JPH11329490A - Electrolytic solution for lithium secondary battery and lithium secondary battery using same - Google Patents

Electrolytic solution for lithium secondary battery and lithium secondary battery using same

Info

Publication number
JPH11329490A
JPH11329490A JP10135294A JP13529498A JPH11329490A JP H11329490 A JPH11329490 A JP H11329490A JP 10135294 A JP10135294 A JP 10135294A JP 13529498 A JP13529498 A JP 13529498A JP H11329490 A JPH11329490 A JP H11329490A
Authority
JP
Japan
Prior art keywords
group
battery
lithium secondary
secondary battery
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10135294A
Other languages
Japanese (ja)
Other versions
JP4045644B2 (en
Inventor
Shunichi Hamamoto
俊一 浜本
Koji Abe
浩司 安部
Tsutomu Takai
勉 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP13529498A priority Critical patent/JP4045644B2/en
Publication of JPH11329490A publication Critical patent/JPH11329490A/en
Application granted granted Critical
Publication of JP4045644B2 publication Critical patent/JP4045644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery excellent in battery characteristics such as cycle characteristics, electrical capacity, and preservation characteristics of the battery. SOLUTION: As this electrolytic solution for a lithium secondary battery, an eletrolytic solution having an electrolyte dissolved in a nonaqueous solvent is provided that contains penta-fluoro-benzene derivatives containing electron- attractive substitution groups expressed by a general formula (where, Y stands for an ester group containing an alkyl group or aryl group having the number of carbon atoms of 1 to 12, an acyl group containing an alkyl group or aryl group having the number of carbon atoms of 1 to 12, or a tri-fluoromethyl group. A halogen atom may be substituted for at least one of hydrogen atoms of the alkyl group or aryl group.), and a lithium secondary battery using this is also provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池のサイクル特
性や電気容量、保存特性などの電池特性にも優れたリチ
ウム二次電池を提供することができる新規なリチウム二
次電池用電解液、およびそれを用いたリチウム二次電池
に関する。
The present invention relates to a novel electrolyte for a lithium secondary battery which can provide a lithium secondary battery having excellent battery characteristics such as cycle characteristics, electric capacity and storage characteristics of the battery, and The present invention relates to a lithium secondary battery using the same.

【0002】[0002]

【従来の技術】近年、リチウム二次電池は小型電子機器
などの駆動用電源として広く使用されている。リチウム
二次電池は、主に正極、非水電解液および負極から構成
されており、特に、LiCoO2などのリチウム複合酸
化物を正極とし、炭素材料又はリチウム金属を負極とし
たリチウム二次電池が好適に使用されている。そして、
そのリチウム二次電池用の電解液としては、エチレンカ
ーボネート(EC)、プロピレンカーボネート(PC)
などのカーボネート類が好適に使用されている。
2. Description of the Related Art In recent years, lithium secondary batteries have been widely used as power sources for driving small electronic devices and the like. A lithium secondary battery is mainly composed of a positive electrode, a non-aqueous electrolyte, and a negative electrode. In particular, a lithium secondary battery using a lithium composite oxide such as LiCoO 2 as a positive electrode and a carbon material or lithium metal as a negative electrode is used. It is preferably used. And
Examples of the electrolyte for the lithium secondary battery include ethylene carbonate (EC) and propylene carbonate (PC).
Such carbonates are preferably used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、電池の
サイクル特性および電気容量などの電池特性について、
さらに優れた特性を有する二次電池が求められている。
負極として例えば天然黒鉛や人造黒鉛などの高結晶化し
た炭素材料を用いたリチウム二次電池は、炭素材料の剥
離が観察され、現象の程度によって容量が不可逆となる
ことがある。この剥離は、電解液中の溶媒が充電時に分
解することにより起こるものであり、炭素材料と電解液
との界面における溶媒の電気化学的還元に起因するもの
である。中でも融点が低くて誘電率の高いPCは、低温
においても高い電気伝導を有するが、黒鉛負極を用いる
場合にはPCの分解が起こってリチウム二次電池用には
使用できないという問題点があった。ECも充放電を繰
り返す間に一部分解が起こり、電池性能の低下が起こ
る。このため、電池のサイクル特性および電気容量など
の電池特性は必ずしも満足なものではないのが現状であ
る。
However, regarding the battery characteristics such as the cycle characteristics and the electric capacity of the battery,
There is a demand for a secondary battery having more excellent characteristics.
In a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as the negative electrode, peeling of the carbon material is observed, and the capacity may be irreversible depending on the degree of the phenomenon. This peeling is caused by the decomposition of the solvent in the electrolyte during charging, and is caused by the electrochemical reduction of the solvent at the interface between the carbon material and the electrolyte. Among them, PC having a low melting point and a high dielectric constant has high electric conductivity even at a low temperature, but when a graphite negative electrode is used, there is a problem that PC is decomposed and cannot be used for a lithium secondary battery. . EC also partially decomposes during repeated charge and discharge, resulting in a decrease in battery performance. Therefore, at present, the battery characteristics such as the cycle characteristics and the electric capacity of the battery are not always satisfactory.

【0004】本発明は、前記のようなリチウム二次電池
用電解液に関する課題を解決し、電池のサイクル特性に
優れ、さらに電気容量や充電状態での保存特性などの電
池特性にも優れたリチウム二次電池を構成することがで
きるリチウム二次電池用の電解液、およびそれを用いた
リチウム二次電池を提供することを目的とする。
The present invention solves the above-mentioned problems relating to the electrolyte solution for a lithium secondary battery, and provides a lithium battery having excellent cycle characteristics of a battery, and excellent battery characteristics such as electric capacity and storage characteristics in a charged state. An object of the present invention is to provide an electrolyte for a lithium secondary battery that can constitute a secondary battery, and a lithium secondary battery using the same.

【0005】[0005]

【課題を解決するための手段】本発明は、非水溶媒に電
解質が溶解されている電解液において、該電解液中に下
記一般式(I)
According to the present invention, there is provided an electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the electrolyte has the following general formula (I):

【0006】[0006]

【化3】 Embedded image

【0007】(式中、Yは、炭素数1〜12のアルキル
基もしくはアリール基を含有するエステル基、炭素数1
〜12のアルキル基もしくはアリール基を含有するアシ
ル基、またはトリフルオロメチル基を示す。ただし、前
記アルキル基またはアリール基の水素原子のうち少なく
とも1つがハロゲン原子で置換されていてもよい。)で
表される電子吸引性の置換基を含有するペンタフルオロ
ベンゼン誘導体類が含有されていることを特徴とするリ
チウム二次電池用電解液に関する。
Wherein Y is an ester group containing an alkyl or aryl group having 1 to 12 carbon atoms,
Represents an acyl group containing an alkyl group or an aryl group, or a trifluoromethyl group. However, at least one of the hydrogen atoms of the alkyl group or the aryl group may be substituted with a halogen atom. The present invention relates to an electrolyte solution for a lithium secondary battery, which comprises a pentafluorobenzene derivative containing an electron-withdrawing substituent represented by the formula (1).

【0008】正極、負極および非水溶媒に電解質が溶解
されている電解液からなるリチウム二次電池において、
該電解液中に下記一般式(I)
In a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent,
In the electrolyte, the following general formula (I)

【0009】[0009]

【化4】 Embedded image

【0010】(式中、Yは、炭素数1〜12のアルキル
基もしくはアリール基を含有するエステル基、炭素数1
〜12のアルキル基もしくはアリール基を含有するアシ
ル基、またはトリフルオロメチル基を示す。ただし、前
記アルキル基またはアリール基の水素原子のうち少なく
とも1つがハロゲン原子で置換されていてもよい。)で
表される電子吸引性の置換基を含有するペンタフルオロ
ベンゼン誘導体類が含有されていることを特徴とするリ
チウム二次電池に関する。
Wherein Y is an ester group containing an alkyl or aryl group having 1 to 12 carbon atoms,
Represents an acyl group containing an alkyl group or an aryl group, or a trifluoromethyl group. However, at least one of the hydrogen atoms of the alkyl group or the aryl group may be substituted with a halogen atom. The present invention relates to a lithium secondary battery containing a pentafluorobenzene derivative containing an electron-withdrawing substituent represented by the formula (1).

【0011】電解液中に含有される前記電子吸引性の置
換基を含有するペンタフルオロベンゼン誘導体類は、充
電の際に還元され炭素材料表面に不働態皮膜を形成し
て、天然黒鉛や人造黒鉛などの活性で高結晶化した炭素
材料を不働態皮膜で被覆し、電池の正常な反応を損なう
ことなく電解液の分解を抑制する効果を有するものと考
えられる。
The pentafluorobenzene derivatives containing an electron-withdrawing substituent contained in the electrolytic solution are reduced during charging to form a passive film on the surface of the carbon material, and are used as natural graphite or artificial graphite. It is considered that a carbon material that has been highly crystallized due to such activity is coated with a passive film to have an effect of suppressing the decomposition of the electrolytic solution without impairing the normal reaction of the battery.

【0012】[0012]

【発明の実施の形態】非水溶媒に電解質が溶解されてい
る電解液に含有される前記式(I)で表される電子吸引
性の置換基を含有するペンタフルオロベンゼン誘導体類
において、Yはメチル基、エチル基、プロピル基、イソ
プロピル基、ブチル基、イソブチル基、2,2,2−ト
リフルオロエチル基、2,2,3,3,3−ペンタフル
オロプロピル基などの水素原子のうち少なくとも1つが
ハロゲン原子で置換されていてもよい炭素数1〜12の
アルキル基、またはフェニル基、ベンジル基、ペンタフ
ルオロフェニル基などの水素原子のうち少なくとも1つ
がハロゲン原子で置換されていてもよいアリール基を含
有するエステル基が好ましい。また、Yはメチル基、エ
チル基、プロピル基、イソプロピル基、ブチル基、イソ
ブチル基、2,2,2−トリフルオロエチル基、2,
2,3,3,3−ペンタフルオロプロピル基などの水素
原子の少なくとも1つがハロゲン原子で置換されていて
もよい炭素数1〜12のアルキル基、またはフェニル
基、ベンジル基、ペンタフルオロフェニル基などの水素
原子の少なくとも1つがハロゲン原子で置換されていて
もよいアリール基を含有するアシル基が好ましい。さら
に、Yはトリフルオロメチル基などのハロゲン含有アル
キル基が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the pentafluorobenzene derivatives containing an electron-withdrawing substituent represented by the above formula (I) contained in an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, Y is At least hydrogen atoms such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl An alkyl group having 1 to 12 carbon atoms, one of which may be substituted with a halogen atom, or an aryl, wherein at least one of hydrogen atoms such as a phenyl group, a benzyl group and a pentafluorophenyl group may be substituted with a halogen atom Ester groups containing groups are preferred. Y represents a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a 2,2,2-trifluoroethyl group,
At least one hydrogen atom such as a 2,3,3,3-pentafluoropropyl group or the like may be substituted with a halogen atom, or an alkyl group having 1 to 12 carbon atoms, or a phenyl group, a benzyl group, a pentafluorophenyl group, etc. And an acyl group containing an aryl group in which at least one of the hydrogen atoms may be substituted with a halogen atom. Further, Y is preferably a halogen-containing alkyl group such as a trifluoromethyl group.

【0013】前記式(I)で表されるペンタフルオロベ
ンゼン誘導体類の具体例としては、例えば、ペンタフル
オロベンゼンカルボン酸メチル〔Y=メトキシカルボニ
ル基〕、ペンタフルオロベンゼンカルボン酸エチル〔Y
=エトキシカルボニル基〕、ペンタフルオロベンゼンカ
ルボン酸プロピル〔Y=プロポキシカルボニル基〕、ペ
ンタフルオロベンゼンカルボン酸イソプロピル〔Y=イ
ソプロポキシカルボニル基〕、ペンタフルオロベンゼン
カルボン酸2,2,2-トリフルオロエチル〔Y=2,2,2-トリ
フルオロエトキシカルボニル基〕、ペンタフルオロベン
ゼンカルボン酸フェニル〔Y=フェノキシカルボニル
基〕、ペンタフルオロベンゼンカルボン酸ベンジル〔Y
=ベンジルオキシカルボニル基〕、ペンタフルオロベン
ゼンカルボン酸ペンタフルオロフェニル〔Y=ペンタフ
ルオロフェノキシカルボニル基〕などのエステル類、
2',3',4',5',6'−ペンタフルオロアセトフェノン
〔Y=アセチル基〕、オクタフルオロアセトフェノン
〔Y=トリフルオロアセチル基〕、2,3,4,5,6-ペンタフ
ルオロベンゾフェノン〔Y=フェノキシ基〕などのアシ
ル類、オクタフルオロトルエン〔Y=トリフルオロメチ
ル基〕などが挙げられる。なお、本発明におけるペンタ
フルオロベンゼン誘導体類は、電子吸引性の置換基を含
有していれば良く、上記の具体例に限定されるものでは
ない。
Specific examples of the pentafluorobenzene derivatives represented by the above formula (I) include, for example, methyl pentafluorobenzenecarboxylate [Y = methoxycarbonyl group], ethyl pentafluorobenzenecarboxylate [Y
= Ethoxycarbonyl group], propyl pentafluorobenzenecarboxylate [Y = propoxycarbonyl group], isopropyl pentafluorobenzenecarboxylate [Y = isopropoxycarbonyl group], 2,2,2-trifluoroethyl pentafluorobenzenecarboxylate [ Y = 2,2,2-trifluoroethoxycarbonyl group], phenyl pentafluorobenzenecarboxylate [Y = phenoxycarbonyl group], benzyl pentafluorobenzenecarboxylate [Y
= Benzyloxycarbonyl group], esters such as pentafluorophenyl pentafluorobenzenecarboxylate [Y = pentafluorophenoxycarbonyl group],
2 ', 3', 4 ', 5', 6'-pentafluoroacetophenone [Y = acetyl group], octafluoroacetophenone [Y = trifluoroacetyl group], 2,3,4,5,6-pentafluorobenzophenone Acyls such as [Y = phenoxy group], octafluorotoluene [Y = trifluoromethyl group] and the like. In addition, the pentafluorobenzene derivatives in the present invention are not limited to the above specific examples as long as they contain an electron-withdrawing substituent.

【0014】前記式(I)で表される電子吸引性の置換
基を含有するペンタフルオロベンゼン誘導体類の含有量
は、過度に多いと、電解液の電導度などが変わり電池性
能が低下することがあり、また、過度に少ないと、十分
な皮膜が形成されず、期待した電池特性が得られないの
で、電解液の重量に対して0.01〜20重量%、特に
0.1〜10重量%の範囲が好ましい。
When the content of the pentafluorobenzene derivative having an electron-withdrawing substituent represented by the above formula (I) is excessively large, the conductivity of the electrolytic solution is changed and the battery performance is lowered. If the amount is too small, a sufficient film is not formed and the expected battery characteristics cannot be obtained. Therefore, 0.01 to 20% by weight, particularly 0.1 to 10% by weight based on the weight of the electrolytic solution. % Is preferred.

【0015】本発明で使用される非水溶媒としては、高
誘電率溶媒と低粘度溶媒とからなるものが好ましい。高
誘電率溶媒としては、例えば、エチレンカーボネート
(EC)、プロピレンカーボネート(PC)、ブチレン
カーボネート(BC)などの環状カーボネート類が好適
に挙げられる。これらの高誘電率溶媒は、一種類で使用
してもよく、また二種類以上組み合わせて使用してもよ
い。
The non-aqueous solvent used in the present invention is preferably a solvent composed of a high dielectric constant solvent and a low viscosity solvent. Preferred examples of the high dielectric constant solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). These high dielectric constant solvents may be used alone or in combination of two or more.

【0016】低粘度溶媒としては、例えば、ジメチルカ
ーボネート(DMC)、メチルエチルカーボネート(M
EC)、ジエチルカーボネート(DEC)などの鎖状カ
ーボネート類、テトラヒドロフラン、2−メチルテトラ
ヒドロフラン、1,4−ジオキサン、1,2−ジメトキ
シエタン、1,2−ジエトキシエタン、1,2−ジブト
キシエタンなどのエーテル類、γ−ブチロラクトンなど
のラクトン類、アセトニトリルなどのニトリル類、プロ
ピオン酸メチルなどのエステル類、ジメチルホルムアミ
ドなどのアミド類が挙げられる。これらの低粘度溶媒は
一種類で使用してもよく、また二種類以上組み合わせて
使用してもよい。高誘電率溶媒と低粘度溶媒とはそれぞ
れ任意に選択され組み合わせて使用される。なお、前記
の高誘電率溶媒および低粘度溶媒は、容量比(高誘電率
溶媒:低粘度溶媒)で通常1:9〜4:1、好ましくは
1:4〜7:3の割合で使用される。
As the low-viscosity solvent, for example, dimethyl carbonate (DMC), methyl ethyl carbonate (M
EC), chain carbonates such as diethyl carbonate (DEC), tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane And lactones such as γ-butyrolactone, nitriles such as acetonitrile, esters such as methyl propionate, and amides such as dimethylformamide. These low-viscosity solvents may be used alone or in combination of two or more. The high dielectric constant solvent and the low viscosity solvent are arbitrarily selected and used in combination. The high dielectric constant solvent and the low viscosity solvent are used in a volume ratio (high dielectric constant solvent: low viscosity solvent) of usually 1: 9 to 4: 1, preferably 1: 4 to 7: 3. You.

【0017】本発明で使用される電解質としては、例え
ば、LiPF6、LiBF4、LiClO4、LiN(S
2CF32、LiN(SO2252、LiC(SO2
CF33などが挙げられる。これらの電解質は、一種類
で使用してもよく、二種類以上組み合わせて使用しても
よい。これら電解質は、前記の非水溶媒に通常0.1〜
3M、好ましくは0.5〜1.5Mの濃度で溶解されて
使用される。
As the electrolyte used in the present invention, for example, LiPF 6 , LiBF 4 , LiClO 4 , LiN (S
O 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2
CF 3 ) 3 and the like. These electrolytes may be used alone or in combination of two or more. These electrolytes are usually 0.1 to
It is used after being dissolved at a concentration of 3M, preferably 0.5 to 1.5M.

【0018】本発明の電解液は、例えば、前記の高誘電
率溶媒や低粘度溶媒を混合し、これに前記の電解質を溶
解し、前記式(I)で表されるペンタフルオロベンゼン
誘導体類を溶解することにより得られる。
The electrolytic solution of the present invention is prepared, for example, by mixing the above-mentioned high dielectric constant solvent or low-viscosity solvent, dissolving the above-mentioned electrolyte, and adding the pentafluorobenzene derivative represented by the above formula (I). Obtained by dissolving.

【0019】本発明の電解液は、二次電池の構成部材、
特にリチウム二次電池の構成部材として好適に使用され
る。二次電池を構成する電解液以外の構成部材について
は特に限定されず、従来使用されている種々の構成部材
を使用できる。
The electrolytic solution of the present invention comprises a constituent member of a secondary battery,
In particular, it is suitably used as a component of a lithium secondary battery. The constituent members other than the electrolytic solution constituting the secondary battery are not particularly limited, and various conventionally used constituent members can be used.

【0020】例えば、正極材料(正極活物質)としては
コバルト、マンガン、ニッケル、クロム、鉄およびバナ
ジウムからなる群より選ばれる少なくとも一種類の金属
とリチウムとの複合金属酸化物が使用される。このよう
な複合金属酸化物としては、例えば、LiCoO2、L
iMn24、LiNiO2などが挙げられる。
For example, a composite metal oxide of lithium and at least one metal selected from the group consisting of cobalt, manganese, nickel, chromium, iron and vanadium is used as the positive electrode material (positive electrode active material). Examples of such a composite metal oxide include LiCoO 2 , L
iMn 2 O 4 , LiNiO 2 and the like can be mentioned.

【0021】正極は、前記の正極材料をアセチレンブラ
ック、カーボンブラックなどの導電剤およびポリテトラ
フルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVDF)などの結着剤と混練して正極合剤とした
後、この正極材料を集電体としてのアルミニウムやステ
ンレス製の箔やラス板に圧延して、50℃〜250℃程
度の温度で2時間程度真空下で加熱処理することにより
作製される。
The positive electrode is prepared by kneading the above positive electrode material with a conductive agent such as acetylene black and carbon black and a binder such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) to form a positive electrode mixture. The positive electrode material is rolled into a foil or lath plate made of aluminum or stainless steel as a current collector and heat-treated under a vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.

【0022】負極(負極活物質)としては、リチウム金
属やリチウム合金、およびリチウムを吸蔵・放出可能な
黒鉛型結晶構造を有する炭素材料〔熱分解炭素類、コー
クス類、グラファイト類(人造黒鉛、天然黒鉛など)、
有機高分子化合物燃焼体、炭素繊維〕や複合スズ酸化物
などの物質が使用される。特に、格子面(002)の面
間隔(d002)が3.35〜3.40オングストローム
(Å)である黒鉛型結晶構造を有する炭素材料を使用す
ることが好ましい。なお、炭素材料のような粉末材料は
エチレンプロピレンジエンターポリマー(EPDM)、
ポリテトラフルオロエチレン(PTFE)、ポリフッ化
ビニリデン(PVDF)などの結着剤と混練して負極合
剤として使用される。
As the negative electrode (negative electrode active material), lithium metal, a lithium alloy, and a carbon material having a graphite type crystal structure capable of occluding and releasing lithium [pyrolytic carbons, cokes, graphites (artificial graphite, natural graphite) Graphite, etc.),
Organic polymer compound combustion body, carbon fiber] and composite tin oxide. In particular, spacing of lattice planes (002) (d 002) it is preferable to use a carbon material having a graphite-type crystal structure is 3.35 to 3.40 angstroms (Å). Powder materials such as carbon materials are ethylene propylene diene terpolymer (EPDM),
It is kneaded with a binder such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) and used as a negative electrode mixture.

【0023】リチウム二次電池の構造は特に限定される
ものではなく、正極、負極および単層又は複層のセパレ
ータを有するコイン型電池、さらに、正極、負極および
ロール状のセパレータを有する円筒型電池や角型電池な
どが一例として挙げられる。なお、セパレータとしては
公知のポリオレフィンの微多孔膜、織布、不織布などが
使用される。
The structure of the lithium secondary battery is not particularly limited. A coin-type battery having a positive electrode, a negative electrode, and a single-layer or multi-layer separator, and a cylindrical battery having a positive electrode, a negative electrode, and a roll-shaped separator And a prismatic battery. As the separator, a known microporous polyolefin membrane, woven fabric, nonwoven fabric, or the like is used.

【0024】[0024]

【実施例】次に、実施例および比較例を挙げて、本発明
を具体的に説明するが、これらは本発明を何ら限定する
ものではない。 実施例1 〔電解液の調製〕PC−DMC(容量比)=1:2の非
水溶媒を調製し、これにLiPF6を1Mの濃度になる
ように溶解して電解液を調製した後、さらに電子吸引性
の置換基を含有するペンタフルオロベンゼン誘導体(添
加剤)として、ペンタフルオロベンゼンカルボン酸メチ
ル〔Y=メトキシカルボニル基〕を電解液に対して2.
0重量%となるように加えた。
EXAMPLES Next, the present invention will be described in detail with reference to Examples and Comparative Examples, but these do not limit the present invention in any way. Example 1 [Preparation of electrolyte solution] A non-aqueous solvent having a PC-DMC (volume ratio) of 1: 2 was prepared, and LiPF 6 was dissolved therein to a concentration of 1 M to prepare an electrolyte solution. Further, as a pentafluorobenzene derivative (additive) containing an electron-withdrawing substituent, methyl pentafluorobenzenecarboxylate [Y = methoxycarbonyl group] is added to the electrolyte solution.
0% by weight was added.

【0025】〔リチウム二次電池の作製および電池特性
の測定〕LiCoO2(正極活物質)を80重量%、ア
セチレンブラック(導電剤)を10重量%、ポリフッ化
ビニリデン(結着剤)を10重量%の割合で混合し、こ
れにN−メチルピロリドンを加えてスラリー状にしてア
ルミ箔上に塗布した。その後、これを乾燥し、加圧成形
して正極を調整した。天然黒鉛(負極活物質)を90重
量%、ポリフッ化ビニリデン(結着剤)を10重量%の
割合で混合し、これにN−メチルピロリドンを加えてス
ラリー状にして銅箔上に塗布した。その後、これを乾燥
し、加圧成形して負極を調製した。そして、ポリプロピ
レン微多孔性フィルムのセパレータを用い、上記の電解
液を注入してコイン電池(直径20mm、厚さ3.2mm)
を作製した。このコイン電池を用いて、室温(20℃)
下、0.8mAの定電流定電圧で、終止電圧4.2Vま
で5時間で充電し、次に0.8mAの定電流下、終止電
圧2.7Vまで放電し、この充放電を繰り返した。初期
充放電容量は、EC−DMC(1/2)を電解液として
用いた場合(比較例2)とほぼ同等であり、50サイク
ル後の電池特性を測定したところ、初期放電容量を10
0%としたときの放電容量維持率は80.2%であっ
た。また、低温特性も良好であった。コイン電池の作製
条件および電池特性を表1に示す。
[Preparation of Lithium Secondary Battery and Measurement of Battery Characteristics] LiCoO 2 (cathode active material) was 80% by weight, acetylene black (conductive agent) was 10% by weight, and polyvinylidene fluoride (binder) was 10% by weight. %, And N-methylpyrrolidone was added thereto to form a slurry, which was applied on an aluminum foil. Thereafter, it was dried and pressed to prepare a positive electrode. 90% by weight of natural graphite (negative electrode active material) and 10% by weight of polyvinylidene fluoride (binder) were mixed, and N-methylpyrrolidone was added thereto to form a slurry, which was coated on a copper foil. Thereafter, this was dried and molded under pressure to prepare a negative electrode. Then, using a separator made of a polypropylene microporous film, the above-mentioned electrolytic solution was injected into the coin battery (diameter 20 mm, thickness 3.2 mm).
Was prepared. Room temperature (20 ° C) using this coin battery
The battery was charged with a constant current and constant voltage of 0.8 mA to a final voltage of 4.2 V in 5 hours, and then discharged under a constant current of 0.8 mA to a final voltage of 2.7 V. This charge / discharge was repeated. The initial charge / discharge capacity was almost the same as in the case where EC-DMC (1/2) was used as the electrolytic solution (Comparative Example 2), and the battery characteristics after 50 cycles were measured.
The discharge capacity retention rate when it was 0% was 80.2%. Also, the low-temperature characteristics were good. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0026】実施例2 添加剤として、ペンタフルオロベンゼンカルボン酸2,2,
2-トリフルオロエチル〔Y=2,2,2-トリフルオロエトキ
シカルボニル基〕を電解液に対して2.0重量%使用し
たほかは実施例1と同様に電解液を調製してコイン電池
を作製し、50サイクル後の電池特性を測定したとこ
ろ、放電容量維持率は80.2%であった。コイン電池
の作製条件および電池特性を表1に示す。
Example 2 As an additive, pentafluorobenzenecarboxylic acid 2,2,
An electrolytic solution was prepared in the same manner as in Example 1 except that 2-trifluoroethyl [Y = 2,2,2-trifluoroethoxycarbonyl group] was used in an amount of 2.0% by weight based on the electrolytic solution. When the battery characteristics were measured after 50 cycles, the discharge capacity retention ratio was 80.2%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0027】実施例3 添加剤として、2',3',4',5',6'−ペンタフルオロア
セトフェノン〔Y=アセチル基〕を電解液に対して2.
0重量%使用したほかは実施例1と同様に電解液を調製
してコイン電池を作製し、50サイクル後の電池特性を
測定したところ、放電容量維持率は79.3%であっ
た。コイン電池の作製条件および電池特性を表1に示
す。
Example 3 2 ', 3', 4 ', 5', 6'-pentafluoroacetophenone [Y = acetyl group] was added to the electrolyte as an additive.
Except for using 0% by weight, an electrolytic solution was prepared in the same manner as in Example 1 to prepare a coin battery, and the battery characteristics after 50 cycles were measured. As a result, the discharge capacity retention ratio was 79.3%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0028】実施例4 添加剤として、オクタフルオロトルエン〔Y=トリフル
オロメチル基〕を電解液に対して2.0重量%使用した
ほかは実施例1と同様に電解液を調製してコイン電池を
作製し、50サイクル後の電池特性を測定したところ、
放電容量維持率は82.6%であった。コイン電池の作
製条件および電池特性を表1に示す。
Example 4 A coin battery was prepared in the same manner as in Example 1 except that octafluorotoluene [Y = trifluoromethyl group] was used as an additive in an amount of 2.0% by weight based on the electrolyte. And battery characteristics after 50 cycles were measured.
The discharge capacity retention ratio was 82.6%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0029】実施例5 添加剤として、オクタフルオロトルエン〔Y=トリフル
オロメチル基〕を電解液に対して0.2重量%使用した
ほかは実施例1と同様に電解液を調製してコイン電池を
作製し、50サイクル後の電池特性を測定したところ、
放電容量維持率は79.2%であった。コイン電池の作
製条件および電池特性を表1に示す。
Example 5 A coin battery was prepared by preparing an electrolyte in the same manner as in Example 1 except that octafluorotoluene [Y = trifluoromethyl group] was used as an additive in an amount of 0.2% by weight based on the electrolyte. And battery characteristics after 50 cycles were measured.
The discharge capacity retention ratio was 79.2%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0030】実施例6 添加剤として、オクタフルオロトルエン〔Y=トリフル
オロメチル基〕を電解液に対して5.0重量%使用した
ほかは実施例1と同様に電解液を調製してコイン電池を
作製し、50サイクル後の電池特性を測定したところ、
放電容量維持率は82.5%であった。コイン電池の作
製条件および電池特性を表1に示す。
Example 6 A coin battery was prepared in the same manner as in Example 1 except that octafluorotoluene [Y = trifluoromethyl group] was used as an additive at 5.0% by weight based on the electrolyte. And battery characteristics after 50 cycles were measured.
The discharge capacity retention ratio was 82.5%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0031】比較例1 PC−DMC(容量比)=1:2の非水溶媒を調製し、
これにLiPF6を1Mの濃度になるように溶解した。
このとき電子吸引性の置換基を含有するペンタフルオロ
ベンゼン誘導体類は全く添加しなかった。この電解液を
使用して実施例1と同様にコイン電池を作製し、電池特
性を測定したところ、初回充電時にPCの分解が起こり
全く放電できなかった。初回充電後の電池を解体して観
察した結果、黒鉛負極に剥離が認められた。コイン電池
の作製条件および電池特性を表1に示す。
Comparative Example 1 A non-aqueous solvent of PC-DMC (volume ratio) = 1: 2 was prepared.
LiPF 6 was dissolved therein to a concentration of 1M.
At this time, pentafluorobenzene derivatives containing an electron-withdrawing substituent were not added at all. Using this electrolytic solution, a coin battery was fabricated in the same manner as in Example 1, and the battery characteristics were measured. As a result, PC was decomposed at the time of the first charge, and no discharge was possible. As a result of disassembling and observing the battery after the first charge, peeling was observed in the graphite negative electrode. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0032】実施例7 EC−DMC(容量比)=1:2の非水溶媒を調製し、
これにLiPF6を1Mの濃度になるように溶解して電
解液を調製した後、さらにペンタフルオロ誘導体(添加
剤)として、オクタフルオロトルエン〔Y=トリフルオ
ロメチル基〕を電解液に対して2.0重量%となるよう
に加えた。この電解液を使用して実施例1と同様にコイ
ン電池を作製し、電池特性を測定したところ、EC−D
MC(1/2)のみを電解液として用いた場合(比較例
2)とほぼ同等であり、50サイクル後の電池特性を測
定したところ、初期放電容量を100%としたときの放
電容量維持率は91.2%であった。また、低温特性も
良好であった。コイン電池の作製条件および電池特性を
表1に示す。
Example 7 A non-aqueous solvent of EC-DMC (volume ratio) = 1: 2 was prepared.
LiPF 6 was dissolved therein to a concentration of 1 M to prepare an electrolytic solution, and octafluorotoluene [Y = trifluoromethyl group] was further added to the electrolytic solution as a pentafluoro derivative (additive). 0.0% by weight. Using this electrolytic solution, a coin battery was manufactured in the same manner as in Example 1, and the battery characteristics were measured.
It is almost the same as when only MC (1/2) was used as the electrolytic solution (Comparative Example 2). When the battery characteristics after 50 cycles were measured, the discharge capacity retention ratio when the initial discharge capacity was 100%. Was 91.2%. Also, the low-temperature characteristics were good. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0033】実施例8 添加剤として、ペンタフルオロベンゼンカルボン酸メチ
ル〔Y=メトキシカルボニル基〕を電解液に対して2.
0重量%使用したほかは実施例7と同様に電解液を調製
してコイン電池を作製し、50サイクル後の電池特性を
測定したところ、放電容量維持率は90.7%であっ
た。コイン電池の作製条件および電池特性を表1に示
す。
Example 8 As an additive, methyl pentafluorobenzenecarboxylate [Y = methoxycarbonyl group] was added to the electrolyte solution.
An electrolyte was prepared in the same manner as in Example 7 except that 0% by weight was used to prepare a coin battery, and the battery characteristics after 50 cycles were measured. As a result, the discharge capacity retention ratio was 90.7%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0034】実施例9 正極活物質として、LiCoO2に代えてLiMn24
を使用し、添加剤として、オクタフルオロトルエン〔Y
=トリフルオロメチル基〕を電解液に対して3.0重量
%使用したほかは実施例8と同様に電解液を調製してコ
イン電池を作製し、50サイクル後の電池特性を測定し
たところ、放電容量維持率は91.8%であった。コイ
ン電池の作製条件および電池特性を表1に示す。
Example 9 As a positive electrode active material, LiMn 2 O 4 was used instead of LiCoO 2.
Octafluorotoluene [Y
= Trifluoromethyl group] was used in the same manner as in Example 8, except that 3.0% by weight of the electrolytic solution was used to prepare a coin battery. The battery characteristics after 50 cycles were measured. The discharge capacity retention ratio was 91.8%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0035】比較例2 EC:DMC(容量比)=1:2の非水溶媒を調製し、
これにLiPF6を1Mの濃度になるように溶解した。
このとき電子吸引性の置換基を含有するペンタフルオロ
ベンゼン誘導体類は全く添加しなかった。この電解液を
使用して実施例1と同様にコイン電池を作製し、電池特
性を測定した。初期放電容量に対し、50サイクル後の
放電容量維持率は83.8%であった。コイン電池の作
製条件および電池特性を表1に示す。
Comparative Example 2 A non-aqueous solvent of EC: DMC (volume ratio) = 1: 2 was prepared.
LiPF 6 was dissolved therein to a concentration of 1M.
At this time, pentafluorobenzene derivatives containing an electron-withdrawing substituent were not added at all. Using this electrolytic solution, a coin battery was produced in the same manner as in Example 1, and the battery characteristics were measured. The discharge capacity retention rate after 50 cycles with respect to the initial discharge capacity was 83.8%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0036】[0036]

【表1】 [Table 1]

【0037】なお、本発明は記載の実施例に限定され
ず、発明の趣旨から容易に類推可能な様々な組み合わせ
が可能である。特に、上記実施例の溶媒の組み合わせは
限定されるものではない。更には、上記実施例はコイン
電池に関するものであるが、本発明は円筒形、角柱形の
電池にも適用される。
It should be noted that the present invention is not limited to the embodiments described above, and various combinations that can be easily inferred from the gist of the invention are possible. In particular, the combinations of the solvents in the above examples are not limited. Further, while the above embodiments relate to coin batteries, the present invention is also applicable to cylindrical and prismatic batteries.

【0038】[0038]

【発明の効果】本発明によれば、電池のサイクル特性、
電気容量、保存特性などの電池特性に優れたリチウム二
次電池を提供することができる。
According to the present invention, the cycle characteristics of the battery,
A lithium secondary battery having excellent battery characteristics such as electric capacity and storage characteristics can be provided.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非水溶媒に電解質が溶解されている電解
液において、該電解液中に下記一般式(I) 【化1】 (式中、Yは、炭素数1〜12のアルキル基もしくはア
リール基を含有するエステル基、炭素数1〜12のアル
キル基もしくはアリール基を含有するアシル基、または
トリフルオロメチル基を示す。ただし、前記アルキル基
またはアリール基の水素原子のうち少なくとも1つがハ
ロゲン原子で置換されていてもよい。)で表される電子
吸引性の置換基を含有するペンタフルオロベンゼン誘導
体類が含有されていることを特徴とするリチウム二次電
池用電解液。
1. An electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the electrolyte has the following general formula (I): (In the formula, Y represents an ester group containing an alkyl group or an aryl group having 1 to 12 carbon atoms, an acyl group containing an alkyl group or an aryl group having 1 to 12 carbon atoms, or a trifluoromethyl group. And at least one of the hydrogen atoms of the alkyl group or the aryl group may be substituted with a halogen atom.). An electrolytic solution for a lithium secondary battery, comprising:
【請求項2】 正極、負極および非水溶媒に電解質が溶
解されている電解液からなるリチウム二次電池におい
て、該電解液中に下記一般式(I) 【化2】 (式中、Yは、炭素数1〜12のアルキル基もしくはア
リール基を含有するエステル基、炭素数1〜12のアル
キル基もしくはアリール基を含有するアシル基、または
トリフルオロメチル基を示す。ただし、前記アルキル基
またはアリール基の水素原子のうち少なくとも1つがハ
ロゲン原子で置換されていてもよい。)で表される電子
吸引性の置換基を含有するペンタフルオロベンゼン誘導
体類が含有されていることを特徴とするリチウム二次電
池。
2. A lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the electrolyte has the following general formula (I): (In the formula, Y represents an ester group containing an alkyl group or an aryl group having 1 to 12 carbon atoms, an acyl group containing an alkyl group or an aryl group having 1 to 12 carbon atoms, or a trifluoromethyl group. And at least one of the hydrogen atoms of the alkyl group or the aryl group may be substituted with a halogen atom.). A rechargeable lithium battery.
JP13529498A 1998-05-18 1998-05-18 Electrolytic solution for lithium secondary battery and lithium secondary battery using the same Expired - Lifetime JP4045644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13529498A JP4045644B2 (en) 1998-05-18 1998-05-18 Electrolytic solution for lithium secondary battery and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13529498A JP4045644B2 (en) 1998-05-18 1998-05-18 Electrolytic solution for lithium secondary battery and lithium secondary battery using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007057512A Division JP4780001B2 (en) 2007-03-07 2007-03-07 Electrolytic solution for lithium secondary battery and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JPH11329490A true JPH11329490A (en) 1999-11-30
JP4045644B2 JP4045644B2 (en) 2008-02-13

Family

ID=15148344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13529498A Expired - Lifetime JP4045644B2 (en) 1998-05-18 1998-05-18 Electrolytic solution for lithium secondary battery and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4045644B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185213A (en) * 1999-12-28 2001-07-06 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery and manufacturing method therefor
EP1125338A1 (en) * 1999-07-01 2001-08-22 Cheil Industries Inc. Non-aqueous electrolyte composition for batteries
WO2003077351A1 (en) 2002-03-13 2003-09-18 Ube Industries, Ltd. Nonaqueous electrolytic solution and lithium secondary battery employing the same
JP2003338317A (en) * 2002-05-17 2003-11-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
WO2002080291A3 (en) * 2000-12-18 2003-12-11 Du Pont Additive for lithium-ion battery
KR100462784B1 (en) * 2002-08-12 2004-12-29 삼성에스디아이 주식회사 Nonaqueous electrolytic solution with improved safety and lithium battery employing the same
WO2005029631A1 (en) * 2003-09-17 2005-03-31 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2006236981A (en) * 2005-01-26 2006-09-07 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
KR100810680B1 (en) 2006-04-19 2008-03-07 제일모직주식회사 Nonaqueous electrolyte for secondary battery and Li secondary battery thereby
KR100845047B1 (en) 2006-12-28 2008-07-08 제일모직주식회사 Nonaqueous electrolyte for li-secondary battery and li secondary battery thereby
WO2008093837A1 (en) * 2007-02-02 2008-08-07 Ube Industries, Ltd. Ester compound, and non-aqueous electrolyte solution and lithium secondary battery each using the ester compound
US8148017B2 (en) * 2006-04-28 2012-04-03 Panasonic Corporation Electrochemical energy storage device
JP2012079711A (en) * 2005-01-20 2012-04-19 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855458B1 (en) * 1999-07-01 2005-02-15 Cheil Industries, Inc. Non-aqueous electrolyte composition for batteries
EP1125338A1 (en) * 1999-07-01 2001-08-22 Cheil Industries Inc. Non-aqueous electrolyte composition for batteries
EP1125338A4 (en) * 1999-07-01 2007-05-23 Cheil Ind Inc Non-aqueous electrolyte composition for batteries
JP2001185213A (en) * 1999-12-28 2001-07-06 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery and manufacturing method therefor
WO2002080291A3 (en) * 2000-12-18 2003-12-11 Du Pont Additive for lithium-ion battery
US7297442B2 (en) 2002-03-13 2007-11-20 Ube Industries, Ltd. Nonaqueous electrolytic solution and lithium secondary battery employing the same
WO2003077351A1 (en) 2002-03-13 2003-09-18 Ube Industries, Ltd. Nonaqueous electrolytic solution and lithium secondary battery employing the same
CN100440607C (en) * 2002-03-13 2008-12-03 宇部兴产株式会社 Nonaqueous electrolytic solution and lithium secondary battery employing the same
JP4492023B2 (en) * 2002-05-17 2010-06-30 三菱化学株式会社 Non-aqueous electrolyte secondary battery
JP2003338317A (en) * 2002-05-17 2003-11-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
KR100462784B1 (en) * 2002-08-12 2004-12-29 삼성에스디아이 주식회사 Nonaqueous electrolytic solution with improved safety and lithium battery employing the same
WO2005029631A1 (en) * 2003-09-17 2005-03-31 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
US7261975B2 (en) 2003-09-17 2007-08-28 Ube Industries, Ltd. Non-aqueous electrolytic solution and lithium secondary battery using the same
JP2013239468A (en) * 2005-01-20 2013-11-28 Ube Ind Ltd Nonaqueous electrolytic solution and lithium secondary battery using the same
JP2012079711A (en) * 2005-01-20 2012-04-19 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same
JP2006236981A (en) * 2005-01-26 2006-09-07 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
KR100810680B1 (en) 2006-04-19 2008-03-07 제일모직주식회사 Nonaqueous electrolyte for secondary battery and Li secondary battery thereby
US8148017B2 (en) * 2006-04-28 2012-04-03 Panasonic Corporation Electrochemical energy storage device
KR100845047B1 (en) 2006-12-28 2008-07-08 제일모직주식회사 Nonaqueous electrolyte for li-secondary battery and li secondary battery thereby
CN101595082A (en) * 2007-02-02 2009-12-02 宇部兴产株式会社 Ester cpds, the nonaqueous electrolytic solution that uses this ester cpds and lithium secondary battery
EP2108640A4 (en) * 2007-02-02 2010-05-12 Ube Industries Ester compound, and non-aqueous electrolyte solution and lithium secondary battery each using the ester compound
EP2108640A1 (en) * 2007-02-02 2009-10-14 Ube Industries, Ltd. Ester compound, and non-aqueous electrolyte solution and lithium secondary battery each using the ester compound
WO2008093837A1 (en) * 2007-02-02 2008-08-07 Ube Industries, Ltd. Ester compound, and non-aqueous electrolyte solution and lithium secondary battery each using the ester compound
US8263268B2 (en) 2007-02-02 2012-09-11 Ube Industries, Ltd. Ester compound, and non-aqueous electrolyte solution and lithium secondary battery each using the ester compound
JP5359277B2 (en) * 2007-02-02 2013-12-04 宇部興産株式会社 Ester compound, non-aqueous electrolyte and lithium secondary battery using the same
KR101521307B1 (en) * 2007-02-02 2015-05-18 우베 고산 가부시키가이샤 Ester compound, and non-aqueous electrolyte solution and lithium secondary battery each using the ester compound

Also Published As

Publication number Publication date
JP4045644B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
JP3815087B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3558007B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4320914B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2001332297A (en) Nonaqueous electrolytic solution and lithium secondary battery using the same
JP2001313072A (en) Electrolyte for lithium secondary cell and lithium secondary cell using it
JP4710116B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3444243B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3823712B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3633269B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4045644B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP3820748B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP3663897B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2001023688A (en) Nonaqueous electrolyte and lithium secondary battery using it
JP3610948B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4075416B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4042082B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3633268B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2000133305A (en) Non-aqueous electrolyte and lithium secondary battery using it
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP5110057B2 (en) Lithium secondary battery
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3945004B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4075180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2000195546A (en) Electrolyte for lithium secondary battery and lithium secondary battery using it
JP3610898B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term