JP2006114285A - Nonaqueous electrolyte for lithium secondary battery, the lithium secondary battery, and secondary battery system - Google Patents

Nonaqueous electrolyte for lithium secondary battery, the lithium secondary battery, and secondary battery system Download PDF

Info

Publication number
JP2006114285A
JP2006114285A JP2004298969A JP2004298969A JP2006114285A JP 2006114285 A JP2006114285 A JP 2006114285A JP 2004298969 A JP2004298969 A JP 2004298969A JP 2004298969 A JP2004298969 A JP 2004298969A JP 2006114285 A JP2006114285 A JP 2006114285A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
lithium
aqueous electrolyte
ocooch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004298969A
Other languages
Japanese (ja)
Other versions
JP5073161B2 (en
Inventor
Ryuichi Shimizu
竜一 清水
Takitaro Yamaguchi
滝太郎 山口
Cheol-Soo Jung
チョルス ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2004298969A priority Critical patent/JP5073161B2/en
Priority to KR1020050048850A priority patent/KR100728180B1/en
Priority to US11/250,264 priority patent/US7611801B2/en
Publication of JP2006114285A publication Critical patent/JP2006114285A/en
Application granted granted Critical
Publication of JP5073161B2 publication Critical patent/JP5073161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte having superior voltage resistance and lithium ionic conductivity equal to that of the conventional nonaqueous electrolyte, and to provide a secondary battery and a secondary battery system, both equipped with the nonaqueous electrolyte. <P>SOLUTION: The nonaqueous electrolyte for the lithium secondary battery contains at least one kind of aromatic compounds polymerizable at 4.2-4.5 V of the potential of a working electrode, when metallic lithium is used as the counter electrode with respect to the platinum working electrode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウム二次電池用の非水電解液およびリチウム二次電池および二次電池システムに関するものである。   The present invention relates to a non-aqueous electrolyte for a lithium secondary battery, a lithium secondary battery, and a secondary battery system.

従来のリチウム二次電池においては、非水電解液の耐酸化性等の観点から、充電終止電圧をリチウムに対して4.2V程度に設定するのが一般的である。これは、リチウムに対して4.2V以上に充電すると、正極の電位が上昇して非水電解液を分解してしまい、サイクル特性の低下や、高温での電池特性劣化の問題が生じるためである。しかし、充電電圧を4.2V以上とし、更に平均作動電圧を高めることが可能になれば、エネルギー密度の更なる向上を望むことができる。   In a conventional lithium secondary battery, the end-of-charge voltage is generally set to about 4.2 V with respect to lithium from the viewpoint of the oxidation resistance of the nonaqueous electrolyte. This is because when the battery is charged to 4.2 V or higher with respect to lithium, the potential of the positive electrode rises and the nonaqueous electrolyte solution is decomposed, resulting in problems such as deterioration of cycle characteristics and deterioration of battery characteristics at high temperatures. is there. However, if the charging voltage is set to 4.2 V or higher and the average operating voltage can be further increased, further improvement in energy density can be desired.

最近では、下記特許文献1に示すように、ハロゲン化アルキル基を有する亜硫酸エステルを電解液溶媒として添加することで、耐電圧の高い非水電解液を実現可能な技術が提案されている。
特開平9−167635号公報
Recently, as shown in Patent Document 1 below, a technique has been proposed that can realize a non-aqueous electrolyte with a high withstand voltage by adding a sulfite having a halogenated alkyl group as an electrolyte solvent.
JP 9-167635 A

しかし特許文献1では、亜硫酸エステルを添加することにより、電解液の耐電圧性は向上するが、リチウムイオンの伝導度が大幅に低下してしまうという問題があった。   However, in Patent Document 1, although the withstand voltage of the electrolytic solution is improved by adding a sulfite, there is a problem that the conductivity of lithium ions is significantly reduced.

本発明は、上記事情に鑑みてなされたものであって、耐電圧性に優れるとともにリチウムイオンの伝導度が従来のものと同等である非水電解液およびこの非水電解液を備えたリチウム二次電池ならびに二次電池システムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and has a non-aqueous electrolyte excellent in voltage resistance and having a lithium ion conductivity equivalent to that of a conventional one, and a lithium secondary battery provided with this non-aqueous electrolyte. It aims at providing a secondary battery and a secondary battery system.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明のリチウム二次電池用の非水電解液は、白金作用極に対する対極を金属リチウムとしたとき、作用極電位が4.2V以上4.5V以下の範囲で重合可能な芳香族化合物の少なくとも1種以上を含有することを特徴とする。
In order to achieve the above object, the present invention employs the following configuration.
The nonaqueous electrolytic solution for a lithium secondary battery according to the present invention comprises at least a polymerizable aromatic compound having a working electrode potential of 4.2 V or more and 4.5 V or less when the counter electrode for the platinum working electrode is metallic lithium. It is characterized by containing 1 or more types.

上記の非水電解液をリチウム二次電池の電解液として使用することにより、初充電時にリチウム二次電池の正極の表面に芳香族化合物が重合して皮膜を形成する。この皮膜形成によって正極と非水電解液とが直に接触することがない。これにより、正極による非水電解液の酸化分解を防止することができ、非水電解液の耐電圧特性を高めることができる。またリチウム二次電池の高温特性も改善することができる。   By using the above non-aqueous electrolyte as the electrolyte of the lithium secondary battery, the aromatic compound is polymerized on the surface of the positive electrode of the lithium secondary battery during the initial charge to form a film. By this film formation, the positive electrode and the non-aqueous electrolyte are not in direct contact. Thereby, the oxidative decomposition of the nonaqueous electrolytic solution by the positive electrode can be prevented, and the withstand voltage characteristic of the nonaqueous electrolytic solution can be enhanced. In addition, the high temperature characteristics of the lithium secondary battery can be improved.

また本発明のリチウム二次電池用の非水電解液においては、前記芳香族化合物が、フェナンスレン、ターフェニル、ジメチルビフェニルのうちのいずれか1種以上であることが好ましく、特にフェナンスレン、ターフェニルのいずれか一方または両方が好ましい。   In the non-aqueous electrolyte for a lithium secondary battery of the present invention, the aromatic compound is preferably at least one of phenanthrene, terphenyl, and dimethylbiphenyl, particularly phenanthrene and terphenyl. Either one or both are preferred.

次に本発明のリチウム二次電池用の非水電解液は、R−O−RまたはR−O−CO−O−Rからなる構造式(ただし、R及びRはアルキル基またはフッ化アルキル基)で表される有機フッ素化化合物のいずれか一方または両方が含有されてなることを特徴とする。 Next, the non-aqueous electrolyte for a lithium secondary battery of the present invention has a structural formula consisting of R 1 —O—R 2 or R 1 —O—CO—O—R 2 (where R 1 and R 2 are alkyls). One or both of organic fluorinated compounds represented by a group or a fluorinated alkyl group).

上記の有機フッ素化化合物は、リチウム二次電池の正極による酸化に対して分解することがない。このような有機フッ素化化合物を含有することで、耐電圧特性に優れた非水電解液を構成することができる。   The organic fluorinated compound does not decompose against oxidation by the positive electrode of the lithium secondary battery. By containing such an organic fluorinated compound, a nonaqueous electrolytic solution having excellent withstand voltage characteristics can be configured.

また本発明のリチウム二次電池用の非水電解液においては、前記有機フッ素化化合物が下記に示す構造式で表されるいずれか1種以上であることが好ましい。
HCFCFCHOCFCFH、CFCHOCOOCHCF、CHOCOOCHCHFCH、CHOCOOCH(CH)CHF、CHOCOOCHCHCHF。
特に、前記有機フッ素化化合物がHCFCFCHOCFCFH、CHOCOOCHCHFCHのいずれか一方または両方が好ましい。
Moreover, in the non-aqueous electrolyte for lithium secondary batteries of this invention, it is preferable that the said organic fluorinated compound is any 1 or more types represented by the structural formula shown below.
HCF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CH 2 OCOOCH 2 CF 3, CH 3 OCOOCH 2 CHFCH 3, CH 3 OCOOCH (CH 3) CH 2 F, CH 3 OCOOCH 2 CH 2 CH 2 F.
In particular, the organic fluorinated compound is preferably one or both of HCF 2 CF 2 CH 2 OCF 2 CF 2 H and CH 3 OCOOCH 2 CHFCH 3 .

また本発明のリチウム二次電池用の非水電解液は、先に記載の非水電解液であり、フルオロエチレンカーボネート、ビニレンカーボネート、プロパンスルトン、トリフルオロプロピルメチルスルホン、フルオロベンゼン、LiBFのうちのいずれか1種以上の負極被膜改善添加剤を含むことを特徴とする。 The non-aqueous electrolyte for a lithium secondary battery of the present invention is the non-aqueous electrolyte described above, and is selected from the group consisting of fluoroethylene carbonate, vinylene carbonate, propane sultone, trifluoropropylmethyl sulfone, fluorobenzene, and LiBF 4 . Any one or more negative electrode film improvement additives are included.

上記の芳香族化合物または有機フッ素化化合物に加えて、負極被膜改善添加剤を添加することにより、リチウム二次電池の負極表面に形成される皮膜を保護することができる。これにより、特に高温での充放電の際に、負極と非水電解液との間での急激な反応が抑制され、リチウム二次電池の熱暴走を未然に防止することができる。   In addition to the above aromatic compound or organic fluorinated compound, a film formed on the negative electrode surface of the lithium secondary battery can be protected by adding a negative electrode film improving additive. Thereby, a rapid reaction between the negative electrode and the non-aqueous electrolyte is suppressed particularly during charging and discharging at a high temperature, and thermal runaway of the lithium secondary battery can be prevented in advance.

次に本発明のリチウム二次電池は、先のいずれかに記載の非水電解液を具備してなることを特徴とする。   Next, a lithium secondary battery of the present invention is characterized by comprising any of the non-aqueous electrolytes described above.

上記の構成によれば、耐電圧特性に優れた非水電解液を備えているので、満充電時の電池電圧が4.2V以上4.5V以下であっても非水電解液が分解されるおそれがなく、また高温時に熱暴走が起きるおそれもなく、高容量で安全性の高いリチウム二次電池を実現できる。   According to said structure, since the non-aqueous electrolyte excellent in the withstand voltage characteristic is provided, even if the battery voltage at the time of a full charge is 4.2V or more and 4.5V or less, a non-aqueous electrolyte is decomposed | disassembled. There is no fear, and there is no risk of thermal runaway at high temperatures, and a lithium secondary battery with high capacity and high safety can be realized.

次に本発明の二次電池システムは、先に記載のリチウム二次電池と、該リチウム電池の満充電時の電池電圧を4.2V以上4.5V以下に設定する充電装置とを具備してなることを特徴とする。   Next, the secondary battery system of the present invention includes the above-described lithium secondary battery and a charging device that sets the battery voltage when the lithium battery is fully charged to 4.2 V or more and 4.5 V or less. It is characterized by becoming.

上記の構成によれば、上記構成のリチウム二次電池を備えており、このリチウム二次電池の満充電時の電池電圧を4.2V以上4.5V以下に制御できるので、リチウム二次電池の非水電解液が分解されるおそれがなく、また高温時に熱暴走が起きるおそれもなく、高容量で安全性の高い二次電池システムを実現できる。   According to the above configuration, the lithium secondary battery having the above configuration is provided, and the battery voltage when the lithium secondary battery is fully charged can be controlled to 4.2 V or more and 4.5 V or less. There is no possibility that the non-aqueous electrolyte is decomposed, and there is no risk of thermal runaway at a high temperature, and a high-capacity and highly safe secondary battery system can be realized.

本発明によれば、耐電圧性に優れた非水電解液およびこの非水電解液を備えたリチウム二次電池並びに二次電池システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the lithium secondary battery and secondary battery system provided with the non-aqueous electrolyte excellent in withstand voltage property and this non-aqueous electrolyte can be provided.

以下、本発明の実施の形態を図面を参照して説明する。
本実施形態のリチウム二次電池は、リチウムを吸蔵、放出が可能な正極と、リチウムを吸蔵、放出が可能な負極と、正極と負極の間に配置されたセパレータと、非水電解液とを具備して概略構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The lithium secondary battery of this embodiment includes a positive electrode capable of inserting and extracting lithium, a negative electrode capable of inserting and extracting lithium, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte. It is provided and is roughly configured.

正極は、正極活物質粉末に、ポリフッ化ビニリデン等の結着材とカーボンブラック等の導電助材とが混合されてシート状等に成形されてなるものである。この正極は正極集電体に接合されている。正極集電体には、アルミニウム、ステンレス等の金属箔若しくは金属網を例示できる。
また、正極活物質としては、コバルト、マンガン、ニッケルから選ばれる少なくとも一種とリチウムとの複合酸化物のいずれか1種以上のものが好ましく、具体的には、LiMn、LiCoO、LiNiO、LiCoNiMnO、LiFeO、V等が好ましく、LiCoO、LiNiO、LiCoNiMnOが特に好ましい。またTiS、MoS、有機ジスルフィド化合物または有機ポリスルフィド化合物等のリチウムを吸蔵・放出が可能なものを用いても良い。
The positive electrode is formed by mixing a positive electrode active material powder with a binder such as polyvinylidene fluoride and a conductive additive such as carbon black, and forming the sheet into a sheet or the like. The positive electrode is bonded to the positive electrode current collector. Examples of the positive electrode current collector include metal foils or metal nets such as aluminum and stainless steel.
Further, as the positive electrode active material, at least one selected from the group consisting of a complex oxide of lithium and at least one selected from cobalt, manganese, and nickel is preferable. Specifically, LiMn 2 O 4 , LiCoO 2 , LiNiO 2, LiCoNiMnO 2, LiFeO 2, V 2 O 5 and the like are preferable, LiCoO 2, LiNiO 2, LiCoNiMnO 2 is particularly preferred. Moreover, you may use what can occlude / release lithium, such as TiS, MoS, an organic disulfide compound, or an organic polysulfide compound.

負極は、負極活物質粉末に、ポリフッ化ビニリデン等の結着材と、必要に応じてカーボンブラック等の導電助材とが混合されてシート状等に成形されたものである。この負極は負極集電体に接合されている。負極集電体には、CuまたはCu合金からなる金属箔または金属網を例示できる。
また負極活物質としては、人造黒鉛、天然黒鉛、黒鉛化炭素繊維、黒鉛化メソカーボンマイクロビーズ、非晶質炭素等の炭素質材料を例示できる。また、リチウムと合金化が可能な金属質物単体やこの金属質物と炭素質材料を含む複合物も負極活物質として例示できる。リチウムと合金化が可能な金属としては、Al、Si、Sn、Pb、Zn、Bi、In、Mg、Ga、Cd等を例示できる。また負極活物質として金属リチウム箔も使用できる。
The negative electrode is formed by mixing a negative electrode active material powder with a binder such as polyvinylidene fluoride and, if necessary, a conductive additive such as carbon black, and forming the sheet. This negative electrode is joined to the negative electrode current collector. Examples of the negative electrode current collector include a metal foil or a metal net made of Cu or a Cu alloy.
Examples of the negative electrode active material include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbeads, and amorphous carbon. Moreover, the metal substance simple substance which can be alloyed with lithium, and the composite containing this metal substance and carbonaceous material can be illustrated as a negative electrode active material. Examples of metals that can be alloyed with lithium include Al, Si, Sn, Pb, Zn, Bi, In, Mg, Ga, and Cd. A metal lithium foil can also be used as the negative electrode active material.

またセパレータは、多孔質のポリプロピレンフィルム、多孔質のポリエチレンフィルム等、公知のセパレータを適宜使用できる。   As the separator, a known separator such as a porous polypropylene film or a porous polyethylene film can be appropriately used.

次に非水電解液は、リチウムイオンを伝導するものであって、その一例として、非水溶媒と、リチウム塩と、重合可能な芳香族化合物とが含有されてなるものを例示できる。   Next, the nonaqueous electrolytic solution conducts lithium ions. As an example, the nonaqueous electrolytic solution contains a nonaqueous solvent, a lithium salt, and a polymerizable aromatic compound.

重合可能な芳香族化合物は、白金作用極に対する対極を金属リチウムとしたとき、作用極電位が4.2V以上4.5V以下の範囲で作用極表面において重合可能な芳香族化合物であり、具体的には、フェナンスレン、ターフェニル、ジメチルビフェニルのうちのいずれか1種以上であり、この中でも特にフェナンスレン、ターフェニルのいずれか一方または両方が好ましい。
上記の非水電解液をリチウム二次電池の電解液として使用することにより、初充電時にリチウム二次電池の正極(上記作用極に相当)の表面に芳香族化合物が重合して皮膜を形成する。この皮膜形成によって正極と非水電解液とが直接に接することがない。これにより、正極による非水電解液の酸化分解を防止することができ、非水電解液の耐電圧特性を高めることができる。またリチウム二次電池の高温特性も改善することができる。
The polymerizable aromatic compound is an aromatic compound that can be polymerized on the surface of the working electrode when the working electrode potential is 4.2 V or more and 4.5 V or less when the counter electrode for the platinum working electrode is metallic lithium. Is at least one of phenanthrene, terphenyl, and dimethylbiphenyl, and among these, one or both of phenanthrene and terphenyl are particularly preferred.
By using the above non-aqueous electrolyte as an electrolyte of a lithium secondary battery, an aromatic compound is polymerized on the surface of the positive electrode (corresponding to the working electrode) of the lithium secondary battery during initial charging to form a film. . By this film formation, the positive electrode and the non-aqueous electrolyte are not in direct contact. Thereby, the oxidative decomposition of the nonaqueous electrolytic solution by the positive electrode can be prevented, and the withstand voltage characteristic of the nonaqueous electrolytic solution can be enhanced. In addition, the high temperature characteristics of the lithium secondary battery can be improved.

非水電解液における上記の芳香族化合物の添加量は、0.01質量%以上5質量%以下の範囲が好ましく、0.1質量%以上0.5質量%以下の範囲がより好ましい。芳香族化合物の添加量が0.1質量%以上であれば、正極の表面に十分な量の皮膜を形成することができ、正極による非水電解液の酸化分解を防止することができる。また、芳香族化合物の添加量が0.5質量%以下であれば、非水電解液のリチウムイオンの伝導度が低下することがなく、リチウム二次電池の充放電効率を高めることができる。   The amount of the aromatic compound added to the non-aqueous electrolyte is preferably in the range of 0.01% by mass to 5% by mass, and more preferably in the range of 0.1% by mass to 0.5% by mass. When the addition amount of the aromatic compound is 0.1% by mass or more, a sufficient amount of a film can be formed on the surface of the positive electrode, and the oxidative decomposition of the nonaqueous electrolytic solution by the positive electrode can be prevented. Moreover, if the addition amount of an aromatic compound is 0.5 mass% or less, the lithium ion conductivity of a non-aqueous electrolyte will not fall, and the charge / discharge efficiency of a lithium secondary battery can be improved.

次に非水電解液の別の例として、非水溶媒と、リチウム塩と、R−O−RまたはR−O−CO−O−Rからなる構造式(ただし、R及びRはアルキル基またはフッ化アルキル基)で表される有機フッ素化化合物のいずれか一方または両方が含有されてなるものを例示できる。 Next, as another example of the non-aqueous electrolyte, a structural formula (provided that R 1 and R 1 -O—R 2 or R 1 —O—CO—O—R 2) are used. R 2 may be exemplified by one or both of organic fluorinated compounds represented by an alkyl group or a fluorinated alkyl group.

上記の有機フッ素化化合物としては、HCFCFCHOCFCFH、CFCHOCOOCHCF、CHOCOOCHCHFCH、CHOCOOCH(CH)CHF、CHOCOOCHCHCHFのうちのいずれか1種以上を用いることが好ましく、特にこの中でも、HCFCFCHOCFCFH、CHOCOOCHCHFCHのいずれか一方または両方が好ましい。
上記の有機フッ素化化合物は、リチウム二次電池の正極による酸化に対して分解することがない。このような有機フッ素化化合物を含有することで、耐電圧特性に優れた非水電解液を構成することができる。
Examples of the organic fluorine compound, HCF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CH 2 OCOOCH 2 CF 3, CH 3 OCOOCH 2 CHFCH 3, CH 3 OCOOCH (CH 3) CH 2 F, CH 3 It is preferable to use any one or more of OCOOCH 2 CH 2 CH 2 F, and in particular, one or both of HCF 2 CF 2 CH 2 OCF 2 CF 2 H and CH 3 OCOOCH 2 CHFCH 3 are preferable.
The organic fluorinated compound does not decompose against oxidation by the positive electrode of the lithium secondary battery. By containing such an organic fluorinated compound, a nonaqueous electrolytic solution having excellent withstand voltage characteristics can be configured.

非水電解液における上記の有機フッ素化化合物の添加量は、0.1質量%以上50質量%以下の範囲が好ましく、1質量%以上20質量%以下の範囲がより好ましい。有機フッ素化化合物の添加量が1質量%以上であれば、非水電解液の耐電圧特性が向上し、正極による非水電解液の酸化分解を防止することができる。また、有機フッ素化化合物の添加量が20質量%以下であれば、非水電解液のリチウムイオンの伝導度が低下することがなく、リチウム二次電池の充放電効率を高めることができる。   The amount of the organic fluorinated compound added to the nonaqueous electrolytic solution is preferably in the range of 0.1% by mass to 50% by mass, and more preferably in the range of 1% by mass to 20% by mass. When the addition amount of the organic fluorinated compound is 1% by mass or more, the withstand voltage characteristic of the non-aqueous electrolyte is improved, and the oxidative decomposition of the non-aqueous electrolyte by the positive electrode can be prevented. Moreover, if the addition amount of the organic fluorinated compound is 20% by mass or less, the lithium ion conductivity of the non-aqueous electrolyte does not decrease, and the charge / discharge efficiency of the lithium secondary battery can be increased.

また、芳香族化合物または有機フッ素化化合物を含む上記2種類の非水電解液にそれぞれ、フルオロエチレンカーボネート、ビニレンカーボネート、プロパンスルトン、トリフルオロプロピルメチルスルホン、フルオロベンゼン、LiBFのうちのいずれか1種以上の負極被膜改善添加剤を添加してもよい。
上記負極被膜改善添加剤を添加することにより、充放電に伴ってリチウム二次電池の負極表面に形成される皮膜を保護することができる。これにより、特に高温での充放電の際に、負極と非水電解液との間での急激な反応が抑制され、リチウム二次電池の熱暴走を未然に防止することができる。
Further, any one of fluoroethylene carbonate, vinylene carbonate, propane sultone, trifluoropropylmethylsulfone, fluorobenzene, and LiBF 4 is added to each of the two types of non-aqueous electrolytes containing an aromatic compound or an organic fluorinated compound. More than one type of negative electrode coating improving additive may be added.
By adding the negative electrode film improving additive, the film formed on the negative electrode surface of the lithium secondary battery with charge / discharge can be protected. Thereby, a rapid reaction between the negative electrode and the non-aqueous electrolyte is suppressed particularly during charging and discharging at a high temperature, and thermal runaway of the lithium secondary battery can be prevented in advance.

非水電解液における上記の負極被膜改善添加剤の添加量は、0.05質量%以上20質量%以下の範囲が好ましく、0.5質量%以上10質量%以下の範囲がより好ましい。負極被膜改善添加剤の添加量が0.5質量%以上であれば、負極表面に形成される皮膜を十分に保護することができる。また、負極被膜改善添加剤の添加量が10質量%以下であれば、非水電解液のリチウムイオンの伝導度が低下することがなく、リチウム二次電池の充放電効率を高めることができる。   The addition amount of the negative electrode film improving additive in the non-aqueous electrolyte is preferably in the range of 0.05% by mass to 20% by mass, and more preferably in the range of 0.5% by mass to 10% by mass. If the addition amount of the negative electrode film improving additive is 0.5% by mass or more, the film formed on the negative electrode surface can be sufficiently protected. Moreover, if the addition amount of a negative electrode film improvement additive is 10 mass% or less, the lithium ion conductivity of a non-aqueous electrolyte will not fall, and the charge / discharge efficiency of a lithium secondary battery can be improved.

次に、上記の非水電解液に含有される溶媒としては、環状カーボネートと鎖状カーボネートの混合物を例示できる。
環状カーボネートとしては、例えば、エチレンカーボネート、ブチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン等のうちの1種以上を含むものが好ましい。これらの環状カーボネートはリチウムイオンと溶媒和しやすいため、電解質自体のイオン伝導度を高めることができる。
また鎖状カーボネートとしては、例えば、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートのうちの1種以上を含むものが好ましい。これらの鎖状カーボネートは低粘度であるので、電解質自体の粘度を下げてイオン伝導度を高めることができる。ただし、これら鎖状カーボネートは引火点が低いので、過剰に添加すると電解質の引火点を下げてしまうので過剰添加しないように注意を払う必要がある。
Next, as a solvent contained in said non-aqueous electrolyte, the mixture of a cyclic carbonate and a chain carbonate can be illustrated.
As cyclic carbonate, what contains 1 or more types in ethylene carbonate, butylene carbonate, propylene carbonate, (gamma) -butyrolactone, etc. is preferable, for example. Since these cyclic carbonates easily solvate with lithium ions, the ionic conductivity of the electrolyte itself can be increased.
Moreover, as chain carbonate, what contains 1 or more types in dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate, for example is preferable. Since these chain carbonates have a low viscosity, the viscosity of the electrolyte itself can be lowered to increase the ionic conductivity. However, since these chain carbonates have a low flash point, if added excessively, the flash point of the electrolyte is lowered, so care must be taken not to add excessively.

更にリチウム塩としては、LiPF、LiBF、Li[N(SO)]、Li[B(OCOCF]、Li[B(OCOC]を用いることができる。これらリチウム塩の電解質における濃度は、0.5モル/L以上2.0モル/L以下であることが好ましい。電解質中にこれらのリチウム塩が含まれることで、電解質自体のイオン伝導度を高めることができる。 Furthermore, LiPF 6 , LiBF 4 , Li [N (SO 2 C 2 F 5 ) 2 ], Li [B (OCOCF 3 ) 4 ], Li [B (OCOC 2 F 5 ) 4 ] should be used as the lithium salt. Can do. The concentration of these lithium salts in the electrolyte is preferably 0.5 mol / L or more and 2.0 mol / L or less. By including these lithium salts in the electrolyte, the ionic conductivity of the electrolyte itself can be increased.

本実施形態のリチウム二次電池によれば、耐電圧特性に優れた非水電解液を備えているので、満充電時の電池電圧が4.2V以上4.5V以下であっても非水電解液が分解されるおそれがなく、また高温時に熱暴走が起きるおそれもなく、高容量で安全性の高いリチウム二次電池を実現できる。   According to the lithium secondary battery of this embodiment, since the non-aqueous electrolyte having excellent withstand voltage characteristics is provided, non-aqueous electrolysis is possible even when the battery voltage at full charge is 4.2 V or more and 4.5 V or less. There is no risk of the liquid being decomposed, and there is no risk of thermal runaway at a high temperature, and a lithium secondary battery with high capacity and high safety can be realized.

また本実施形態のリチウム二次電池と、このリチウム電池の満充電時の電池電圧を4.2V以上4.5V以下に設定する充電装置とを組み合わせることによって、二次電池システムを構成することができる。この二次電池システムによれば、リチウム二次電池の満充電時の電池電圧を4.2V以上4.5V以下に制御できるので、リチウム二次電池の非水電解液が分解されるおそれがなく、また高温時に熱暴走が起きるおそれもなく、高容量で安全性の高い二次電池システムを実現できる。   Moreover, a secondary battery system can be configured by combining the lithium secondary battery of the present embodiment and a charging device that sets the battery voltage when the lithium battery is fully charged to 4.2 V or more and 4.5 V or less. it can. According to this secondary battery system, since the battery voltage when the lithium secondary battery is fully charged can be controlled to 4.2 V or more and 4.5 V or less, there is no possibility that the nonaqueous electrolyte of the lithium secondary battery is decomposed. In addition, there is no risk of thermal runaway at high temperatures, and a high-capacity and highly safe secondary battery system can be realized.

図1に、二次電池システムの一例を示す。図1において、符号1は直流電源装置であり、符号2は充電される本発明の係るリチウム二次電池であり、符号4は定電流回路に直列に挿入したスイッチ手段であり、符号5は制御装置である。直流電源装置1には、充電電圧の調整機構が組み込まれており、充電終止電圧を4.2〜4.5Vの範囲に設定している。スイッチ手段4は、制御装置5により制御されている。制御装置5は電池2の電圧を監視しており、電池電圧に応じてスイッチ手段4をオンオフして充電電流を制御している。この二次電池システムにおいては、スイッチ手段4を介して充電電流を直流電源装置1からリチウム二次電池2に供給し、定電流充電を行う。そして、電池電圧が4.2〜4.5Vの充電終止電圧に達した後、定電圧充電に切り替えて所定時間まで充電を行う。
以上の構成により、リチウム二次電池の満充電時の電池電圧を4.2V以上4.5V以下に制御できる。
FIG. 1 shows an example of a secondary battery system. In FIG. 1, reference numeral 1 denotes a DC power supply, reference numeral 2 denotes a lithium secondary battery according to the present invention to be charged, reference numeral 4 denotes switch means inserted in series in a constant current circuit, and reference numeral 5 denotes control. Device. The DC power supply device 1 incorporates a charging voltage adjustment mechanism, and the charge end voltage is set in the range of 4.2 to 4.5V. The switch means 4 is controlled by the control device 5. The control device 5 monitors the voltage of the battery 2 and controls the charging current by turning on and off the switch means 4 according to the battery voltage. In this secondary battery system, charging current is supplied from the DC power supply device 1 to the lithium secondary battery 2 via the switch means 4 to perform constant current charging. Then, after the battery voltage reaches the end-of-charge voltage of 4.2 to 4.5V, the battery voltage is switched to constant voltage charging and charged until a predetermined time.
With the above configuration, the battery voltage when the lithium secondary battery is fully charged can be controlled to 4.2 V or more and 4.5 V or less.

以下、各実験例により本発明を更に詳細に説明する。
(実験例1)
この実験例1では、非水電解液に、重合可能な芳香族化合物または有機フッ素化化合物を添加して3極セルを製造し、サイクリックボルタモグラム試験を行って電流電圧曲線を測定し、芳香族化合物および有機フッ素化化合物の反応電位を測定した。
Hereinafter, the present invention will be described in more detail with reference to experimental examples.
(Experimental example 1)
In Experimental Example 1, a tripolar cell was produced by adding a polymerizable aromatic compound or organic fluorinated compound to a non-aqueous electrolyte, and a cyclic voltammogram test was performed to measure a current-voltage curve. The reaction potential of the compound and the organic fluorinated compound was measured.

3極セルの製造は次のようにして行った。まず、直径0.5mmの白金線からなる作用極と、金属リチウムからなる対極および参照極を用意した。
また、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とがEC:DEC=30:70の割合で混合されてなる混合溶媒に、濃度1.3モル/LのLiPFが混合されて電解液を用意した。この電解液に対して0.2質量%のフェナンスレン、0.2質量%のm−ターフェニル、10質量%のCFCHOCOOCHCFをそれぞれ単独で添加して実施例1〜実施例3の非水電解液を調製した。また比較例1として、EC、DEC、LiPF以外は何も添加されていない非水電解液を用意した。
The triode cell was manufactured as follows. First, a working electrode made of a platinum wire having a diameter of 0.5 mm, a counter electrode made of metallic lithium, and a reference electrode were prepared.
Further, LiPF 6 having a concentration of 1.3 mol / L is mixed with a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a ratio of EC: DEC = 30: 70 to obtain an electrolytic solution. Prepared. Examples 1 to Examples in which 0.2% by mass of phenanthrene, 0.2% by mass of m-terphenyl, and 10% by mass of CF 3 CH 2 OCOOCH 2 CF 3 were respectively added to the electrolyte. 3 non-aqueous electrolyte was prepared. As Comparative Example 1, a non-aqueous electrolyte solution to which nothing other than EC, DEC, and LiPF 6 was added was prepared.

次に、ガラス容器に上記の非水電解液を注入し、この非水電解液に上記の作用極,対極および参照極を挿入して3極セルを組み立てた。セルを組み立ててから25℃で15時間放置した後、0.31cmの面積の作用極に対して開路電位(約3V(vsLi))から8V(vsLi)まで5mV/秒の速度で電位走査した後、8V(vsLi)から0V(vsLi)まで5mV/秒の速度で電位走査することにより、電流電圧曲線を測定した。ただし、芳香族化合物を添加した非水電解液については、電位捜査の途中で芳香族化合物によるピークが見られた電位で8時間保持した。
下記表1に、電圧7Vにおける電流値および電流電圧曲線の傾きと、電流電圧曲線の微分係数が極大になる電圧(ピーク電圧)を示す。
表1に示すように、
表1に示すように、実施例1−3では、比較例1よりもピーク電圧が高くなっており、添加剤によって電解液の分解電位が上昇していることがわかった。また、実施例1−3の7Vにおける電流値が、比較例1の場合より小さくなっていることがわかった。従って実施例1ないし3では、フェナンスレン、m−ターフェニルおよびCFCHOCOOCHCFの添加によって、7V付近での電解液分解が抑制されていることが判明した。
Next, the non-aqueous electrolyte was poured into a glass container, and the working electrode, counter electrode, and reference electrode were inserted into the non-aqueous electrolyte to assemble a three-electrode cell. After standing for 15 hours at 25 ° C. after assembling the cell, and the potential scanning in open circuit potential (about 3V (vs Li)) from 8V (vs Li) to a speed of 5 mV / sec for the working electrode area of 0.31 cm 2 Thereafter, the current-voltage curve was measured by scanning the potential from 8 V (vsLi) to 0 V (vsLi) at a rate of 5 mV / sec. However, the non-aqueous electrolyte to which the aromatic compound was added was held at a potential at which a peak due to the aromatic compound was observed during the potential search for 8 hours.
Table 1 below shows the current value and the slope of the current-voltage curve at a voltage of 7 V, and the voltage (peak voltage) at which the differential coefficient of the current-voltage curve is maximized.
As shown in Table 1,
As shown in Table 1, in Example 1-3, the peak voltage was higher than that in Comparative Example 1, and it was found that the decomposition potential of the electrolytic solution was increased by the additive. Moreover, it turned out that the electric current value in 7V of Example 1-3 is smaller than the case of the comparative example 1. Therefore, in Examples 1 to 3, it was found that the decomposition of the electrolyte near 7 V was suppressed by the addition of phenanthrene, m-terphenyl, and CF 3 CH 2 OCOOCH 2 CF 3 .

Figure 2006114285
Figure 2006114285

(実験例2)
この実験例2では、非水電解液に、重合可能な芳香族化合物または有機フッ素化化合物を添加してコイン型のリチウム二次電池を製造し、各種の電池特性を評価した。
リチウム二次電池の製造は次のようにして行った。まず、平均粒径10μmのLiNiOと、平均粒径10μmのLiCoOとを用意し、これらを質量比でLiNiO:LiCoO=30:70の割合で混合して正極活物質とした。また、LiCoOのみからなる正極活物質も用意した。これら正極活物質と、ポリフッ化ビニリデンからなる結着剤と、平均粒径3μmの炭素粉末からなる導電助材とを混合し、更にN−メチル−2−ピロリドンを混合して正極スラリーとした。この正極スラリーを、ドクターブレード法により厚み20μmのアルミニウム箔からなる正極集電体上に塗布し、真空雰囲気中で120℃、24時間乾燥させてN−メチル−2−ピロリドンを揮発させた後、圧延した。このようにして正極集電体上に、正極活物質、結着剤および導電助材からなる正極を形成した。
(Experimental example 2)
In Experimental Example 2, a coin-type lithium secondary battery was manufactured by adding a polymerizable aromatic compound or organic fluorinated compound to a nonaqueous electrolytic solution, and various battery characteristics were evaluated.
The lithium secondary battery was manufactured as follows. First, the LiNiO 2 having an average particle size of 10 [mu] m, to prepare a LiCoO 2 having an average particle size of 10 [mu] m, these LiNiO a mass ratio 2: LiCoO 2 = 30: were mixed in a ratio of 70 were positive electrode active material. A positive electrode active material made only of LiCoO 2 was also prepared. These positive electrode active materials, a binder made of polyvinylidene fluoride, and a conductive additive made of carbon powder having an average particle size of 3 μm were mixed, and further N-methyl-2-pyrrolidone was mixed to make a positive electrode slurry. This positive electrode slurry was applied onto a positive electrode current collector made of an aluminum foil having a thickness of 20 μm by a doctor blade method and dried in a vacuum atmosphere at 120 ° C. for 24 hours to volatilize N-methyl-2-pyrrolidone. Rolled. Thus, the positive electrode which consists of a positive electrode active material, a binder, and a conductive support material was formed on the positive electrode current collector.

次に、平均粒径が15μmの人造黒鉛の95重量部に、5重量部のポリフッ化ビニリデンからなる結着剤とを混合し、更にN−メチル−2−ピロリドンを混合して負極スラリーとした。この負極スラリーを、ドクターブレード法により厚み14μmのCu箔からなる負極集電体上に塗布し、真空雰囲気中で120℃、24時間乾燥させてN−メチル−2−ピロリドンを揮発させた後、圧延した。このようにして負極集電体上に、負極活物質および結着剤からなる負極を形成した。   Next, 95 parts by weight of artificial graphite having an average particle size of 15 μm was mixed with a binder composed of 5 parts by weight of polyvinylidene fluoride, and further mixed with N-methyl-2-pyrrolidone to form a negative electrode slurry. . This negative electrode slurry was applied onto a negative electrode current collector made of Cu foil having a thickness of 14 μm by a doctor blade method, and dried in a vacuum atmosphere at 120 ° C. for 24 hours to volatilize N-methyl-2-pyrrolidone. Rolled. In this way, a negative electrode composed of a negative electrode active material and a binder was formed on the negative electrode current collector.

次に、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とがEC:DEC=30:70の割合で混合されてなる混合溶媒に、濃度1.3モル/LのLiPFが添加された電解液を用意した。この電解液に対して0.2質量%のフェナンスレン、0.2質量%の3,3’−ジメチルビフェニル、0.15質量%のフェナンスレンと0.05質量%の3,3’−ジメチルビフェニルの混合物、10質量%のHCFCFCHOCFCFH、0.2質量%のm−ターフェニル、10質量%のCFCHOCOOCHCFをそれぞれ添加して実施例4〜実施例9の非水電解液を調製した。また比較例として、EC、DEC、LiPF以外は何も添加されていない非水電解液を用意した。 Next, an electrolytic solution in which LiPF 6 having a concentration of 1.3 mol / L is added to a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a ratio of EC: DEC = 30: 70. Prepared. 0.2% by mass of phenanthrene, 0.2% by mass of 3,3′-dimethylbiphenyl, 0.15% by mass of phenanthrene and 0.05% by mass of 3,3′-dimethylbiphenyl with respect to the electrolyte solution. mixture, 10 wt% of HCF 2 CF 2 CH 2 OCF 2 CF 2 H, 0.2 wt% m-terphenyl, 10 wt% of CF 3 CH 2 OCOOCH 2 CF 3 added to example 4, respectively A non-aqueous electrolyte solution of Example 9 was prepared. As a comparative example, a non-aqueous electrolyte solution to which nothing other than EC, DEC, and LiPF 6 was added was prepared.

次に、上記の正極と負極の間にポリプロピレン製多孔質セパレータを配置してこれらを積層し、次にこれらをコイン型の電池ケースに収納し、更に上記の非水電解液を注液してから電池ケースを密閉することにより、実施例4〜9および比較例2、3のリチウム二次電池を製造した。なお、各電池の放電容量の設計値は5mAhである。各電池の構成を表2に示す。   Next, a polypropylene porous separator is disposed between the positive electrode and the negative electrode, and these are laminated. Next, these are accommodated in a coin-type battery case, and the non-aqueous electrolyte is injected. The lithium secondary batteries of Examples 4 to 9 and Comparative Examples 2 and 3 were manufactured by sealing the battery case. In addition, the design value of the discharge capacity of each battery is 5 mAh. Table 2 shows the configuration of each battery.

得られたリチウム二次電池について、充放電を2サイクル繰り返して充電状態としてから、90℃の恒温槽中に4時間貯蔵し、貯蔵後の放電容量(保存容量)を測定した。次に、放電容量の測定後、室温で1サイクルの充放電を行なって放電容量(回復容量)を測定した。なお、充放電は、充電電流0.5Cで電池電圧が4.2V乃至4.5Vになるまで定電流充電を行なってから2時間に渡って定電圧充電を行ない、0.2Cの電流で3.0Vまで定電流放電する条件で行なった。
表3に、開路電圧と、初期容量を100%とした場合の保存容量および回復容量の百分率とを示した。
About the obtained lithium secondary battery, after charging / discharging was repeated 2 cycles and it was made into the charge state, it stored for 4 hours in a 90 degreeC thermostat, and the discharge capacity (storage capacity) after storage was measured. Next, after measuring the discharge capacity, one cycle of charge and discharge was performed at room temperature to measure the discharge capacity (recovery capacity). In addition, charge / discharge is performed at a constant current until the battery voltage reaches 4.2V to 4.5V at a charge current of 0.5 C, and then a constant voltage charge is performed for 2 hours. It was performed under the condition of constant current discharge to 0.0V.
Table 3 shows the open circuit voltage and the percentage of the storage capacity and the recovery capacity when the initial capacity is 100%.

Figure 2006114285
Figure 2006114285

Figure 2006114285
Figure 2006114285

表3に示すように、実施例4〜9のリチウム二次電池は、比較例2、3に対して保存容量および回復容量が高く、高温特性が良好であることがわかる。特に実施例8、9については、充電電圧を4.5Vにしても、良好な高温特性を示すことがわかる。   As shown in Table 3, it can be seen that the lithium secondary batteries of Examples 4 to 9 have higher storage capacity and recovery capacity than those of Comparative Examples 2 and 3, and good high temperature characteristics. In particular, it can be seen that Examples 8 and 9 show good high temperature characteristics even when the charging voltage is 4.5V.

(実験例3)
この実験例3では、非水電解液に、負極被膜改善添加剤と、重合可能な芳香族化合物または有機フッ素化化合物とを添加して円筒型のリチウム二次電池を製造し、各種の電池特性を評価した。
リチウム二次電池の製造は次のようにして行った。まず、実験例2と同様にして正極および負極を調製した。
次に、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とがEC:DEC=30:70の割合で混合されてなる混合溶媒に、濃度1.3モル/LのLiPFが添加された電解液を用意した。この電解液に対して、負極被膜改善添加剤と、重合可能な芳香族化合物または有機フッ素化化合物を添加して実施例10〜実施例18の非水電解液を調製した。また比較例として、EC、DEC、LiPF以外は何も添加されていない非水電解液を用意した。
(Experimental example 3)
In Experimental Example 3, a cylindrical lithium secondary battery was manufactured by adding a negative electrode film improving additive and a polymerizable aromatic compound or organic fluorinated compound to a non-aqueous electrolyte, and various battery characteristics were obtained. Evaluated.
The lithium secondary battery was manufactured as follows. First, a positive electrode and a negative electrode were prepared in the same manner as in Experimental Example 2.
Next, an electrolytic solution in which LiPF 6 having a concentration of 1.3 mol / L is added to a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a ratio of EC: DEC = 30: 70. Prepared. Nonaqueous electrolytes of Examples 10 to 18 were prepared by adding a negative electrode coating improving additive and a polymerizable aromatic compound or organic fluorinated compound to the electrolyte. As a comparative example, a non-aqueous electrolyte solution to which nothing other than EC, DEC, and LiPF 6 was added was prepared.

次に、上記の正極と負極の間にポリプロピレン製多孔質セパレータを配置してこれらを積層し、次にこれらを筒状に捲回して円筒型の電池ケースに収納し、更に上記の非水電解液を注液してから電池ケースを密閉することにより、実施例10〜18および比較例4〜6のリチウム二次電池を製造した。なお、各電池の放電容量の設計値は2400〜2600mAhである。各電池の構成を表4に示す。表4中、FECはフッ化エチレンカーボネートであり、VCはビニレンカーボネートである。   Next, a polypropylene porous separator is disposed between the positive electrode and the negative electrode, and these are laminated. Then, these are wound into a cylindrical shape and housed in a cylindrical battery case, and the nonaqueous electrolysis is further performed. The lithium secondary batteries of Examples 10 to 18 and Comparative Examples 4 to 6 were manufactured by sealing the battery case after pouring the liquid. In addition, the design value of the discharge capacity of each battery is 2400-2600 mAh. Table 4 shows the configuration of each battery. In Table 4, FEC is fluorinated ethylene carbonate, and VC is vinylene carbonate.

得られたリチウム二次電池について、充放電を2サイクル繰り返して充電状態としてから、90℃の恒温槽中に4時間貯蔵して、電流遮断弁の動作状態を調べた。また、得られたリチウム二次電池について、充放電を2サイクル繰り返して充電状態としてから、150℃の恒温槽中に貯蔵して、電池の破裂の有無を調べた。結果を表5に示す。   About the obtained lithium secondary battery, charging / discharging was repeated 2 cycles and it was made into the charge state, Then, it stored for 4 hours in a 90 degreeC thermostat, and the operation state of the current cutoff valve was investigated. Moreover, about the obtained lithium secondary battery, charging / discharging was repeated 2 cycles and it was made into the charge state, Then, it stored in a 150 degreeC thermostat, and the presence or absence of the burst of the battery was investigated. The results are shown in Table 5.

Figure 2006114285
Figure 2006114285

Figure 2006114285
Figure 2006114285

表5に示すように、比較例4〜6については、電流遮断弁が作動し、更に150℃の貯蔵により電池破裂が起きた。実施例10〜18では特に異常なかった。   As shown in Table 5, in Comparative Examples 4 to 6, the current cutoff valve was operated, and further, battery rupture occurred due to storage at 150 ° C. In Examples 10 to 18, there was no abnormality.

(実験例4)
この実験例4では、非水電解液に、負極被膜改善添加剤を単独で、または負極被膜改善添加剤と芳香族化合物を混合して添加して円筒型のリチウム二次電池を製造し、各種の電池特性を評価した。
リチウム二次電池の製造は、正極を全てLiCoOとし、非水電解液の構成を表6に示すものとしたこと以外は上記実験例3と同様にして行なった。なお、各電池の放電容量の設計値は全て2600mAhである。各電池の構成を表6に示す。表6中、FECはフッ化エチレンカーボネート、VCはビニレンカーボネート、PSはプロパンスルトン、TFPMSはトリフルオロプロピルメチルスルホン、FBはフルオロベンゼン、TPはm−ターフェニルである。
(Experimental example 4)
In Experimental Example 4, a cylindrical lithium secondary battery was manufactured by adding a negative electrode film improving additive alone or a mixture of a negative electrode film improving additive and an aromatic compound to a non-aqueous electrolyte. The battery characteristics of were evaluated.
The production of the lithium secondary battery was performed in the same manner as in Experimental Example 3 except that all the positive electrodes were LiCoO 2 and the configuration of the non-aqueous electrolyte was as shown in Table 6. In addition, all the design values of the discharge capacity of each battery are 2600 mAh. Table 6 shows the configuration of each battery. In Table 6, FEC is fluorinated ethylene carbonate, VC is vinylene carbonate, PS is propane sultone, TFPMS is trifluoropropylmethylsulfone, FB is fluorobenzene, and TP is m-terphenyl.

得られたリチウム二次電池について、45℃の恒温槽中で充放電を100サイクル繰り返し、100サイクル目の放電容量を測定した。
表6に、初期容量を100%とした場合の100サイクル目の放電容量を百分率で示す。
About the obtained lithium secondary battery, charging / discharging was repeated 100 cycles in a 45 degreeC thermostat, and the discharge capacity of the 100th cycle was measured.
Table 6 shows the discharge capacity at the 100th cycle as a percentage when the initial capacity is 100%.

Figure 2006114285
Figure 2006114285

表6に示すように、比較例7に比べて、実施例19〜25は、優れた高温サイクル特性を示した。   As shown in Table 6, compared with Comparative Example 7, Examples 19 to 25 exhibited excellent high-temperature cycle characteristics.

図1は、本発明の実施形態である二次電池システムの構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a secondary battery system according to an embodiment of the present invention.

符号の説明Explanation of symbols

1…直流電源装置、2…リチウム二次電池、4…スイッチ手段、5…制御装置

DESCRIPTION OF SYMBOLS 1 ... DC power supply device, 2 ... Lithium secondary battery, 4 ... Switch means, 5 ... Control apparatus

Claims (7)

白金作用極に対する対極を金属リチウムとしたとき、作用極電位が4.2V以上4.5V以下の範囲で重合可能な芳香族化合物の少なくとも1種以上を含有することを特徴とするリチウム二次電池用の非水電解液。   A lithium secondary battery comprising at least one aromatic compound that can be polymerized when the counter electrode for the platinum working electrode is metallic lithium and the working electrode potential is in the range of 4.2 V to 4.5 V. Non-aqueous electrolyte for use. 前記芳香族化合物が、フェナンスレン、ターフェニル、ジメチルビフェニルのうちのいずれか1種以上であることを特徴とする請求項1に記載のリチウム二次電池用の非水電解液。   The non-aqueous electrolyte for a lithium secondary battery according to claim 1, wherein the aromatic compound is at least one of phenanthrene, terphenyl, and dimethylbiphenyl. −O−RまたはR−O−CO−O−Rからなる構造式(ただし、R及びRはアルキル基またはフッ化アルキル基)で表される有機フッ素化化合物のいずれか一方または両方が含有されてなることを特徴とするリチウム二次電池用の非水電解液。 Any of the organic fluorinated compounds represented by the structural formula consisting of R 1 —O—R 2 or R 1 —O—CO—O—R 2 (where R 1 and R 2 are alkyl groups or fluorinated alkyl groups) A non-aqueous electrolyte for a lithium secondary battery, characterized in that either or both of them are contained. 前記有機フッ素化化合物が下記に示す構造式で表されるいずれか1種以上であることを特徴とする請求項3に記載のリチウム二次電池用の非水電解液。
HCFCFCHOCFCFH、
CFCHOCOOCHCF
CHOCOOCHCHFCH
CHOCOOCH(CH)CHF、
CHOCOOCHCHCH
The non-aqueous electrolyte for a lithium secondary battery according to claim 3, wherein the organic fluorinated compound is at least one of the following structural formulas.
HCF 2 CF 2 CH 2 OCF 2 CF 2 H,
CF 3 CH 2 OCOOCH 2 CF 3 ,
CH 3 OCOOCH 2 CHFCH 3 ,
CH 3 OCOOCH (CH 3 ) CH 2 F,
CH 3 OCOOCH 2 CH 2 CH 2 F
フルオロエチレンカーボネート、ビニレンカーボネート、プロパンスルトン、トリフルオロプロピルメチルスルホン、フルオロベンゼン、LiBFのうちのいずれか1種以上の負極被膜改善添加剤を含むことを特徴とする請求項1ないし請求項4のいずれかに記載のリチウム二次電池用の非水電解液。 Fluoroethylene carbonate, vinylene carbonate, propane sultone, trifluoropropyl methyl sulfone, fluorobenzene, of claims 1 to 4, characterized in that it comprises a negative electrode coating improving additive of any one or more of LiBF 4 The nonaqueous electrolyte for lithium secondary batteries in any one. 請求項1ないし請求項5のいずれかに記載の非水電解液を具備してなることを特徴とするリチウム二次電池。   A lithium secondary battery comprising the nonaqueous electrolytic solution according to any one of claims 1 to 5. 請求項6に記載のリチウム二次電池と、該リチウム電池の満充電時の電池電圧を4.2V以上4.5V以下に設定する充電装置とを具備してなることを特徴とする二次電池システム。

A secondary battery comprising: the lithium secondary battery according to claim 6; and a charging device that sets a battery voltage when the lithium battery is fully charged to 4.2 V or more and 4.5 V or less. system.

JP2004298969A 2004-10-13 2004-10-13 Non-aqueous electrolyte for lithium secondary battery, lithium secondary battery and secondary battery system Active JP5073161B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004298969A JP5073161B2 (en) 2004-10-13 2004-10-13 Non-aqueous electrolyte for lithium secondary battery, lithium secondary battery and secondary battery system
KR1020050048850A KR100728180B1 (en) 2004-10-13 2005-06-08 Non aqueous electrolyte, rechargeable lithium battery and rechargeable battery device
US11/250,264 US7611801B2 (en) 2004-10-13 2005-10-13 Non-aqueous electrolyte, rechargeable lithium battery, and rechargeable battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004298969A JP5073161B2 (en) 2004-10-13 2004-10-13 Non-aqueous electrolyte for lithium secondary battery, lithium secondary battery and secondary battery system

Publications (2)

Publication Number Publication Date
JP2006114285A true JP2006114285A (en) 2006-04-27
JP5073161B2 JP5073161B2 (en) 2012-11-14

Family

ID=36382638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004298969A Active JP5073161B2 (en) 2004-10-13 2004-10-13 Non-aqueous electrolyte for lithium secondary battery, lithium secondary battery and secondary battery system

Country Status (2)

Country Link
JP (1) JP5073161B2 (en)
KR (1) KR100728180B1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309965A (en) * 2005-04-26 2006-11-09 Sony Corp Electrolyte and battery
JP2008034334A (en) * 2006-06-28 2008-02-14 Sony Corp Battery
JP2008098096A (en) * 2006-10-16 2008-04-24 Sony Corp Secondary battery
JP2008108689A (en) * 2006-09-29 2008-05-08 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008176987A (en) * 2007-01-17 2008-07-31 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2009004146A (en) * 2007-06-20 2009-01-08 Sony Corp Battery
WO2012132059A1 (en) * 2011-03-28 2012-10-04 日本電気株式会社 Secondary battery and electrolyte
WO2013157504A1 (en) * 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2013157503A1 (en) * 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2014024990A1 (en) * 2012-08-09 2014-02-13 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery using same
JP2014035956A (en) * 2012-08-09 2014-02-24 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
WO2014147983A1 (en) * 2013-03-19 2014-09-25 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP2014192030A (en) * 2013-03-27 2014-10-06 Mitsubishi Chemicals Corp Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery arranged by use thereof
WO2015068487A1 (en) * 2013-11-07 2015-05-14 関東電化工業株式会社 Ester having 3,3,3-trifluoropropionate group and method for producing same
JP2016500470A (en) * 2012-12-18 2016-01-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Use of fluoroisopropyl derivatives as electrolyte additives
EP2555310A4 (en) * 2010-03-26 2017-01-18 NEC Energy Devices, Ltd. Non-aqueous electrolyte secondary battery
JP2018174074A (en) * 2017-03-31 2018-11-08 パナソニック株式会社 Lamination type nonaqueous electrolyte secondary battery
CN109643822A (en) * 2016-06-03 2019-04-16 索尔维公司 Non-aqueous electrolyte composition comprising fluorinated sulfone
JP2019179610A (en) * 2018-03-30 2019-10-17 三井化学株式会社 Nonaqueous electrolyte for battery, and lithium secondary battery
JP2019179612A (en) * 2018-03-30 2019-10-17 三井化学株式会社 Electrolyte solution for batteries and lithium secondary battery
JP2019179611A (en) * 2018-03-30 2019-10-17 三井化学株式会社 Nonaqueous electrolyte for battery, and lithium secondary battery
JP2019179613A (en) * 2018-03-30 2019-10-17 三井化学株式会社 Electrolyte solution for batteries and lithium secondary battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100693287B1 (en) * 2006-02-08 2007-03-13 주식회사 코캄 Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR100977974B1 (en) 2007-01-16 2010-08-24 주식회사 엘지화학 Electrolyte comprising eutectic mixture and secondary battery using the same
KR102460822B1 (en) 2013-12-19 2022-11-01 에스케이온 주식회사 Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
WO2015093882A1 (en) * 2013-12-19 2015-06-25 에스케이이노베이션 주식회사 Lithium secondary battery electrolyte and lithium secondary battery comprising same

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076786A (en) * 1992-11-18 1995-01-10 Sony Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
JPH09283144A (en) * 1996-04-16 1997-10-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its positive active material
JPH09306540A (en) * 1996-05-11 1997-11-28 Furukawa Battery Co Ltd:The Lithium secondary battery
JP2000299125A (en) * 1999-04-15 2000-10-24 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2001023690A (en) * 1999-07-08 2001-01-26 Tomiyama Pure Chemical Industries Ltd Nonaqueous electrolyte for secondary battery
JP2001052737A (en) * 1999-08-10 2001-02-23 Hitachi Maxell Ltd Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP2001210364A (en) * 2000-01-26 2001-08-03 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and secondary battery using it
JP2001243982A (en) * 2000-03-01 2001-09-07 Hitachi Ltd Lithium secondary battery
JP2001332297A (en) * 2000-05-25 2001-11-30 Ube Ind Ltd Nonaqueous electrolytic solution and lithium secondary battery using the same
JP2002093405A (en) * 2000-09-12 2002-03-29 Hitachi Maxell Ltd Nonaqueous secondary battery and its charging method
JP2004087136A (en) * 2002-08-22 2004-03-18 Samsung Sdi Co Ltd Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery
JP2004096858A (en) * 2002-08-30 2004-03-25 Sanyo Electric Co Ltd Charging method of battery
JP2004103372A (en) * 2002-09-09 2004-04-02 Central Glass Co Ltd Nonaqueous electrolytic solution for electrochemical device, and electrochemical device using the same
JP2004165151A (en) * 2002-10-23 2004-06-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and electrolyte used therein
JP2004228010A (en) * 2003-01-24 2004-08-12 Tdk Corp Manufacturing method of lithium ion secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3493873B2 (en) * 1995-04-28 2004-02-03 ソニー株式会社 Non-aqueous electrolyte secondary battery
DE60226951D1 (en) 2001-01-24 2008-07-17 Ube Industries WATER-FREE ELECTROLYTIC SOLUTION AND LITHIUM SECONDARY BATTERIES
JP3512021B2 (en) 2001-05-15 2004-03-29 株式会社日立製作所 Lithium secondary battery
KR100399788B1 (en) 2001-08-17 2003-09-29 삼성에스디아이 주식회사 Polymeric sol electrolyte and lithium battery employing the same
KR100509968B1 (en) 2001-12-28 2005-08-24 미쓰이 가가쿠 가부시키가이샤 Non-aqueous electrolytic solutions and lithium secondary battery containing the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076786A (en) * 1992-11-18 1995-01-10 Sony Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
JPH09283144A (en) * 1996-04-16 1997-10-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its positive active material
JPH09306540A (en) * 1996-05-11 1997-11-28 Furukawa Battery Co Ltd:The Lithium secondary battery
JP2000299125A (en) * 1999-04-15 2000-10-24 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2001023690A (en) * 1999-07-08 2001-01-26 Tomiyama Pure Chemical Industries Ltd Nonaqueous electrolyte for secondary battery
JP2001052737A (en) * 1999-08-10 2001-02-23 Hitachi Maxell Ltd Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP2001210364A (en) * 2000-01-26 2001-08-03 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and secondary battery using it
JP2001243982A (en) * 2000-03-01 2001-09-07 Hitachi Ltd Lithium secondary battery
JP2001332297A (en) * 2000-05-25 2001-11-30 Ube Ind Ltd Nonaqueous electrolytic solution and lithium secondary battery using the same
JP2002093405A (en) * 2000-09-12 2002-03-29 Hitachi Maxell Ltd Nonaqueous secondary battery and its charging method
JP2004087136A (en) * 2002-08-22 2004-03-18 Samsung Sdi Co Ltd Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery
JP2004096858A (en) * 2002-08-30 2004-03-25 Sanyo Electric Co Ltd Charging method of battery
JP2004103372A (en) * 2002-09-09 2004-04-02 Central Glass Co Ltd Nonaqueous electrolytic solution for electrochemical device, and electrochemical device using the same
JP2004165151A (en) * 2002-10-23 2004-06-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and electrolyte used therein
JP2004228010A (en) * 2003-01-24 2004-08-12 Tdk Corp Manufacturing method of lithium ion secondary battery

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309965A (en) * 2005-04-26 2006-11-09 Sony Corp Electrolyte and battery
JP2008034334A (en) * 2006-06-28 2008-02-14 Sony Corp Battery
JP2008108689A (en) * 2006-09-29 2008-05-08 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008098096A (en) * 2006-10-16 2008-04-24 Sony Corp Secondary battery
JP2008176987A (en) * 2007-01-17 2008-07-31 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
US8828604B2 (en) 2007-06-20 2014-09-09 Sony Corporation Battery
JP2009004146A (en) * 2007-06-20 2009-01-08 Sony Corp Battery
EP2555310A4 (en) * 2010-03-26 2017-01-18 NEC Energy Devices, Ltd. Non-aqueous electrolyte secondary battery
WO2012132059A1 (en) * 2011-03-28 2012-10-04 日本電気株式会社 Secondary battery and electrolyte
JP6070540B2 (en) * 2011-03-28 2017-02-01 日本電気株式会社 Secondary battery and electrolyte
US9373867B2 (en) 2011-03-28 2016-06-21 Nec Corporation Secondary battery and electrolyte liquid
JPWO2013157504A1 (en) * 2012-04-17 2015-12-21 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2013157504A1 (en) * 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
US9806378B2 (en) 2012-04-17 2017-10-31 Daikin Industries, Ltd. Electrolytic solution containing mixture of fluorinated chain carbonates, electrochemical device, lithium ion secondary battery and module
US9570778B2 (en) 2012-04-17 2017-02-14 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
JPWO2013157503A1 (en) * 2012-04-17 2015-12-21 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2013157503A1 (en) * 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
JP2014035956A (en) * 2012-08-09 2014-02-24 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
WO2014024990A1 (en) * 2012-08-09 2014-02-13 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery using same
JP2016500470A (en) * 2012-12-18 2016-01-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Use of fluoroisopropyl derivatives as electrolyte additives
JPWO2014147983A1 (en) * 2013-03-19 2017-02-16 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2014147983A1 (en) * 2013-03-19 2014-09-25 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP2014192030A (en) * 2013-03-27 2014-10-06 Mitsubishi Chemicals Corp Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery arranged by use thereof
WO2015068487A1 (en) * 2013-11-07 2015-05-14 関東電化工業株式会社 Ester having 3,3,3-trifluoropropionate group and method for producing same
US11374260B2 (en) 2016-06-03 2022-06-28 Solvay Sa Nonaqueous electrolyte compositions comprising fluorinated sulfones
CN109643822A (en) * 2016-06-03 2019-04-16 索尔维公司 Non-aqueous electrolyte composition comprising fluorinated sulfone
JP2019523521A (en) * 2016-06-03 2019-08-22 ソルヴェイ(ソシエテ アノニム) Non-aqueous electrolyte composition containing fluorinated sulfone
JP2018174074A (en) * 2017-03-31 2018-11-08 パナソニック株式会社 Lamination type nonaqueous electrolyte secondary battery
JP2019179610A (en) * 2018-03-30 2019-10-17 三井化学株式会社 Nonaqueous electrolyte for battery, and lithium secondary battery
JP2019179611A (en) * 2018-03-30 2019-10-17 三井化学株式会社 Nonaqueous electrolyte for battery, and lithium secondary battery
JP2019179613A (en) * 2018-03-30 2019-10-17 三井化学株式会社 Electrolyte solution for batteries and lithium secondary battery
JP7070979B2 (en) 2018-03-30 2022-05-18 三井化学株式会社 Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7070978B2 (en) 2018-03-30 2022-05-18 三井化学株式会社 Non-aqueous electrolyte for batteries and lithium secondary batteries
JP2019179612A (en) * 2018-03-30 2019-10-17 三井化学株式会社 Electrolyte solution for batteries and lithium secondary battery
JP7206556B2 (en) 2018-03-30 2023-01-18 三井化学株式会社 Non-aqueous electrolyte for batteries and lithium secondary batteries

Also Published As

Publication number Publication date
JP5073161B2 (en) 2012-11-14
KR100728180B1 (en) 2007-06-13
KR20060048262A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
JP5073161B2 (en) Non-aqueous electrolyte for lithium secondary battery, lithium secondary battery and secondary battery system
JP6423453B2 (en) Aqueous electrolyte for power storage device and power storage device including the aqueous electrolyte
JP6613474B2 (en) Aqueous electrolyte for power storage device and power storage device including the aqueous electrolyte
JP5883120B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND SECONDARY BATTERY CONTAINING THE ELECTROLYTE SOLUTION
US7611801B2 (en) Non-aqueous electrolyte, rechargeable lithium battery, and rechargeable battery system
JP5466364B2 (en) Lithium / sulfur battery electrolyte and lithium / sulfur battery using the same
KR100898291B1 (en) Rechargeable lithium battery
JP4416991B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery
KR101108945B1 (en) Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same
JP4012174B2 (en) Lithium battery with efficient performance
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP2008522376A5 (en)
CN102498606A (en) Non-aqueous electrolytic solution for power storage device, and power storage device
JP2003308875A (en) Nonaqueous secondary battery
JP2009272170A (en) Nonaqueous electrolyte secondary battery
JP2008047479A (en) Nonaqueous electrolyte, and electrochemical energy storage device equipped with it
JP2003297423A (en) Nonaqueous system electrolyte solution and nonaqueous system electrolyte solution secondary battery using the same
JP2001052737A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP6755182B2 (en) Lithium ion secondary battery
JP2010177124A (en) Nonaqueous electrolyte secondary battery
JP2016051600A (en) Nonaqueous electrolytic solution for power storage device
JP2006286650A (en) Nonaqueous electrolyte secondary battery and nonaqueous electrolyte
JP5068449B2 (en) Lithium secondary battery
JP4691775B2 (en) Lithium secondary battery
JP2006080008A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120822

R150 Certificate of patent or registration of utility model

Ref document number: 5073161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250