JPH05283086A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH05283086A
JPH05283086A JP4108805A JP10880592A JPH05283086A JP H05283086 A JPH05283086 A JP H05283086A JP 4108805 A JP4108805 A JP 4108805A JP 10880592 A JP10880592 A JP 10880592A JP H05283086 A JPH05283086 A JP H05283086A
Authority
JP
Japan
Prior art keywords
battery
organic electrolyte
positive electrode
low temperature
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4108805A
Other languages
Japanese (ja)
Other versions
JP3288068B2 (en
Inventor
Fusaji Kita
房次 喜多
Akira Kawakami
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP10880592A priority Critical patent/JP3288068B2/en
Publication of JPH05283086A publication Critical patent/JPH05283086A/en
Application granted granted Critical
Publication of JP3288068B2 publication Critical patent/JP3288068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PURPOSE:To improve the low temperature chracteristic of the organic electrolyte battery having a negative electrode made of alkali metal, alkaline earth metal or the compound containing them. CONSTITUTION:As electrolyte of the organic electrolytic solution, metallic salt having two or more of RfSO2 group (Rf=F or fluoroalkyl group) such as (CF3SO2)2NLi is used, and as solvent, annular ether such as 3-dioxiolan and ethylene carbonate are used, and as positive electrode active material, metal oxide having a large surface area at 15m<2>/g or more of BET specific surface area (for example, manganese dioxide) is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機電解液電池に係
り、さらに詳しくはその有機電解液(以下、電池の名称
を表現する以外は、単に「電解液」という)の改良に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte battery, and more particularly to improvement of the organic electrolyte solution (hereinafter, simply referred to as "electrolyte solution" except for expressing the name of the battery).

【0002】[0002]

【従来の技術】二酸化マンガン−リチウム電池に代表さ
れる有機電解液電池は、高電圧、長寿命、高エネルギー
密度であることから、年々その市場が拡大している。そ
して、その安全性向上のため、電解質として過塩素酸系
のLiClO4 に代えて、LiCF3 SO3 に代表され
るLiCn 2n+1SO3 系の有機リチウム塩が広く使用
されるようになってきた。しかし、LiCF3 SO3
どは従来使用のLiClO4 に比べて伝導度が低く、電
池特性も一般に低下する傾向にある。
2. Description of the Related Art Organic electrolyte batteries represented by manganese dioxide-lithium batteries have a high voltage, a long life, and a high energy density, and therefore their markets are expanding year by year. In order to improve the safety, LiC n F 2n + 1 SO 3 -based organic lithium salt represented by LiCF 3 SO 3 is widely used instead of perchloric acid-based LiClO 4 as an electrolyte. It's coming. However, the conductivity of LiCF 3 SO 3 and the like is lower than that of LiClO 4 used conventionally, and the battery characteristics generally tend to deteriorate.

【0003】そのため、最近、LiCF3 SO3 などに
代えて、(CF3 SO2 2 NLi、(CF3 SO2
3 CLiなどを電解質として用いることが提案されてい
る〔L.A.Dominey,Fifth Inter
national Seminar on Lithi
um Battery Technology and
Applications,March4〜6,1
(1991)〕。
Therefore, recently, (CF 3 SO 2 ) 2 NLi, (CF 3 SO 2 ) has been used in place of LiCF 3 SO 3, etc.
It has been proposed to use 3 CLi or the like as an electrolyte [L. A. Dominey, Fifth Inter
national Seminar on Lithi
um Battery Technology and
Applications, March 4-6, 1
(1991)].

【0004】これらの新しいリチウム塩は、LiCF3
SO3 などに比べて伝導度がはるかに優れており、Li
CF3 SO3 に比べて約2倍以上の伝導度を有してい
る。通常、伝導度が高ければ、電池の低温特性も改善さ
れるものと期待されるが、本発明者らが検討したところ
では、LiCF3 SO3 /PC:DME電解液〔プロピ
レンカーボネート(PC)と1,2−ジメトキシエタン
(DME)との混合溶媒にLiCF3 SO3 を溶解させ
た電解液〕のLiCF3 SO3 に代えて、(CF3 SO
2 2 NLiを使用しても、電池の低温特性は改善され
なかった。
These new lithium salts are LiCF 3
The conductivity is far superior to that of SO 3, etc.
It has a conductivity about twice as high as that of CF 3 SO 3 . Usually, if the conductivity is high, it is expected that the low temperature characteristics of the battery will be improved, but the inventors of the present invention have studied that LiCF 3 SO 3 / PC: DME electrolytic solution [propylene carbonate (PC) and instead of LiCF 3 SO 3 of 1,2-dimethoxyethane (DME) and an electrolyte solution obtained by dissolving LiCF 3 SO 3 in a mixed solvent of], (CF 3 SO
2 ) The use of 2 NLi did not improve the low temperature characteristics of the battery.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
に、(CF3 SO2 2 NLiなどのRfSO2 基〔R
fはF(フッ素)またはフルオロアルキル基〕を2個以
上有する金属塩を用いた有機電解液電池が、高い伝導度
を有するにもかかわらず低温特性が改善できなかったと
いう問題点を解決し、低温特性の優れた有機電解液電池
を提供することを目的とする。
As described above, the present invention provides a RfSO 2 group such as (CF 3 SO 2 ) 2 NLi [R
f is an organic electrolyte battery using a metal salt having two or more F (fluorine) or fluoroalkyl groups] solved the problem that the low temperature characteristics could not be improved despite having high conductivity, It is an object to provide an organic electrolyte battery having excellent low temperature characteristics.

【0006】[0006]

【課題を解決するための手段】本発明は、有機電解液電
池の電解質としてRfSO2 基を2個以上有する金属塩
を使用し、溶媒として環状エーテルを使用することによ
って、電池の低温特性を改善し、上記目的を達成したも
のである。
The present invention improves the low temperature characteristics of a battery by using a metal salt having two or more RfSO 2 groups as an electrolyte of an organic electrolyte battery and using a cyclic ether as a solvent. However, the above-mentioned object is achieved.

【0007】本発明を完成するにいたった経過を詳しく
説明すると次の通りである。
The process of completing the present invention will be described in detail below.

【0008】本発明者らは、まずLiCF3 SO3 系電
解液の伝導度を改善すべく溶媒組成の検討を行った。そ
の結果、PC:DME系で優れた伝導度が得られ、かつ
低温特性も最も優れていることがわかった。1,3−ジ
オキソランなどの使用も検討したが伝導度はかえって低
下した。また、エチレンカーボネートの添加も行った。
この場合、伝導度は向上するが、エチレンカーボネート
を加えすぎると低温で電解液が凝固しはじめるため、か
えって低温特性が低下し、少なくすると伝導度は少し高
くなるものの低温特性の向上には至らなかった。
The present inventors first investigated the solvent composition in order to improve the conductivity of the LiCF 3 SO 3 system electrolyte. As a result, it was found that the PC: DME system had excellent conductivity and also had the best low-temperature characteristics. The use of 1,3-dioxolane or the like was also examined, but the conductivity decreased rather. Also, ethylene carbonate was added.
In this case, the conductivity is improved, but if too much ethylene carbonate is added, the electrolytic solution will start to solidify at low temperature, rather lowering the low temperature characteristic, and if it is reduced, the conductivity will be slightly higher but the low temperature characteristic will not be improved. It was

【0009】そこで、さらに低温特性を向上させるた
め、CF3 SO2 基を2個有し、伝導度の向上効果が大
きい(CF3 SO2 2 NLiを電解質として用いた電
解液の検討を考えた。
Therefore, in order to further improve the low-temperature characteristics, it is considered to study an electrolytic solution having two CF 3 SO 2 groups and having a large conductivity improving effect (CF 3 SO 2 ) 2 NLi. It was

【0010】この(CF3 SO2 2 NLiを電解質と
して用いることによって伝導度が向上する理由は、従来
使用のLiCF3 SO3 が次式のCF3 SO2 (O)L
iのようにLi(リチウム)に隣接したO原子(酸素原
子)にCF3 SO2 基が1個しか付いていないため、結
果的にこのO原子上の電子密度が高くなり、Li+ を放
出して電離しにくくなるのに対し、(CF3 SO2 2
NLiは、Liに隣接するN原子(チッ素原子)にCF
3 SO2 基が2個付いていて電子を吸引するため、N原
子上の電子密度がより低くなり、その結果、電離しやす
くなって、伝導度が向上するものと考えられる。したが
って、CF3 SO2 基などの電子吸引性基をLiに隣接
する原子により多く付けることにより電解質の電離が促
進され、より高い伝導度が得られるものと期待される。
The reason why the conductivity is improved by using this (CF 3 SO 2 ) 2 NLi as an electrolyte is that LiCF 3 SO 3 used conventionally is CF 3 SO 2 (O) L of the following formula.
Like i, only one CF 3 SO 2 group is attached to the O atom (oxygen atom) adjacent to Li (lithium), so that the electron density on this O atom is increased and Li + is released. And becomes difficult to ionize, while (CF 3 SO 2 ) 2
NLi has CF on the N atom (nitrogen atom) adjacent to Li.
It is considered that since two 3 SO 2 groups are attached and electrons are attracted, the electron density on the N atom becomes lower, resulting in easier ionization and improved conductivity. Therefore, it is expected that by adding more electron-withdrawing groups such as CF 3 SO 2 groups to the atoms adjacent to Li, ionization of the electrolyte is promoted and higher conductivity can be obtained.

【0011】この高い伝導度が期待できる(CF3 SO
2 2 NLiと従来使用のLiCF3 SO3 との伝導度
の比較を、LiCF3 SO3 で最も低温特性が優れてい
るPC:DME系で比較したところ、0.6MLiCF
3 SO3 /PC:DME(1:2)〔プロピレンカーボ
ネート(PC)と1,2−ジメトキシエタン(DME)
との容量比1:2の混合溶媒にLiCF3 SO3 を0.
6mol/l(M)溶解させたもの〕の伝導度は−20
℃で3.3mS/cm、30℃で6.1mS/cmであ
るのに対し、0.6M(CF3 SO2 2 NLi/P
C:DME(1:2)〔プロピレンカーボネートと1,
2−ジメトキシエタンとの容量比1:2の混合溶媒に
(CF3 SO2 2 NLiを0.6mol/l溶解させ
たもの〕では−20℃で5.6mS/cm、30℃で1
3.8mS/cmであり、約2倍程度伝導度が高くなっ
ていた。
This high conductivity can be expected (CF 3 SO
2 ) 2 NLi and LiCF 3 SO 3 used conventionally were compared in conductivity with PC: DME system, which has the best low-temperature characteristics of LiCF 3 SO 3 , and found 0.6 MLiCF.
3 SO 3 / PC: DME (1: 2) [propylene carbonate (PC) and 1,2-dimethoxyethane (DME)
LiCF 3 SO 3 was added to a mixed solvent having a volume ratio of 1: 2 with LiCl 3 SO 3 .
6 mol / l (M) dissolved] has a conductivity of −20.
It is 3.3 mS / cm at 30 ° C. and 6.1 mS / cm at 30 ° C., while it is 0.6 M (CF 3 SO 2 ) 2 NLi / P.
C: DME (1: 2) [Propylene carbonate and 1,
In a mixed solvent with 2-dimethoxyethane in a volume ratio of 1: 2, (CF 3 SO 2 ) 2 NLi was dissolved at 0.6 mol / l], 5.6 mS / cm at -20 ° C and 1 at 30 ° C.
It was 3.8 mS / cm, and the conductivity was about twice as high.

【0012】そこで、この(CF3 SO2 2 NLi系
電解液を用いて図1に示すような筒形リチウム電池を作
製し、実際に低温でのパルス放電特性を調べたところ、
意外にも低温特性は改善されず、放電初期に電池の放電
電圧が落ち込む、いわゆるディレイ現象まで現れた。そ
のため、さらに溶媒の組合せ、組成比の影響を検討した
ところ、意外なことに、LiCF3 SO3 では伝導度の
向上や低温特性の向上に効果のなかった1,3−ジオキ
ソランなどの環状エーテルが低温特性を向上させ、また
エチレンカーボネートを添加するとさらに低温特性が向
上することが判明し、本発明を完成するに至ったのであ
る。
Therefore, a cylindrical lithium battery as shown in FIG. 1 was produced using this (CF 3 SO 2 ) 2 NLi-based electrolytic solution, and the pulse discharge characteristics at low temperature were actually investigated.
Unexpectedly, the low-temperature characteristics were not improved, and a so-called delay phenomenon, in which the discharge voltage of the battery dropped at the beginning of discharge, appeared. Therefore, when the effect of the combination of solvents and the composition ratio was further investigated, it was surprisingly found that cyclic ethers such as 1,3-dioxolane, which was not effective in improving the conductivity and the low temperature characteristics in LiCF 3 SO 3 , were found to be surprising. It was found that the low temperature characteristic was further improved by adding the ethylene carbonate, and the present invention was completed.

【0013】本発明において、電解質としてはRfSO
2 基を2個以上有する金属塩を用いるが、このRfはF
またはフルオロアルキル基であり、上記金属塩中に含ま
れる金属としては、たとえばLi、Na、Cs、Ca、
Mg、Al、B、P、Ga、Si、As、Sbなどが挙
げられる。ただし、リチウムやリチウム化合物を負極に
用いる場合には、上記金属塩中の金属としてはLi(リ
チウム)が最も適している。
In the present invention, RfSO is used as the electrolyte.
2 group using a metal salt having two or more, but this Rf is F
Alternatively, as a metal contained in the metal salt, which is a fluoroalkyl group, for example, Li, Na, Cs, Ca,
Examples include Mg, Al, B, P, Ga, Si, As, Sb and the like. However, when lithium or a lithium compound is used for the negative electrode, Li (lithium) is most suitable as the metal in the metal salt.

【0014】上記RfSO2 基を2個以上有する金属塩
の代表例としては、たとえば(CF3 SO2 2 NL
i、(CF3 SO2 3 CLiなどが挙げられる。これ
らの金属塩においては、Liなどの金属と隣接する原子
がRfSO2 基を有する電子吸引性の大きな置換基2個
以上と結合していることが、電解液の伝導度向上に関し
て非常に重要である。
A typical example of the metal salt having two or more RfSO 2 groups is (CF 3 SO 2 ) 2 NL.
i, (CF 3 SO 2 ) 3 CLi and the like. In these metal salts, it is very important for the atom adjacent to the metal such as Li to bond with two or more substituents having a large electron-withdrawing property having an RfSO 2 group for improving the conductivity of the electrolytic solution. is there.

【0015】上記RfSO2 基を2個以上有する金属塩
を電解質として用いる時の濃度としては、通常1M(m
ol/l)程度で伝導度が最大となるが、低温での特性
を重視するならば、0.2〜0.8M、特に0.4〜
0.6Mが好ましい。濃度を0.4M以上にすると、従
来の溶媒組成、たとえばPC:DME系を用いても低温
特性は向上するが、濃度が高くなると低温でのディレイ
が大きくなり、放電初期の電圧が電池使用機器の作動電
圧以下に低下して、電池使用機器の作動が遅れるおそれ
がある。
When the metal salt having two or more RfSO 2 groups is used as an electrolyte, the concentration is usually 1 M (m
ol / l) maximizes the conductivity, but if importance is attached to the characteristics at low temperatures, 0.2 to 0.8 M, especially 0.4 to
0.6M is preferred. When the concentration is 0.4 M or more, the low-temperature characteristics are improved even when the conventional solvent composition, for example, PC: DME system is used, but when the concentration is increased, the delay at low temperature becomes large, and the voltage at the initial stage of discharge is the device using the battery. The operating voltage may drop below the operating voltage of, and the operation of the device using the battery may be delayed.

【0016】本発明においては、電解液の溶媒として環
状エーテルを用いるのが必須条件であり、この環状エー
テルとしては、たとえば1,3−ジオキソラン、テトラ
ヒドロフラン、1,4−ジオキサン、1,3,5−トリ
オキサン、それらの誘導体などが挙げられるが、なかで
も1,3−ジオキソランが好ましい。この環状エーテル
の使用量としては全溶媒中において半分以上にするのが
好ましく、より好ましくは60〜90容量%、さらに好
ましくは65〜80容量%である。つまり、この環状エ
ーテルは低温特性の向上に寄与するが、多くなりすぎる
と貯蔵性を低下させるおそれがあるので、上記のように
その使用量の上限を考慮しつつ使用するのが好ましい。
In the present invention, it is an essential condition to use a cyclic ether as a solvent for the electrolytic solution. Examples of the cyclic ether include 1,3-dioxolane, tetrahydrofuran, 1,4-dioxane, 1,3,5. -Trioxane, their derivatives, etc. are mentioned, Among them, 1,3-dioxolane is preferable. The amount of the cyclic ether used is preferably half or more in all the solvents, more preferably 60 to 90% by volume, further preferably 65 to 80% by volume. That is, this cyclic ether contributes to the improvement of low-temperature characteristics, but if it is too much, the storage property may be deteriorated. Therefore, it is preferable to use the cyclic ether while considering the upper limit of the amount used.

【0017】また、エチレンカーボネートを添加する
と、さらに低温特性が向上する。ただし、エチレンカー
ボネートの比率は半分以下にするのが好ましく、より好
ましくは10〜40容量%、さらに好ましくは20〜3
5容量%である。すなわち、このエチレンカーボネート
は特定範囲内の使用では低温特性の向上に寄与するが、
多くなりすぎると電解液が低温で凝固しはじめ、かえっ
て低温特性を低下させることになるので、上記のように
その添加量の上限を考慮しつつ使用するのが好ましい。
When ethylene carbonate is added, the low temperature characteristics are further improved. However, the ratio of ethylene carbonate is preferably half or less, more preferably 10 to 40% by volume, further preferably 20 to 3%.
It is 5% by volume. That is, although this ethylene carbonate contributes to the improvement of low temperature characteristics when used within a specific range,
If the amount is too large, the electrolytic solution will start to solidify at a low temperature and will rather deteriorate the low temperature characteristics. Therefore, it is preferable to use the electrolytic solution in consideration of the upper limit of the addition amount thereof.

【0018】また、上記環状エーテル、エチレンカーボ
ネート以外にも、たとえばプロピレンカーボネート、ブ
チレンカーボネート、ジエチレンカーボネート、ジメチ
ルカーボネート、ビニレンカーボネートなどのカーボネ
ート類、γ−ブチロラクトンなどのエステル類、1,2
−ジメトキシエタン、ジグライムなどの鎖状エーテル
類、さらにはスルホラン、ジクロロメタン、リン酸トリ
メチル、ニトリル類、アミド類などを適宜使用すること
ができる。ただし、これらのカーボネート類やエステル
類を使用する場合は、それらとエチレンカーボネートと
を併せた量が上記エチレンカーボネートに関して記載し
た使用量の範囲内で使用することが好ましく、また鎖状
エーテル類を使用する場合も、それらと環状エーテルを
併せた量が上記環状エーテルに関して記載した使用量の
範囲内で使用することが好ましい。
In addition to the above cyclic ethers and ethylene carbonates, carbonates such as propylene carbonate, butylene carbonate, diethylene carbonate, dimethyl carbonate and vinylene carbonate, esters such as γ-butyrolactone, 1, 2
-Chain ethers such as dimethoxyethane and diglyme, as well as sulfolane, dichloromethane, trimethyl phosphate, nitriles, and amides can be appropriately used. However, when these carbonates or esters are used, it is preferable that the combined amount of them and ethylene carbonate be used within the range of the amount described for the ethylene carbonate, and chain ethers are used. In such a case, it is preferable that the combined amount of the cyclic ether and the cyclic ether is within the range of the amount described for the cyclic ether.

【0019】本発明において、正極としては、たとえば
二酸化マンガン、五酸化マンガン、クロム酸化物、リチ
ウムコバルト酸化物、リチウムニッケル酸化物などの正
極活物質またはこれらの正極活物質にカーボンブラッ
ク、黒鉛などの導電助剤やポリテトラフルオロエチレン
などの結着材などを適宜添加した正極合剤を、ステンレ
ス鋼、アルミニウムなどの集電材料と共に成形して成形
体に仕上げたものが用いられる。
In the present invention, as the positive electrode, for example, a positive electrode active material such as manganese dioxide, manganese pentoxide, chromium oxide, lithium cobalt oxide, lithium nickel oxide or the like, or carbon black or graphite may be used as the positive electrode active material. A positive electrode mixture to which a conductive auxiliary agent or a binder such as polytetrafluoroethylene is appropriately added is molded together with a current collecting material such as stainless steel or aluminum to form a molded body.

【0020】特に低温特性を重視するならば、正極活物
質は表面積の大きいものを用いることが好ましい。たと
えば、二酸化マンガンを例にとると、熱処理前の表面積
が40m2 /g程度(熱処理後のBET比表面積では1
0m2 /g程度)の従来からリチウム電池に汎用されて
いる二酸化マンガンより、BET比表面積15m2 /g
以上、より好ましくはBET比表面積20m2 /g以
上、さらに好ましくはBET比表面積30m2 /g以上
の二酸化マンガンを使用することによって、より低温特
性が優れた電池が得られる。なお、二酸化マンガンのB
ET比表面積はいずれも熱処理後の二酸化マンガンにつ
いてのものである。
If importance is attached to low-temperature characteristics, it is preferable to use a positive electrode active material having a large surface area. For example, taking manganese dioxide as an example, the surface area before heat treatment is about 40 m 2 / g (the BET specific surface area after heat treatment is 1
0 m 2 / g) and BET specific surface area of 15 m 2 / g compared to manganese dioxide that has been generally used for lithium batteries.
As described above, by using manganese dioxide having a BET specific surface area of 20 m 2 / g or more, and further preferably having a BET specific surface area of 30 m 2 / g or more, a battery having better low-temperature characteristics can be obtained. In addition, manganese dioxide B
All ET specific surface areas are for manganese dioxide after heat treatment.

【0021】もっとも、従来の電解液、たとえばPC:
DME系の電解液を用いる場合でも、BET比表面積1
5m2 /g以上の二酸化マンガンを使用すれば低温特性
は向上するが、その反面、放電初期の電圧の落ちこみ、
いわゆるディレイ現象が大きくなってしまう。しかし、
本発明における電解液系では、そのような表面積の大き
い正極活物質を用いても、ディレイ現象が大きくなるこ
とがなく、優れた正極活物質の能力をより有効に発揮さ
せることができる。
However, conventional electrolytes such as PC:
BET specific surface area 1 even when using DME electrolyte
The use of manganese dioxide of 5 m 2 / g or more improves the low temperature characteristics, but on the other hand, the voltage drop at the initial stage of discharge,
The so-called delay phenomenon becomes large. But,
In the electrolytic solution system of the present invention, even if such a positive electrode active material having a large surface area is used, the delay phenomenon does not increase, and the excellent positive electrode active material ability can be more effectively exhibited.

【0022】負極には、リチウム、ナトリウム、カリウ
ムなどのアルカリ金属、カルシウムなどのアルカリ土類
金属またはそれらの金属を含む化合物が使用される。な
かでも、リチウムまたはリチウムを含む化合物が最も適
している。
For the negative electrode, an alkali metal such as lithium, sodium or potassium, an alkaline earth metal such as calcium, or a compound containing these metals is used. Of these, lithium or a compound containing lithium is most suitable.

【0023】[0023]

【実施例1】つぎに、実施例をあげて本発明をより具体
的に説明する。ただし、本発明はそれらの実施例によっ
て限定されるものではない。
[Embodiment 1] Next, the present invention will be described more specifically with reference to embodiments. However, the present invention is not limited to these examples.

【0024】実施例1 BET比表面積30m2 /gの二酸化マンガン90重量
部と粒子径150μm以上のカーボンブラック5重量部
と平均粒子径0.3μmのポリテトラフルオロエチレン
5重量部とからなる正極合剤を水とアルコールによって
ペースト状にした後、厚さ0.4mm、幅30mm、長
さ200mmのシート状に成形したシート状正極を作製
し、250℃で9時間乾燥した後、乾燥雰囲気中で室温
まで冷却した。
Example 1 A positive electrode mixture comprising 90 parts by weight of manganese dioxide having a BET specific surface area of 30 m 2 / g, 5 parts by weight of carbon black having a particle size of 150 μm or more, and 5 parts by weight of polytetrafluoroethylene having an average particle size of 0.3 μm. After the agent was made into a paste with water and alcohol, a sheet-like positive electrode formed into a sheet with a thickness of 0.4 mm, a width of 30 mm and a length of 200 mm was prepared, dried at 250 ° C. for 9 hours, and then dried in a dry atmosphere. Cooled to room temperature.

【0025】つぎに、このシート状正極を厚さ25μm
の微孔性ポリプロピレンフィルムからなるセパレータで
包み、これに厚さ0.18mm、幅30mm、長さ19
0mmのリチウムからなるシート状負極を重ね、渦巻状
に巻回して、渦巻状電極体とした後、有底円筒状の電池
ケース内に装填し、リード体のスポット溶接などを行っ
た。
Next, this sheet-like positive electrode is formed to a thickness of 25 μm.
Wrapped in a separator made of microporous polypropylene film of 0.18 mm, width 30 mm, length 19
Sheet-shaped negative electrodes made of 0 mm of lithium were stacked and spirally wound to form a spiral electrode body, which was then loaded into a cylindrical battery case having a bottom and spot welding of a lead body was performed.

【0026】ついで、上記電池ケース内に、0.6M
(CF3 SO2 2 NLi/EC:Diox(1:2)
〔エチレンカーボネート(EC)と1,3−ジオキソラ
ン(Diox)との容量比1:2の混合溶媒に(CF3
SO2 2 NLiを0.6mol/l溶解したもの〕を
電解液として2cc注入し、電池ケースの開口部を封口
し、安定化処理を行って、図1に示す構造の筒形有機電
解液電池を作製した。
Then, in the battery case, 0.6M
(CF 3 SO 2 ) 2 NLi / EC: Diox (1: 2)
[In a mixed solvent of ethylene carbonate (EC) and 1,3-dioxolane (Diox) at a volume ratio of 1: 2 (CF 3
SO 2 ) 2 NLi dissolved in 0.6 mol / l] as an electrolytic solution was injected in an amount of 2 cc, the opening of the battery case was sealed, and stabilization treatment was performed to form a cylindrical organic electrolytic solution having the structure shown in FIG. A battery was produced.

【0027】図1に示す電池について説明すると、1は
前記の二酸化マンガンを正極活物質とする正極合剤を成
形した正極であり、その成形にあたってはステンレス鋼
製網が集電作用を兼ねた芯材として使用されているが、
この図1では繁雑化を避けるため、ステンレス鋼製網は
図示していない。2はリチウムからなる負極であり、こ
の負極2の作製にあたってもステンレス鋼製網が集電作
用を兼ねた支持体として使用されているが、この図1で
は繁雑化を避けるため、ステンレス鋼製網は図示してい
ない。3は微孔性ポリプロピレンフィルムからなるセパ
レータであり、4は上記の電解液である。
Explaining the battery shown in FIG. 1, reference numeral 1 is a positive electrode formed by molding the positive electrode mixture containing manganese dioxide as a positive electrode active material, and a stainless steel net also serves as a current collecting core during the molding. It is used as a material,
In FIG. 1, a stainless steel net is not shown in order to avoid complication. Reference numeral 2 denotes a negative electrode made of lithium, and a stainless steel net is also used as a support also having a current collecting function in the production of the negative electrode 2. However, in FIG. Is not shown. 3 is a separator made of a microporous polypropylene film, and 4 is the above-mentioned electrolytic solution.

【0028】5はステンレス鋼製の電池ケースであり、
この電池ケース5は負極端子を兼ねている。電池ケース
5の底部にはポリテトラフロオロエチレンシートからな
る絶縁体6が設置され、電池ケース5の内周部にもポリ
テトラフルオロエチレンシートからなる絶縁体7が設置
されていて、前記正極1、負極2およびセパレータ3か
らなる渦巻状電極体や、電解液4などは、この電池ケー
ス5内に収容されている。
Reference numeral 5 denotes a stainless steel battery case,
The battery case 5 also serves as a negative electrode terminal. An insulator 6 made of a polytetrafluoroethylene sheet is installed on the bottom of the battery case 5, and an insulator 7 made of a polytetrafluoroethylene sheet is also installed on the inner peripheral part of the battery case 5. The spiral electrode body including the negative electrode 2 and the separator 3, the electrolytic solution 4, and the like are housed in the battery case 5.

【0029】8はステンレス鋼製の封口板であり、この
封口板8の中央部にはガス通気孔8aが設けられてい
る。9はポリプロピレン製の環状パッキング、10はチ
タン製の可撓性薄板で、11は環状のポリプロピレン製
の熱変形部材である。
Reference numeral 8 is a stainless steel sealing plate, and a gas vent hole 8a is provided in the central portion of the sealing plate 8. Reference numeral 9 is a polypropylene annular packing, 10 is a titanium flexible thin plate, and 11 is an annular polypropylene thermal deformation member.

【0030】上記の熱変形部材11は温度によって変形
することにより、可撓性薄板10の破壊圧力を変える作
用をする。
The thermal deformation member 11 acts to change the breaking pressure of the flexible thin plate 10 by being deformed by the temperature.

【0031】12はニッケルメッキを施した圧延鋼製の
端子板であり、この端子板12には切刃12aとガス排
出孔12bとが設けられていて、電池内部にガスが発生
して、電池の内部圧力が上昇し、その内圧上昇によって
可撓性薄板10が変形したときに上記切刃12aによっ
て可撓性薄板10を破壊し、電池内部のガスを上記ガス
排出孔12bから電池外部に排出して、電池の破裂が防
止できるように設計されている。
Reference numeral 12 is a nickel-plated terminal plate made of rolled steel. The terminal plate 12 is provided with a cutting edge 12a and a gas discharge hole 12b, and gas is generated inside the battery, When the flexible thin plate 10 is deformed due to the increase in the internal pressure, the cutting blade 12a breaks the flexible thin plate 10, and the gas inside the battery is discharged from the gas discharge hole 12b to the outside of the battery. It is designed to prevent the battery from bursting.

【0032】13は絶縁パッキングで、14はリード体
であり、このリード体14は正極1と封口板8とを電気
的に接続しており、端子板12は封口板8との接触によ
り正極端子として作用する。また、15は負極2と電池
ケース5とを電気的に接続するリード体である。
Reference numeral 13 is an insulating packing, and 14 is a lead body. This lead body 14 electrically connects the positive electrode 1 and the sealing plate 8, and the terminal plate 12 comes into contact with the sealing plate 8 to make a positive electrode terminal. Acts as. Reference numeral 15 is a lead body that electrically connects the negative electrode 2 and the battery case 5.

【0033】実施例2 正極活物質としてBET比表面積10m2 /gの比表面
積の小さい二酸化マンガンを用いた以外は、実施例1と
同様にして筒形有機電解液電池を作製した。
Example 2 A tubular organic electrolyte battery was produced in the same manner as in Example 1 except that manganese dioxide having a small BET specific surface area of 10 m 2 / g and a small specific surface area was used as the positive electrode active material.

【0034】実施例3 電解液として0.3M(CF3 SO2 2 NLi/E
C:Diox(1:2)を用いた以外は、実施例1と同
様にして筒形有機電解液電池を作製した。
Example 3 0.3 M (CF 3 SO 2 ) 2 NLi / E as an electrolytic solution
A tubular organic electrolyte battery was produced in the same manner as in Example 1 except that C: Diox (1: 2) was used.

【0035】比較例1 電解液として0.6M(CF3 SO2 2 NLi/P
C:DME(1:2)を用いた以外は、実施例1と同様
にして筒形有機電解液電池を作製した。
Comparative Example 1 0.6 M (CF 3 SO 2 ) 2 NLi / P as an electrolytic solution
A tubular organic electrolyte battery was produced in the same manner as in Example 1 except that C: DME (1: 2) was used.

【0036】比較例2 正極活物質としてBET比表面積10m2 /gの二酸化
マンガンを用いた以外は、比較例1と同様にして筒形有
機電解液電池を作製した。
Comparative Example 2 A tubular organic electrolyte battery was prepared in the same manner as in Comparative Example 1 except that manganese dioxide having a BET specific surface area of 10 m 2 / g was used as the positive electrode active material.

【0037】比較例3 電解液として0.3M(CF3 SO2 2 NLi/P
C:DME(1:2)を用いた以外は、比較例2と同様
にして筒形有機電解液電池を作製した。
Comparative Example 3 0.3 M (CF 3 SO 2 ) 2 NLi / P as an electrolytic solution
A tubular organic electrolyte battery was produced in the same manner as in Comparative Example 2 except that C: DME (1: 2) was used.

【0038】比較例4 電解液として0.6MLiCF3 SO3 /PC:DME
(1:2)を用いた以外は、比較例2と同様にして筒形
有機電解液電池を作製した。
Comparative Example 4 0.6 M LiCF 3 SO 3 / PC: DME as an electrolytic solution
A tubular organic electrolyte battery was produced in the same manner as in Comparative Example 2 except that (1: 2) was used.

【0039】上記のようにして作製した実施例1〜3お
よび比較例1〜4の電池を−20℃、1.2A×3s
on+7s offの条件でパルス放電した時の各パル
スにおける最低電圧を測定した。各電池のパルス放電回
数と各パルスにおける最低電圧との関係をそれぞれ図2
〜図8に示す。ただし、図2〜図8においては、各パル
スにおける最低電圧を単に電圧として縦軸に表示する。
The batteries of Examples 1 to 3 and Comparative Examples 1 to 4 produced as described above were stored at −20 ° C. and 1.2 A × 3 s.
The minimum voltage in each pulse when pulse-discharged under the condition of on + 7s off was measured. Fig. 2 shows the relationship between the number of pulse discharges of each battery and the minimum voltage at each pulse.
~ Shown in FIG. However, in FIGS. 2 to 8, the lowest voltage in each pulse is simply shown as a voltage on the vertical axis.

【0040】図2は、実施例1の電池のパルス放電回数
と各パルスにおける最低電圧との関係を示しているが、
図2に示すように、実施例1の電池では、放電初期のデ
ィレイ(電圧の落ちこみ)が認められず、1.3V(こ
の1.3Vはこの種電池を使用した機器の最低作動電圧
である)以上を保ち得るパルス放電回数が711回であ
り、これらは後述する比較例の電池の特性、特に比較例
4の電池の特性との対比から明らかになるように、優れ
た低温特性を示すものである。
FIG. 2 shows the relationship between the number of pulse discharges of the battery of Example 1 and the minimum voltage in each pulse.
As shown in FIG. 2, in the battery of Example 1, no delay (voltage drop) in the initial stage of discharge was observed, and 1.3 V (this 1.3 V is the minimum operating voltage of the equipment using this type of battery). ) The number of pulse discharges that can be kept above is 711 times, and these show excellent low-temperature characteristics as will be apparent from the comparison with the characteristics of the battery of the comparative example described below, particularly the characteristics of the battery of the comparative example 4. Is.

【0041】そこで、まず、従来電池に相当する比較例
4の電池の低温特性を図8を参照しつつ説明する。
Therefore, first, the low temperature characteristics of the battery of Comparative Example 4 corresponding to the conventional battery will be described with reference to FIG.

【0042】比較例4の電池は、正極活物質としてBE
T比表面積10m2 /gの二酸化マンガンを用い、電解
液として0.6MLiCF3 SO3 /PC:DME
(1:2)を用いた従来構成の電池であるが、この比較
例4の電池は、図8に示すように、1.3V以上を保ち
得るパルス放電回数が248回である。
The battery of Comparative Example 4 contained BE as the positive electrode active material.
Manganese dioxide having a T specific surface area of 10 m 2 / g was used, and 0.6 M LiCF 3 SO 3 / PC: DME was used as an electrolytic solution.
Although the battery of the conventional configuration using (1: 2), the battery of Comparative Example 4 has a pulse discharge frequency of 248 times that can maintain 1.3 V or more, as shown in FIG.

【0043】そして、この比較例4の電池における電解
質のLiCF3 SO3 を(CF3 SO2 2 NLiに変
えた比較例2の電池では、図6に示すように、1.3V
以上を保ち得るパルス放電回数が236回と低下してお
り、しかも放電初期にディレイ現象が認められる。
Then, in the battery of Comparative Example 2 in which the electrolyte LiCF 3 SO 3 in the battery of Comparative Example 4 was changed to (CF 3 SO 2 ) 2 NLi, as shown in FIG.
The number of pulse discharges that can maintain the above is reduced to 236, and a delay phenomenon is recognized at the initial stage of discharge.

【0044】また、(CF3 SO2 2 NLiの濃度を
0.3Mに下げた比較例3の電池では、図7に示すよう
に、放電初期のディレイ現象は少ないものの、1.3V
を保ち得るパルス放電回数は172回とさらに低下し
た。
Further, in the battery of Comparative Example 3 in which the concentration of (CF 3 SO 2 ) 2 NLi was lowered to 0.3 M, as shown in FIG.
The number of pulse discharges that can maintain the above condition was further reduced to 172.

【0045】これに対し、実施例2の電池は電解液とし
て0.6M(CF3 SO2 2 NLi/EC:Diox
(1:2)を用いたものであるが、図2に示すように、
放電初期のディレイ現象を生じることもなく、1.3V
以上を保ち得るパルス放電回数が351回と、比較例2
〜4の電池に比べて約100回以上多く、低温特性の向
上が認められた。
On the other hand, in the battery of Example 2, as the electrolytic solution, 0.6M (CF 3 SO 2 ) 2 NLi / EC: Diox was used.
Although (1: 2) is used, as shown in FIG.
1.3V without delay phenomenon at the beginning of discharge
The number of pulse discharges that can maintain the above is 351 and Comparative Example 2
It was confirmed that the low temperature characteristics were improved more than 100 times more than the batteries No. 4 to No. 4.

【0046】比較例1の電池は、正極活物質としてBE
T比表面積30m2 /gの二酸化マンガンを用いている
ので、図5に示すように、1.3V以上を保ち得るパル
ス放電回数は580回と増加しているが、放電初期に大
きなディレイ現象が生じ、実用性を欠いている。
In the battery of Comparative Example 1, BE was used as the positive electrode active material.
Since manganese dioxide having a T specific surface area of 30 m 2 / g is used, as shown in FIG. 5, the number of pulse discharges that can maintain 1.3 V or more increases to 580, but a large delay phenomenon occurs at the initial stage of discharge. Occurs and lacks practicality.

【0047】前述のごとく、実施例1の電池は、図2に
示すように、放電初期のディレイ現象もなく、また1.
3V以上を保ち得るパルス放電回数が711回であっ
て、従来電池に相当する比較例4の電池に比べてはもと
より、他の比較例の電池に比べても低温特性が顕著に向
上している。また、この実施例1の電池は、正極活物質
としてBET比表面積10m2 /gの二酸化マンガンを
用いた実施例2の電池より、1.3V以上を保ち得るパ
ルス放電回数がはるかに多く、BET比表面積30m2
/gという表面積が大きい二酸化マンガンを正極活物質
として用いた特徴を顕著に発揮している。
As described above, the battery of Example 1 had no delay phenomenon at the initial stage of discharge as shown in FIG.
The number of pulse discharges that can maintain 3 V or more is 711 times, and the low-temperature characteristics are remarkably improved not only in the battery of Comparative Example 4 corresponding to the conventional battery but also in the batteries of other Comparative Examples. .. In addition, the battery of Example 1 has far more pulse discharge times capable of maintaining 1.3 V or more than the battery of Example 2 in which manganese dioxide having a BET specific surface area of 10 m 2 / g was used as the positive electrode active material. Specific surface area 30m 2
The characteristic of using manganese dioxide having a large surface area of / g as a positive electrode active material is remarkably exhibited.

【0048】また、実施例3の電池は、図4に示すよう
に、放電初期のディレイ現象もなく、1.3V以上を保
ち得るパルス放電回数が614回と多く、優れた低温特
性を有していた。
Further, as shown in FIG. 4, the battery of Example 3 has an excellent low temperature characteristic that there is no delay phenomenon at the initial stage of discharge and the number of pulse discharges that can maintain 1.3 V or more is as many as 614. Was there.

【0049】[0049]

【発明の効果】以上説明したように、本発明では、電解
質としてRfSO2 基を2個以上有する金属塩を用い、
かつ溶媒として環状エーテルを使用することによって、
低温特性が優れた有機電解液電池を提供することができ
た。また、表面積の大きな正極活物質を用いることによ
って、低温特性をさらに向上させた有機電解液電池も提
供できるようになった。
As described above, in the present invention, a metal salt having two or more RfSO 2 groups is used as an electrolyte,
And by using a cyclic ether as a solvent,
An organic electrolyte battery having excellent low temperature characteristics can be provided. Further, by using a positive electrode active material having a large surface area, it has become possible to provide an organic electrolyte battery with further improved low temperature characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る有機電解液電池の一例を模式的に
示す断面図である。
FIG. 1 is a sectional view schematically showing an example of an organic electrolyte battery according to the present invention.

【図2】実施例1の電池の低温重負荷パルス放電時のパ
ルス放電回数と各パルスにおける最低電圧との関係を示
す図である。
FIG. 2 is a graph showing the relationship between the number of pulse discharges and the minimum voltage in each pulse during low temperature heavy load pulse discharge of the battery of Example 1.

【図3】実施例2の電池の低温重負荷パルス放電時のパ
ルス放電回数と各パルスにおける最低電圧との関係を示
す図である。
FIG. 3 is a diagram showing the relationship between the number of pulse discharges and the minimum voltage in each pulse during low temperature heavy load pulse discharge of the battery of Example 2.

【図4】実施例3の電池の低温重負荷パルス放電時のパ
ルス放電回数と各パルスにおける最低電圧との関係を示
す図である。
FIG. 4 is a diagram showing the relationship between the number of pulse discharges and the minimum voltage in each pulse during low temperature heavy load pulse discharge of the battery of Example 3.

【図5】比較例1の電池の低温重負荷パルス放電時のパ
ルス放電回数と各パルスにおける最低電圧との関係を示
す図である。
FIG. 5 is a diagram showing the relationship between the number of pulse discharges and the minimum voltage in each pulse during low temperature heavy load pulse discharge of the battery of Comparative Example 1.

【図6】比較例2の電池の低温重負荷パルス放電時のパ
ルス放電回数と各パルスにおける最低電圧との関係を示
す図である。
FIG. 6 is a diagram showing the relationship between the number of pulse discharges and the minimum voltage in each pulse during low temperature heavy load pulse discharge of the battery of Comparative Example 2.

【図7】比較例3の電池の低温重負荷パルス放電時のパ
ルス放電回数と各パルスにおける最低電圧との関係を示
す図である。
FIG. 7 is a diagram showing the relationship between the number of pulse discharges and the minimum voltage in each pulse during low temperature heavy load pulse discharge of the battery of Comparative Example 3.

【図8】比較例4の電池の低温重負荷パルス放電時のパ
ルス放電回数と各パルスにおける最低電圧との関係を示
す図である。
FIG. 8 is a diagram showing the relationship between the number of pulse discharges and the minimum voltage in each pulse during low temperature heavy load pulse discharge of the battery of Comparative Example 4.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電解液 1 Positive electrode 2 Negative electrode 3 Separator 4 Electrolyte

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ金属、アルカリ土類金属または
これらを含む化合物からなる負極と、正極と、有機電解
液を有する有機電解液電池において、上記有機電解液の
電解質としてRfSO2 基(Rf=Fまたはフルオロア
ルキル基)を2個以上有する金属塩を用い、溶媒として
環状エーテルを含むことを特徴とする有機電解液電池。
1. An organic electrolyte battery having a negative electrode made of an alkali metal, an alkaline earth metal or a compound containing these, a positive electrode, and an organic electrolyte, wherein an RfSO 2 group (Rf = F) is used as an electrolyte of the organic electrolyte. Alternatively, an organic electrolyte battery comprising a metal salt having two or more fluoroalkyl groups and containing a cyclic ether as a solvent.
【請求項2】RfSO2 基を2個以上有する金属塩が
(CF3 SO2 2 NLiであることを特徴とする請求
項1記載の有機電解液電池。
2. The organic electrolyte battery according to claim 1, wherein the metal salt having two or more RfSO 2 groups is (CF 3 SO 2 ) 2 NLi.
【請求項3】溶媒としてエチレンカーボネートを含むこ
とを特徴とする請求項1記載の有機電解液電池。
3. The organic electrolyte battery according to claim 1, which contains ethylene carbonate as a solvent.
【請求項4】 BET比表面積15m2 /g以上の金属
酸化物を正極活物質として用いたことを特徴とする請求
項1記載の有機電解液電池。
4. The organic electrolyte battery according to claim 1, wherein a metal oxide having a BET specific surface area of 15 m 2 / g or more is used as a positive electrode active material.
JP10880592A 1992-03-31 1992-03-31 Organic electrolyte battery Expired - Fee Related JP3288068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10880592A JP3288068B2 (en) 1992-03-31 1992-03-31 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10880592A JP3288068B2 (en) 1992-03-31 1992-03-31 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH05283086A true JPH05283086A (en) 1993-10-29
JP3288068B2 JP3288068B2 (en) 2002-06-04

Family

ID=14493934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10880592A Expired - Fee Related JP3288068B2 (en) 1992-03-31 1992-03-31 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP3288068B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2717612A1 (en) * 1994-03-21 1995-09-22 Centre Nat Rech Scient New ionically conductive material
FR2717620A1 (en) * 1994-03-21 1995-09-22 Centre Nat Rech Scient Additive limiting the corrosion of the collector in an electrochemical cell.
WO1995026056A1 (en) * 1994-03-21 1995-09-28 Centre National De La Recherche Scientifique Ionic conducting material having good anticorrosive properties
JPH11185744A (en) * 1997-12-25 1999-07-09 Yuasa Corp Nonaqueous electrolyte battery
JP2004165151A (en) * 2002-10-23 2004-06-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and electrolyte used therein
JP2004200015A (en) * 2002-12-19 2004-07-15 Sanyo Electric Co Ltd Electrolyte for nonaqueous battery, its manufacturing method, and nonaqueous battery electrolytic solution
JP2004522681A (en) * 2000-12-29 2004-07-29 ハイドロ−ケベック Method for fluorinating a compound containing a halosulfonyl group or a dihalophosphonyl group
US7709157B2 (en) 2002-10-23 2010-05-04 Panasonic Corporation Non-aqueous electrolyte secondary battery and electrolyte for the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2717612A1 (en) * 1994-03-21 1995-09-22 Centre Nat Rech Scient New ionically conductive material
FR2717620A1 (en) * 1994-03-21 1995-09-22 Centre Nat Rech Scient Additive limiting the corrosion of the collector in an electrochemical cell.
WO1995026056A1 (en) * 1994-03-21 1995-09-28 Centre National De La Recherche Scientifique Ionic conducting material having good anticorrosive properties
US5916475A (en) * 1994-03-21 1999-06-29 Centre National De La Recherche Scientifique Ionic conducting material having good anticorrosive properties
US6254797B1 (en) * 1994-03-21 2001-07-03 Centre National De La Recherche Scientifique Ionic conducting material having good anticorrosive properties
JP2006210331A (en) * 1994-03-21 2006-08-10 Centre National De La Recherche Scientifique Ionic conduction material showing good corrosion resistance
JPH11185744A (en) * 1997-12-25 1999-07-09 Yuasa Corp Nonaqueous electrolyte battery
JP2004522681A (en) * 2000-12-29 2004-07-29 ハイドロ−ケベック Method for fluorinating a compound containing a halosulfonyl group or a dihalophosphonyl group
JP2004165151A (en) * 2002-10-23 2004-06-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and electrolyte used therein
US7709157B2 (en) 2002-10-23 2010-05-04 Panasonic Corporation Non-aqueous electrolyte secondary battery and electrolyte for the same
JP2004200015A (en) * 2002-12-19 2004-07-15 Sanyo Electric Co Ltd Electrolyte for nonaqueous battery, its manufacturing method, and nonaqueous battery electrolytic solution

Also Published As

Publication number Publication date
JP3288068B2 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
US5753389A (en) Organic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US7026073B2 (en) Non-aqueous electrolyte secondary battery
JP3304187B2 (en) Electrolyte for lithium secondary battery
US20100129723A1 (en) Non-aqueous electrolyte for primary battery, and non-aqueous electrolyte primary battery using the same
JP2005268017A (en) Nonaqueous electrolyte secondary battery
JP3288068B2 (en) Organic electrolyte battery
JPH09213348A (en) Non-aqueous electrolyte battery
JPH07192757A (en) Nonaqueous system electrolyte battery
US5922494A (en) Stabilized electrolyte for electrochemical cells and batteries
JP3439083B2 (en) Non-aqueous electrolyte battery
JP3512114B2 (en) Organic electrolyte for organic electrolyte battery and organic electrolyte battery using the same
JP3276127B2 (en) Organic electrolyte battery
JP4737952B2 (en) Non-aqueous electrolyte secondary battery
JP3431641B2 (en) Organic electrolyte and organic electrolyte battery using the same
JP3169248B2 (en) Organic electrolyte battery
JPH1069915A (en) Non-aqueous electrolyte battery
JP2003157896A (en) Nonaqueous electrolyte secondary battery
JP3095268B2 (en) Organic electrolyte and organic electrolyte battery using the same
JPH1145724A (en) Nonaqueous electrolytic battery
JP3236121B2 (en) Electrochemical equipment
JP3236122B2 (en) Organic electrolyte battery
JP2664710B2 (en) Non-aqueous solvent battery
JP3722824B2 (en) Stacked organic electrolyte battery
JP3011740B2 (en) Organic electrolyte battery
JP3722823B2 (en) Stacked organic electrolyte battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees