JP2004165151A - Nonaqueous electrolyte secondary battery and electrolyte used therein - Google Patents

Nonaqueous electrolyte secondary battery and electrolyte used therein Download PDF

Info

Publication number
JP2004165151A
JP2004165151A JP2003337134A JP2003337134A JP2004165151A JP 2004165151 A JP2004165151 A JP 2004165151A JP 2003337134 A JP2003337134 A JP 2003337134A JP 2003337134 A JP2003337134 A JP 2003337134A JP 2004165151 A JP2004165151 A JP 2004165151A
Authority
JP
Japan
Prior art keywords
secondary battery
aqueous electrolyte
battery
electrolyte secondary
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003337134A
Other languages
Japanese (ja)
Other versions
JP4847675B2 (en
Inventor
Kumiko Sonoda
久美子 薗田
Hide Koshina
秀 越名
Toru Matsui
徹 松井
Masaki Deguchi
正樹 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003337134A priority Critical patent/JP4847675B2/en
Publication of JP2004165151A publication Critical patent/JP2004165151A/en
Application granted granted Critical
Publication of JP4847675B2 publication Critical patent/JP4847675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery capable of ensuring high safety, while being exposed under high temperature environments or during storage. <P>SOLUTION: This nonaqueous electrolyte secondary battery comprises a chargeable and dischargeable positive electrode, a negative electrode that absorbs and desorbs lithium, a separator provided between the positive electrode and the negative electrode for electrically shielding from each other, and a nonaqueous electrolyte, wherein the nonaqueous electrolyte comprises a nonaqueous solvent and a solute; and the nonaqueous solvent includes lactone and the solute consists of lithium-bis-fluoroethylsulfonylimide expressed by formula (1) (F-O<SB>2</SB>S-N-SO<SB>2</SB>-F) Li. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、主に、リチウムビスフルオロスルフォニルイミドをリチウム塩として含む非水電解質を用いた二次電池に関する。   The present invention mainly relates to a secondary battery using a nonaqueous electrolyte containing lithium bisfluorosulfonylimide as a lithium salt.

近年、パーソナルコンピュータ、携帯電話やPDAなどの情報電子機器、ビデオカムコーダーやミニディスクプレーヤーなどのオーディオビジュアル電子機器の小型・軽量化およびコードレス化が急速に進んでいる。それに伴い、これら電子機器の駆動用電源として、高エネルギー密度を有する二次電池への要望が高まっている。このような状況の下、従来の二次電池である鉛蓄電池、ニッケルカドミウム蓄電池およびニッケル水素蓄電池では到達し得なかった高エネルギー密度を有する非水電解質二次電池の実用化が進められている。   2. Description of the Related Art In recent years, information electronic devices such as personal computers, mobile phones and PDAs, and audiovisual electronic devices such as video camcorders and minidisc players have been rapidly becoming smaller and lighter and cordless. Accordingly, there has been an increasing demand for a secondary battery having a high energy density as a power supply for driving these electronic devices. Under such circumstances, practical use of non-aqueous electrolyte secondary batteries having a high energy density, which cannot be achieved with conventional secondary batteries such as lead storage batteries, nickel cadmium storage batteries, and nickel hydrogen storage batteries, has been promoted.

リチウムイオン二次電池やリチウムイオンポリマー二次電池に代表される非水電解質二次電池では、正極活物質として、平均放電電位がリチウム金属の電位に対して3.5Vから4.0Vの範囲であるコバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)などの遷移金属酸化物や、遷移金属を複数取り入れた固溶材料(LiCoxNiyMnz2、Li(CoaNibMnc24)などが、単独で、または複数を組み合わせて用いられている。これらの活物質を、導電剤や結着剤などと混合した後、アルミニウム、チタン、ステンレス鋼などからなる集電体上に塗着して圧延すると、正極が得られる。 In a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery or a lithium ion polymer secondary battery, as a positive electrode active material, the average discharge potential is in the range of 3.5 V to 4.0 V with respect to the potential of lithium metal. Certain transition metal oxides such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and lithium manganate (LiMn 2 O 4 ), and solid solution materials (LiCo x Ni y Mn z) incorporating a plurality of transition metals O 2 , Li (Co a Ni b M n c ) 2 O 4 ), etc. are used alone or in combination. These active materials are mixed with a conductive agent, a binder, and the like, and then coated on a current collector made of aluminum, titanium, stainless steel, or the like and rolled to obtain a positive electrode.

一方、負極には、一般に、リチウムを吸蔵・放出する炭素材料が用いられている。炭素材料には、人造黒鉛、天然黒鉛、石炭・石油ピッチから造られるメソフェーズ焼成体、難黒鉛化性炭素などが、単独で、または複数を組み合わせて用いられている。これらの炭素材料を、結着剤などと混合した後、銅、鉄、ニッケルなどからなる集電体上に塗着して圧延すると、負極が得られる。   On the other hand, a carbon material that stores and releases lithium is generally used for the negative electrode. As the carbon material, artificial graphite, natural graphite, a mesophase fired body made of coal / petroleum pitch, non-graphitizable carbon, and the like are used alone or in combination. After these carbon materials are mixed with a binder or the like, they are coated on a current collector made of copper, iron, nickel, or the like and rolled to obtain a negative electrode.

一般に、黒鉛材料を用いた負極は、難黒鉛化性炭素を用いた負極と比べ、リチウムを放出する平均電位がリチウム金属の電位に対して約0.2V卑であるため、高電圧と電圧平坦性が望まれる分野には、黒鉛材料が多く用いられている。   In general, a negative electrode using a graphite material has a high voltage and a flat voltage because the average potential for releasing lithium is about 0.2 V lower than the potential of lithium metal compared to a negative electrode using non-graphitizable carbon. Graphite materials are often used in fields where properties are desired.

非水電解質は、上記のようなリチウム金属の電位に対して3.5V〜4.0Vの高電位で放電する正極の酸化雰囲気に耐え、かつ、リチウムに近い電位で充放電する負極の還元雰囲気に耐え得ることが望まれる。現在では、高い誘電率を持つエチレンカーボネート(以下、ECという。)と、ジエチルカーボネート(以下、DECという。)、ジメチルカーボネート(以下、DMCという。)、エチルメチルカーボネート(以下、EMCという。)などの低粘性の鎖状カーボネートとを組み合わせた非水溶媒に、六フッ化燐酸リチウム(LiPF6)を溶解させたものが用いられている。 The non-aqueous electrolyte withstands the oxidizing atmosphere of the positive electrode discharged at a high potential of 3.5 V to 4.0 V with respect to the potential of lithium metal as described above, and the reducing atmosphere of the negative electrode charged and discharged at a potential close to lithium. It is desirable to be able to endure. At present, ethylene carbonate (hereinafter, referred to as EC) having a high dielectric constant, diethyl carbonate (hereinafter, referred to as DEC), dimethyl carbonate (hereinafter, referred to as DMC), ethyl methyl carbonate (hereinafter, referred to as EMC), and the like. A solution obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) in a nonaqueous solvent obtained by combining the above with a low-viscosity chain carbonate is used.

しかしながら、この種の非水電解質は、低粘性で、しかも100℃近辺の沸点を有する鎖状カーボネートを含むため、高温での蒸気圧が高くなる。そのため、電池のパッケージが膨れてしまう可能性がある。また、熱的に不安定で加水分解しやすいLiPF6を溶質として用いているため、電池内部でガス発生などが起こり、パッケージの膨れが助長されやすい。 However, this type of non-aqueous electrolyte has a low viscosity and a chain carbonate having a boiling point around 100 ° C., and therefore has a high vapor pressure at high temperatures. Therefore, the battery package may swell. Further, since LiPF 6 which is thermally unstable and easily hydrolyzed is used as a solute, gas is generated inside the battery, and the package is likely to be swollen.

そこで、LiPF6の代替リチウム塩が検討されているが、例えばLiPF6よりも熱的に安定性が高いLiBF4、リチウムビスパーフルオロメチルスルフォニルイミド(LiN(SO2CF32、以下、LiTFSIという。)、リチウムビスパーフルオロエチルスルフォニルイミド(LiN(SO2252、以下、LiBETIという。)などは、非水電解質のイオン伝導度を低下させるため、電池の放電特性が低下する。また、LiTFSIには、リチウム金属の電位に対して3.7V以上の高電位では、正極の集電体として多用されるアルミニウムを腐食させるという問題もある。LiBETIを用いれば、腐食性は改善されるが、分子量が大きいため、非水電解質の粘性を増大させる傾向が強い。 Therefore, alternative lithium salts of LiPF 6 have been studied. For example, LiBF 4 , lithium bisperfluoromethylsulfonylimide (LiN (SO 2 CF 3 ) 2 , hereafter referred to as LiTFSI) having higher thermal stability than LiPF 6 ), Lithium bisperfluoroethylsulfonylimide (LiN (SO 2 C 2 F 5 ) 2 , hereinafter referred to as LiBETI), etc., decrease the ionic conductivity of the non-aqueous electrolyte, so that the discharge characteristics of the battery deteriorate. I do. In addition, LiTFSI has a problem that, at a high potential of 3.7 V or more with respect to the potential of lithium metal, aluminum which is frequently used as a current collector of the positive electrode is corroded. When LiBETI is used, the corrosiveness is improved, but since the molecular weight is large, there is a strong tendency to increase the viscosity of the non-aqueous electrolyte.

一方、近年、イミド塩として、リチウムビスフルオロスルフォニルイミドが開発されている(例えば、特許文献1参照)。
また、高温での蒸気圧の上昇を防ぐために、低粘性で低沸点を有する鎖状カーボネートを、例えばプロピレンカーボネート(以下、PCという。)、γ−ブチロラクトン(以下、GBLという。)などの高沸点溶媒に変えることも検討されている。しかし、GBLとLiPF6は、高温時に反応して、電池の分極抵抗を上昇させるため、充放電特性が低下してしまう。
特表平8−511274号公報
On the other hand, in recent years, lithium bisfluorosulfonylimide has been developed as an imide salt (for example, see Patent Document 1).
In order to prevent a rise in vapor pressure at high temperatures, chain carbonates having a low viscosity and a low boiling point include, for example, high boiling points such as propylene carbonate (hereinafter, referred to as PC) and γ-butyrolactone (hereinafter, referred to as GBL). Changing to a solvent is also being considered. However, GBL and LiPF 6 react at a high temperature to increase the polarization resistance of the battery, so that the charge / discharge characteristics deteriorate.
Japanese Patent Publication No. Hei 8-511274

本発明は、高温環境暴露時や保存時に機器へのダメージにつながる非水電解質二次電池の膨れ等を最小限に抑制すること、高温時もしくは保存時においても安定な非水電解質や二次電池を提供すること、および前記のような性質を有しながらも従来と同等の特性を有する非水電解質二次電池を提供することの少なくともいずれかを目的とする。   The present invention minimizes swelling of a non-aqueous electrolyte secondary battery that may cause damage to equipment during exposure to a high temperature environment or during storage, and stable non-aqueous electrolyte or a secondary battery even at a high temperature or during storage. And / or to provide a non-aqueous electrolyte secondary battery having the same properties as above but having the same characteristics as conventional ones.

本発明は、充放電可能な正極と、リチウムを吸蔵・放出する負極と、前記正極と前記負極とを電子的に遮蔽する隔膜と、非水電解質からなり、前記非水電解質が、非水溶媒および溶質からなり、前記非水溶媒が、ラクトンからなり、前記溶質が、
式(1):(F-O2S-N-SO2-F)Li
で表されるリチウムビスフルオロスルフォニルイミドからなる非水電解質二次電池に関する。
The present invention comprises a chargeable / dischargeable positive electrode, a negative electrode for inserting and extracting lithium, a diaphragm for electronically shielding the positive electrode and the negative electrode, and a nonaqueous electrolyte, wherein the nonaqueous electrolyte is a nonaqueous solvent. And a solute, wherein the non-aqueous solvent comprises a lactone, and the solute is
Formula (1): (FO 2 SN-SO 2 -F) Li
And a non-aqueous electrolyte secondary battery comprising lithium bisfluorosulfonylimide represented by the formula:

前記非水電解質は、さらに、正極および/または負極上で被膜を形成する添加剤を含むことが好ましい。
前記添加剤は、ビニレンカーボネート、ビニルエチレンカーボネート、フェニルエチレンカーボネートおよびプロパンサルトンよりなる群から選ばれた少なくとも1種であることが好ましい。
It is preferable that the non-aqueous electrolyte further contains an additive that forms a film on the positive electrode and / or the negative electrode.
The additive is preferably at least one selected from the group consisting of vinylene carbonate, vinyl ethylene carbonate, phenyl ethylene carbonate and propane sultone.

前記正極が、アルミニウムからなる集電体を含む場合、前記溶質は、さらに、フッ素を含有する別のリチウム塩を含むことが好ましい。
前記別のリチウム塩は、LiPFm(Ck2k+1)6-m(0≦m≦6、1≦k≦2)、LiBFn(Cj2j+1)4-n(0≦n≦4、1≦j≦2)およびLiAsF6よりなる群から選ばれた少なくとも1種であることが好ましい。ただし、m、n、j、kは整数である。
When the positive electrode includes a current collector made of aluminum, the solute preferably further includes another lithium salt containing fluorine.
The other lithium salt includes LiPF m (C k F 2k + 1 ) 6-m (0 ≦ m ≦ 6, 1 ≦ k ≦ 2) and LiBF n (C j F 2j + 1 ) 4-n (0 ≦ n ≦ 4, 1 ≦ j ≦ 2) and at least one selected from the group consisting of LiAsF 6 . Here, m, n, j, and k are integers.

前記非水溶媒は、さらに、エチレンカーボネートおよび/またはプロピレンカーボネートを含むことが好ましい。
本発明は、リチウム金属の電位に対して3.7V以上の電位で正極を充電する必要がある場合に、特に有効である。
前記ラクトンは、少なくともγ−ブチロラクトンを含むことが好ましい。
It is preferable that the non-aqueous solvent further contains ethylene carbonate and / or propylene carbonate.
The present invention is particularly effective when the positive electrode needs to be charged at a potential of 3.7 V or more with respect to the potential of the lithium metal.
The lactone preferably contains at least γ-butyrolactone.

本発明は、また、非水溶媒および溶質からなり、前記非水溶媒が、ラクトンからなり、前記溶質が、
式(1):(F-O2S-N-SO2-F)Li
で表されるリチウムビスフルオロスルフォニルイミドからなる上述の非水電解質二次電池用電解質に関する。
The present invention also comprises a non-aqueous solvent and a solute, wherein the non-aqueous solvent comprises a lactone, and the solute comprises
Formula (1): (FO 2 SN-SO 2 -F) Li
And a non-aqueous electrolyte secondary battery electrolyte comprising a lithium bisfluorosulfonylimide represented by the formula:

本発明によれば、高温環境暴露時や保存時に、機器へのダメージにつながる電池の膨れを最小限に抑制し、安全で、しかも従来の電池と同等の特性を有する非水電解質二次電池を提供することが可能である。   According to the present invention, a non-aqueous electrolyte secondary battery that is safe and has the same characteristics as conventional batteries, while minimizing battery swelling that causes damage to equipment during exposure to high-temperature environments and storage. It is possible to provide.

本発明の非水電解質二次電池では、非水電解質の溶媒にラクトンを用い、溶質には、
式(1):(F-O2S-N-SO2-F)Li
で表されるリチウムビスフルオロスルフォニルイミド(以下、LiFSIという。)を用いる。LiFSIは、LiTFSIやLiPF6よりも高いイオン伝導度を示す。このように、非水溶媒として、融点が高く蒸気圧の低いラクトンを用い、LiPF6の代わりにLiFSIを用いることにより、高温暴露時のガス発生や保存時のガス発生が抑えられ、電池の膨れが抑制されるとともに、従来の電池と同等の特性を有する非水電解質二次電池を得ることが可能となる。
In the non-aqueous electrolyte secondary battery of the present invention, lactone is used as a solvent for the non-aqueous electrolyte,
Formula (1): (FO 2 SN-SO 2 -F) Li
Lithium bisfluorosulfonylimide (hereinafter, referred to as LiFSI) is used. LiFSI exhibit high ionic conductivity than LiTFSI and LiPF 6. As described above, by using a lactone having a high melting point and a low vapor pressure as a non-aqueous solvent and using LiFSI instead of LiPF 6 , gas generation during high-temperature exposure and gas generation during storage are suppressed, and the battery swells. And a non-aqueous electrolyte secondary battery having characteristics equivalent to those of a conventional battery can be obtained.

LiFSIがイオン解離したときに生成するアニオン分子は、他のリチウムイミド塩よりもサイズが小さいため、他のイミド塩(LiBETIなど)を同程度の濃度で含む非水電解質に比べて、粘度が低く抑えられる。また、LiFSIの場合、スルフォニル基がリチウムイオンの遮蔽を行うため、LiPF6などと比較しても、イオン解離してリチウムイオンを生成しやすい。そのため、非水電解質中のイオン濃度が高くなり、イオン伝導度が高くなると考えられる。 Since the anion molecules generated when LiFSI is ionically dissociated are smaller in size than other lithium imide salts, they have a lower viscosity than non-aqueous electrolytes containing other imide salts (such as LiBETI) at similar concentrations. Can be suppressed. In addition, in the case of LiFSI, since the sulfonyl group shields lithium ions, the ions are easily dissociated to generate lithium ions as compared with LiPF 6 or the like. Therefore, it is considered that the ion concentration in the non-aqueous electrolyte increases and the ionic conductivity increases.

本発明は、非水電解質二次電池の正極に、平均放電電位がリチウム金属の電位に対して3.5Vから4.0Vの範囲であるコバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)などの遷移金属酸化物や、遷移金属を複数取り入れた固溶材料(LiCoxNiyMnz2、Li(CoaNibMnc24)などを、単独で、または複数を組み合わせて用いる場合に、特に有効である。 The present invention provides a positive electrode of a non-aqueous electrolyte secondary battery in which lithium cobalt oxide (LiCoO 2 ) and lithium nickelate (LiNiO 2 ) whose average discharge potential is in the range of 3.5 V to 4.0 V with respect to the potential of lithium metal are used. ), A transition metal oxide such as lithium manganate (LiMn 2 O 4 ), or a solid solution material incorporating a plurality of transition metals (LiCo x Ni y Mnz O 2 , Li (Co a Ni b M c ) 2 O 4 ) ), Etc., alone or in combination.

本発明で用いることのできるラクトンには、γ−ブチロラクトン(GBL)、γ−バレロラクトン(GVL)、α−メチル−γ−ブチロラクトンなどを挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのうちでは、特に、GBLを用いることが好ましい。   Lactones that can be used in the present invention include γ-butyrolactone (GBL), γ-valerolactone (GVL), α-methyl-γ-butyrolactone, and the like. These may be used alone or in combination of two or more. Among these, it is particularly preferable to use GBL.

正極に、アルミニウムからなる集電体を用いる場合には、非水電解質の溶質として、LiFSIとともに、フッ素を含有する別のリチウム塩を併用することが、集電体の腐食を抑制する上で特に有効である。腐食抑制の機構は明らかではないが、フッ素を含有する別のリチウム塩が、少量のフッ素イオンを生成し、AlF3の被膜を集電体上に形成することによるものと考えられる。 When a current collector made of aluminum is used for the positive electrode, the use of another lithium salt containing fluorine together with LiFSI as a solute of the nonaqueous electrolyte is particularly effective in suppressing corrosion of the current collector. It is valid. Although the mechanism of the corrosion inhibition is not clear, it is considered that another lithium salt containing fluorine generates a small amount of fluorine ions and forms an AlF 3 coating on the current collector.

別のリチウム塩は何を用いてもよいが、LiPFm(Ck2k+1)6-m(0≦m≦6、1≦k≦2)、LiBFn(Cj2j+1)4-n(0≦n≦4、1≦j≦2)およびLiAsF6よりなる群から選ばれた少なくとも1種を用いることが好ましい。なかでもLiPF6、LiBF4を用いることが好ましい。 Any other lithium salt may be used, but LiPF m (C k F 2k + 1 ) 6-m (0 ≦ m ≦ 6, 1 ≦ k ≦ 2), LiBF n (C j F 2j + 1 ) It is preferable to use at least one selected from the group consisting of 4-n (0 ≦ n ≦ 4, 1 ≦ j ≦ 2) and LiAsF 6 . Among them, LiPF 6 and LiBF 4 are preferably used.

LiFSIと別のリチウム塩との比率は、モル比で、(LiFSI):(別のリチウム塩)=9:1〜5:5であることが好ましい。
また、非水電解質に含まれる溶質濃度は、0.5〜1.5mol/Lであることが好ましいが、特に限定はない。
The ratio of LiFSI to another lithium salt is preferably in a molar ratio of (LiFSI) :( another lithium salt) = 9: 1 to 5: 5.
The concentration of the solute contained in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol / L, but is not particularly limited.

負極に黒鉛材料を用いる場合、ラクトンからなる非水溶媒は、負極で還元分解されやすい性質を有する。そこで、非水電解質には、負極上で被膜を形成する添加剤を添加することが好ましい。また、正極上で分解する成分が非水電解質に含まれる場合もあるため、正極上で被膜を形成する添加剤を添加してもよい。   When a graphite material is used for the negative electrode, the non-aqueous solvent composed of lactone has a property of being easily decomposed and reduced at the negative electrode. Therefore, it is preferable to add an additive that forms a film on the negative electrode to the nonaqueous electrolyte. In some cases, a component that decomposes on the positive electrode may be included in the non-aqueous electrolyte. Therefore, an additive that forms a film on the positive electrode may be added.

負極には、人造黒鉛、天然黒鉛等の黒鉛材料の他に、石炭・石油ピッチから造られるメソフェーズ焼成体、難黒鉛化性炭素等の炭素材料を用いることもできる。また、Si、Si−Ni合金、Sn−Ni合金などの合金材料などを、単独で、もしくは炭素材料とともに負極に用いることもできる。   For the negative electrode, in addition to graphite materials such as artificial graphite and natural graphite, carbon materials such as mesophase fired bodies made from coal and petroleum pitch, and non-graphitizable carbon can also be used. Further, an alloy material such as Si, a Si—Ni alloy, or a Sn—Ni alloy can be used alone or together with a carbon material for the negative electrode.

正極および/または負極上で被膜を形成する添加剤には、環状化合物、フェニルエチレンカーボネート(以下、PhECという。)、プロパンサルトン(以下、PSという。)などを用いることが好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。環状化合物としては、ビニレンカーボネート(以下、VCという。)、ビニルエチレンカーボネート(以下、VECという。)などが挙げられる。これらのうちでは、特に、VCやVECが有効である。   As an additive for forming a film on the positive electrode and / or the negative electrode, it is preferable to use a cyclic compound, phenylethylene carbonate (hereinafter, referred to as PhEC), propane sultone (hereinafter, referred to as PS), or the like. These may be used alone or in combination of two or more. Examples of the cyclic compound include vinylene carbonate (hereinafter, referred to as VC), vinylethylene carbonate (hereinafter, referred to as VEC), and the like. Among them, VC and VEC are particularly effective.

VECはVCよりも緻密な被膜を電極上に形成するため、副反応を抑制する効果は高いが、レート特性および低温特性はVCを用いた場合に比べて低下する。PSは、VCとVECの中間の性能を与えると考えられる。   Since VEC forms a denser film on the electrode than VC, the effect of suppressing side reactions is high, but the rate characteristics and low-temperature characteristics are lower than in the case of using VC. PS is believed to provide performance intermediate between VC and VEC.

添加剤の量は、非水溶媒100重量部あたり、10重量部以下、さらには5重量部以下であることが好ましい。添加剤の量が多すぎると、被膜が過剰に形成されるため、充放電反応が阻害される。一方、添加剤の効果を十分に得るためには、非水溶媒100重量部あたり、少なくとも0.3重量部以上の添加剤を用いることが好ましい。   The amount of the additive is preferably 10 parts by weight or less, more preferably 5 parts by weight or less, per 100 parts by weight of the non-aqueous solvent. If the amount of the additive is too large, a film is excessively formed, so that a charge / discharge reaction is inhibited. On the other hand, in order to sufficiently obtain the effect of the additive, it is preferable to use at least 0.3 part by weight or more of the additive per 100 parts by weight of the nonaqueous solvent.

非水電解質と電極やセパレータとの濡れ性を向上させる観点から、非水溶媒には、ラクトン以外の溶媒を含ませることができる。ラクトン以外の溶媒は、特に限定されないが、非プロトン性溶媒であることが好ましく、環状カーボネート、鎖状カーボネート、環状エーテル、鎖状エーテル、鎖状カルボン酸エステルなどを好ましく用いることができる。また、パーフルオロ基を有する化合物も、ラクトン以外の溶媒として好ましく用いることができる。   From the viewpoint of improving the wettability between the nonaqueous electrolyte and the electrode or the separator, the nonaqueous solvent may contain a solvent other than lactone. The solvent other than the lactone is not particularly limited, but is preferably an aprotic solvent, and a cyclic carbonate, a chain carbonate, a cyclic ether, a chain ether, a chain carboxylate, or the like can be preferably used. Further, a compound having a perfluoro group can be preferably used as a solvent other than lactone.

非水溶媒に占めるラクトンの割合は、50〜100重量%であることが好ましく、50〜70重量%であることが、さらに好ましい。非水溶媒は、ラクトン単独からなるよりも、少なくとも環状カーボネートを含む方が良好な特性を与える。   The proportion of the lactone in the nonaqueous solvent is preferably 50 to 100% by weight, more preferably 50 to 70% by weight. The non-aqueous solvent gives better properties when it contains at least a cyclic carbonate than when it consists of lactone alone.

非水溶媒に占める環状カーボネートの割合は、50重量%以下であることが好ましい。また、非水溶媒に占める鎖状カーボネートの割合は、20重量%以下であることが好ましい。   The proportion of the cyclic carbonate in the nonaqueous solvent is preferably 50% by weight or less. The proportion of the chain carbonate in the non-aqueous solvent is preferably 20% by weight or less.

特に、好ましい組成の非水溶媒としては、例えば、ラクトン50〜70重量%、環状カーボネート20〜30重量%および鎖状カーボネート5〜30重量%からなる非水溶媒を挙げることができる。   Particularly preferred examples of the non-aqueous solvent include a non-aqueous solvent composed of 50 to 70% by weight of lactone, 20 to 30% by weight of cyclic carbonate, and 5 to 30% by weight of chain carbonate.

環状カーボネートには、EC、PCなどを用いることが好ましく、鎖状カーボネートには、EMC、DMC、DECなどを用いることが好ましい。   It is preferable to use EC, PC, or the like for the cyclic carbonate, and it is preferable to use EMC, DMC, DEC, or the like for the chain carbonate.

なお、本発明は、円筒型、角型、ラミネート型、コイン型など、いずれの形状の非水電解質二次電池にも適用することができる。また、非水電解質は、ポリマー材料と複合させて、ゲル電解質として用いることもできる。このようなゲル電解質を用いることにより、リチウムイオンポリマー二次電池を得ることができる。
以下に、本発明を実施例に基づいて具体的に説明する。
The present invention can be applied to any shape of non-aqueous electrolyte secondary battery such as a cylindrical type, a square type, a laminated type, a coin type and the like. Further, the non-aqueous electrolyte can be used as a gel electrolyte by being combined with a polymer material. By using such a gel electrolyte, a lithium ion polymer secondary battery can be obtained.
Hereinafter, the present invention will be specifically described based on examples.

(イ)正極の作製
活物質のコバルト酸リチウム(LiCoO2)100重量部に、導電剤としてアセチレンブラックを3重量部、結着剤としてポリフッ化ビリニデン(以下、PVdFという。)を4重量部、適量のN−メチル−2−ピロリドン(以下、NMPという。)加えて混合し、ペースト状正極合剤を得た。なお、PVdFは、予めNMPに溶解してから他の成分と混合した。このペースト状正極合剤をチタン箔からなる集電体の両面に塗着した後、乾燥し、全体を圧延して、正極を得た。
(A) Preparation of positive electrode 100 parts by weight of lithium cobalt oxide (LiCoO 2 ) as an active material, 3 parts by weight of acetylene black as a conductive agent, and 4 parts by weight of polyvinylidene fluoride (hereinafter referred to as PVdF) as a binder. An appropriate amount of N-methyl-2-pyrrolidone (hereinafter, referred to as NMP) was added and mixed to obtain a paste-like positive electrode mixture. Note that PVdF was previously dissolved in NMP and then mixed with other components. This paste-like positive electrode mixture was applied to both surfaces of a current collector made of titanium foil, dried, and then rolled to obtain a positive electrode.

(ロ)負極の作製
活物質の難黒鉛化性炭素(呉羽化学工業(株)製のカーボトロンP)100重量部に、結着剤としてスチレンブタジエンゴムの水性ディスパージョンを樹脂分で3重量部加えて混合し、ペースト状負極合剤を得た。このペースト状負極合剤を、銅箔からなる集電体の両面に塗着した後、乾燥し、全体を圧延して、負極を得た。
(B) Preparation of negative electrode To 100 parts by weight of non-graphitizable carbon (Carbotron P manufactured by Kureha Chemical Industry Co., Ltd.) as an active material, 3 parts by weight of an aqueous dispersion of styrene butadiene rubber as a binder was added as a resin component. To obtain a paste-like negative electrode mixture. This paste-like negative electrode mixture was applied to both surfaces of a current collector made of copper foil, dried, and rolled to obtain a negative electrode.

(ハ)非水電解質の調製
非水溶媒には、GBLを単独で用いた。溶質には、LiFSIを単独で用いた。ここでは、GBLに、LiFSIを1mol/Lの濃度で溶解させて非水電解質を調製した。
(C) Preparation of non-aqueous electrolyte GBL was used alone as the non-aqueous solvent. As the solute, LiFSI was used alone. Here, a non-aqueous electrolyte was prepared by dissolving LiFSI at a concentration of 1 mol / L in GBL.

(ニ)電池の作製
図1に示すような角型リチウムイオン二次電池を組み立てた。
まず、正極と負極とを、厚さ25μmのポリエチレン製微多孔膜からなるセパレータを介して長円形に捲回し、極板群1を構成した。そして、電極群内の水分を低減するために、電極群を真空乾燥機内で60℃で12時間乾燥させて、電極群内の水分量を50ppm以下とした。
(D) Production of Battery A prismatic lithium ion secondary battery as shown in FIG. 1 was assembled.
First, the positive electrode and the negative electrode were wound in an elliptical shape via a separator made of a 25 μm-thick polyethylene microporous film to form an electrode plate group 1. Then, in order to reduce the water content in the electrode group, the electrode group was dried in a vacuum dryer at 60 ° C. for 12 hours to reduce the water content in the electrode group to 50 ppm or less.

正極と負極には、それぞれ正極リード2および負極リード3を溶接した。極板群1の上部にポリエチレン樹脂製絶縁リング(図示しない)を装着し、図1に示されるように、アルミニウム製の角薄型電池ケース4の内部に挿入した。正極リード2の他端は、アルミニウム製封口板5にスポット溶接した。負極リード3の他端は、封口板5の中央部にあるニッケル製負極端子6の下部にスポット溶接した(図1では未溶接)。   A positive electrode lead 2 and a negative electrode lead 3 were welded to the positive electrode and the negative electrode, respectively. A polyethylene resin insulating ring (not shown) was attached to the upper part of the electrode plate group 1, and was inserted into an aluminum thin battery case 4 as shown in FIG. 1. The other end of the positive electrode lead 2 was spot-welded to the aluminum sealing plate 5. The other end of the negative electrode lead 3 was spot-welded to the lower part of the nickel negative electrode terminal 6 at the center of the sealing plate 5 (not welded in FIG. 1).

電池ケース4の開口端部と封口板5の周縁部とをレーザー溶接し、所定量の非水電解液を注入口から注入した。最後に注入口をアルミニウム製の封栓7で塞ぎ、レーザー溶接で密封した。
こうして得られた電池の寸法は、幅30mm、総高48mm、奥行き5.3mmとした。また、電池の設計容量は800mAhとした。
The opening end of the battery case 4 and the periphery of the sealing plate 5 were laser-welded, and a predetermined amount of a non-aqueous electrolyte was injected from an injection port. Finally, the inlet was closed with an aluminum stopper 7 and sealed by laser welding.
The dimensions of the battery thus obtained were 30 mm in width, 48 mm in total height, and 5.3 mm in depth. The design capacity of the battery was 800 mAh.

雰囲気温度20℃において、得られた電池の充放電を繰り返し行った。ここでは、充電電流0.16Aで、電池電圧4.2Vまで定電流充電を行い、20分間休止した後、放電電流0.16A、終止電圧3.0Vで放電を行うサイクルを繰り返した。その後、充電電流0.16Aで、電池電圧4.1Vまで充電した。この電池を実施例1の電池とした。   At an ambient temperature of 20 ° C., the obtained battery was repeatedly charged and discharged. Here, a cycle of performing constant current charging at a charging current of 0.16 A to a battery voltage of 4.2 V, pausing for 20 minutes, and then discharging at a discharge current of 0.16 A and a final voltage of 3.0 V was repeated. Thereafter, the battery was charged to a battery voltage of 4.1 V at a charging current of 0.16 A. This battery was used as the battery of Example 1.

100重量部のGBLに対して、2重量部のVCを添加剤として添加したこと以外、実施例1と同様の非水電解質を調製した。この非水電解質を用い、負極活物質として難黒鉛化性炭素の代わりに鱗片状黒鉛を用いたこと以外、実施例1と同様の電池を作製した。この電池を実施例2の電池とした。   A nonaqueous electrolyte similar to that of Example 1 was prepared, except that 2 parts by weight of VC was added as an additive to 100 parts by weight of GBL. Using this non-aqueous electrolyte, a battery similar to that of Example 1 was produced, except that flaky graphite was used instead of non-graphitizable carbon as the negative electrode active material. This battery was used as the battery of Example 2.

非水溶媒には、GBLを単独で用いた。溶質には、LiFSIとLiPF6とをモル比7:3で併用した。ここでは、GBLに、LiFSIを0.7mol/L、LiPF6を0.3mol/Lの濃度で溶解させて非水電解質を調製した。この非水電解質を用い、正極集電体としてチタン箔の代わりにアルミニウム箔を用いたこと以外、実施例2と同様の電池を作製した。この電池を実施例3の電池とした。 GBL alone was used as the non-aqueous solvent. For the solute, LiFSI and LiPF 6 were used together in a molar ratio of 7: 3. Here, a non-aqueous electrolyte was prepared by dissolving LiFSI at a concentration of 0.7 mol / L and LiPF 6 at a concentration of 0.3 mol / L in GBL. Using this nonaqueous electrolyte, a battery similar to that of Example 2 was produced, except that an aluminum foil was used as the positive electrode current collector instead of the titanium foil. This battery was used as the battery of Example 3.

非水溶媒には、30重量%のECと、70重量%のGBLとからなる混合溶媒を用いた。溶質には、LiFSIとLiPF6とをモル比7:3で併用した。ここでは、上記混合溶媒に、LiFSIを0.7mol/L、LiPF6を0.3mol/Lの濃度で溶解させ、100重量部の混合溶媒に対して2重量部のVCを添加剤として添加して非水電解質を調製した。この非水電解質を用いたこと以外、実施例3と同様の電池を作製した。この電池を実施例4の電池とした。 As the non-aqueous solvent, a mixed solvent composed of 30% by weight of EC and 70% by weight of GBL was used. For the solute, LiFSI and LiPF 6 were used together in a molar ratio of 7: 3. Here, the mixed solvent, 0.7 mol of LiFSI / L, LiPF 6 was dissolved at a concentration of 0.3 mol / L, was added as an additive VC 2 parts by weight of the mixed solvent of 100 parts by weight To prepare a non-aqueous electrolyte. A battery similar to that of Example 3 was produced except that this nonaqueous electrolyte was used. This battery was used as the battery of Example 4.

100重量部のGBLに対して、2重量部のVECを添加剤として添加したこと以外、実施例1と同様の非水電解質を調製した。この非水電解質を用い、負極活物質として難黒鉛化性炭素の代わりに鱗片状黒鉛を用いたこと以外、実施例1と同様の電池を作製した。この電池を実施例5の電池とした。   A non-aqueous electrolyte similar to that of Example 1 was prepared, except that 2 parts by weight of VEC was added as an additive to 100 parts by weight of GBL. Using this non-aqueous electrolyte, a battery similar to that of Example 1 was produced, except that flaky graphite was used instead of non-graphitizable carbon as the negative electrode active material. This battery was used as the battery of Example 5.

100重量部のGBLに対して、2重量部のPSを添加剤として添加したこと以外、実施例1と同様の非水電解質を調製した。この非水電解質を用い、負極活物質として難黒鉛化性炭素の代わりに鱗片状黒鉛を用いたこと以外、実施例1と同様の電池を作製した。この電池を実施例6の電池とした。   A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that 2 parts by weight of PS was added as an additive to 100 parts by weight of GBL. Using this non-aqueous electrolyte, a battery similar to that of Example 1 was produced, except that flaky graphite was used instead of non-graphitizable carbon as the negative electrode active material. This battery was used as the battery of Example 6.

非水溶媒には、30重量%のECと、70重量%のGBLとからなる混合溶媒を用いた。溶質には、LiFSIとLiPF6とをモル比7:3で併用した。ここでは、上記混合溶媒に、LiFSIを0.7mol/L、LiPF6を0.3mol/Lの濃度で溶解させ、100重量部の混合溶媒に対して、2重量部のVECを添加剤として添加して非水電解質を調製した。この非水電解質を用いたこと以外、実施例3と同様の電池を作製し、この電池を実施例7の電池とした。 As the non-aqueous solvent, a mixed solvent composed of 30% by weight of EC and 70% by weight of GBL was used. For the solute, LiFSI and LiPF 6 were used together in a molar ratio of 7: 3. Here, LiFSI is dissolved at a concentration of 0.7 mol / L and LiPF 6 at a concentration of 0.3 mol / L in the above mixed solvent, and 2 parts by weight of VEC is added as an additive to 100 parts by weight of the mixed solvent. Thus, a non-aqueous electrolyte was prepared. A battery similar to that of Example 3 was produced except that this nonaqueous electrolyte was used, and this battery was used as the battery of Example 7.

非水溶媒には、30重量%のECと、70重量%のGBLとからなる混合溶媒を用いた。溶質には、LiFSIとLiPF6とをモル比7:3で併用した。ここでは、上記混合溶媒に、LiFSIを0.7mol/L、LiPF6を0.3mol/Lの濃度で溶解させ、100重量部の混合溶媒に対して2重量部のPSを添加剤として添加して非水電解質を調製した。この非水電解質を用いたこと以外、実施例3と同様の電池を作製した。この電池を実施例8の電池とした。 As the non-aqueous solvent, a mixed solvent composed of 30% by weight of EC and 70% by weight of GBL was used. For the solute, LiFSI and LiPF 6 were used together in a molar ratio of 7: 3. Here, LiFSI is dissolved at a concentration of 0.7 mol / L and LiPF 6 at a concentration of 0.3 mol / L in the above mixed solvent, and 2 parts by weight of PS is added as an additive to 100 parts by weight of the mixed solvent. To prepare a non-aqueous electrolyte. A battery similar to that of Example 3 was produced except that this nonaqueous electrolyte was used. This battery was used as the battery of Example 8.

非水溶媒としてGBLの代わりに、GVLを用いたこと以外、実施例1と同様の電池を作製した。この電池を実施例9の電池とした。   A battery similar to that of Example 1 was produced except that GVL was used instead of GBL as the nonaqueous solvent. This battery was used as the battery of Example 9.

非水溶媒としてGBLの代わりに、30重量%のPCと、70重量%のGVLとからなる混合溶媒を用いたこと以外、実施例1と同様の電池を作製した。この電池を実施例10の電池とした。   A battery similar to that of Example 1 was produced except that a mixed solvent consisting of 30% by weight of PC and 70% by weight of GVL was used instead of GBL as the nonaqueous solvent. This battery was used as the battery of Example 10.

非水溶媒には、GBLを単独で用いた。溶質には、LiFSIとLiBF4とをモル比7:3で併用した。ここでは、GBLに、LiFSIを0.7mol/L、LiBF4を0.3mol/Lの濃度で溶解させて非水電解質を調製した。この非水電解質を用いたこと以外、実施例3と同様の電池を作製した。この電池を実施例11の電池とした。
《比較例1》
GBL alone was used as the non-aqueous solvent. For the solute, LiFSI and LiBF 4 were used together in a molar ratio of 7: 3. Here, a non-aqueous electrolyte was prepared by dissolving LiFSI at a concentration of 0.7 mol / L and LiBF 4 at a concentration of 0.3 mol / L in GBL. A battery similar to that of Example 3 was produced except that this nonaqueous electrolyte was used. This battery was used as the battery of Example 11.
<< Comparative Example 1 >>

非水溶媒には、25重量%のECと、75重量%のEMCとからなる混合溶媒を用いた。溶質には、LiPF6を単独で用いた。ここでは、上記混合溶媒に、LiPF6を1mol/Lの濃度で溶解させ、100重量部の混合溶媒に対して、2重量部のVCを添加剤として添加して非水電解質を調製した。この非水電解質を用いたこと以外、実施例3と同様の電池を作製した。この電池を比較例1の電池とした。
《比較例2》
As the non-aqueous solvent, a mixed solvent composed of 25% by weight of EC and 75% by weight of EMC was used. As the solute, LiPF 6 was used alone. Here, LiPF 6 was dissolved at a concentration of 1 mol / L in the mixed solvent, and 2 parts by weight of VC was added as an additive to 100 parts by weight of the mixed solvent to prepare a non-aqueous electrolyte. A battery similar to that of Example 3 was produced except that this nonaqueous electrolyte was used. This battery was used as the battery of Comparative Example 1.
<< Comparative Example 2 >>

非水溶媒には、GBLを単独で用いた。溶質には、LiPF6を単独で用いた。ここでは、GBLに、LiPF6を1mol/Lの濃度で溶解させ、100重量部のGBLに対して、2重量部のVCを添加剤として添加して非水電解質を調製した。この非水電解質を用いたこと以外、実施例3と同様の電池を作製した。この電池を比較例2の電池とした。
《比較例3》
GBL alone was used as the non-aqueous solvent. As the solute, LiPF 6 was used alone. Here, a non-aqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in GBL and adding 2 parts by weight of VC as an additive to 100 parts by weight of GBL. A battery similar to that of Example 3 was produced except that this nonaqueous electrolyte was used. This battery was used as the battery of Comparative Example 2.
<< Comparative Example 3 >>

非水溶媒には、GBLを単独で用いた。溶質には、LiBETIを単独で用いた。ここでは、GBLに、LiBETIを1mol/Lの濃度で溶解させ、100重量部のGBLに対して、2重量部のVCを添加剤として添加して非水電解質を調製した。この非水電解質を用いたこと以外、実施例3と同様の電池を作製した。この電池を比較例3の電池とした。
《比較例4》
GBL alone was used as the non-aqueous solvent. As a solute, LiBETI was used alone. Here, a non-aqueous electrolyte was prepared by dissolving LiBETI at a concentration of 1 mol / L in GBL and adding 2 parts by weight of VC as an additive to 100 parts by weight of GBL. A battery similar to that of Example 3 was produced except that this nonaqueous electrolyte was used. This battery was used as the battery of Comparative Example 3.
<< Comparative Example 4 >>

非水溶媒には、30重量%のECと、70重量%のGBLとからなる混合溶媒を用いた。溶質には、LiPF6を単独で用いた。ここでは、上記混合溶媒に、LiPF6を1mol/Lの濃度で溶解させ、100重量部の混合溶媒に対して、2重量部のVCを添加剤として添加して非水電解質を調製した。この非水電解質を用いたこと以外、実施例3と同様の電池を作製した。この電池を比較例4の電池とした。
《比較例5》
As the non-aqueous solvent, a mixed solvent composed of 30% by weight of EC and 70% by weight of GBL was used. As the solute, LiPF 6 was used alone. Here, LiPF 6 was dissolved in the above mixed solvent at a concentration of 1 mol / L, and 2 parts by weight of VC was added as an additive to 100 parts by weight of the mixed solvent to prepare a non-aqueous electrolyte. A battery similar to that of Example 3 was produced except that this nonaqueous electrolyte was used. This battery was designated as Battery of Comparative Example 4.
<< Comparative Example 5 >>

非水溶媒には、25重量%のECと、75重量%のEMCとからなる混合溶媒を用いた。溶質には、LiFSIを単独で用いた。ここでは、上記混合溶媒に、LiFSIを1mol/Lの濃度で溶解させ、100重量部の混合溶媒に対して、2重量部のVCを添加剤として添加して非水電解質を調製した。この非水電解質を用いたこと以外、実施例2と同様の電池を作製した。この電池を比較例5の電池とした。   As the non-aqueous solvent, a mixed solvent composed of 25% by weight of EC and 75% by weight of EMC was used. As the solute, LiFSI was used alone. Here, LiFSI was dissolved at a concentration of 1 mol / L in the above mixed solvent, and 2 parts by weight of VC was added as an additive to 100 parts by weight of the mixed solvent to prepare a non-aqueous electrolyte. A battery similar to that of Example 2 was produced except that this nonaqueous electrolyte was used. This battery was designated as battery of Comparative Example 5.

保存試験を高温暴露試験と兼ねて以下のように行った。
20℃の環境下において、放電電流0.8A、終止電圧3.0Vで、電池の放電を行った後、最大電流0.56A、設定電圧4.2Vで、定電流定電圧充電を2時間行った。この時の充電容量を電池の規定容量とした。
The preservation test was performed as follows together with the high-temperature exposure test.
Under an environment of 20 ° C., after discharging the battery at a discharge current of 0.8 A and a final voltage of 3.0 V, a constant current and constant voltage charge was performed at a maximum current of 0.56 A and a set voltage of 4.2 V for 2 hours. Was. The charging capacity at this time was defined as the specified capacity of the battery.

高温保存後における放電容量の回復率の測定は以下のように行った。
規定容量に充電した各電池を、0℃または20℃の環境下において、放電電流0.8A、終止電圧3.0Vで放電し、放電容量を測定した。そして、最大電流0.56A、設定電圧4.2Vで、定電流定電圧充電を2時間行い、その後、周囲温度85℃で、3日間保存した。保存後の電池を、0℃または20℃の環境下において、放電電流0.8A、終止電圧3.0Vで放電した。
The recovery rate of the discharge capacity after storage at a high temperature was measured as follows.
Each battery charged to the specified capacity was discharged at a discharge current of 0.8 A and a final voltage of 3.0 V in an environment of 0 ° C. or 20 ° C., and the discharge capacity was measured. Then, the battery was charged at a constant current and a constant voltage for 2 hours at a maximum current of 0.56 A and a set voltage of 4.2 V, and then stored at an ambient temperature of 85 ° C for 3 days. The battery after storage was discharged at a discharge current of 0.8 A and a final voltage of 3.0 V in an environment of 0 ° C. or 20 ° C.

保存前の放電容量、高温保存後の放電容量、および高温保存後の電池の膨れ(増加した厚み)を表1に示す。   Table 1 shows the discharge capacity before storage, the discharge capacity after high-temperature storage, and the swelling (increased thickness) of the battery after high-temperature storage.

Figure 2004165151
Figure 2004165151

比較例1の場合、高温保存後の電池の電気特性は良好な値を示した。しかし、比較例1の電池の膨れは極めて大きく、1mm近く膨れ、その膨れのために電子機器の外観を大きく損なうことが懸念された。   In the case of Comparative Example 1, the electrical characteristics of the battery after storage at a high temperature showed good values. However, the swelling of the battery of Comparative Example 1 was extremely large, swelling by about 1 mm, and there was a concern that the swelling would greatly impair the appearance of the electronic device.

比較例1と比較し、非水溶媒にGBLを単独で用いた比較例2の電池の膨れは、比較例1の約17%に収まっている。これは、溶媒にGBLを用いたことにより、非水電解質の蒸気圧が低くなったことや、活物質等との反応性が低下したことが寄与したものと考えられる。   Compared to Comparative Example 1, the swelling of the battery of Comparative Example 2 using GBL alone as the non-aqueous solvent is within about 17% of Comparative Example 1. This is considered to be due to the fact that the use of GBL as the solvent contributed to a decrease in the vapor pressure of the nonaqueous electrolyte and a decrease in the reactivity with the active material and the like.

さらに、実施例4と比較例4では、ECとGBLとの混合溶媒を用いているため、両方とも電池の膨れは小さかった。一方、電気特性は、溶質にLiFSIを用いた実施例4の方が大きく向上した。   Furthermore, in Example 4 and Comparative Example 4, since a mixed solvent of EC and GBL was used, the swelling of the batteries was small in both cases. On the other hand, the electrical characteristics of Example 4 using LiFSI as the solute were significantly improved.

実施例3では、高温保存後の電池の膨れが小さく、高温保存後の容量も比較的良好であった。
なお、実施例1および実施例2は、正極集電体としてチタン箔の代わりにステンレス鋼などからなる集電体を用いることもできる。また、コイン型電池などでも好ましい特性が期待できる。
In Example 3, the swelling of the battery after high-temperature storage was small, and the capacity after high-temperature storage was relatively good.
In Examples 1 and 2, a current collector made of stainless steel or the like can be used as the positive electrode current collector instead of the titanium foil. In addition, favorable characteristics can be expected in coin type batteries and the like.

ここでは、正極活物質として満充電電位がリチウム金属の電位に対して4.3Vと非常に高いLiCoO2を用いたため、実施例3、4では、フッ素を含有するLiPF6をLiFSIと併用したことが電池特性の向上に大きく寄与していると考えられる。同じくアルミニウム箔を正極集電体に用いた場合でも、充電電位がリチウム金属の電位に対して3.7V未満の正極活物質を用いる場合には、LiPF6の使用の有無によって、電池特性に変化はないと考えられる。LiPF6以外のフッ素を含有するリチウム塩を用いた場合にも、同様のことが言えると考えられる。 Here, since LiCoO 2 whose full charge potential was as high as 4.3 V with respect to the potential of lithium metal was used as the positive electrode active material, LiPF 6 containing fluorine was used in combination with LiFSI in Examples 3 and 4. Is considered to have greatly contributed to the improvement of battery characteristics. Similarly, even when aluminum foil is used for the positive electrode current collector, when the positive electrode active material whose charge potential is less than 3.7 V with respect to the potential of lithium metal is used, the battery characteristics change depending on whether LiPF 6 is used or not. It is thought that there is no. It is considered that the same can be said when a lithium salt containing fluorine other than LiPF 6 is used.

実施例4は、電池の膨れが小さく、電気特性は実施例の中で最も良好であった。これは、LiFSIとLiPF6とを併用したことに加え、添加剤としてVCを用いたことや、非水溶媒にECを混合したことが寄与したものと考えられる。すなわち、実施例4の電池では、GBLの負極上での還元分解が十分に抑制されているものと考えられる。これらの添加剤は、負極に黒鉛材料を用いる場合に特に有効であるが、黒鉛材料の結晶性が高くなる場合には、初期充放電効率を向上させる観点からも、これらの添加剤を用いることが有効である。 In Example 4, the swelling of the battery was small, and the electric characteristics were the best among the examples. This is considered to be due to the fact that, in addition to using LiFSI and LiPF 6 together, the use of VC as an additive and the mixing of EC with a non-aqueous solvent contributed. That is, in the battery of Example 4, it is considered that the reductive decomposition of GBL on the negative electrode is sufficiently suppressed. These additives are particularly effective when a graphite material is used for the negative electrode.However, when the crystallinity of the graphite material is increased, these additives are also used from the viewpoint of improving the initial charge / discharge efficiency. Is valid.

以上のように、本発明は、高温環境暴露時や保存時における高度な安全性が求められる非水電解質二次電池の分野において特に有用である。   INDUSTRIAL APPLICABILITY As described above, the present invention is particularly useful in the field of non-aqueous electrolyte secondary batteries that require high safety during exposure to high-temperature environments and during storage.

図1は、本発明の非水電解質二次電池の一例の一部切欠斜視図である。FIG. 1 is a partially cutaway perspective view of an example of the nonaqueous electrolyte secondary battery of the present invention.

符号の説明Explanation of reference numerals

1 極板群
2 正極リード
3 負極リード
4 電池ケース
5 封口板
6 負極端子
7 封栓
DESCRIPTION OF SYMBOLS 1 Electrode group 2 Positive electrode lead 3 Negative lead 4 Battery case 5 Sealing plate 6 Negative terminal 7 Sealing

Claims (14)

充放電可能な正極と、リチウムを吸蔵・放出する負極と、前記正極と前記負極とを電子的に遮蔽する隔膜と、非水電解質からなり、
前記非水電解質が、非水溶媒および溶質からなり、
前記非水溶媒が、ラクトンからなり、
前記溶質が、式(1):(F-O2S-N-SO2-F)Li
で表されるリチウムビスフルオロスルフォニルイミドからなる非水電解質二次電池。
A chargeable and dischargeable positive electrode, a negative electrode for inserting and extracting lithium, a diaphragm for electronically shielding the positive electrode and the negative electrode, and a nonaqueous electrolyte,
The non-aqueous electrolyte comprises a non-aqueous solvent and a solute,
The non-aqueous solvent comprises a lactone,
The solute has a formula (1): (FO 2 SN-SO 2 -F) Li
A non-aqueous electrolyte secondary battery comprising lithium bisfluorosulfonylimide represented by the formula:
前記非水電解質が、さらに、正極および/または負極上で被膜を形成する添加剤を含む請求項1記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte further includes an additive that forms a film on the positive electrode and / or the negative electrode. 前記添加剤が、ビニレンカーボネート、ビニルエチレンカーボネート、フェニルエチレンカーボネートおよびプロパンサルトンよりなる群から選ばれた少なくとも1種である請求項2記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 2, wherein the additive is at least one selected from the group consisting of vinylene carbonate, vinyl ethylene carbonate, phenyl ethylene carbonate, and propane sultone. 前記正極が、アルミニウムからなる集電体を含み、前記溶質が、さらに、フッ素を含有する別のリチウム塩を含む請求項1〜3のいずれかに記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the positive electrode includes a current collector made of aluminum, and the solute further includes another lithium salt containing fluorine. 前記別のリチウム塩が、
LiPFm(Ck2k+1)6-m(0≦m≦6、1≦k≦2)、
LiBFn(Cj2j+1)4-n(0≦n≦4、1≦j≦2)および
LiAsF6よりなる群から選ばれた少なくとも1種である請求項4記載の非水電解質二次電池。
The another lithium salt is
LiPF m (C k F 2k + 1 ) 6-m (0 ≦ m ≦ 6, 1 ≦ k ≦ 2),
LiBF n (C j F 2j + 1) 4-n (0 ≦ n ≦ 4,1 ≦ j ≦ 2) , and LiAsF 6 is at least one selected from the group consisting of claim 4 nonaqueous electrolyte according two Next battery.
前記非水溶媒が、さらに、エチレンカーボネートおよび/またはプロピレンカーボネートを含む請求項1記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous solvent further includes ethylene carbonate and / or propylene carbonate. 前記正極が、リチウム金属の電位に対して3.7V以上の電位で充電が必要な正極である請求項1記載の非水電解質二次電池。   2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode needs to be charged at a potential of 3.7 V or more with respect to the potential of lithium metal. 前記ラクトンが、γ−ブチロラクトンからなる請求項1記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the lactone comprises γ-butyrolactone. 非水溶媒および溶質からなり、
前記非水溶媒が、ラクトンからなり、
前記ラクトンが、γ−ブチロラクトンからなり、
前記溶質が、式(1):(F-O2S-N-SO2-F)Li
で表されるリチウムビスフルオロスルフォニルイミドからなる非水電解質二次電池用電解質。
Consisting of non-aqueous solvents and solutes,
The non-aqueous solvent comprises a lactone,
The lactone comprises γ-butyrolactone,
The solute has a formula (1): (FO 2 SN-SO 2 -F) Li
A non-aqueous electrolyte secondary battery electrolyte comprising a lithium bisfluorosulfonylimide represented by the formula:
さらに、正極および/または負極上で被膜を形成する添加剤を含む請求項9記載の非水電解質二次電池用電解質。   The electrolyte for a non-aqueous electrolyte secondary battery according to claim 9, further comprising an additive that forms a film on the positive electrode and / or the negative electrode. 前記添加剤が、ビニレンカーボネート、ビニルエチレンカーボネート、フェニルエチレンカーボネートおよびプロパンサルトンよりなる群から選ばれた少なくとも1種である請求項10記載の非水電解質二次電池用電解質。   The electrolyte for a non-aqueous electrolyte secondary battery according to claim 10, wherein the additive is at least one selected from the group consisting of vinylene carbonate, vinyl ethylene carbonate, phenyl ethylene carbonate, and propane sultone. 前記溶質が、さらに、フッ素を含有する別のリチウム塩を含む請求項9記載の非水電解質二次電池用電解質。   The electrolyte for a non-aqueous electrolyte secondary battery according to claim 9, wherein the solute further includes another lithium salt containing fluorine. 前記別のリチウム塩が、
LiPFm(Ck2k+1)6-m(0≦m≦6、1≦k≦2)、
LiBFn(Cj2j+1)4-n(0≦n≦4、1≦j≦2)および
LiAsF6よりなる群から選ばれた少なくとも1種である請求項12記載の非水電解質。
The another lithium salt is
LiPF m (C k F 2k + 1 ) 6-m (0 ≦ m ≦ 6, 1 ≦ k ≦ 2),
LiBF n (C j F 2j + 1) 4-n (0 ≦ n ≦ 4,1 ≦ j ≦ 2) and LiAsF is at least one selected from the group consisting of 6 12. The non-aqueous electrolyte according.
前記非水溶媒が、さらに、エチレンカーボネートおよび/またはプロピレンカーボネートを含む請求項9記載の非水電解質二次電池用電解質。   The electrolyte for a non-aqueous electrolyte secondary battery according to claim 9, wherein the non-aqueous solvent further contains ethylene carbonate and / or propylene carbonate.
JP2003337134A 2002-10-23 2003-09-29 Nonaqueous electrolyte secondary battery and electrolyte used therefor Expired - Fee Related JP4847675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003337134A JP4847675B2 (en) 2002-10-23 2003-09-29 Nonaqueous electrolyte secondary battery and electrolyte used therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002308984 2002-10-23
JP2002308984 2002-10-23
JP2003337134A JP4847675B2 (en) 2002-10-23 2003-09-29 Nonaqueous electrolyte secondary battery and electrolyte used therefor

Publications (2)

Publication Number Publication Date
JP2004165151A true JP2004165151A (en) 2004-06-10
JP4847675B2 JP4847675B2 (en) 2011-12-28

Family

ID=32828097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003337134A Expired - Fee Related JP4847675B2 (en) 2002-10-23 2003-09-29 Nonaqueous electrolyte secondary battery and electrolyte used therefor

Country Status (1)

Country Link
JP (1) JP4847675B2 (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114285A (en) * 2004-10-13 2006-04-27 Samsung Sdi Co Ltd Nonaqueous electrolyte for lithium secondary battery, the lithium secondary battery, and secondary battery system
JP2009067644A (en) * 2007-09-14 2009-04-02 Kyoto Univ Molten salt composition and application of the same
JP2009129797A (en) * 2007-11-27 2009-06-11 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
JP2010532071A (en) * 2007-06-29 2010-09-30 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Lithium energy storage device
JP2011082033A (en) * 2009-10-07 2011-04-21 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery module
WO2011121912A1 (en) * 2010-03-29 2011-10-06 パナソニック株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP2012190699A (en) * 2011-03-11 2012-10-04 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution, and nonaqueous electrolytic solution secondary battery using the same
JP2013084591A (en) * 2011-09-26 2013-05-09 Nippon Shokubai Co Ltd Alkali metal battery
JP2013105643A (en) * 2011-11-15 2013-05-30 Nippon Shokubai Co Ltd Lithium secondary battery
JP2014013704A (en) * 2012-07-04 2014-01-23 Nippon Shokubai Co Ltd Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery including the same
JP2014022291A (en) * 2012-07-20 2014-02-03 Nippon Shokubai Co Ltd Nonaqueous electrolyte and lithium secondary battery using the same
CN103594729A (en) * 2013-11-28 2014-02-19 深圳新宙邦科技股份有限公司 Electrolyte for lithium ion battery
JP2014127370A (en) * 2012-12-26 2014-07-07 Nippon Shokubai Co Ltd Lithium secondary battery
WO2014112420A1 (en) 2013-01-17 2014-07-24 ソニー株式会社 Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool, and electronic device
JP2014175098A (en) * 2013-03-06 2014-09-22 Tokyo Metropolitan Univ Polymer electrolyte
JP2014185195A (en) * 2013-03-21 2014-10-02 Tokyo Univ Of Agriculture & Technology Polymer electrolyte material
JP2014199779A (en) * 2013-03-29 2014-10-23 株式会社日本触媒 Overcharge inhibitor, electrolytic solution including the same, and lithium ion secondary battery
JP2014203748A (en) * 2013-04-08 2014-10-27 株式会社日本触媒 Nonaqueous electrolytic solution for lithium ion secondary batteries, and lithium ion secondary battery having the same
WO2014193148A1 (en) * 2013-05-27 2014-12-04 주식회사 엘지화학 Non-aqueous electrolyte and lithium secondary battery comprising same
US8945780B2 (en) 2010-01-25 2015-02-03 Sony Corporation Nonaqueous electrolyte and nonaqueous electrolyte battery
US8986880B2 (en) 2011-06-07 2015-03-24 Sony Corporation Nonaqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
US8986893B2 (en) 2012-01-26 2015-03-24 Sony Corporation Battery, battery pack, electronic apparatus, electrically driven vehicle, electrical storage device, and electric power system
JP2015509271A (en) * 2012-12-24 2015-03-26 エルジー・ケム・リミテッド Non-aqueous electrolyte and lithium secondary battery including the same
KR20150050974A (en) * 2013-11-01 2015-05-11 주식회사 엘지화학 Nonaqueous electrolyte and lithium secondary battery containing the same
JP2015522210A (en) * 2013-02-20 2015-08-03 エルジー・ケム・リミテッド Non-aqueous electrolyte and lithium secondary battery including the same
JP2015523701A (en) * 2013-05-16 2015-08-13 エルジー・ケム・リミテッド Non-aqueous electrolyte and lithium secondary battery including the same
US20150380770A1 (en) * 2014-06-26 2015-12-31 Sk Innovation Co., Ltd. Secondary battery with improved high-temperature and low-temperature properties
JP2016085977A (en) * 2014-10-24 2016-05-19 株式会社半導体エネルギー研究所 Lithium ion storage battery
KR20160069996A (en) * 2014-12-09 2016-06-17 삼성에스디아이 주식회사 Rechargeable lithium battery
JP2016197606A (en) * 2016-07-27 2016-11-24 株式会社日本触媒 Nonaqueous electrolytic solution and lithium secondary battery using the same
JP2017022116A (en) * 2011-12-06 2017-01-26 アルケマ フランス USE OF LITHIUM SALT MIXTURES AS Li-ION BATTERY ELECTROLYTES
JP2017054833A (en) * 2005-10-28 2017-03-16 三菱化学株式会社 Nonaqueous electrolyte for secondary battery, and nonaqueous electrolytic secondary battery using the same
US9608290B2 (en) 2013-02-20 2017-03-28 Lg Chem, Ltd. Electrolyte solution additive for lithium secondary battery, and non-aqueous electrolyte solution and lithium secondary battery including the additive
JP2017073273A (en) * 2015-10-07 2017-04-13 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
US9806379B2 (en) 2013-05-27 2017-10-31 Lg Chem, Ltd. Non-aqueous electrolyte solution and lithium secondary battery including the same
US9825335B2 (en) 2013-05-16 2017-11-21 Lg Chem, Ltd. Non-aqueous electrolyte solution and lithium secondary battery including the same
WO2017204213A1 (en) * 2016-05-26 2017-11-30 日本電気株式会社 Lithium ion secondary battery
JP2018067532A (en) * 2016-10-14 2018-04-26 三洋化成工業株式会社 Positive electrode for lithium ion battery and lithium ion battery
KR20180089530A (en) * 2015-12-22 2018-08-08 샌트랄 글래스 컴퍼니 리미티드 Electrolyte for non-aqueous electrolyte cell and non-aqueous electrolyte cell using the same
US10276871B2 (en) 2014-12-09 2019-04-30 Samsung Sdi Co., Ltd. Rechargeable lithium battery
JP2019515460A (en) * 2016-11-03 2019-06-06 エルジー・ケム・リミテッド Lithium ion secondary battery
JP2019114390A (en) * 2017-12-22 2019-07-11 日本ゼオン株式会社 Electrolyte composition for electrochemical device and manufacturing method of electrode for electrochemical device
US10497975B2 (en) 2015-11-04 2019-12-03 Shenzhen Capchem Technology Co., Ltd. Lithium ion battery non-aqueous electrolyte and lithium ion battery
US10530016B2 (en) 2015-12-18 2020-01-07 Shenzhen Capchem Technology Co., Ltd. Electrolyte for lithium-ion battery and lithium-ion battery
JP2020053171A (en) * 2018-09-25 2020-04-02 株式会社日立製作所 Non-aqueous electrolyte, non-volatile electrolyte, and secondary battery
WO2020085002A1 (en) * 2018-10-25 2020-04-30 パナソニック株式会社 Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
JP2021034620A (en) * 2019-08-27 2021-03-01 株式会社豊田中央研究所 Lithium ion capacitor
US10971755B2 (en) 2014-04-23 2021-04-06 Murata Manufacturing Co., Ltd. Secondary battery-use electrolytic solution, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2021057520A (en) * 2019-10-01 2021-04-08 株式会社豊田中央研究所 Lithium ion capacitor
US10978740B2 (en) * 2013-02-18 2021-04-13 Nippon Shokubai Co., Ltd. Electrolyte solution and lithium ion secondary battery provided with same
WO2023171746A1 (en) * 2022-03-11 2023-09-14 Apb株式会社 Battery module and method for manufacturing battery module
US11769871B2 (en) 2005-10-20 2023-09-26 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP7573085B2 (en) 2014-10-24 2024-10-24 株式会社半導体エネルギー研究所 Lithium-ion battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101640288B1 (en) * 2013-09-26 2016-07-15 주식회사 엘지화학 Lithium secondary battery with improved output performance

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283086A (en) * 1992-03-31 1993-10-29 Hitachi Maxell Ltd Organic electrolyte battery
JPH08511274A (en) * 1994-03-21 1996-11-26 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク Ionic conductive material with good corrosion resistance
JPH11339850A (en) * 1998-05-29 1999-12-10 Nec Mori Energy Kk Lithium-ion secondary battery
JPH11354155A (en) * 1998-06-09 1999-12-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH11354154A (en) * 1998-06-09 1999-12-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH11354153A (en) * 1998-06-09 1999-12-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2000235868A (en) * 1998-10-29 2000-08-29 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2001126765A (en) * 1999-10-26 2001-05-11 Gs-Melcotec Co Ltd Nonaqueous electrolyte secondary battery
JP2001307774A (en) * 2000-04-21 2001-11-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2002015771A (en) * 2000-04-28 2002-01-18 Toshiba Corp Nonaqueous electrolyte and nonaqueous electrlyte secondary cell
JP2002056827A (en) * 2000-08-09 2002-02-22 Seiko Instruments Inc Nonaqueous electrolyte secondary battery
JP2002110232A (en) * 2000-09-29 2002-04-12 Yuasa Corp Non-aqueous electrolyte and lithium battery using the same
JP2002184462A (en) * 2000-09-28 2002-06-28 Toshiba Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2002280060A (en) * 2001-03-15 2002-09-27 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and lithium secondary battery using it
JP2004522681A (en) * 2000-12-29 2004-07-29 ハイドロ−ケベック Method for fluorinating a compound containing a halosulfonyl group or a dihalophosphonyl group

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283086A (en) * 1992-03-31 1993-10-29 Hitachi Maxell Ltd Organic electrolyte battery
JPH08511274A (en) * 1994-03-21 1996-11-26 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク Ionic conductive material with good corrosion resistance
JPH11339850A (en) * 1998-05-29 1999-12-10 Nec Mori Energy Kk Lithium-ion secondary battery
JPH11354155A (en) * 1998-06-09 1999-12-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH11354154A (en) * 1998-06-09 1999-12-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH11354153A (en) * 1998-06-09 1999-12-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2000235868A (en) * 1998-10-29 2000-08-29 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2001126765A (en) * 1999-10-26 2001-05-11 Gs-Melcotec Co Ltd Nonaqueous electrolyte secondary battery
JP2001307774A (en) * 2000-04-21 2001-11-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2002015771A (en) * 2000-04-28 2002-01-18 Toshiba Corp Nonaqueous electrolyte and nonaqueous electrlyte secondary cell
JP2002056827A (en) * 2000-08-09 2002-02-22 Seiko Instruments Inc Nonaqueous electrolyte secondary battery
JP2002184462A (en) * 2000-09-28 2002-06-28 Toshiba Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2002110232A (en) * 2000-09-29 2002-04-12 Yuasa Corp Non-aqueous electrolyte and lithium battery using the same
JP2004522681A (en) * 2000-12-29 2004-07-29 ハイドロ−ケベック Method for fluorinating a compound containing a halosulfonyl group or a dihalophosphonyl group
JP2002280060A (en) * 2001-03-15 2002-09-27 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and lithium secondary battery using it

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114285A (en) * 2004-10-13 2006-04-27 Samsung Sdi Co Ltd Nonaqueous electrolyte for lithium secondary battery, the lithium secondary battery, and secondary battery system
US11769871B2 (en) 2005-10-20 2023-09-26 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2017054833A (en) * 2005-10-28 2017-03-16 三菱化学株式会社 Nonaqueous electrolyte for secondary battery, and nonaqueous electrolytic secondary battery using the same
JP2019117811A (en) * 2005-10-28 2019-07-18 三菱ケミカル株式会社 Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery using the same
JP2020064873A (en) * 2005-10-28 2020-04-23 三菱ケミカル株式会社 Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery using the same
JP2010532071A (en) * 2007-06-29 2010-09-30 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Lithium energy storage device
JP2009067644A (en) * 2007-09-14 2009-04-02 Kyoto Univ Molten salt composition and application of the same
JP2009129797A (en) * 2007-11-27 2009-06-11 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
JP2011082033A (en) * 2009-10-07 2011-04-21 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery module
US8945780B2 (en) 2010-01-25 2015-02-03 Sony Corporation Nonaqueous electrolyte and nonaqueous electrolyte battery
JPWO2011121912A1 (en) * 2010-03-29 2013-07-04 パナソニック株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
US8623558B2 (en) 2010-03-29 2014-01-07 Panasonic Corporation Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP5525599B2 (en) * 2010-03-29 2014-06-18 パナソニック株式会社 Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery using the same
WO2011121912A1 (en) * 2010-03-29 2011-10-06 パナソニック株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP2012190699A (en) * 2011-03-11 2012-10-04 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution, and nonaqueous electrolytic solution secondary battery using the same
US8986880B2 (en) 2011-06-07 2015-03-24 Sony Corporation Nonaqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP2013084591A (en) * 2011-09-26 2013-05-09 Nippon Shokubai Co Ltd Alkali metal battery
JP2013105643A (en) * 2011-11-15 2013-05-30 Nippon Shokubai Co Ltd Lithium secondary battery
JP2017022116A (en) * 2011-12-06 2017-01-26 アルケマ フランス USE OF LITHIUM SALT MIXTURES AS Li-ION BATTERY ELECTROLYTES
JP2018073833A (en) * 2011-12-06 2018-05-10 アルケマ フランス Use of lithium salt mixtures as lithium-ion battery electrolytes
US9246190B2 (en) 2012-01-26 2016-01-26 Sony Corporation Battery and battery pack
US9786951B2 (en) 2012-01-26 2017-10-10 Sony Corporation Battery and battery pack
US8986893B2 (en) 2012-01-26 2015-03-24 Sony Corporation Battery, battery pack, electronic apparatus, electrically driven vehicle, electrical storage device, and electric power system
JP2014013704A (en) * 2012-07-04 2014-01-23 Nippon Shokubai Co Ltd Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery including the same
JP2014022291A (en) * 2012-07-20 2014-02-03 Nippon Shokubai Co Ltd Nonaqueous electrolyte and lithium secondary battery using the same
JP2015509271A (en) * 2012-12-24 2015-03-26 エルジー・ケム・リミテッド Non-aqueous electrolyte and lithium secondary battery including the same
US9620819B2 (en) 2012-12-24 2017-04-11 Lg Chem, Ltd. Non-aqueous electrolyte solution and lithium secondary battery comprising the same
KR101634910B1 (en) * 2012-12-24 2016-06-29 주식회사 엘지화학 Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
KR20150129636A (en) * 2012-12-24 2015-11-20 주식회사 엘지화학 Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
JP2014127370A (en) * 2012-12-26 2014-07-07 Nippon Shokubai Co Ltd Lithium secondary battery
US9899670B2 (en) 2013-01-17 2018-02-20 Murata Manufacturing Co., Ltd. Secondary battery-use active material, secondary battery-use electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
KR20150106883A (en) 2013-01-17 2015-09-22 소니 주식회사 Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool, and electronic device
WO2014112420A1 (en) 2013-01-17 2014-07-24 ソニー株式会社 Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool, and electronic device
US10978740B2 (en) * 2013-02-18 2021-04-13 Nippon Shokubai Co., Ltd. Electrolyte solution and lithium ion secondary battery provided with same
US9590273B2 (en) 2013-02-20 2017-03-07 Lg Chem, Ltd. Non-aqueous electrolyte solution and lithium secondary battery including the same
JP2015522210A (en) * 2013-02-20 2015-08-03 エルジー・ケム・リミテッド Non-aqueous electrolyte and lithium secondary battery including the same
US9608290B2 (en) 2013-02-20 2017-03-28 Lg Chem, Ltd. Electrolyte solution additive for lithium secondary battery, and non-aqueous electrolyte solution and lithium secondary battery including the additive
JP2014175098A (en) * 2013-03-06 2014-09-22 Tokyo Metropolitan Univ Polymer electrolyte
JP2014185195A (en) * 2013-03-21 2014-10-02 Tokyo Univ Of Agriculture & Technology Polymer electrolyte material
JP2014199779A (en) * 2013-03-29 2014-10-23 株式会社日本触媒 Overcharge inhibitor, electrolytic solution including the same, and lithium ion secondary battery
JP2014203748A (en) * 2013-04-08 2014-10-27 株式会社日本触媒 Nonaqueous electrolytic solution for lithium ion secondary batteries, and lithium ion secondary battery having the same
US9825335B2 (en) 2013-05-16 2017-11-21 Lg Chem, Ltd. Non-aqueous electrolyte solution and lithium secondary battery including the same
CN104969403A (en) * 2013-05-16 2015-10-07 株式会社Lg化学 Non-aqueous electrolytic solution and lithium secondary battery comprising same
JP2015523701A (en) * 2013-05-16 2015-08-13 エルジー・ケム・リミテッド Non-aqueous electrolyte and lithium secondary battery including the same
KR101605957B1 (en) * 2013-05-27 2016-03-23 주식회사 엘지화학 Non-aqueous electrolyte solution and lithium secondary battery including the same
TWI548133B (en) * 2013-05-27 2016-09-01 Lg化學股份有限公司 Non-aqueous electrolyte solution and lithium secondary battery including the same
WO2014193148A1 (en) * 2013-05-27 2014-12-04 주식회사 엘지화학 Non-aqueous electrolyte and lithium secondary battery comprising same
JP2015522924A (en) * 2013-05-27 2015-08-06 エルジー・ケム・リミテッド Non-aqueous electrolyte and lithium secondary battery including the same
US9806379B2 (en) 2013-05-27 2017-10-31 Lg Chem, Ltd. Non-aqueous electrolyte solution and lithium secondary battery including the same
KR101893227B1 (en) * 2013-11-01 2018-08-30 주식회사 엘지화학 Nonaqueous electrolyte and lithium secondary battery containing the same
KR20150050974A (en) * 2013-11-01 2015-05-11 주식회사 엘지화학 Nonaqueous electrolyte and lithium secondary battery containing the same
CN103594729A (en) * 2013-11-28 2014-02-19 深圳新宙邦科技股份有限公司 Electrolyte for lithium ion battery
CN103594729B (en) * 2013-11-28 2015-11-18 深圳新宙邦科技股份有限公司 A kind of electrolyte for lithium ion battery
US10971755B2 (en) 2014-04-23 2021-04-06 Murata Manufacturing Co., Ltd. Secondary battery-use electrolytic solution, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
US20150380770A1 (en) * 2014-06-26 2015-12-31 Sk Innovation Co., Ltd. Secondary battery with improved high-temperature and low-temperature properties
US20200014069A1 (en) * 2014-06-26 2020-01-09 Sk Innovation Co., Ltd. Secondary battery with improved high-temperature and low-temperature properties
CN109830686A (en) * 2014-06-26 2019-05-31 Sk新技术株式会社 Hot properties and the excellent secondary cell of low-temperature characteristics
JP2020126865A (en) * 2014-10-24 2020-08-20 株式会社半導体エネルギー研究所 Lithium ion storage battery
JP7364730B2 (en) 2014-10-24 2023-10-18 株式会社半導体エネルギー研究所 lithium ion storage battery
JP7573085B2 (en) 2014-10-24 2024-10-24 株式会社半導体エネルギー研究所 Lithium-ion battery
JP2016085977A (en) * 2014-10-24 2016-05-19 株式会社半導体エネルギー研究所 Lithium ion storage battery
JP2022079763A (en) * 2014-10-24 2022-05-26 株式会社半導体エネルギー研究所 Lithium ion storage battery
KR20160069996A (en) * 2014-12-09 2016-06-17 삼성에스디아이 주식회사 Rechargeable lithium battery
US10276871B2 (en) 2014-12-09 2019-04-30 Samsung Sdi Co., Ltd. Rechargeable lithium battery
KR102525619B1 (en) * 2014-12-09 2023-04-24 삼성에스디아이 주식회사 Rechargeable lithium battery
JP2016110900A (en) * 2014-12-09 2016-06-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. Lithium ion secondary battery
JP2017073273A (en) * 2015-10-07 2017-04-13 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
US10497975B2 (en) 2015-11-04 2019-12-03 Shenzhen Capchem Technology Co., Ltd. Lithium ion battery non-aqueous electrolyte and lithium ion battery
US10530016B2 (en) 2015-12-18 2020-01-07 Shenzhen Capchem Technology Co., Ltd. Electrolyte for lithium-ion battery and lithium-ion battery
KR102123495B1 (en) * 2015-12-22 2020-06-16 샌트랄 글래스 컴퍼니 리미티드 Electrolyte for nonaqueous electrolyte batteries, and nonaqueous electrolyte batteries using the same
US11424486B2 (en) 2015-12-22 2022-08-23 Central Glass Co., Ltd. Electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell wherein same is used
US10840554B2 (en) 2015-12-22 2020-11-17 Central Glass Co., Ltd. Electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell wherein same is used
KR20180089530A (en) * 2015-12-22 2018-08-08 샌트랄 글래스 컴퍼니 리미티드 Electrolyte for non-aqueous electrolyte cell and non-aqueous electrolyte cell using the same
WO2017204213A1 (en) * 2016-05-26 2017-11-30 日本電気株式会社 Lithium ion secondary battery
JP2016197606A (en) * 2016-07-27 2016-11-24 株式会社日本触媒 Nonaqueous electrolytic solution and lithium secondary battery using the same
JP2018067532A (en) * 2016-10-14 2018-04-26 三洋化成工業株式会社 Positive electrode for lithium ion battery and lithium ion battery
JP2019515460A (en) * 2016-11-03 2019-06-06 エルジー・ケム・リミテッド Lithium ion secondary battery
US10923717B2 (en) 2016-11-03 2021-02-16 Lg Chem, Ltd. Lithium ion secondary battery
JP2019114390A (en) * 2017-12-22 2019-07-11 日本ゼオン株式会社 Electrolyte composition for electrochemical device and manufacturing method of electrode for electrochemical device
JP2020053171A (en) * 2018-09-25 2020-04-02 株式会社日立製作所 Non-aqueous electrolyte, non-volatile electrolyte, and secondary battery
JPWO2020085002A1 (en) * 2018-10-25 2021-09-09 パナソニック株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2020085002A1 (en) * 2018-10-25 2020-04-30 パナソニック株式会社 Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
JP7461887B2 (en) 2018-10-25 2024-04-04 パナソニックホールディングス株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7147719B2 (en) 2019-08-27 2022-10-05 株式会社豊田中央研究所 lithium ion capacitor
JP2021034620A (en) * 2019-08-27 2021-03-01 株式会社豊田中央研究所 Lithium ion capacitor
JP7147725B2 (en) 2019-10-01 2022-10-05 株式会社豊田中央研究所 lithium ion capacitor
JP2021057520A (en) * 2019-10-01 2021-04-08 株式会社豊田中央研究所 Lithium ion capacitor
WO2023171746A1 (en) * 2022-03-11 2023-09-14 Apb株式会社 Battery module and method for manufacturing battery module

Also Published As

Publication number Publication date
JP4847675B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4847675B2 (en) Nonaqueous electrolyte secondary battery and electrolyte used therefor
US7709157B2 (en) Non-aqueous electrolyte secondary battery and electrolyte for the same
US8313866B2 (en) Non-aqueous electrolytes and electrochemical devices including the same
US20050100786A1 (en) Nonaqueous lithium secondary battery with cyclability and/or high temperature safety improved
WO2015079893A1 (en) Lithium secondary battery
US7422827B2 (en) Nonaqueous electrolyte
JP3380501B2 (en) Non-aqueous electrolyte secondary battery
JP3831550B2 (en) Non-aqueous electrolyte battery
JP2001307774A (en) Nonaqueous electrolyte secondary battery
JP2003007331A (en) Nonaqueous electrolyte secondary battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4479045B2 (en) Nonaqueous electrolyte secondary battery
JP4703121B2 (en) Non-aqueous electrolyte secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JP4714976B2 (en) Nonaqueous electrolyte secondary battery
US20200076000A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP3448494B2 (en) Non-aqueous electrolyte secondary battery
JPH1140195A (en) Nonaqueous electrolyte secondary battery
JPH1131527A (en) Nonaqueous electrolyte secondary battery
JP2001297762A (en) Secondary cell with nonaqueous electrolyte
KR101294763B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2002025607A (en) Battery
JP3762560B2 (en) Secondary battery with non-aqueous electrolyte
JP2001283849A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees