JP2019179613A - Electrolyte solution for batteries and lithium secondary battery - Google Patents

Electrolyte solution for batteries and lithium secondary battery Download PDF

Info

Publication number
JP2019179613A
JP2019179613A JP2018066709A JP2018066709A JP2019179613A JP 2019179613 A JP2019179613 A JP 2019179613A JP 2018066709 A JP2018066709 A JP 2018066709A JP 2018066709 A JP2018066709 A JP 2018066709A JP 2019179613 A JP2019179613 A JP 2019179613A
Authority
JP
Japan
Prior art keywords
mass
hydrocarbon group
carbonate
group
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018066709A
Other languages
Japanese (ja)
Inventor
史隆 黒澤
Fumitaka Kurosawa
史隆 黒澤
仁志 大西
Hitoshi Onishi
仁志 大西
玄 宮田
Gen Miyata
玄 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2018066709A priority Critical patent/JP2019179613A/en
Publication of JP2019179613A publication Critical patent/JP2019179613A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

To provide an electrolyte solution for batteries, which is superior in capacity-keeping rate during a charge/discharge cycle.SOLUTION: An electrolyte solution for batteries comprises: an electrolyte; a nonaqueous solvent; additive agent A which is a compound represented by the formula (A); and an additive agent B which is a compound represented by the formula (B); and an additive agent C which is a compound represented by the formula (C), wherein Rrepresents a fluoridated hydrocarbon group with C1-6, Rrepresents a hydrocarbon group with C1-6, a fluoridated hydrocarbon group with C1-6, Ris a F atom, or a fluoridated hydrocarbon group with C1-6, Rto Rrepresent an H atom, an F atom, a hydrocarbon group with C1-6, or a fluoridated hydrocarbon group with C1-6, and Rto Rrepresent an H atom, an F atom, a hydrocarbon group with C1-3, or a fluoridated hydrocarbon group with C1-3.SELECTED DRAWING: None

Description

本開示は、電池用非水電解液及びリチウム二次電池に関する。   The present disclosure relates to a non-aqueous electrolyte for a battery and a lithium secondary battery.

電池用非水電解液を含む電池(例えばリチウム二次電池)の性能を改善するために、電池用非水電解液に対し、種々の添加剤を含有させることが行われている。   In order to improve the performance of a battery (for example, a lithium secondary battery) containing a battery non-aqueous electrolyte, various additives are added to the battery non-aqueous electrolyte.

例えば、特許文献1には、安全性に優れ、かつ伝導度が高く、粘度が低い非水電解液として、[A]フッ素化カーボネートと、環状カーボネートと、鎖状カーボネートとを含み、(i)環状カーボネートの含有量が2〜63モル%であり、(ii)鎖状カーボネートの含有量が2〜63モル%であり、(iii)フッ素化カーボネートの含有量が60〜96モル%(ただし(i)〜(iii)の合計は100モル%を越えない)であり、フッ素化カーボネートが特定の化学構造を有する化合物である非水溶媒と、[B]電解質と、からなることを特徴とする非水電解液が開示されている。   For example, Patent Document 1 includes [A] a fluorinated carbonate, a cyclic carbonate, and a chain carbonate as a non-aqueous electrolyte having excellent safety, high conductivity, and low viscosity, and (i) The cyclic carbonate content is 2 to 63 mol%, (ii) the chain carbonate content is 2 to 63 mol%, and (iii) the fluorinated carbonate content is 60 to 96 mol% (however ( i) to (iii) do not exceed 100 mol%), and the fluorinated carbonate is a compound having a specific chemical structure, and [B] an electrolyte. Non-aqueous electrolytes are disclosed.

また、特許文献2には、満充電状態の正極電位が金属リチウムの電位に対して4.35V以上である電気化学素子(特に高電圧系リチウム二次電池)において、高温での充放電サイクルに伴う電池の容量低下が少なく、かつ、高温保存時のガス発生の少ない非水電解液として、環状カーボネートおよび鎖状カーボネートを主たる成分として含有する非水溶媒と電解質溶質からなり、環状カーボネートの60重量%以上が4−フルオロエチレンカーボネートであり、鎖状カーボネートの25重量%以上がメチル−2,2,2−トリフルオロエチルカーボネート、エチル−2,2,2−トリフルオロエチルカーボネートおよびジ−2,2,2−トリフルオロエチルカーボネートよりなる群から選ばれた少なくとも一つのフッ素化鎖状カーボネートであり、且つ環状カーボネートと鎖状カーボネートの重量比率が3:97〜35:65である満充電状態の正極電位が金属リチウムの電位を基準として4.35V以上である電気化学素子用の非水電解液が開示されている。   Patent Document 2 discloses a charge / discharge cycle at a high temperature in an electrochemical element (particularly a high-voltage lithium secondary battery) in which a positive electrode potential in a fully charged state is 4.35 V or more with respect to a metal lithium potential. As a non-aqueous electrolyte with little battery capacity reduction and low gas generation during high-temperature storage, a non-aqueous solvent containing a cyclic carbonate and a chain carbonate as main components and an electrolyte solute, 60 wt. % Or more is 4-fluoroethylene carbonate, and 25% by weight or more of the chain carbonate is methyl-2,2,2-trifluoroethyl carbonate, ethyl-2,2,2-trifluoroethyl carbonate and di-2, At least one fluorinated chain carbonate selected from the group consisting of 2,2-trifluoroethyl carbonate Non-aqueous electrolysis for electrochemical devices in which the positive electrode potential in a fully charged state in which the weight ratio of cyclic carbonate to chain carbonate is 3:97 to 35:65 is 4.35 V or more based on the potential of metallic lithium A liquid is disclosed.

また、特許文献3には、負極上での溶媒の分解反応が抑制され、高温保存を行なっても、電池の容量低下、ガス発生の抑制、および電池の負荷特性の劣化が抑制される非水電解液として、特定の不飽和スルトン、非水溶媒および電解質を含有する非水電解液であって、特定の不飽和スルトンの添加量が、非水電解液全体に対して0.001〜10質量%である非水電解液が開示されている。   Patent Document 3 discloses a non-aqueous solution in which the decomposition reaction of the solvent on the negative electrode is suppressed, and the battery capacity reduction, gas generation, and battery load characteristic deterioration are suppressed even when stored at high temperatures. A non-aqueous electrolyte containing a specific unsaturated sultone, a non-aqueous solvent and an electrolyte as the electrolytic solution, and the amount of the specific unsaturated sultone added is 0.001 to 10 mass with respect to the whole non-aqueous electrolyte. % Non-aqueous electrolyte is disclosed.

特許第4392726号公報Japanese Patent No. 4392726 特許第4976715号公報Japanese Patent No. 4976715 特許第4190162号公報Japanese Patent No. 4190162

しかし、従来の電池用非水電解液及び電池に対し、充放電サイクル時の容量維持率を更に向上させることが求められる場合がある。
従って、本開示の課題は、充放電サイクル時の容量維持率に優れる電池用非水電解液、並びに、この電池用非水電解液を用いたリチウム二次電池を提供することである。
However, there are cases where it is required to further improve the capacity retention rate during the charge / discharge cycle compared to conventional non-aqueous electrolytes for batteries and batteries.
Therefore, the subject of this indication is providing the non-aqueous electrolyte for batteries which is excellent in the capacity maintenance rate at the time of a charge / discharge cycle, and the lithium secondary battery using this non-aqueous electrolyte for batteries.

上記課題を解決するための手段には、以下の態様が含まれる。
<1> 電解質と、
非水溶媒と、
下記式(A)で表される化合物である添加剤Aと、
下記式(B)で表される化合物である添加剤Bと、
を含有する電池用非水電解液。
Means for solving the above problems include the following aspects.
<1> electrolyte,
A non-aqueous solvent;
Additive A which is a compound represented by the following formula (A);
Additive B which is a compound represented by the following formula (B);
A non-aqueous electrolyte for batteries containing

式(A)中、Ra1は、炭素数1〜6のフッ化炭化水素基を表し、Ra2は、炭素数1〜6の炭化水素基又は炭素数1〜6のフッ化炭化水素基を表す。 In formula (A), R a1 represents a fluorinated hydrocarbon group having 1 to 6 carbon atoms, and R a2 represents a hydrocarbon group having 1 to 6 carbon atoms or a fluorinated hydrocarbon group having 1 to 6 carbon atoms. To express.

式(B)中、Rb1は、フッ素原子、又は、炭素数1〜6のフッ化炭化水素基を表し、Rb2〜Rb4は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜6の炭化水素基、又は炭素数1〜6のフッ化炭化水素基を表す。 In formula (B), R b1 represents a fluorine atom or a fluorinated hydrocarbon group having 1 to 6 carbon atoms, and R b2 to R b4 each independently represent a hydrogen atom, a fluorine atom, or a carbon number of 1 to Represents a hydrocarbon group having 6 carbon atoms or a fluorinated hydrocarbon group having 1 to 6 carbon atoms.

式(C)中、Rc1〜Rc4は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜3の炭化水素基、又は炭素数1〜3のフッ化炭化水素基を表す。 In formula (C), R c1 to R c4 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 3 carbon atoms, or a fluorinated hydrocarbon group having 1 to 3 carbon atoms.

<2> 前記添加剤Aの含有量が、電池用非水電解液の全量に対し、0.001質量%〜10質量%であり、
前記添加剤Bの含有量が、電池用非水電解液の全量に対し、0.001質量%〜10質量%である
前記添加剤Cの含有量が、電池用非水電解液の全量に対し、0.001質量%〜10質量%である<1>に記載の電池用非水電解液。
<3> 前記非水溶媒が、環状カーボネート化合物と、前記式(A)で表される化合物以外の鎖状カーボネート化合物と、を含む<1>又は<2>に記載の電池用非水電解液。
<4> 前記非水溶媒中に占める、前記環状カーボネート化合物と前記式(A)で表される化合物以外の鎖状カーボネート化合物との合計の割合が、80質量%以上である<3>に記載の電池用非水電解液。
<5> 電池用非水電解液中に占める前記非水溶媒の割合が、80質量%以上である<1>〜<4>のいずれか1つに記載の電池用非水電解液。
<2> The content of the additive A is 0.001% by mass to 10% by mass with respect to the total amount of the non-aqueous electrolyte for a battery,
The content of the additive B is 0.001% by mass to 10% by mass with respect to the total amount of the battery non-aqueous electrolyte. The content of the additive C is based on the total amount of the battery non-aqueous electrolyte. The nonaqueous electrolytic solution for batteries according to <1>, which is 0.001% by mass to 10% by mass.
<3> The nonaqueous electrolytic solution for batteries according to <1> or <2>, wherein the nonaqueous solvent includes a cyclic carbonate compound and a chain carbonate compound other than the compound represented by the formula (A). .
<4> The total proportion of the cyclic carbonate compound and the chain carbonate compound other than the compound represented by the formula (A) in the non-aqueous solvent is 80% by mass or more. Non-aqueous electrolyte for batteries.
<5> The nonaqueous electrolytic solution for a battery according to any one of <1> to <4>, wherein a ratio of the nonaqueous solvent in the nonaqueous electrolytic solution for a battery is 80% by mass or more.

<6> 正極と、
金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を負極活物質として含む負極と、
<1>〜<5>のいずれか1つに記載の電池用非水電解液と、
を含むリチウム二次電池。
<7> <6>に記載のリチウム二次電池を充放電させて得られたリチウム二次電池。
<6> a positive electrode;
Lithium metal, lithium-containing alloys, metals or alloys that can be alloyed with lithium, oxides that can be doped / undoped with lithium ions, transition metal nitrides that can be doped / undoped with lithium ions, and lithium A negative electrode containing, as a negative electrode active material, at least one selected from the group consisting of carbon materials capable of ion doping and dedoping;
<1>-<5> any one of the battery non-aqueous electrolyte solutions,
Including lithium secondary battery.
<7> A lithium secondary battery obtained by charging and discharging the lithium secondary battery according to <6>.

本開示によれば、充放電サイクル時の容量維持率に優れる電池用非水電解液、並びに、この電池用非水電解液を用いたリチウム二次電池が提供される。   According to the present disclosure, there are provided a nonaqueous electrolytic solution for a battery excellent in capacity retention rate during a charge / discharge cycle, and a lithium secondary battery using the nonaqueous electrolytic solution for a battery.

本開示のリチウム二次電池の一例である、ラミネート型電池の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the laminate type battery which is an example of the lithium secondary battery of this indication. 図1に示すラミネート型電池に収容される積層型電極体の、厚さ方向の概略断面図である。It is a schematic sectional drawing of the thickness direction of the laminated electrode body accommodated in the laminate type battery shown in FIG. 本開示のリチウム二次電池の別の一例である、コイン型電池の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the coin-type battery which is another example of the lithium secondary battery of this indication.

本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In this specification, the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means.

〔電池用非水電解液〕
本開示の電池用非水電解液(以下、単に「非水電解液」ともいう)は、下記式(A)で表される化合物である添加剤Aと、式(B)で表される化合物である添加剤Bと、
を含有する。
[Non-aqueous electrolyte for batteries]
The non-aqueous electrolyte for a battery of the present disclosure (hereinafter also simply referred to as “non-aqueous electrolyte”) includes an additive A that is a compound represented by the following formula (A) and a compound represented by the formula (B) And additive B,
Containing.

式(A)中、Ra1は、炭素数1〜6のフッ化炭化水素基を表し、Ra2は、炭素数1〜6の炭化水素基又は炭素数1〜6のフッ化炭化水素基を表す。 In formula (A), R a1 represents a fluorinated hydrocarbon group having 1 to 6 carbon atoms, and R a2 represents a hydrocarbon group having 1 to 6 carbon atoms or a fluorinated hydrocarbon group having 1 to 6 carbon atoms. To express.

式(B)中、Rb1は、フッ素原子、又は、炭素数1〜6のフッ化炭化水素基を表し、Rb2〜Rb4は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜6の炭化水素基、又は炭素数1〜6のフッ化炭化水素基を表す。 Wherein (B), R b1 is a fluorine atom, or represents a fluorinated hydrocarbon group having 1 to 6 carbon atoms, R b2 to R b4 are each independently a hydrogen atom, a fluorine atom, 1 to carbon atoms Represents a hydrocarbon group having 6 carbon atoms or a fluorinated hydrocarbon group having 1 to 6 carbon atoms.

式(C)中、Rc1〜Rc4は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜3の炭化水素基、又は炭素数1〜3のフッ化炭化水素基を表す。 In formula (C), R c1 to R c4 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 3 carbon atoms, or a fluorinated hydrocarbon group having 1 to 3 carbon atoms.

本開示の非水電解液によれば、充放電サイクル時の容量維持率を向上させることができる。
かかる効果が奏される理由は明らかではないが、電池の保存前において添加剤Aと添加剤Bと添加剤Cとの組み合わせによって電極上に被膜が形成され、かつ、電池の充放電サイクル時において、上記被膜の劣化が少ないためと考えられる。
According to the nonaqueous electrolytic solution of the present disclosure, it is possible to improve the capacity retention rate during the charge / discharge cycle.
The reason for this effect is not clear, but a film is formed on the electrode by a combination of additive A, additive B, and additive C before storage of the battery, and the battery is charged and discharged during the charge / discharge cycle. This is probably because the coating film is less deteriorated.

以下、本開示の非水電解液の各成分について説明する。   Hereinafter, each component of the nonaqueous electrolytic solution of the present disclosure will be described.

<添加剤A>
添加剤Aは、下記式(A)で表される化合物である。
添加剤Aは、下記式(A)で表される化合物に該当する1種のみの化合物であってもよいし、下記式(A)で表される化合物に該当する2種以上の化合物であってもよい。
<Additive A>
Additive A is a compound represented by the following formula (A).
The additive A may be only one kind of compound corresponding to the compound represented by the following formula (A), or two or more kinds of compounds corresponding to the compound represented by the following formula (A). May be.

式(A)中、Ra1は、炭素数1〜6のフッ化炭化水素基を表し、Ra2は、炭素数1〜6の炭化水素基又は炭素数1〜6のフッ化炭化水素基を表す。 In formula (A), R a1 represents a fluorinated hydrocarbon group having 1 to 6 carbon atoms, and R a2 represents a hydrocarbon group having 1 to 6 carbon atoms or a fluorinated hydrocarbon group having 1 to 6 carbon atoms. To express.

式(A)中、炭素数1〜6のフッ化炭化水素基とは、少なくとも1つのフッ素原子によって置換された炭素数1〜6の炭化水素基を意味する。炭素数1〜6のフッ化炭化水素基は、パーフルオロ炭化水素基に限定されるものではない。   In the formula (A), the fluorinated hydrocarbon group having 1 to 6 carbon atoms means a hydrocarbon group having 1 to 6 carbon atoms substituted by at least one fluorine atom. The fluorinated hydrocarbon group having 1 to 6 carbon atoms is not limited to a perfluorohydrocarbon group.

式(A)中、Ra1で表される炭素数1〜6のフッ化炭化水素基は、直鎖フッ化炭化水素基であっても分岐フッ化炭化水素基であっても環状フッ化炭化水素基であってもよい。 In the formula (A), the fluorinated hydrocarbon group having 1 to 6 carbon atoms represented by R a1 may be a linear fluorinated hydrocarbon group or a branched fluorinated hydrocarbon group. It may be a hydrogen group.

式(A)中、Ra1で表される炭素数1〜6のフッ化炭化水素基としては、例えば;
フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基、1,1,2,2−テトラフルオロエチル基、パーフルオロエチル基、2,2,3,3−テトラフルオロプロピル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロイソプロピル基、パーフルオロイソブチル基等のフルオロアルキル基;
2−フルオロエテニル基、2,2−ジフルオロエテニル基、2−フルオロ−2−プロペニル基、3,3−ジフルオロ−2−プロペニル基、2,3−ジフルオロ−2−プロペニル基、3,3−ジフルオロ−2−メチル−2−プロペニル基、3−フルオロ−2−ブテニル基、パーフルオロビニル基、パーフルオロプロペニル基、パーフルオロブテニル基等のフルオロアルケニル基;
等が挙げられる。
a1で表される炭素数1〜6のフッ化炭化水素基としては、炭素数1〜6のフルオロアルキル基が好ましく、炭素数1〜3のフルオロアルキル基がより好ましく、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基、1,1,2,2−テトラフルオロエチル基、パーフルオロエチル基、2,2,3,3−テトラフルオロプロピル基、又はパーフルオロプロピル基が更に好ましく、2,2,2−トリフルオロエチル基が特に好ましい。
In the formula (A), examples of the fluorinated hydrocarbon group having 1 to 6 carbon atoms represented by R a1 include:
Fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2-tetrafluoroethyl group, perfluoroethyl group, 2,2,3,3- Fluoroalkyl groups such as tetrafluoropropyl group, perfluoropropyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroisopropyl group, perfluoroisobutyl group;
2-fluoroethenyl group, 2,2-difluoroethenyl group, 2-fluoro-2-propenyl group, 3,3-difluoro-2-propenyl group, 2,3-difluoro-2-propenyl group, 3,3 -Fluoroalkenyl groups such as difluoro-2-methyl-2-propenyl group, 3-fluoro-2-butenyl group, perfluorovinyl group, perfluoropropenyl group, perfluorobutenyl group;
Etc.
The fluorinated hydrocarbon group having 1 to 6 carbon atoms represented by R a1 is preferably a fluoroalkyl group having 1 to 6 carbon atoms, more preferably a fluoroalkyl group having 1 to 3 carbon atoms, and a fluoromethyl group or difluoro group. Methyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2-tetrafluoroethyl group, perfluoroethyl group, 2,2,3,3-tetrafluoropropyl group, Alternatively, a perfluoropropyl group is more preferable, and a 2,2,2-trifluoroethyl group is particularly preferable.

式(A)中、Ra2で表される炭素数1〜6のフッ化炭化水素基の具体例及び好ましい態様は、Ra1で表される炭素数1〜6のフッ化炭化水素基の具体例及び好ましい態様は In the formula (A), specific examples and preferred embodiments of the fluorinated hydrocarbon group having 1 to 6 carbon atoms represented by R a2 are specific examples of the fluorinated hydrocarbon group having 1 to 6 carbon atoms represented by R a1. Examples and preferred embodiments are

式(A)中、Ra2で表される炭素数1〜6の炭化水素基としては、例えば;
メチル基、エチル基、n−プロピル基、イソプロピル基、1−エチルプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、2−メチルブチル基、3,3−ジメチルブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、1−メチルペンチル基、n−ヘキシル基、イソヘキシル基、sec−ヘキシル基、tert−ヘキシル基等のアルキル基;
ビニル基、1−プロペニル基、アリル基、1−ブテニル基、2−ブテニル基、3−ブテニル基、ペンテニル基、ヘキセニル基、イソプロペニル基、2−メチル−2−プロペニル基、1−メチル−2−プロペニル基、2−メチル−1−プロペニル基等のアルケニル基;
等が挙げられる。
a2で表される炭素数1〜6の炭化水素基としては、炭素数1〜6のアルキル基が好ましく、炭素数1〜3のアルキル基がより好ましく、メチル基又はエチル基が更に好ましく、メチル基が特に好ましい。
In the formula (A), examples of the hydrocarbon group having 1 to 6 carbon atoms represented by R a2 include:
Methyl group, ethyl group, n-propyl group, isopropyl group, 1-ethylpropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, 2-methylbutyl group, 3,3-dimethylbutyl group Alkyl groups such as n-pentyl group, isopentyl group, neopentyl group, 1-methylpentyl group, n-hexyl group, isohexyl group, sec-hexyl group, tert-hexyl group;
Vinyl group, 1-propenyl group, allyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, pentenyl group, hexenyl group, isopropenyl group, 2-methyl-2-propenyl group, 1-methyl-2 An alkenyl group such as a propenyl group or a 2-methyl-1-propenyl group;
Etc.
As a C1-C6 hydrocarbon group represented by R <a2> , a C1-C6 alkyl group is preferable, a C1-C3 alkyl group is more preferable, a methyl group or an ethyl group is still more preferable, A methyl group is particularly preferred.

式(A)中、Ra2としては、炭素数1〜6の炭化水素基が好ましく、炭素数1〜6のアルキル基が好ましく、炭素数1〜3のアルキル基がより好ましく、メチル基又はエチル基が更に好ましく、メチル基が特に好ましい。 In formula (A), R a2 is preferably a hydrocarbon group having 1 to 6 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, a methyl group or ethyl A group is further preferred, and a methyl group is particularly preferred.

式(F2)で表される化合物としては、
2,2,2−トリフルオロエチルメチルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート、パーフルオロエチルメチルカーボネート、又はビス(パーフルオロエチル)カーボネートが好ましく、
2,2,2−トリフルオロエチルメチルカーボネート(以下、「MFEC」と称することがある)が特に好ましい。
As the compound represented by the formula (F2),
2,2,2-trifluoroethyl methyl carbonate, bis (2,2,2-trifluoroethyl) carbonate, perfluoroethyl methyl carbonate, or bis (perfluoroethyl) carbonate is preferred,
2,2,2-trifluoroethyl methyl carbonate (hereinafter sometimes referred to as “MFEC”) is particularly preferred.

添加剤Aの含有量(添加剤Aが2種以上の化合物である場合は総含有量)は、非水電解液の全量に対して、0.001質量%〜30質量%であることが好ましく、0.001質量%〜20質量%であることがより好ましく、0.01質量%〜10質量%であることが更に好ましい。   The content of additive A (the total content when additive A is two or more compounds) is preferably 0.001% by mass to 30% by mass with respect to the total amount of the non-aqueous electrolyte. 0.001% by mass to 20% by mass is more preferable, and 0.01% by mass to 10% by mass is even more preferable.

<添加剤B>
添加剤Bは、下記式(B)で表される化合物である。
添加剤Bは、下記式(B)で表される化合物に該当する1種のみの化合物であってもよいし、下記式(B)で表される化合物に該当する2種以上の化合物であってもよい。
<Additive B>
Additive B is a compound represented by the following formula (B).
The additive B may be only one kind of compound corresponding to the compound represented by the following formula (B), or two or more kinds of compounds corresponding to the compound represented by the following formula (B). May be.

式(B)中、Rb1は、フッ素原子、又は、炭素数1〜6のフッ化炭化水素基を表し、Rb2〜Rb4は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜6の炭化水素基、又は炭素数1〜6のフッ化炭化水素基を表す。 In formula (B), R b1 represents a fluorine atom or a fluorinated hydrocarbon group having 1 to 6 carbon atoms, and R b2 to R b4 each independently represent a hydrogen atom, a fluorine atom, or a carbon number of 1 to Represents a hydrocarbon group having 6 carbon atoms or a fluorinated hydrocarbon group having 1 to 6 carbon atoms.

式(B)中、Rb1で表される炭素数1〜6のフッ化炭化水素基は、式(A)中のRa1で表される炭素数1〜6のフッ化炭化水素基と同義であり、好ましい態様も同様である。
式(B)中、Rb2〜Rb4で表される炭素数1〜6の炭化水素基は、それぞれ、式(A)中のRa2で表される炭素数1〜6の炭化水素基と同義であり、好ましい態様も同様である。
式(B)中、Rb2〜Rb4で表される炭素数1〜6のフッ化炭化水素基は、それぞれ、式(A)中のRa1で表される炭素数1〜6のフッ化炭化水素基と同義であり、好ましい態様も同様である。
In formula (B), the fluorinated hydrocarbon group having 1 to 6 carbon atoms represented by R b1 has the same meaning as the fluorinated hydrocarbon group having 1 to 6 carbon atoms represented by R a1 in formula (A). The preferred embodiments are also the same.
Wherein (B), a hydrocarbon group having 1 to 6 carbon atoms represented by R b2 to R b4 are each a hydrocarbon group having 1 to 6 carbon atoms represented by R a2 in formula (A) It is synonymous and a preferable aspect is also the same.
In formula (B), the fluorinated hydrocarbon group having 1 to 6 carbon atoms represented by R b2 to R b4 is a fluorinated group having 1 to 6 carbon atoms represented by R a1 in formula (A). It is synonymous with a hydrocarbon group, and its preferable aspect is also the same.

式(B)中、Rb1は、フッ素原子であることが好ましい。
式(B)中、Rb2〜Rb4は、それぞれ独立に、水素原子、フッ素原子、又はメチル基が好ましく、水素原子又はフッ素原子がより好ましく、水素原子が特に好ましい。
In formula (B), R b1 is preferably a fluorine atom.
In formula (B), R b2 to R b4 are each independently preferably a hydrogen atom, a fluorine atom, or a methyl group, more preferably a hydrogen atom or a fluorine atom, and particularly preferably a hydrogen atom.

式(B)で表される化合物としては、
4−フルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、又は4−トリフルオロメチルエチレンカーボネートが好ましく、
4−フルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、又は4,5−ジフルオロエチレンカーボネートがより好ましく、
4−フルオロエチレンカーボネート(以下、「FEC」と称することがある)が特に好ましい。
As a compound represented by the formula (B),
4-fluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, or 4-trifluoromethylethylene carbonate is preferred,
4-fluoroethylene carbonate, 4,4-difluoroethylene carbonate, or 4,5-difluoroethylene carbonate is more preferable,
4-fluoroethylene carbonate (hereinafter sometimes referred to as “FEC”) is particularly preferred.

添加剤Bの含有量(添加剤Bが2種以上の化合物である場合は総含有量;以下同じ)は、非水電解液の全量に対して、0.001質量%〜10質量%であることが好ましく、0.001質量%〜5質量%であることが好ましく、0.001質量%〜3質量%であることがより好ましく、0.01質量%〜3質量%であることが更に好ましく、0.1〜3質量%であることが更に好ましく、0.1〜2質量%であることが更に好ましい。   The content of additive B (the total content when additive B is two or more compounds; the same applies hereinafter) is 0.001% by mass to 10% by mass with respect to the total amount of the non-aqueous electrolyte. It is preferably 0.001% by mass to 5% by mass, more preferably 0.001% by mass to 3% by mass, and still more preferably 0.01% by mass to 3% by mass. The content is more preferably 0.1 to 3% by mass, and still more preferably 0.1 to 2% by mass.

非水電解液中、添加剤Aに対する添加剤Bの含有質量比(以下、含有質量比〔添加剤B/添加剤A〕)は、本開示の非水電解液による前述した効果がより効果的に奏される観点から、好ましくは0.05以上2.0以下であり、更に好ましくは0.05以上1.0未満であり、更に好ましくは0.1以上0.9以下であり、更に好ましくは0.1以上0.5以下である。   In the non-aqueous electrolyte, the content ratio of the additive B to the additive A (hereinafter referred to as content mass ratio [additive B / additive A]) is more effective than the above-described effect of the non-aqueous electrolyte of the present disclosure. In view of the above, it is preferably 0.05 or more and 2.0 or less, more preferably 0.05 or more and less than 1.0, still more preferably 0.1 or more and 0.9 or less, and still more preferably Is 0.1 or more and 0.5 or less.

<添加剤C>
添加剤Cは、下記式(C)で表される化合物である。
添加剤Cは、下記式(C)で表される化合物に該当する1種のみの化合物であってもよいし、下記式(C)で表される化合物に該当する2種以上の化合物であってもよい。
<Additive C>
Additive C is a compound represented by the following formula (C).
The additive C may be only one kind of compound corresponding to the compound represented by the following formula (C), or may be two or more kinds of compounds corresponding to the compound represented by the following formula (C). May be.

式(C)中、Rc1〜Rc4は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜3の炭化水素基、又は炭素数1〜3のフッ化炭化水素基を表す。 In formula (C), R c1 to R c4 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 3 carbon atoms, or a fluorinated hydrocarbon group having 1 to 3 carbon atoms.

式(C)中、Rc1〜Rc4で表される炭素数1〜3の炭化水素基としては、アルキル基、アルケニル基、又はアルキニル基が好ましく、アルキル基又はアルケニル基がより好ましく、アルキル基が特に好ましい。
式(C)中、Rc1〜Rc4で表される炭素数1〜3の炭化水素基の炭素数としては、1又は2が好ましく、1が特に好ましい。
In the formula (C), the hydrocarbon group having 1 to 3 carbon atoms represented by R c1 to R c4 is preferably an alkyl group, an alkenyl group, or an alkynyl group, more preferably an alkyl group or an alkenyl group, and an alkyl group. Is particularly preferred.
In the formula (C), the number of carbon atoms of the hydrocarbon group having 1 to 3 carbon atoms represented by R c1 to R c4 is preferably 1 or 2, and particularly preferably 1.

式(C)中、Rc1〜Rc4で表される炭素数1〜3のフッ化炭化水素基としては、フッ化アルキル基、フッ化アルケニル基、又はフッ化アルキニル基が好ましく、フッ化アルキル基又はフッ化アルケニル基がより好ましく、フッ化アルキル基が特に好ましい。
式(C)中、Rc1〜Rc4で表される炭素数1〜3のフッ化炭化水素基の炭素数としては、1又は2が好ましく、1が特に好ましい。
Wherein (C), as the fluorinated hydrocarbon group having 1 to 3 carbon atoms represented by R c1 to R c4, fluorinated alkyl groups, fluorinated alkenyl group, or a fluorinated alkynyl group preferably fluorinated alkyl Group or an alkenyl fluoride group is more preferable, and a fluorinated alkyl group is particularly preferable.
In the formula (C), the carbon number of the fluorinated hydrocarbon group having 1 to 3 carbon atoms represented by R c1 to R c4 is preferably 1 or 2, and particularly preferably 1.

式(C)中、Rc1〜Rc4としては、それぞれ独立に、水素原子、フッ素原子、メチル基、エチル基、トリフルオロメチル基、又はペンタフルオロエチル基が好ましく、水素原子又はメチル基がより好ましく、水素原子が特に好ましい。 In formula (C), R c1 to R c4 are each independently preferably a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, a trifluoromethyl group, or a pentafluoroethyl group, more preferably a hydrogen atom or a methyl group. Preferably, a hydrogen atom is particularly preferable.

式(C)で表される化合物の具体例としては、下記式(C−1)〜下記式(C−21)で表される化合物(以下、それぞれ、化合物(C−1)〜化合物(C−21)ともいう)が挙げられるが、式(B)で表される化合物は、これらの具体例には限定されない。
これらのうち、化合物(C−1)(即ち、1,3−プロペンスルトン;以下、「PRS」ともいう)が特に好ましい。
Specific examples of the compound represented by the formula (C) include compounds represented by the following formula (C-1) to the following formula (C-21) (hereinafter, compound (C-1) to compound (C, respectively). -21)), but the compound represented by the formula (B) is not limited to these specific examples.
Among these, the compound (C-1) (that is, 1,3-propene sultone; hereinafter, also referred to as “PRS”) is particularly preferable.

添加剤Cの含有量(添加剤Cが2種以上の化合物である場合は総含有量;以下同じ)は、非水電解液の全量に対して、0.001質量%〜10質量%であることが好ましく、0.001質量%〜5質量%であることが好ましく、0.001質量%〜3質量%であることがより好ましく、0.01質量%〜3質量%であることが更に好ましく、0.1〜3質量%であることが更に好ましく、0.1〜2質量%であることが更に好ましく、0.1〜1質量%であることが更に好ましい。   The content of the additive C (the total content when the additive C is two or more compounds; the same applies hereinafter) is 0.001% by mass to 10% by mass with respect to the total amount of the nonaqueous electrolytic solution. It is preferably 0.001% by mass to 5% by mass, more preferably 0.001% by mass to 3% by mass, and still more preferably 0.01% by mass to 3% by mass. The content is more preferably 0.1 to 3% by mass, further preferably 0.1 to 2% by mass, and further preferably 0.1 to 1% by mass.

非水電解液中、添加剤Aに対する添加剤Cの含有質量比(以下、含有質量比〔添加剤C/添加剤A〕)は、本開示の非水電解液による前述した効果がより効果的に奏される観点から、好ましくは0.01以上2.0以下であり、更に好ましくは0.01以上1.0未満であり、更に好ましくは0.01以上0.5以下であり、更に好ましくは0.01以上0.2以下である。   In the non-aqueous electrolyte, the content ratio of the additive C to the additive A (hereinafter referred to as content mass ratio [additive C / additive A]) is more effective than the above-described effect of the non-aqueous electrolyte of the present disclosure. In view of the above, it is preferably 0.01 or more and 2.0 or less, more preferably 0.01 or more and less than 1.0, still more preferably 0.01 or more and 0.5 or less, and still more preferably Is 0.01 or more and 0.2 or less.

<添加剤D>
本開示の非水電解液は、更に、下記式(D)で表される化合物である添加剤Dを含有してもよい。
<Additive D>
The nonaqueous electrolytic solution of the present disclosure may further contain an additive D that is a compound represented by the following formula (D).

式(D)中、Rd1及びRd2は、それぞれ独立に、水素原子、メチル基、エチル基、又はプロピル基を示す。 In formula (D), R d1 and R d2 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group.

式(D)で表される化合物としては、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、ブロピルビニレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカーボネート、ジプロピルビニレンカーボネートなどが例示される。
これらのうちでビニレンカーボネート(式(D)中、Rd1及びRd2がいずれも水素原子である化合物)が特に好ましい。
Examples of the compound represented by the formula (D) include vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, propyl vinylene carbonate, dimethyl vinylene carbonate, diethyl vinylene carbonate, and dipropyl vinylene carbonate.
Among these, vinylene carbonate (a compound in which R d1 and R d2 are both hydrogen atoms in the formula (D)) is particularly preferable.

本開示の非水電解液が添加剤Dを含有する場合、添加剤Dの含有量は、非水電解液の全量に対し、0.001質量%〜10質量%が好ましく、0.001質量%〜5質量%がより好ましく、0.001質量%〜3質量%であることが更に好ましく、0.01質量%〜3質量%であることが更に好ましく、0.1〜3質量%であることが更に好ましく、0.1〜2質量%であることが更に好ましく、0.1〜1質量%であることが特に好ましい。   When the nonaqueous electrolytic solution of the present disclosure contains the additive D, the content of the additive D is preferably 0.001% by mass to 10% by mass, and 0.001% by mass with respect to the total amount of the nonaqueous electrolytic solution. -5% by mass is more preferable, 0.001% by mass to 3% by mass is further preferable, 0.01% by mass to 3% by mass is further preferable, and 0.1 to 3% by mass is preferable. Is more preferable, 0.1 to 2% by mass is further preferable, and 0.1 to 1% by mass is particularly preferable.

次に、非水電解液の他の成分について説明する。
非水電解液は、非水溶媒と電解質とを含有する。
Next, other components of the nonaqueous electrolytic solution will be described.
The nonaqueous electrolytic solution contains a nonaqueous solvent and an electrolyte.

<非水溶媒>
非水電解液は、非水溶媒を含有する。
非水電解液に含有される非水溶媒は、1種のみであってもよいし、2種以上であってもよい。
非水溶媒としては、種々公知のものを適宜選択することができる。
非水溶媒としては、例えば、特開2017−45723号公報の段落0069〜0087に記載の非水溶媒を用いることができる。
<Nonaqueous solvent>
The nonaqueous electrolytic solution contains a nonaqueous solvent.
The nonaqueous solvent contained in the nonaqueous electrolytic solution may be only one type or two or more types.
Various known solvents can be appropriately selected as the non-aqueous solvent.
As the non-aqueous solvent, for example, the non-aqueous solvent described in paragraphs 0069 to 0087 of JP-A-2017-45723 can be used.

非水溶媒は、環状カーボネート化合物、及び、式(A)で表される化合物以外の鎖状カーボネート化合物(以下、「特定鎖状カーボネート化合物」ともいう)を含むことが好ましい。
この場合、非水溶媒に含まれる環状カーボネート化合物及び特定鎖状カーボネート化合物は、それぞれ、1種のみであってもよいし2種以上であってもよい。
The non-aqueous solvent preferably contains a cyclic carbonate compound and a chain carbonate compound other than the compound represented by the formula (A) (hereinafter also referred to as “specific chain carbonate compound”).
In this case, each of the cyclic carbonate compound and the specific chain carbonate compound contained in the non-aqueous solvent may be only one kind or two or more kinds.

環状カーボネート化合物としては、例えば、エチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、2,3−ブチレンカーボネート、1,2−ペンチレンカーボネート、2,3−ペンチレンカーボネート等が挙げられる。
これらのうち、誘電率が高い、エチレンカーボネート及びプロピレンカーボネートが好適である。黒鉛を含む負極活物質を使用した電池の場合は、非水溶媒は、エチレンカーボネートを含むことがより好ましい。
Examples of the cyclic carbonate compound include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, and the like.
Of these, ethylene carbonate and propylene carbonate having a high dielectric constant are preferable. In the case of a battery using a negative electrode active material containing graphite, the non-aqueous solvent more preferably contains ethylene carbonate.

特定鎖状カーボネート化合物としては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、エチルブチルカーボネート、ジブチルカーボネート、メチルペンチルカーボネート、エチルペンチルカーボネート、ジペンチルカーボネート、メチルヘプチルカーボネート、エチルヘプチルカーボネート、ジヘプチルカーボネート、メチルヘキシルカーボネート、エチルヘキシルカーボネート、ジヘキシルカーボネート、メチルオクチルカーボネート、エチルオクチルカーボネート、ジオクチルカーボネート、等が挙げられる。   Specific chain carbonate compounds include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, ethyl butyl carbonate, dibutyl carbonate, methyl pentyl carbonate, ethyl Examples include pentyl carbonate, dipentyl carbonate, methyl heptyl carbonate, ethyl heptyl carbonate, diheptyl carbonate, methyl hexyl carbonate, ethyl hexyl carbonate, dihexyl carbonate, methyl octyl carbonate, ethyl octyl carbonate, and dioctyl carbonate.

環状カーボネートと特定鎖状カーボネートの組み合わせとして、具体的には、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとジエチルカーボネート、プロピレンカーボネートとジメチルカーボネート、プロピレンカーボネートとメチルエチルカーボネート、プロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネートなどが挙げられる。   Specific combinations of cyclic carbonate and specific chain carbonate include ethylene carbonate and dimethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and diethyl carbonate, propylene carbonate and dimethyl carbonate, propylene carbonate and methyl ethyl carbonate, and propylene carbonate. And diethyl carbonate, ethylene carbonate and propylene carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate And diethyl carbonate, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate and methyl Examples include ethyl carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate.

環状カーボネート化合物と特定鎖状カーボネート化合物の混合割合は、質量比で表して、環状カーボネート化合物:特定鎖状カーボネート化合物が、例えば5:95〜80:20、好ましくは10:90〜70:30、更に好ましくは15:85〜55:45である。このような比率にすることによって、非水電解液の粘度上昇を抑制し、電解質の解離度を高めることができるため、電池の充放電特性に関わる非水電解液の伝導度を高めることができる。また、電解質の溶解度をさらに高めることができる。よって、常温または低温での電気伝導性に優れた非水電解液とすることができるため、常温から低温での電池の負荷特性を改善することができる。   The mixing ratio of the cyclic carbonate compound and the specific chain carbonate compound is expressed by mass ratio, and the cyclic carbonate compound: specific chain carbonate compound is, for example, 5:95 to 80:20, preferably 10:90 to 70:30, More preferably, it is 15: 85-55: 45. By setting such a ratio, the increase in the viscosity of the non-aqueous electrolyte can be suppressed and the degree of dissociation of the electrolyte can be increased, so the conductivity of the non-aqueous electrolyte related to the charge / discharge characteristics of the battery can be increased. . In addition, the solubility of the electrolyte can be further increased. Therefore, since it can be set as the non-aqueous electrolyte excellent in the electrical conductivity in normal temperature or low temperature, the load characteristic of the battery from normal temperature to low temperature can be improved.

非水溶媒は、環状カーボネート化合物及び特定鎖状カーボネート化合物以外のその他の化合物を含んでいてもよい。
この場合、非水溶媒に含まれるその他の化合物は、1種のみであってもよいし、2種以上であってもよい。
その他の化合物としては、環状カルボン酸エステル化合物(例えばγブチロラクトン)、環状スルホン化合物、環状エーテル化合物、鎖状カルボン酸エステル化合物、鎖状エーテル化合物、鎖状リン酸エステル化合物、アミド化合物、鎖状カーバメート化合物、環状アミド化合物、環状ウレア化合物、ホウ素化合物、ポリエチレングリコール誘導体、等が挙げられる。
これらの化合物については、特開2017−45723号公報の段落0069〜0087の記載を適宜参照できる。
The non-aqueous solvent may contain other compounds other than the cyclic carbonate compound and the specific chain carbonate compound.
In this case, only 1 type may be sufficient as the other compound contained in a nonaqueous solvent, and 2 or more types may be sufficient as it.
Other compounds include cyclic carboxylic acid ester compounds (eg, γ-butyrolactone), cyclic sulfone compounds, cyclic ether compounds, chain carboxylic acid ester compounds, chain ether compounds, chain phosphate ester compounds, amide compounds, and chain carbamates. Compounds, cyclic amide compounds, cyclic urea compounds, boron compounds, polyethylene glycol derivatives, and the like.
Regarding these compounds, the description in paragraphs 0069 to 0087 of JP-A-2017-45723 can be appropriately referred to.

非水溶媒中に占める、環状カーボネート化合物及び特定鎖状カーボネート化合物の割合は、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、更に好ましくは95質量%以上である。
非水溶媒中に占める、環状カーボネート化合物及び特定鎖状カーボネート化合物の割合は、100質量%であってもよい。
The ratio of the cyclic carbonate compound and the specific chain carbonate compound in the non-aqueous solvent is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more.
The proportion of the cyclic carbonate compound and the specific chain carbonate compound in the non-aqueous solvent may be 100% by mass.

非水電解液中に占める非水溶媒の割合は、好ましくは60質量%以上であり、より好ましくは70質量%以上である。
非水電解液中に占める非水溶媒の割合の上限は、他の成分(添加剤A、添加剤B、電解質、等)の含有量にもよるが、上限は、例えば99質量%であり、好ましくは97質量%であり、更に好ましくは90質量%である。
The ratio of the non-aqueous solvent in the non-aqueous electrolyte is preferably 60% by mass or more, more preferably 70% by mass or more.
The upper limit of the ratio of the nonaqueous solvent in the nonaqueous electrolytic solution depends on the content of other components (additive A, additive B, electrolyte, etc.), but the upper limit is, for example, 99% by mass, Preferably it is 97 mass%, More preferably, it is 90 mass%.

<電解質>
本開示の非水電解液は、電解質を含有する。
電解質としては、通常、非水電解液用電解質として使用されているものであれば、いずれをも使用することができる。
<Electrolyte>
The nonaqueous electrolytic solution of the present disclosure contains an electrolyte.
Any electrolyte can be used as long as it is normally used as an electrolyte for a non-aqueous electrolyte.

電解質の具体例としては、(CNPF、(CNBF、(CNClO、(CNAsF、(CSiF、(CNOSO(2k+1)(k=1〜8の整数)、(CNPF[C(2k+1)(6−n)(n=1〜5、k=1〜8の整数)などのテトラアルキルアンモニウム塩、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiOSO(2k+1)(k=1〜8の整数)、LiPF[C(2k+1)(6−n)(n=1〜5、k=1〜8の整数)などのリチウム塩が挙げられる。また、次の一般式で表されるリチウム塩も使用することができる。 Specific examples of the electrolyte include (C 2 H 5 ) 4 NPF 6 , (C 2 H 5 ) 4 NBF 4 , (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NAsF 6 , (C 2 H 5 ) 4 N 2 SiF 6 , (C 2 H 5 ) 4 NOSO 2 C k F (2k + 1) (k = 1 to 8), (C 2 H 5 ) 4 NPF n [C k F (2k + 1) ] (6-n) Tetraalkylammonium salts such as (n = 1 to 5, k = 1 to 8), LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li 2 SiF 6 , LiOSO 2 C k F Lithium salts such as (2k + 1) (k = 1 to 8), LiPF n [C k F (2k + 1) ] (6-n) (n = 1 to 5, k = 1 to 8) are included. . Moreover, the lithium salt represented by the following general formula can also be used.

LiC(SO)(SO)(SO)、LiN(SOOR10)(SOOR11)、LiN(SO12)(SO13)(ここでR〜R13は互いに同一でも異なっていてもよく、フッ素原子又は炭素数1〜8のパーフルオロアルキル基である)。これらの電解質は単独で使用してもよく、また2種類以上を混合してもよい。
これらのうち、特にリチウム塩が望ましく、さらには、LiPF、LiBF、LiOSO(2k+1)(k=1〜8の整数)、LiClO、LiAsF、LiNSO[C(2k+1)(k=1〜8の整数)、LiPF[C(2k+1)(6−n)(n=1〜5、k=1〜8の整数)が好ましい。
LiC (SO 2 R 7 ) (SO 2 R 8 ) (SO 2 R 9 ), LiN (SO 2 OR 10 ) (SO 2 OR 11 ), LiN (SO 2 R 12 ) (SO 2 R 13 ) (where R 7 to R 13 may be the same as or different from each other, and are a fluorine atom or a C 1-8 perfluoroalkyl group). These electrolytes may be used alone or in combination of two or more.
Of these, lithium salts are particularly desirable, and LiPF 6 , LiBF 4 , LiOSO 2 C k F (2k + 1) (k = 1 to 8), LiClO 4 , LiAsF 6 , LiNSO 2 [C k F ( 2k + 1)] 2 (k = 1~8 integer), LiPF n [C k F (2k + 1)] (6-n) (n = 1~5, k = 1~8 integer) are preferred.

電解質は、通常は、非水電解液中に0.1mol/L〜3mol/L、好ましくは0.5mol/L〜2mol/Lの濃度で含まれることが好ましい。   The electrolyte is usually preferably contained in the nonaqueous electrolytic solution at a concentration of 0.1 mol / L to 3 mol / L, preferably 0.5 mol / L to 2 mol / L.

本開示の非水電解液において、非水溶媒として、γ−ブチロラクトンなどの環状カルボン酸エステルを併用する場合には、特にLiPFを含有することが望ましい。LiPFは、解離度が高いため、電解液の伝導度を高めることができ、さらに負極上での電解液の還元分解反応を抑制する作用がある。LiPFは単独で使用してもよいし、LiPFとそれ以外の電解質を使用してもよい。それ以外の電解質としては、通常、非水電解液用電解質として使用されるものであれば、いずれも使用することができるが、前述のリチウム塩の具体例のうちLiPF以外のリチウム塩が好ましい。
具体例としては、LiPFとLiBF、LiPFとLiN[SO(2k+1)(k=1〜8の整数)、LiPFとLiBFとLiN[SO(2k+1)](k=1〜8の整数)などが例示される。
In the nonaqueous electrolytic solution of the present disclosure, when a cyclic carboxylic acid ester such as γ-butyrolactone is used in combination as the nonaqueous solvent, it is particularly desirable to contain LiPF 6 . Since LiPF 6 has a high degree of dissociation, the conductivity of the electrolytic solution can be increased, and the reductive decomposition reaction of the electrolytic solution on the negative electrode can be suppressed. LiPF 6 may be used alone, or LiPF 6 and other electrolytes may be used. Any other electrolyte can be used as long as it is normally used as an electrolyte for a non-aqueous electrolyte, but lithium salts other than LiPF 6 are preferred among the specific examples of the lithium salts described above. .
Specific examples include LiPF 6 and LiBF 4 , LiPF 6 and LiN [SO 2 C k F (2k + 1) ] 2 (k = 1 to 8), LiPF 6 , LiBF 4 and LiN [SO 2 C k F ( 2k + 1) ] (k = 1 to 8).

リチウム塩中に占めるLiPFの比率は、好ましくは1質量%〜100質量%、より好ましくは10質量%〜100質量%、さらに好ましくは50質量%〜100質量%である。このような電解質は、0.1mol/L〜3mol/L、好ましくは0.5mol/L〜2mol/Lの濃度で非水電解液中に含まれることが好ましい。 The ratio of the LiPF 6 occupying the lithium salt is preferably 1 mass% to 100 mass%, more preferably 10 to 100 mass%, more preferably 50 wt% to 100 wt%. Such an electrolyte is preferably contained in the nonaqueous electrolytic solution at a concentration of 0.1 mol / L to 3 mol / L, preferably 0.5 mol / L to 2 mol / L.

本開示の非水電解液は、リチウム二次電池用の非水電解液として好適であるばかりでなく、一次電池用の非水電解液、電気化学キャパシタ用の非水電解液、電気二重層キャパシタ、アルミ電解コンデンサー用の電解液としても用いることができる。   The non-aqueous electrolyte of the present disclosure is not only suitable as a non-aqueous electrolyte for a lithium secondary battery, but also a non-aqueous electrolyte for a primary battery, a non-aqueous electrolyte for an electrochemical capacitor, and an electric double layer capacitor. It can also be used as an electrolytic solution for aluminum electrolytic capacitors.

〔リチウム二次電池〕
本開示のリチウム二次電池は、正極と、負極と、本開示の非水電解液と、を含む。
[Lithium secondary battery]
The lithium secondary battery of the present disclosure includes a positive electrode, a negative electrode, and the nonaqueous electrolytic solution of the present disclosure.

(負極)
負極は、負極活物質及び負極集電体を含んでもよい。
負極における負極活物質としては、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属もしくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれた少なくとも1種(単独で用いてもよいし、これらの2種以上を含む混合物を用いてもよい)を用いることができる。
リチウム(又はリチウムイオン)との合金化が可能な金属もしくは合金としては、シリコン、シリコン合金、スズ、スズ合金などを挙げることができる。また、チタン酸リチウムでもよい。
これらの中でもリチウムイオンをドープ・脱ドープすることが可能な炭素材料が好ましい。このような炭素材料としては、カーボンブラック、活性炭、黒鉛材料(人造黒鉛、天然黒鉛)、非晶質炭素材料、等が挙げられる。上記炭素材料の形態は、繊維状、球状、ポテト状、フレーク状いずれの形態であってもよい。
(Negative electrode)
The negative electrode may include a negative electrode active material and a negative electrode current collector.
The negative electrode active material in the negative electrode is metal lithium, lithium-containing alloy, metal or alloy that can be alloyed with lithium, oxide that can be doped / undoped with lithium ions, and lithium ion doped / undoped At least one selected from the group consisting of transition metal nitrides and carbon materials capable of doping and undoping lithium ions (may be used alone or a mixture containing two or more of these may be used) Good) can be used.
Examples of metals or alloys that can be alloyed with lithium (or lithium ions) include silicon, silicon alloys, tin, and tin alloys. Further, lithium titanate may be used.
Among these, carbon materials that can be doped / undoped with lithium ions are preferable. Examples of such carbon materials include carbon black, activated carbon, graphite materials (artificial graphite, natural graphite), amorphous carbon materials, and the like. The form of the carbon material may be any of a fibrous form, a spherical form, a potato form, and a flake form.

上記非晶質炭素材料として具体的には、ハードカーボン、コークス、1500℃以下に焼成したメソカーボンマイクロビーズ(MCMB)、メソフェーズピッチカーボンファイバー(MCF)などが例示される。
上記黒鉛材料としては、天然黒鉛、人造黒鉛が挙げられる。人造黒鉛としては、黒鉛化MCMB、黒鉛化MCFなどが用いられる。また、黒鉛材料としては、ホウ素を含有するものなども用いることができる。また、黒鉛材料としては、金、白金、銀、銅、スズなどの金属で被覆したもの、非晶質炭素で被覆したもの、非晶質炭素と黒鉛を混合したものも使用することができる。
Specific examples of the amorphous carbon material include hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1500 ° C. or less, and mesophase pitch carbon fiber (MCF).
Examples of the graphite material include natural graphite and artificial graphite. As artificial graphite, graphitized MCMB, graphitized MCF, and the like are used. Further, as the graphite material, a material containing boron can be used. As the graphite material, those coated with a metal such as gold, platinum, silver, copper and tin, those coated with amorphous carbon, and those obtained by mixing amorphous carbon and graphite can be used.

これらの炭素材料は、1種類で使用してもよく、2種類以上混合して使用してもよい。
上記炭素材料としては、特にX線解析で測定した(002)面の面間隔d(002)が0.340nm以下の炭素材料が好ましい。また、炭素材料としては、真密度が1.70g/cm以上である黒鉛又はそれに近い性質を有する高結晶性炭素材料も好ましい。以上のような炭素材料を使用すると、電池のエネルギー密度をより高くすることができる。
These carbon materials may be used alone or in combination of two or more.
As the carbon material, a carbon material having a (002) plane distance d (002) of 0.340 nm or less as measured by X-ray analysis is particularly preferable. Further, as the carbon material, graphite having a true density of 1.70 g / cm 3 or more or a highly crystalline carbon material having properties close thereto is also preferable. When the carbon material as described above is used, the energy density of the battery can be further increased.

負極における負極集電体の材質には特に制限はなく、公知のものを任意に用いることができる。
負極集電体の具体例としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工しやすさの点から特に銅が好ましい。
There is no restriction | limiting in particular in the material of the negative electrode electrical power collector in a negative electrode, A well-known thing can be used arbitrarily.
Specific examples of the negative electrode current collector include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Among these, copper is particularly preferable from the viewpoint of ease of processing.

(正極)
正極は、正極活物質及び正極集電体を含んでもよい。
正極における正極活物質としては、MoS、TiS、MnO、Vなどの遷移金属酸化物又は遷移金属硫化物、LiCoO、LiMnO、LiMn、LiNiO、LiNiCo(1−X)〔0<X<1〕、α−NaFeO型結晶構造を有するLi1+αMe1−α(Meは、Mn、Ni及びCoを含む遷移金属元素、1.0≦(1+α)/(1−α)≦1.6)、LiNiCoMn〔x+y+z=1、0<x<1、0<y<1、0<z<1〕(例えば、LiNi0.33Co0.33Mn0.33、LiNi0.5Co0.2Mn0.3等)、LiFePO、LiMnPOなどのリチウムと遷移金属とからなる複合酸化物、ポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリアセン、ジメルカプトチアジアゾール、ポリアニリン複合体などの導電性高分子材料等が挙げられる。これらの中でも、特にリチウムと遷移金属とからなる複合酸化物が好ましい。負極がリチウム金属又はリチウム合金である場合は、正極として炭素材料を用いることもできる。また、正極として、リチウムと遷移金属との複合酸化物と、炭素材料と、の混合物を用いることもできる。
正極活物質は、1種類で使用してもよく、2種類以上を混合して使用してもよい。正極活物質は導電性が不充分である場合には、導電性助剤とともに使用して正極を構成することができる。導電性助剤としては、カーボンブラック、アモルファスウィスカー、グラファイトなどの炭素材料を例示することができる。
(Positive electrode)
The positive electrode may include a positive electrode active material and a positive electrode current collector.
The positive electrode active material in the positive electrode, MoS 2, TiS 2, MnO 2, transition metal oxides such as V 2 O 5 or a transition metal sulfide, LiCoO 2, LiMnO 2, LiMn 2 O 4, LiNiO 2, LiNi X Co (1-X) O 2 [0 <X <1], Li 1 + α Me 1-α O 2 having an α-NaFeO 2 type crystal structure (Me is a transition metal element containing Mn, Ni and Co, 1.0 ≦ (1 + α) / (1−α) ≦ 1.6), LiNi x Co y Mn z O 2 [x + y + z = 1, 0 <x <1, 0 <y <1, 0 <z <1] (for example, LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2, etc.), LiFePO 4 , LiMnPO 4 and other complex oxides composed of lithium and transition metals, Polyaniline, Li thiophene, polypyrrole, polyacetylene, polyacene, dimercaptothiadiazoles, conductive polymer materials such as polyaniline complex thereof. Among these, a composite oxide composed of lithium and a transition metal is particularly preferable. When the negative electrode is lithium metal or a lithium alloy, a carbon material can be used as the positive electrode. In addition, a mixture of a composite oxide of lithium and a transition metal and a carbon material can be used as the positive electrode.
A positive electrode active material may be used by 1 type, and may mix and use 2 or more types. When the positive electrode active material has insufficient conductivity, it can be used together with a conductive auxiliary agent to constitute a positive electrode. Examples of the conductive assistant include carbon materials such as carbon black, amorphous whiskers, and graphite.

正極における正極集電体の材質には特に制限はなく、公知のものを任意に用いることができる。
正極集電体の具体例としては、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、チタン、タンタルなどの金属材料;カーボンクロス、カーボンペーパーなどの炭素材料;等が挙げられる。
There is no restriction | limiting in particular in the material of the positive electrode electrical power collector in a positive electrode, A well-known thing can be used arbitrarily.
Specific examples of the positive electrode current collector include metal materials such as aluminum, aluminum alloy, stainless steel, nickel, titanium, and tantalum; carbon materials such as carbon cloth and carbon paper;

(セパレータ)
本開示のリチウム二次電池は、負極と正極との間にセパレータを含むことが好ましい。
セパレータは、正極と負極とを電気的に絶縁し且つリチウムイオンを透過する膜であって、多孔性膜や高分子電解質が例示される。
多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が例示される。
特に、多孔性ポリオレフィンが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、又は多孔性のポリエチレンフィルムとポリプロピレンフィルムとの多層フィルムを例示することができる。多孔性ポリオレフィンフィルム上には、熱安定性に優れる他の樹脂がコーティングされてもよい。
高分子電解質としては、リチウム塩を溶解した高分子や、電解液で膨潤させた高分子等が挙げられる。
本開示の非水電解液は、高分子を膨潤させて高分子電解質を得る目的で使用してもよい。
(Separator)
The lithium secondary battery of the present disclosure preferably includes a separator between the negative electrode and the positive electrode.
The separator is a film that electrically insulates the positive electrode and the negative electrode and transmits lithium ions, and examples thereof include a porous film and a polymer electrolyte.
A microporous polymer film is preferably used as the porous film, and examples of the material include polyolefin, polyimide, polyvinylidene fluoride, and polyester.
In particular, porous polyolefin is preferable. Specifically, a porous polyethylene film, a porous polypropylene film, or a multilayer film of a porous polyethylene film and a polypropylene film can be exemplified. On the porous polyolefin film, other resin excellent in thermal stability may be coated.
Examples of the polymer electrolyte include a polymer in which a lithium salt is dissolved, a polymer swollen with an electrolytic solution, and the like.
The nonaqueous electrolytic solution of the present disclosure may be used for the purpose of obtaining a polymer electrolyte by swelling a polymer.

(電池の構成)
本開示のリチウム二次電池は、種々公知の形状をとることができ、円筒型、コイン型、角型、ラミネート型、フィルム型その他任意の形状に形成することができる。しかし、電池の基本構造は、形状によらず同じであり、目的に応じて設計変更を施すことができる。
(Battery configuration)
The lithium secondary battery of the present disclosure can take various known shapes, and can be formed into a cylindrical shape, a coin shape, a square shape, a laminate shape, a film shape, or any other shape. However, the basic structure of the battery is the same regardless of the shape, and the design can be changed according to the purpose.

本開示のリチウム二次電池(非水電解液二次電池)の例として、ラミネート型電池が挙げられる。
図1は、本開示のリチウム二次電池の一例であるラミネート型電池の一例を示す概略斜視図であり、図2は、図1に示すラミネート型電池に収容される積層型電極体の厚さ方向の概略断面図である。
図1に示すラミネート型電池は、内部に非水電解液(図1中では不図示)及び積層型電極体(図1中では不図示)が収納され、且つ、周縁部が封止されることにより内部が密閉されたラミネート外装体1を備える。ラミネート外装体1としては、例えばアルミニウム製のラミネート外装体が用いられる。
ラミネート外装体1に収容される積層型電極体は、図2に示されるように、正極板5と負極板6とがセパレータ7を介して交互に積層されてなる積層体と、この積層体の周囲を囲むセパレータ8と、を備える。正極板5、負極板6、セパレータ7、及びセパレータ8には、本開示の非水電解液が含浸されている。
上記積層型電極体における複数の正極板5は、いずれも正極タブを介して正極端子2と電気的に接続されており(不図示)、この正極端子2の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において正極端子2が突出する部分は、絶縁シール4によってシールされている。
同様に、上記積層型電極体における複数の負極板6は、いずれも負極タブを介して負極端子3と電気的に接続されており(不図示)、この負極端子3の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において負極端子3が突出する部分は、絶縁シール4によってシールされている。
なお、上記一例に係るラミネート型電池では、正極板5の数が5枚、負極板6の数が6枚となっており、正極板5と負極板6とがセパレータ7を介し、両側の最外層がいずれも負極板6となる配置で積層されている。しかし、ラミネート型電池における、正極板の数、負極板の数、及び配置については、この一例には限定されず、種々の変更がなされてもよいことは言うまでもない。
As an example of the lithium secondary battery (nonaqueous electrolyte secondary battery) of the present disclosure, a laminate type battery can be given.
FIG. 1 is a schematic perspective view showing an example of a laminated battery that is an example of the lithium secondary battery of the present disclosure, and FIG. 2 shows the thickness of the laminated electrode body accommodated in the laminated battery shown in FIG. It is a schematic sectional drawing of a direction.
The laminate type battery shown in FIG. 1 contains a non-aqueous electrolyte (not shown in FIG. 1) and a laminated electrode body (not shown in FIG. 1) inside, and the periphery is sealed. The laminate outer package 1 is sealed inside. As the laminate exterior body 1, for example, an aluminum laminate exterior body is used.
As shown in FIG. 2, the laminated electrode body accommodated in the laminate outer package 1 includes a laminated body in which positive plates 5 and negative plates 6 are alternately laminated with separators 7 interposed therebetween. And a separator 8 surrounding the periphery. The positive electrode plate 5, the negative electrode plate 6, the separator 7, and the separator 8 are impregnated with the nonaqueous electrolytic solution of the present disclosure.
The plurality of positive electrode plates 5 in the laminated electrode body are all electrically connected to the positive electrode terminal 2 via a positive electrode tab (not shown), and a part of the positive electrode terminal 2 is part of the laminate outer package 1. It protrudes outward from the peripheral end (FIG. 1). The portion where the positive electrode terminal 2 protrudes at the peripheral end of the laminate outer package 1 is sealed with an insulating seal 4.
Similarly, each of the plurality of negative electrode plates 6 in the laminated electrode body is electrically connected to the negative electrode terminal 3 through a negative electrode tab (not shown), and a part of the negative electrode terminal 3 is part of the laminate exterior. It protrudes outward from the peripheral edge of the body 1 (FIG. 1). The portion where the negative electrode terminal 3 protrudes at the peripheral end of the laminate outer package 1 is sealed with an insulating seal 4.
In the laminate type battery according to the above example, the number of the positive plates 5 is 5 and the number of the negative plates 6 is 6, and the positive plates 5 and the negative plates 6 are separated from each other through the separators 7. All the outer layers are laminated in an arrangement to be the negative electrode plate 6. However, it is needless to say that the number of positive plates, the number of negative plates, and the arrangement in the laminated battery are not limited to this example, and various changes may be made.

本開示のリチウム二次電池の別の一例として、コイン型電池も挙げられる。
図3は、本開示のリチウム二次電池の別の一例であるコイン型電池の一例を示す概略斜視図である。
図3に示すコイン型電池では、円盤状負極12、非水電解液を注入したセパレータ15、円盤状正極11、必要に応じて、ステンレス、又はアルミニウムなどのスペーサー板17、18が、この順序に積層された状態で、正極缶13(以下、「電池缶」ともいう)と封口板14(以下、「電池缶蓋」ともいう)との間に収納される。正極缶13と封口板14とはガスケット16を介してかしめ密封する。
この一例では、セパレータ15に注入される非水電解液として、本開示の非水電解液を用いる。
As another example of the lithium secondary battery of the present disclosure, a coin-type battery is also included.
FIG. 3 is a schematic perspective view illustrating an example of a coin-type battery that is another example of the lithium secondary battery of the present disclosure.
In the coin-type battery shown in FIG. 3, a disc-shaped negative electrode 12, a separator 15 into which a non-aqueous electrolyte is injected, a disc-shaped positive electrode 11, and spacer plates 17 and 18 such as stainless steel or aluminum as necessary are arranged in this order. In a laminated state, the positive electrode can 13 (hereinafter also referred to as “battery can”) and a sealing plate 14 (hereinafter also referred to as “battery can lid”) are accommodated. The positive electrode can 13 and the sealing plate 14 are caulked and sealed via a gasket 16.
In this example, the nonaqueous electrolytic solution of the present disclosure is used as the nonaqueous electrolytic solution injected into the separator 15.

なお、本開示のリチウム二次電池は、負極と、正極と、上記本開示の非水電解液と、を含むリチウム二次電池(充放電前のリチウム二次電池)を、充放電させて得られたリチウム二次電池であってもよい。
即ち、本開示のリチウム二次電池は、まず、負極と、正極と、上記本開示の非水電解液と、を含む充放電前のリチウム二次電池を作製し、次いで、この充放電前のリチウム二次電池を1回以上充放電させることによって作製されたリチウム二次電池(充放電されたリチウム二次電池)であってもよい。
In addition, the lithium secondary battery of this indication is obtained by charging / discharging a lithium secondary battery (lithium secondary battery before charging / discharging) containing a negative electrode, a positive electrode, and the non-aqueous electrolyte of the said indication. Lithium secondary batteries may be used.
That is, a lithium secondary battery according to the present disclosure is prepared by first preparing a lithium secondary battery before charge / discharge including a negative electrode, a positive electrode, and the non-aqueous electrolyte according to the present disclosure, and then, before the charge / discharge. It may be a lithium secondary battery (charged / discharged lithium secondary battery) produced by charging / discharging the lithium secondary battery one or more times.

本開示のリチウム二次電池の用途は特に限定されず、種々公知の用途に用いることができる。例えば、ノート型パソコン、モバイルパソコン、携帯電話、ヘッドホンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、電子手帳、電卓、ラジオ、バックアップ電源用途、モーター、自動車、電気自動車、バイク、電動バイク、自転車、電動自転車、照明器具、ゲーム機、時計、電動工具、カメラ等、小型携帯機器、大型機器を問わず広く利用可能なものである。   The use of the lithium secondary battery of the present disclosure is not particularly limited, and can be used for various known uses. For example, notebook computers, mobile computers, mobile phones, headphone stereos, video movies, LCD TVs, handy cleaners, electronic notebooks, calculators, radios, backup power supply applications, motors, automobiles, electric cars, motorcycles, electric bikes, bicycles, electric motors Bicycles, lighting fixtures, game machines, watches, electric tools, cameras, etc. can be widely used regardless of small portable devices or large devices.

以下、本開示の実施例を示すが、本開示は以下の実施例によって制限されるものではない。
以下の実施例において、「添加量」は、最終的に得られる非水電解液中における含有量(即ち、最終的に得られる非水電解液全量に対する量)を意味する。
また、「wt%」は、質量%を意味する。
Examples of the present disclosure will be described below, but the present disclosure is not limited to the following examples.
In the following examples, “addition amount” means the content in the finally obtained non-aqueous electrolyte (that is, the amount relative to the total amount of the finally obtained non-aqueous electrolyte).
“Wt%” means mass%.

〔実施例1〕
以下の手順にて、リチウム二次電池であるコイン型電池(試験用電池)を作製した。
<負極の作製>
アモルファスコート天然黒鉛(97質量部)、カルボキシメチルセルロース(1質量部)及びSBRラテックス(2質量部)を水溶媒で混練してペースト状の負極合剤スラリーを調製した。
次に、この負極合剤スラリーを厚さ10μmの帯状銅箔製の負極集電体に塗布し乾燥した後に、ロールプレスで圧縮して負極集電体と負極活物質層からなるシート状の負極を得た。このときの負極活物質層の塗布密度は10mg/cmであり、充填密度は1.5g/mlであった。
[Example 1]
A coin-type battery (test battery), which is a lithium secondary battery, was produced by the following procedure.
<Production of negative electrode>
Amorphous coated natural graphite (97 parts by mass), carboxymethylcellulose (1 part by mass) and SBR latex (2 parts by mass) were kneaded with an aqueous solvent to prepare a paste-like negative electrode mixture slurry.
Next, this negative electrode mixture slurry was applied to a negative electrode current collector made of a strip-shaped copper foil having a thickness of 10 μm, dried, and then compressed by a roll press to form a sheet-shaped negative electrode comprising a negative electrode current collector and a negative electrode active material layer Got. The coating density of the negative electrode active material layer at this time was 10 mg / cm 2 , and the packing density was 1.5 g / ml.

<正極の作製>
LiNi0.5Co0.2Mn0.3(90質量部)、アセチレンブラック(5質量部)及びポリフッ化ビニリデン(5質量部)を、N−メチルピロリジノンを溶媒として混練してペースト状の正極合剤スラリーを調製した。
次に、この正極合剤スラリーを厚さ20μmの帯状アルミ箔の正極集電体に塗布し乾燥した後に、ロールプレスで圧縮して正極集電体と正極活物質層とからなるシート状の正極を得た。このときの正極活物質層の塗布密度は30mg/cmであり、充填密度は2.5g/mlであった。
<Preparation of positive electrode>
LiNi 0.5 Co 0.2 Mn 0.3 O 2 (90 parts by mass), acetylene black (5 parts by mass) and polyvinylidene fluoride (5 parts by mass) are kneaded using N-methylpyrrolidinone as a solvent to form a paste A positive electrode mixture slurry was prepared.
Next, this positive electrode mixture slurry is applied to a positive electrode current collector made of a strip-shaped aluminum foil having a thickness of 20 μm, dried, and then compressed by a roll press to form a sheet-like positive electrode comprising a positive electrode current collector and a positive electrode active material layer Got. The coating density of the positive electrode active material layer at this time was 30 mg / cm 2 , and the packing density was 2.5 g / ml.

<非水電解液の調製>
非水溶媒として、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(EMC)とをそれぞれ30:30:40(質量比)の割合で混合し、混合溶媒を得た。
得られた混合溶媒中に、電解質としてのLiPFを、最終的に得られる非水電解液中におけるLiPFの濃度が1.0mol/Lとなるように溶解させた。
上記で得られた溶液に対して、
添加剤Aである2,2,2−トリフルオロエチルメチルカーボネート(MFEC)(添加量10質量%)、
添加剤Bである4−フルオロエチレンカーボネート(FEC)(添加量2質量%)、及び
添加剤Cである1,3−プロペンスルトン(PRS)(添加量0.5質量%)
を添加し、非水電解液を得た。
得られた非水電解液中に占める非水溶媒(即ち、上述した、EC、DMC及びEMCの混合溶媒)の割合は、77.5質量%である。
<Preparation of non-aqueous electrolyte>
As a non-aqueous solvent, ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate (EMC) were mixed at a ratio of 30:30:40 (mass ratio), respectively, to obtain a mixed solvent.
In a mixed solvent obtained, a LiPF 6 as an electrolyte, the concentration of LiPF 6 in the final non-aqueous electrolyte solution obtained was dissolved at a 1.0 mol / L.
For the solution obtained above,
2,2,2-trifluoroethyl methyl carbonate (MFEC) as additive A (addition amount 10% by mass),
Additive B 4-fluoroethylene carbonate (FEC) (addition amount 2 mass%) and Additive C 1,3-propene sultone (PRS) (addition amount 0.5 mass%)
Was added to obtain a non-aqueous electrolyte.
The ratio of the nonaqueous solvent (that is, the above-mentioned mixed solvent of EC, DMC and EMC) in the obtained nonaqueous electrolytic solution is 77.5% by mass.

<コイン型電池の作製>
上述の負極を直径14mmで、上述の正極を直径13mmで、それぞれ円盤状に打ち抜き、コイン状の負極及びコイン状の正極をそれぞれ得た。また、厚さ20μmの微多孔性ポリエチレンフィルムを直径17mmの円盤状に打ち抜き、セパレータを得た。
得られたコイン状の負極、セパレータ、及びコイン状の正極を、この順序でステンレス製の電池缶(2032サイズ)内に積層し、次いで、この電池缶内に、上述の非水電解液20μLを注入し、セパレータと正極と負極とに含漬させた。
次に、正極上にアルミニウム製の板(厚さ1.2mm、直径16mm)及びバネを乗せ、ポリプロピレン製のガスケットを介して、電池缶蓋をかしめることにより電池を密封した。
以上により、直径20mm、高さ3.2mmの図3で示す構成を有するコイン型電池(即ち、コイン型のリチウム二次電池)を得た。
<Production of coin-type battery>
The negative electrode was 14 mm in diameter and the positive electrode was 13 mm in diameter, and each was punched into a disk shape to obtain a coin-shaped negative electrode and a coin-shaped positive electrode. Further, a microporous polyethylene film having a thickness of 20 μm was punched into a disk shape having a diameter of 17 mm to obtain a separator.
The obtained coin-shaped negative electrode, separator, and coin-shaped positive electrode were laminated in this order in a stainless steel battery can (2032 size), and then the above-mentioned non-aqueous electrolyte 20 μL was placed in the battery can. This was injected and impregnated in the separator, the positive electrode, and the negative electrode.
Next, an aluminum plate (thickness 1.2 mm, diameter 16 mm) and a spring were placed on the positive electrode, and the battery was sealed by caulking the battery can lid through a polypropylene gasket.
As a result, a coin-type battery (that is, a coin-type lithium secondary battery) having a configuration shown in FIG. 3 having a diameter of 20 mm and a height of 3.2 mm was obtained.

<電池の評価>
得られたコイン型電池に対し、コンディショニングを施し、コンディショニング後のコイン型電池について、以下の評価を行った。
ここで、「コンディショニング」とは、コイン型電池を、恒温槽内で25℃にて、2.75Vと4.2Vとの間で充放電を三回繰り返すことを指す。
<Battery evaluation>
Conditioning was performed on the obtained coin-type battery, and the following evaluation was performed on the coin-type battery after conditioning.
Here, “conditioning” means that the coin-type battery is repeatedly charged and discharged three times between 2.75 V and 4.2 V at 25 ° C. in a thermostatic chamber.

−初期の放電容量(0.2C)−
コンディショニング後のコイン型電池を充電レート0.2CにてSOC100%まで充電させた後、25℃にて、放電レート0.2Cにて、初期の放電容量(0.2C)を測定した。
-Initial discharge capacity (0.2C)-
The coin-type battery after conditioning was charged to SOC 100% at a charge rate of 0.2 C, and then the initial discharge capacity (0.2 C) was measured at 25 ° C. and a discharge rate of 0.2 C.

−100サイクル後の放電容量(0.2C)−
初期の放電容量(0.2C)を測定したコイン型電池に対し、高温サイクル試験を実施した。
ここで、高温サイクル試験は、55℃にて、コイン型電池を充電レート1Cで充電させて放電レート1Cで放電させるサイクルを、100サイクル行う操作とした。
高温サイクル試験後(即ち、100サイクル後)のコイン型電池を充電レート0.2CにてSOC100%まで充電させた後、25℃にて、放電レート0.2Cにて、100サイクル後の放電容量(0.2C)を測定した。
-Discharge capacity after 100 cycles (0.2C)-
A high-temperature cycle test was performed on the coin-type battery whose initial discharge capacity (0.2 C) was measured.
Here, the high-temperature cycle test was an operation in which a cycle in which a coin-type battery was charged at a charge rate of 1 C and discharged at a discharge rate of 1 C at 55 ° C. was performed 100 cycles.
After charging the coin-type battery after the high-temperature cycle test (that is, after 100 cycles) to SOC 100% at a charge rate of 0.2 C, the discharge capacity after 100 cycles at 25 ° C. and a discharge rate of 0.2 C (0.2C) was measured.

初期の放電容量(0.2C)及び100サイクル後の放電容量(0.2C)に基づき、下記式により、100サイクル放電容量維持率(%)を求めた。
結果を表1に示す。
Based on the initial discharge capacity (0.2 C) and the discharge capacity after 100 cycles (0.2 C), the 100-cycle discharge capacity retention rate (%) was determined by the following formula.
The results are shown in Table 1.

100サイクル放電容量維持率(%)
=〔100サイクル後の放電容量(0.2C)/初期の放電容量(0.2C)〕×100
100 cycle discharge capacity maintenance rate (%)
= [Discharge capacity after 100 cycles (0.2 C) / initial discharge capacity (0.2 C)] × 100

〔比較例1〕
非水電解液の調製において、添加剤Aを用いず、かつ、添加剤Bの添加量2質量%及び添加剤Cの添加量0.5質量%がそれぞれ維持されるように、添加剤Bの量及び添加剤Cの量を調整したこと以外は実施例1と同様の操作を行った。
結果を表1に示す。
[Comparative Example 1]
In the preparation of the non-aqueous electrolyte solution, the additive A was not used, and the additive B was added in an amount of 2% by mass and the additive C was added in an amount of 0.5% by mass. The same operation as in Example 1 was performed except that the amount and the amount of additive C were adjusted.
The results are shown in Table 1.

表1に示すように、非水電解液が、添加剤A、添加剤B、及び添加剤Cを含有する実施例1では、100サイクル放電容量維持率(即ち、充放電サイクル時の容量維持率)に優れていた。   As shown in Table 1, in Example 1 in which the non-aqueous electrolyte contains additive A, additive B, and additive C, 100 cycle discharge capacity retention rate (that is, capacity retention rate during charge / discharge cycle) ) Was excellent.

1 ラミネート外装体
2 正極端子
3 負極端子
4 絶縁シール
5 正極板
6 負極板
7、8 セパレータ
11 正極
12 負極
13 正極缶
14 封口板
15 セパレータ
16 ガスケット
17、18 スペーサー板
DESCRIPTION OF SYMBOLS 1 Laminate exterior body 2 Positive electrode terminal 3 Negative electrode terminal 4 Insulation seal 5 Positive electrode plate 6 Negative electrode plates 7 and 8 Separator 11 Positive electrode 12 Negative electrode 13 Positive electrode can 14 Sealing plate 15 Separator 16 Gaskets 17 and 18 Spacer plate

Claims (7)

電解質と、
非水溶媒と、
下記式(A)で表される化合物である添加剤Aと、
下記式(B)で表される化合物である添加剤Bと、
下記式(C)で表される化合物である添加剤Cと、
を含有する電池用非水電解液。

〔式(A)中、Ra1は、炭素数1〜6のフッ化炭化水素基を表し、Ra2は、炭素数1〜6の炭化水素基又は炭素数1〜6のフッ化炭化水素基を表す。〕

〔式(B)中、Rb1は、フッ素原子、又は、炭素数1〜6のフッ化炭化水素基を表し、Rb2〜Rb4は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜6の炭化水素基、又は炭素数1〜6のフッ化炭化水素基を表す。〕

〔式(C)中、Rc1〜Rc4は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜3の炭化水素基、又は炭素数1〜3のフッ化炭化水素基を表す。〕
Electrolyte,
A non-aqueous solvent;
Additive A which is a compound represented by the following formula (A);
Additive B which is a compound represented by the following formula (B);
An additive C which is a compound represented by the following formula (C);
A non-aqueous electrolyte for batteries containing

[In the formula (A), R a1 represents a fluorinated hydrocarbon group having 1 to 6 carbon atoms, and R a2 represents a hydrocarbon group having 1 to 6 carbon atoms or a fluorinated hydrocarbon group having 1 to 6 carbon atoms. Represents. ]

[In Formula (B), R b1 represents a fluorine atom or a fluorinated hydrocarbon group having 1 to 6 carbon atoms, and R b2 to R b4 each independently represent a hydrogen atom, a fluorine atom, or a carbon number of 1 Represents a -6 hydrocarbon group or a fluorinated hydrocarbon group having 1 to 6 carbon atoms. ]

[In Formula (C), R c1 to R c4 each independently represents a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 3 carbon atoms, or a fluorinated hydrocarbon group having 1 to 3 carbon atoms. ]
前記添加剤Aの含有量が、電池用非水電解液の全量に対し、0.001質量%〜30質量%であり、
前記添加剤Bの含有量が、電池用非水電解液の全量に対し、0.001質量%〜10質量%である
前記添加剤Cの含有量が、電池用非水電解液の全量に対し、0.001質量%〜10質量%である請求項1に記載の電池用非水電解液。
The content of the additive A is 0.001% by mass to 30% by mass with respect to the total amount of the battery non-aqueous electrolyte,
The content of the additive B is 0.001% by mass to 10% by mass with respect to the total amount of the battery non-aqueous electrolyte. The content of the additive C is based on the total amount of the battery non-aqueous electrolyte. The nonaqueous electrolytic solution for battery according to claim 1, which is 0.001 mass% to 10 mass%.
前記非水溶媒が、環状カーボネート化合物と、前記式(A)で表される化合物以外の鎖状カーボネート化合物と、を含む請求項1又は請求項2に記載の電池用非水電解液。   The nonaqueous electrolytic solution for a battery according to claim 1 or 2, wherein the nonaqueous solvent includes a cyclic carbonate compound and a chain carbonate compound other than the compound represented by the formula (A). 前記非水溶媒中に占める、前記環状カーボネート化合物と前記式(A)で表される化合物以外の鎖状カーボネート化合物との合計の割合が、80質量%以上である請求項3に記載の電池用非水電解液。   4. The battery according to claim 3, wherein a total ratio of the cyclic carbonate compound and a chain carbonate compound other than the compound represented by the formula (A) in the non-aqueous solvent is 80% by mass or more. Non-aqueous electrolyte. 電池用非水電解液中に占める前記非水溶媒の割合が、60質量%以上である請求項1〜請求項4のいずれか1項に記載の電池用非水電解液。   The nonaqueous electrolytic solution for a battery according to any one of claims 1 to 4, wherein a ratio of the nonaqueous solvent in the nonaqueous electrolytic solution for a battery is 60% by mass or more. 正極と、
金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を負極活物質として含む負極と、
請求項1〜請求項5のいずれか1項に記載の電池用非水電解液と、
を含むリチウム二次電池。
A positive electrode;
Lithium metal, lithium-containing alloys, metals or alloys that can be alloyed with lithium, oxides that can be doped / undoped with lithium ions, transition metal nitrides that can be doped / undoped with lithium ions, and lithium A negative electrode containing, as a negative electrode active material, at least one selected from the group consisting of carbon materials capable of ion doping and dedoping;
The non-aqueous electrolyte for a battery according to any one of claims 1 to 5,
Including lithium secondary battery.
請求項6に記載のリチウム二次電池を充放電させて得られたリチウム二次電池。   A lithium secondary battery obtained by charging and discharging the lithium secondary battery according to claim 6.
JP2018066709A 2018-03-30 2018-03-30 Electrolyte solution for batteries and lithium secondary battery Pending JP2019179613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018066709A JP2019179613A (en) 2018-03-30 2018-03-30 Electrolyte solution for batteries and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018066709A JP2019179613A (en) 2018-03-30 2018-03-30 Electrolyte solution for batteries and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2019179613A true JP2019179613A (en) 2019-10-17

Family

ID=68278778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018066709A Pending JP2019179613A (en) 2018-03-30 2018-03-30 Electrolyte solution for batteries and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2019179613A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114285A (en) * 2004-10-13 2006-04-27 Samsung Sdi Co Ltd Nonaqueous electrolyte for lithium secondary battery, the lithium secondary battery, and secondary battery system
WO2007043624A1 (en) * 2005-10-12 2007-04-19 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2009170146A (en) * 2008-01-11 2009-07-30 Sony Corp Electrolyte solution and secondary battery
WO2011034065A1 (en) * 2009-09-18 2011-03-24 三井化学株式会社 Unsaturated sultone compound, nonaqueous electrolyte solution containing same, and lithium secondary battery
JP2015191738A (en) * 2014-03-27 2015-11-02 ダイキン工業株式会社 Electrolyte and electrochemical device
JP2017004691A (en) * 2015-06-08 2017-01-05 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114285A (en) * 2004-10-13 2006-04-27 Samsung Sdi Co Ltd Nonaqueous electrolyte for lithium secondary battery, the lithium secondary battery, and secondary battery system
WO2007043624A1 (en) * 2005-10-12 2007-04-19 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2009170146A (en) * 2008-01-11 2009-07-30 Sony Corp Electrolyte solution and secondary battery
WO2011034065A1 (en) * 2009-09-18 2011-03-24 三井化学株式会社 Unsaturated sultone compound, nonaqueous electrolyte solution containing same, and lithium secondary battery
JP2015191738A (en) * 2014-03-27 2015-11-02 ダイキン工業株式会社 Electrolyte and electrochemical device
JP2017004691A (en) * 2015-06-08 2017-01-05 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module

Similar Documents

Publication Publication Date Title
JPWO2018181369A1 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7103713B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP7115724B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP2022126851A (en) Nonaqueous electrolyte solution for batteries, and lithium secondary battery
WO2020022452A1 (en) Nonaqueous electrolyte solution for batteries and lithium secondary battery
JP2019186078A (en) Nonaqueous electrolytic solution for battery, and lithium secondary battery
WO2020121850A1 (en) Non-aqueous electrolyte for battery and lithium secondary battery
JP7168158B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP6957179B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP7216805B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7264899B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7395816B2 (en) Non-aqueous electrolytes for batteries and lithium secondary batteries
JP2018170237A (en) Nonaqueous electrolyte solution for battery and lithium secondary battery
JP6980502B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7060190B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP2019179614A (en) Electrolyte solution for batteries and lithium secondary battery
JP2021048006A (en) Non-aqueous electrolyte for battery and lithium secondary battery
JP7070979B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7070978B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7206556B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP2018190569A (en) Nonaqueous electrolyte solution for battery, additive agent for battery, and lithium secondary battery
JP2019179613A (en) Electrolyte solution for batteries and lithium secondary battery
JP7326681B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7200465B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7259196B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221025