-28 2016-12-05 스미또모 세이까 가부시키가이샤 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
KR20180050373A (en) 2015-09-09 2018-05-14 스미토모 세이카 가부시키가이샤 An additive for a non-aqueous electrolyte, a non-aqueous electrolyte,
KR20180077262A (en) 2015-11-06 2018-07-06 스미토모 세이카 가부시키가이샤 An additive for a non-aqueous electrolyte, a non-aqueous electrolyte,
US10615456B2 (en) 2015-11-06 2020-04-07 Sumitomo Seika Chemicals Co., Ltd. Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device

Also Published As

Publication number Publication date
CN1193450C (en) 2005-03-16
CN1285622A (en) 2001-02-28
JP3444243B2 (en) 2003-09-08

Similar Documents

Publication Publication Date Title
JP5348090B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP2000133304A (en) Non-aqueous electrolyte and lithium secondary battery using it
JP3444243B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2000195545A (en) Electrolyte for lithium secondary battery and lithium secondary battery using it
JP2001167791A (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2001332297A (en) Nonaqueous electrolytic solution and lithium secondary battery using the same
JP2001313071A (en) Nonaqueous electrolyte and lithium secondary cell using it
JP2001313072A (en) Electrolyte for lithium secondary cell and lithium secondary cell using it
JP4710116B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2002124297A (en) Nonaqueous electrolytic solution and lithium secondary battery using it
JP2000235866A (en) Nonaqueous electrolyte secondary battery
JP4193295B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JPH11273724A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JPH11273725A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using it
JPH11329494A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JP4423785B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JPH11329490A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JP4042082B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2001266939A (en) Non-aqueous electrolytic solution for lithium ion secondary battery
JP4114259B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP5110057B2 (en) Lithium secondary battery
JP2000133305A (en) Non-aqueous electrolyte and lithium secondary battery using it
JPH11273723A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JP2000149987A (en) Nonaqueous electrolyte solution and lithium secondary battery using it
JP2000195546A (en) Electrolyte for lithium secondary battery and lithium secondary battery using it

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3444243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term