JP2007095534A - Method of manufacturing nonaqueous electrolyte secondary battery - Google Patents

Method of manufacturing nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2007095534A
JP2007095534A JP2005284362A JP2005284362A JP2007095534A JP 2007095534 A JP2007095534 A JP 2007095534A JP 2005284362 A JP2005284362 A JP 2005284362A JP 2005284362 A JP2005284362 A JP 2005284362A JP 2007095534 A JP2007095534 A JP 2007095534A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005284362A
Other languages
Japanese (ja)
Inventor
Hidekazu Hiratsuka
秀和 平塚
Shinji Arimoto
真司 有元
Takahiro Sakamoto
隆宏 坂元
Yasuaki Ichitaka
康晃 一▲高▼
Tatsuya Hashimoto
達也 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005284362A priority Critical patent/JP2007095534A/en
Publication of JP2007095534A publication Critical patent/JP2007095534A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a positive electrode plate for nonaqueous electrolyte secondary battery which has high capacitance (highly filled) and high electron conductivity, and is strong by solving the problem that high efficient charging/discharging characteristics and cycle characteristics decrease when a conductive agent and a binder are reduced for high capacity of battery, in the case of manufacturing the positive electrode plate by a conventional method. <P>SOLUTION: In the nonaqueous electrolyte secondary battery, particularly in a manufacturing method of the positive plate, when kneading, to uniform the dispersion of the conductive agent and the binder, a positive electrode active material where DBP absorbed amount is below 20 ml/100 g is used. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非水電解質二次電池の製造方法に関し、特に原材料として好適な正極活物質を使用して正極板を作成するものに関する。   The present invention relates to a method for producing a non-aqueous electrolyte secondary battery, and particularly relates to a method for producing a positive electrode plate using a positive electrode active material suitable as a raw material.

リチウムイオン二次電池の形状としては円筒型と角型があり、いずれも正極と負極がセパレーターを介し、倦廻された極群を電池缶内へ挿入し、有機電解液が注入され、封口された構造となっている。   The shape of the lithium ion secondary battery includes a cylindrical shape and a rectangular shape. In both cases, the positive electrode and the negative electrode are inserted through a separator, the wound electrode group is inserted into a battery can, and an organic electrolyte is injected and sealed. It has a structure.

正極活物質としては、リチウムコバルト複合酸化物(LiCoO2、LiCo1-x-yMgxAly2)、リチウムニッケル複合酸化物(LiNiO2、LiNi1-xCox2、LiNi1-x-yCoxAly2、LiNi1-x-yCoxMny2)、リチウムマンガン複合酸化物(LiMn24、LiMn2-xCrx4、LiMn2-xAlx4、LiMn2-xNix4)、リチウムチタン複合酸化物(Li4Ti512)若しくは、前記正極活物質を数種組み合わせた混合品が用いられ、負極活物質としてはコークスや黒鉛等のリチウムイオンを吸脱着できる炭素材料が用いられている。 As the positive electrode active material, lithium cobalt composite oxide (LiCoO 2 , LiCo 1-xy Mg x Al y O 2 ), lithium nickel composite oxide (LiNiO 2 , LiNi 1-x Co x O 2 , LiNi 1-xy Co x Al y O 2, LiNi 1 -xy Co x Mn y O 2), lithium manganese composite oxide (LiMn 2 O 4, LiMn 2 -x Cr x O 4, LiMn 2-x Al x O 4, LiMn 2- x Ni x O 4 ), lithium-titanium composite oxide (Li 4 Ti 5 O 12 ), or a mixture of several combinations of the positive electrode active materials is used. As the negative electrode active material, lithium ions such as coke and graphite are used. Carbon materials that can be adsorbed and desorbed are used.

これらの正極活物質または負極活物質は、結着剤として例えばポリフッ化ビニリデン(PVDF)や、ポリテトラフルオロエチレン(PTFE)と、必要に応じて、アセチレンブラックや黒鉛などの導電剤および溶媒を加え、撹拌・混合し、ペーストになったものを、アルミニウムや銅などの金属箔へ塗布し、乾燥後、圧延、所定寸法に裁断することでシート状に成形し、リチウムイオン二次電池の電極とする。   These positive electrode active materials or negative electrode active materials include, for example, polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE) as a binder and, if necessary, a conductive agent such as acetylene black or graphite and a solvent. , Agitated and mixed, and the paste is applied to a metal foil such as aluminum or copper, dried, rolled, cut into a predetermined size and formed into a sheet, and the lithium ion secondary battery electrode To do.

リチウムイオン二次電池の高容量化を達成するための手段としては、電池反応に寄与しない導電剤や結着剤の含有量を減らし、電池内へより多く活物質を充填する方法が有効である。   As a means for achieving a higher capacity of the lithium ion secondary battery, a method of reducing the content of a conductive agent and a binder that do not contribute to the battery reaction and filling the battery with more active material is effective. .

しかしながら、正極の高密度化を考えた場合、導電剤の減少により、粒子間の電子伝導性が低下し、重負荷条件での放電特性が悪化する。また、結着剤の減少により、粒子同士の結合力が弱くなる。そのような状態で充放電を繰り返した場合、結晶格子の膨張・収縮によって、正極活物質と導電剤との接触が悪くなり電池容量の低下を招くことになる。   However, considering the increase in the density of the positive electrode, the decrease in the conductive agent reduces the electron conductivity between the particles and deteriorates the discharge characteristics under heavy load conditions. Further, the binding force between the particles becomes weak due to the decrease in the binder. When charging / discharging is repeated in such a state, the contact between the positive electrode active material and the conductive agent is deteriorated due to expansion and contraction of the crystal lattice, leading to a decrease in battery capacity.

このため、例えば、特許文献1などでは、正極活物質の粒子径を最適化する方法が、特許文献2では、正極活物質に異種元素を添加、固溶する方法が提案されている。   For this reason, for example, Patent Document 1 proposes a method of optimizing the particle diameter of the positive electrode active material, and Patent Document 2 proposes a method of adding a different element to the positive electrode active material and dissolving it.

このように、従来から提案されている方法では、電池の高容量化を達成しつつ、高効率放電特性およびサイクル特性を満足させるのは、困難であった。
特開平5−151988号公報 特開昭63−121258号公報
As described above, it has been difficult for the conventionally proposed methods to satisfy the high-efficiency discharge characteristics and the cycle characteristics while achieving an increase in battery capacity.
Japanese Patent Laid-Open No. 5-151988 JP 63-121258 A

しかしながら、特許文献1のような正極活物質の粒子径を最適化する方法では、サイクル特性の改善は見られるものの、高効率放電特性は低下する傾向がある。高効率充放電特性を向上させるには、粒子径を小さくする必要があり、それにより、正極活物質の充填性が損なわれ、電池容量の低下が懸念される。   However, in the method of optimizing the particle diameter of the positive electrode active material as in Patent Document 1, although the cycle characteristics are improved, the high-efficiency discharge characteristics tend to be lowered. In order to improve the high-efficiency charge / discharge characteristics, it is necessary to reduce the particle diameter, thereby impairing the filling property of the positive electrode active material, and there is a concern about a decrease in battery capacity.

また、特許文献2のような正極活物質に異種元素を添加、固溶する方法では、充放電に伴う結晶子の膨張・収縮を抑えることが可能であるが、正極活物質の放電特性が損なわれ、電池の容量が低下する問題がある。   Further, in the method of adding a different element to the positive electrode active material as in Patent Document 2 and solid-dissolving it, it is possible to suppress the expansion and contraction of the crystallite accompanying charge / discharge, but the discharge characteristics of the positive electrode active material are impaired. Therefore, there is a problem that the capacity of the battery is reduced.

本発明は、上記のような課題を解決するものであり、正極の製造方法を改良することにより、電池の高容量化を達成しつつ、高効率充放電特性やサイクル特性良好な放電特性を示す非水電解質二次電池を提供することを目的とする。   The present invention solves the above-mentioned problems, and by improving the manufacturing method of the positive electrode, it achieves high battery capacity while exhibiting high-efficiency charge / discharge characteristics and good cycle characteristics. An object is to provide a nonaqueous electrolyte secondary battery.

本発明者は、上記目的を達成するため鋭意検討を重ねた結果、平均粒子径5〜20μm、比表面積が0.2〜2.0m2/g、且つDBP吸収量が、20ml/100g未満であるリチウム含有複合酸化物を正極活物質として用いることにより、練合時、ペースト中にある導電剤であるカーボンブラックや結着剤の分散が均一に行われ、その結果、高い電子導電性と極板保持性を併せ持つことを知見した。 As a result of intensive studies to achieve the above object, the present inventor has an average particle diameter of 5 to 20 μm, a specific surface area of 0.2 to 2.0 m 2 / g, and a DBP absorption of less than 20 ml / 100 g. By using a certain lithium-containing composite oxide as the positive electrode active material, carbon black as a conductive agent and a binder in the paste are uniformly dispersed during kneading, resulting in high electronic conductivity and extreme polarity. It was found that it has plate retention.

また、このとき、導電剤が正極活物質100重量%に対して0.5〜5.0重量%であって、結着剤が1.0〜10.0重量%であることが好ましい。   At this time, it is preferable that the conductive agent is 0.5 to 5.0% by weight with respect to 100% by weight of the positive electrode active material, and the binder is 1.0 to 10.0% by weight.

本発明によれば、DBP吸収量が小さく、適正な物性をもつ正極活物質を用いることにより、高電子伝導性および強固な非水電解液二次電池用正極板の作製が可能となる。従って、少量の導電剤や結着剤でも、優れた高効率充放電特性およびサイクル寿命特性を維持しつつ、電池の高容量(高充填)を実現するものである。   According to the present invention, by using a positive electrode active material having a small DBP absorption amount and appropriate physical properties, it is possible to produce a positive electrode plate for a non-aqueous electrolyte secondary battery with high electron conductivity and strength. Therefore, even with a small amount of a conductive agent and a binder, a high capacity (high filling) of the battery is realized while maintaining excellent high-efficiency charge / discharge characteristics and cycle life characteristics.

まず、本発明の正極活物質の粒子形態および凝集構造ついて説明する。正極活物質としては、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物、リチウムチタン複合酸化物のなかの少なくとも一種からなる。これら正極活物質の粒子形態および凝集構造としては、微球状もしくは燐片状の基本粒子(一次粒子)が緻密に連接した球状もしくは球状に類似した凝集体(二次粒子)を呈している。さらに、凝集体(二次粒子)は不規則に積層し、より大きな凝集構造(三次粒子)を形成している。   First, the particle form and aggregate structure of the positive electrode active material of the present invention will be described. The positive electrode active material is composed of at least one of lithium cobalt composite oxide, lithium nickel composite oxide, lithium manganese composite oxide, and lithium titanium composite oxide. As the particle form and aggregate structure of these positive electrode active materials, spherical or sphere-like aggregates (secondary particles) in which fine spherical or flake shaped basic particles (primary particles) are closely connected are exhibited. Furthermore, the aggregates (secondary particles) are irregularly stacked to form a larger aggregated structure (tertiary particles).

このような構造をもつ正極活物質を、導電剤と結着剤および分散媒とを加えて練合する際、導電剤と結合材および分散材が正極活物質の粒子間で存在する部分と粒子内空孔へ侵入する部分とに分かれる。   When a positive electrode active material having such a structure is kneaded by adding a conductive agent, a binder, and a dispersion medium, a portion and particles where the conductive agent, the binder, and the dispersion material exist between the positive electrode active material particles It is divided into the part that penetrates the inner hole.

上記ペーストをアルミニウム箔へ塗布し、乾燥して正極板を作製すると、導電剤と結着剤が正極活物質の粒子間でネットワークを構成し、電子伝導性や結合性を帯びる。   When the paste is applied to an aluminum foil and dried to produce a positive electrode plate, the conductive agent and the binder form a network between the particles of the positive electrode active material, and have electronic conductivity and binding properties.

しかしながら、粒子内へ内包された導電剤と結着剤は、機能的に失活した状態となることから、電池特性を向上させるためには、なるべく凝集構造(三次粒子)および凝集体(二次粒子)を懐割すべきである。   However, since the conductive agent and the binder encapsulated in the particles are in a functionally deactivated state, in order to improve battery characteristics, the aggregated structure (tertiary particles) and the aggregate (secondary) Particle) should be saved.

また、粉体物性も電池特性に大きく関与している。粒子径を極小化すると、正極活物質の充填性が落ち、また、電子伝導性や結合性を維持するための導電剤や結着剤を増やす必要性が生じるため、電池容量を大きくを損なう恐れがある。また、大粒径化するとイオン導電性の悪化、もしくは比表面積の減少が著しいと、電解液との有効反応面積が減少し、良好な高効率充放電特性が得られなくなる。   Powder physical properties are also greatly involved in battery characteristics. If the particle size is minimized, the filling capacity of the positive electrode active material is lowered, and it is necessary to increase the conductive agent and the binder for maintaining the electron conductivity and the binding property, which may impair the battery capacity. There is. On the other hand, when the particle size is increased, if the ionic conductivity is deteriorated or the specific surface area is remarkably reduced, the effective reaction area with the electrolytic solution is reduced, and good high-efficiency charge / discharge characteristics cannot be obtained.

以上の観点より、電池特性の向上には正極活物質の粉体物性および凝集構造の両面を制御することが重要である。   From the above viewpoint, it is important to control both the powder physical properties and the aggregation structure of the positive electrode active material in order to improve battery characteristics.

正極活物質の粉体物性を制御するためには、正極活物質の製造条件、つまり原料の種類や配合、焼成条件によって、基本的な構造や特性を変化させる必要性がある。     In order to control the powder physical properties of the positive electrode active material, it is necessary to change the basic structure and characteristics depending on the manufacturing conditions of the positive electrode active material, that is, the type and composition of raw materials, and the firing conditions.

例えば、正極活物質の合成時の熱処理温度を高くすると結晶化が促進され焼結がすすみ粒子内部のクラックが消失、正極活物質の大粒径化、高密度化が促進される。   For example, when the heat treatment temperature at the time of synthesizing the positive electrode active material is increased, crystallization is promoted and sintering proceeds, cracks inside the particles disappear, and increase in the particle size and density of the positive electrode active material are promoted.

しかしながら、熱処理温度を上げすぎると正極活物質の分解・酸素放出が起り、結晶構造が崩壊し、充放電容量が減少するため、適度な熱処理温度に調整する必要がある。また、
正極活物質の比表面積の減少が著しいと、電解液との有効反応面積が減少し、良好な高効率充放電特性が得られなくなる。
However, if the heat treatment temperature is increased too much, decomposition of the positive electrode active material and oxygen release occur, the crystal structure collapses, and the charge / discharge capacity decreases, so it is necessary to adjust to an appropriate heat treatment temperature. Also,
If the specific surface area of the positive electrode active material is significantly reduced, the effective reaction area with the electrolytic solution is reduced, and good high-efficiency charge / discharge characteristics cannot be obtained.

正極活物質の凝集体については、機械的に粉砕および分級することにより制御することができる。   The aggregate of the positive electrode active material can be controlled by mechanical pulverization and classification.

正極活物質の凝集構造の大きさを示すため、JIS K−6217−4「ゴム用カーボンブラック―基本特性―第4部:DBP吸収量の求め方」で規定されているDBP(ジブチルフタレート)吸収量A法(機械法)を適用した。   In order to indicate the size of the aggregate structure of the positive electrode active material, DBP (dibutyl phthalate) absorption defined in JIS K-6217-4 “Carbon black for rubber—Basic characteristics—Part 4: Determination of DBP absorption” The quantity A method (mechanical method) was applied.

正極活物質の凝集粒子を細密充填し、その空隙を置換する油量を尺度とする吸収量で示す。ここではアブソープトメータを使用し、カーボンブラックにDBP(ジブチルフタレート)を添加したときの最大トルクの70% から求めた100g 当たりの吸液量をDBP吸収量として定義する。   It is expressed as an absorption amount based on the amount of oil that finely packs the aggregated particles of the positive electrode active material and replaces the voids. Here, an absorption meter is used, and the liquid absorption per 100 g obtained from 70% of the maximum torque when DBP (dibutyl phthalate) is added to carbon black is defined as the DBP absorption.

本発明者が研究を重ねた結果、正極活物質の平均粒径は5〜20μm、比表面積が0.2〜2.0m2/gの範囲で調整することが必要である。 As a result of repeated studies by the present inventor, it is necessary to adjust the average particle diameter of the positive electrode active material in a range of 5 to 20 μm and a specific surface area of 0.2 to 2.0 m 2 / g.

また、練合時、正極活物質のDBP吸収量が、20ml/100g未満であれば、導電剤や結着剤は分散媒により、充分に拡散し、高効率放電特性およびサイクル特性が向上する。   Further, when the DBP absorption amount of the positive electrode active material is less than 20 ml / 100 g at the time of kneading, the conductive agent and the binder are sufficiently diffused by the dispersion medium, and the high-efficiency discharge characteristics and cycle characteristics are improved.

上記導電剤としては、アセチレンブラックや黒鉛などのカーボンブラックを用い、添加量は正極活物質100重量%に対して0.5〜5.0重量%が好ましく、より好ましくは1.0〜4.0重量%である。カーボンブラックの添加量が少なすぎると導電性能が発現し得なくなる場合がある。一方、多すぎると分散媒の大部分がカーボンブラックに吸収されてしまい、流動性がなくなり、ハンドリング性が著しく困難になる場合がある。   As the conductive agent, carbon black such as acetylene black or graphite is used, and the addition amount is preferably 0.5 to 5.0% by weight, more preferably 1.0 to 4.4% with respect to 100% by weight of the positive electrode active material. 0% by weight. If the amount of carbon black added is too small, the conductive performance may not be exhibited. On the other hand, if the amount is too large, most of the dispersion medium is absorbed by the carbon black, the fluidity is lost, and the handling property may be extremely difficult.

上記分散媒は、主に正極活物質の耐水性によって決定される。例えば、コバルト酸リチウム(LiCoO2)は耐水性が高いため、有機溶剤でも水でも使用可能である。ニッケル酸リチウム(LiNiO2)は、水に触れると、結晶内からリチウムが溶出し、結晶構造が崩れるため、主にN−メチル−2−ピロリドン(NMP)等の有機溶媒を使用する。 The dispersion medium is mainly determined by the water resistance of the positive electrode active material. For example, since lithium cobaltate (LiCoO 2) has high water resistance, it can be used with either an organic solvent or water. Lithium nickelate (LiNiO 2 ) mainly uses an organic solvent such as N-methyl-2-pyrrolidone (NMP) because lithium elutes from the inside of the crystal when touched with water and the crystal structure is destroyed.

分散媒として水を用いた場合は、分散剤を用いることが好ましい。この分散剤は正極活物質や導電剤であるカーボンブラックと水とのぬれ性を向上させ、分散を容易にする機能と、系の粘度を増大させ、ペーストの保存安定性を良好に保つ機能を有するものである。   When water is used as the dispersion medium, it is preferable to use a dispersant. This dispersant improves the wettability between the positive electrode active material and carbon black, which is a conductive agent, and water, facilitates dispersion, increases the viscosity of the system, and maintains the paste storage stability. It is what you have.

上記分散剤としては、例えばカルボキシメチルセルロース(CMC)、ヒドロキシエチ
ルセルロース等のセルロース系高分子、ポリアクリル酸ナトリウム等のアクリル酸系高分子などが用いられ、これらの1種を単独で又は2種を組み合わせて使用することができる。中でもセルロース系高分子が好ましい。
Examples of the dispersant include cellulose polymers such as carboxymethyl cellulose (CMC) and hydroxyethyl cellulose, acrylic polymers such as sodium polyacrylate, and the like, either alone or in combination of two. Can be used. Of these, cellulosic polymers are preferred.

結着剤としては、分散媒に有機溶剤を使用するようであれば、ポリフッ化ビニリデンや変性アクリルゴム、水を使用するようであればポリテトラフルオロエチレン(PTFE)を用いる。   As the binder, polyvinylidene fluoride or modified acrylic rubber is used if an organic solvent is used as the dispersion medium, and polytetrafluoroethylene (PTFE) is used if water is used.

その添加量は、正極活物質100重量%に対して1.0〜10.0重量%が好ましく、より好ましくは2.0〜5.0重量%である。1.0重量%未満では結着力が弱く、10.0重量%を越えるとLiイオンの移動を阻害し、電池としての性能が低下するからである
このようにして得られたペーストを集電体であるアルミニウム箔上に塗工し、圧延・切断などの工程を経て所望の正極を作製することができる。
The addition amount is preferably 1.0 to 10.0% by weight, more preferably 2.0 to 5.0% by weight, based on 100% by weight of the positive electrode active material. If the amount is less than 1.0% by weight, the binding force is weak, and if it exceeds 10.0% by weight, the movement of Li ions is inhibited, and the performance as a battery is deteriorated. The paste thus obtained is used as a current collector. The desired positive electrode can be produced by coating on an aluminum foil and performing processes such as rolling and cutting.

次に、本発明の正極を非水電解質二次電池に用いた実施の形態を、図面を参照しながら説明する。   Next, an embodiment in which the positive electrode of the present invention is used for a nonaqueous electrolyte secondary battery will be described with reference to the drawings.

図1において、本発明の正極である正極板5と負極板6とをポリエチレン微多孔膜からなるセパレータ7を介して渦巻状に巻回し極板群4を作成する。この極板群4を耐有機電解液性のステンレス鋼板を加工した電池ケース1に収納する。この後、エチレンカーボネートとエチルメチルカーボネートの体積比1:1の混合溶媒にLiPF6を1.5モル/リットルの濃度になるように溶解した非水電解液を極板群4に注入し、安全弁を設けた封口板2によりガスケット3を介して電池を封口する。尚、正極板5からは正極リード5aが引き出されて封口板2に接続され、負極板6からは負極リード6aが引き出されて電池ケース1の底部に接続されている。また、絶縁リング8を極板群4の上下部にそれぞれ設ける。 In FIG. 1, a positive electrode plate 5 and a negative electrode plate 6 which are positive electrodes of the present invention are spirally wound through a separator 7 made of a polyethylene microporous film to form an electrode plate group 4. The electrode plate group 4 is housed in a battery case 1 in which an organic electrolyte resistant stainless steel plate is processed. Thereafter, a non-aqueous electrolyte solution prepared by dissolving LiPF 6 in a mixed solvent of ethylene carbonate and ethyl methyl carbonate at a volume ratio of 1: 1 to a concentration of 1.5 mol / liter is injected into the electrode plate group 4, and the safety valve The battery is sealed through the gasket 3 by the sealing plate 2 provided with the above. A positive electrode lead 5 a is drawn from the positive electrode plate 5 and connected to the sealing plate 2, and a negative electrode lead 6 a is drawn from the negative electrode plate 6 and connected to the bottom of the battery case 1. Insulating rings 8 are provided on the upper and lower portions of the electrode plate group 4, respectively.

尚、負極板6は、人造黒鉛粉末95重量%に対し結着剤としてスチレンブタジエンゴム5重量%を混合し、これらをカルボキシメチルセルロース(CMC)水溶液に懸濁させてペースト状にし、このペーストを厚さ15μmの銅箔の両面に塗布し、乾燥後、圧延して作製する。人造黒鉛の他に天然黒鉛、難黒鉛化炭素等の炭素材料、SiSnO等の金属酸化物、金属窒化物、珪化物、Sn合金等のリチウムイオンを吸蔵・放出できる化合物なら何でもよい。   The negative electrode plate 6 was prepared by mixing 95% by weight of artificial graphite powder with 5% by weight of styrene butadiene rubber as a binder, and suspending these in an aqueous carboxymethyl cellulose (CMC) solution to form a paste. It is applied to both sides of a 15 μm thick copper foil, dried and rolled. In addition to artificial graphite, carbon materials such as natural graphite and non-graphitizable carbon, metal oxides such as SiSnO, metal nitrides, silicides, Sn alloys and the like can be used as long as they can occlude and release lithium ions.

以下、本発明の実施例について詳細に説明する。尚、本発明はこれら実施例に限定されるものではない。   Examples of the present invention will be described in detail below. The present invention is not limited to these examples.

正極活物質として組成式LiNi0.33Co0.33Mn0.332を用いた。
製造方法としては、Li2CO3と平均粒径を2μm、5μm、10μm、20μmであるNi0.33Mn0.33Co0.33(OH)2をリチウムと金属(ニッケルとマンガンとコバルトの総量)のモル比が1:1となるよう各々混合し、空気雰囲気下で焼成温度600℃で5時間、仮焼した後、空気雰囲気下で焼成温度800℃、900℃、1000℃、1050℃で各々10時間本焼成し、合成物を得た。
The composition formula LiNi 0.33 Co 0.33 Mn 0.33 O 2 was used as the positive electrode active material.
As a manufacturing method, Li 2 CO 3 and Ni 0.33 Mn 0.33 Co 0.33 (OH) 2 having an average particle diameter of 2 μm, 5 μm, 10 μm, and 20 μm are mixed in a molar ratio of lithium to metal (total amount of nickel, manganese, and cobalt). Each was mixed to 1: 1, calcined in an air atmosphere at a firing temperature of 600 ° C. for 5 hours, and then fired in an air atmosphere at a firing temperature of 800 ° C., 900 ° C., 1000 ° C., and 1050 ° C. for 10 hours each. As a result, a composite was obtained.

得られた合成物は、増幸産業(株)社製スーパーマスコロイダーや日本ニューマチック工業(株)社製のPJM式ジェットミルにて凝集体に加わる剪断力及び圧縮力を変化させて粉砕し、日本ニューマチック社製のMDS−1型気流分級機にかけて種々の条件にて分級し、本実施例で使用する正極活物質1〜15とした。   The resulting composite was pulverized by changing the shear force and compressive force applied to the aggregates with a supermass colloider manufactured by Masuko Sangyo Co., Ltd. or a PJM jet mill manufactured by Nippon Pneumatic Industry Co., Ltd. The materials were classified under various conditions using an MDS-1 airflow classifier manufactured by Nippon Pneumatic Co., Ltd., and used as positive electrode active materials 1 to 15 used in this example.

表1に正極活物質1〜15のDBP吸収量、平均粒径、比表面積を示す。   Table 1 shows the DBP absorption amount, average particle diameter, and specific surface area of the positive electrode active materials 1 to 15.

(実施例1)
正極活物質1を用いて正極板、電池を作製した。すなわち、正極活物質100重量%に対し、導電剤として1重量%のアセチレンブラック、結着剤として2重量%のポリフッ化ビニリデン(PVDF)樹脂を計量し、所定量のN−2−メチルピロリドン(NMP)と攪拌混合し正極ペーストを得た。そして、厚さ20μmのアルミニウム箔を集電体とし、その両面に前記正極ペーストを塗布し、乾燥後圧延ローラーを用いて圧延を行い、所定寸法に裁断して正極板とした。
Example 1
A positive electrode plate and a battery were prepared using the positive electrode active material 1. That is, 1% by weight of acetylene black as a conductive agent and 2% by weight of polyvinylidene fluoride (PVDF) resin as a binder are weighed with respect to 100% by weight of the positive electrode active material, and a predetermined amount of N-2-methylpyrrolidone ( NMP) and mixed with stirring to obtain a positive electrode paste. And the aluminum foil of thickness 20 micrometers was made into the electrical power collector, the said positive electrode paste was apply | coated on both surfaces, it dried and rolled using the rolling roller, it cut | judged to the predetermined dimension, and it was set as the positive electrode plate.

この正極板を用い、先述した方法で、直径18mm、高さ65mm、公称容量2000mAhの円筒形非水電解質二次電池を作製した。この作製した電池は電池1とする。   Using this positive electrode plate, a cylindrical nonaqueous electrolyte secondary battery having a diameter of 18 mm, a height of 65 mm, and a nominal capacity of 2000 mAh was produced by the method described above. This manufactured battery is referred to as battery 1.

(実施例2〜5)
正極活物質2〜5を用いる以外は実施例1と同じ条件で電池を作製した。この作製した電池は電池2〜5とする。
(Examples 2 to 5)
A battery was produced under the same conditions as in Example 1 except that the positive electrode active materials 2 to 5 were used. The produced batteries are designated as batteries 2-5.

(実施例6)
正極活物質4を用い、結着剤としてPVDFを5重量%とし、その他の材料・および作製手順は実施例1と同様の条件で非水電解質二次電池を作製した。この作製した電池は電池6とする。
(Example 6)
A positive electrode active material 4 was used, PVDF was 5 wt% as a binder, and other materials and production procedures were the same as in Example 1 to produce a nonaqueous electrolyte secondary battery. This produced battery is designated as battery 6.

(実施例7)
正極活物質4を用い、導電剤であるアセチレンブラックの添加量を4重量%とし、その他の材料・および作製手順は実施例1と同様の条件で非水電解質二次電池を作製した。この作製した電池は電池7とする。
(Example 7)
A non-aqueous electrolyte secondary battery was produced using the positive electrode active material 4, the addition amount of acetylene black as a conductive agent being 4 wt%, and other materials and production procedures similar to those in Example 1. This produced battery is designated as battery 7.

(実施例8)
正極活物質4を用いて正極板、電池を作製した。すなわち、正極活物質100重量%に対し、導電剤として1重量%のアセチレンブラック、結着剤として2重量%のポリテトラフルオロエチレン(PTFE)樹脂を計量し、これらをカルボキシメチルセルロース(CMC)水溶液に懸濁させてペースト状にし、このペーストを厚さ20μmのアルミニウム箔を集電体とし、その両面に前記正極ペーストを塗布し、乾燥後圧延ローラーを用いて圧延を行い、所定寸法に裁断して正極板とした。
(Example 8)
A positive electrode plate and a battery were prepared using the positive electrode active material 4. That is, 1% by weight of acetylene black as a conductive agent and 2% by weight of polytetrafluoroethylene (PTFE) resin as a binder are weighed with respect to 100% by weight of the positive electrode active material, and these are added to a carboxymethylcellulose (CMC) aqueous solution. Suspended to form a paste, this paste is made of aluminum foil with a thickness of 20 μm as a current collector, the positive electrode paste is applied to both sides of the paste, dried and then rolled using a rolling roller, and cut into a predetermined size. A positive electrode plate was obtained.

この正極板を用い、先述した方法で、直径18mm、高さ65mm、公称容量2000mAhの円筒形非水電解質二次電池を作製した。この作製した電池は電池8とする。   Using this positive electrode plate, a cylindrical nonaqueous electrolyte secondary battery having a diameter of 18 mm, a height of 65 mm, and a nominal capacity of 2000 mAh was produced by the method described above. This produced battery is designated as battery 8.

(比較例1〜10)
実施例1において、正極活物質6〜15以外は、実施例1と同様にして非水電解質二次電池を作製した。この作製した電池は比較電池1〜10とする。
(Comparative Examples 1-10)
In Example 1, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except for the positive electrode active materials 6 to 15. The fabricated batteries are referred to as comparative batteries 1-10.

(比較例11)
正極活物質4を用い、結着剤としてPVDFを11重量%とし、その他の材料・および作製手順は実施例1と同様の条件で非水電解質二次電池を作製した。この作製した電池は比較電池11とする。
(Comparative Example 11)
A positive electrode active material 4 was used, PVDF was 11 wt% as a binder, and other materials and production procedures were the same as in Example 1 to produce a nonaqueous electrolyte secondary battery. This manufactured battery is referred to as a comparative battery 11.

(比較例12)
正極活物質4を用い、導電剤であるアセチレンブラックの添加量を0.1重量%とし、その他の材料・および作製手順は実施例1と同様の条件で非水電解質二次電池を作製した。この作製した電池は比較電池12とする。
(Comparative Example 12)
A positive electrode active material 4 was used, the addition amount of acetylene black as a conductive agent was 0.1% by weight, and other materials and production procedures were the same as in Example 1 to produce a nonaqueous electrolyte secondary battery. This manufactured battery is referred to as a comparative battery 12.

これらの電池を電池内部の安定化を目的に24時間のエージング期間を経過した後に、充電電圧を4.2Vに設定して5時間で充電を行なった。ついで400mA(0.2CmA)の一定電流で3.0Vまで放電を行ない、更なる安定化のために、4.2V充電、3.0V放電の充放電サイクルを10サイクル行なった。   These batteries were charged in 5 hours with a charging voltage set to 4.2 V after an aging period of 24 hours had elapsed for the purpose of stabilizing the inside of the battery. Subsequently, the battery was discharged at a constant current of 400 mA (0.2 CmA) to 3.0 V, and for further stabilization, 10 charging and discharging cycles of 4.2 V charging and 3.0 V discharging were performed.

次に、充電電圧4.2V設定で3時間充電した後、400mAの一定電流で3.0Vまで放電を行った。この時得られた放電容量を0.2CmA容量とする。次いで上記条件で充電の後、4000mAの一定電流で3.0Vまで放電を行った。この時得られた放電容量を2CmA容量とする。   Next, after charging for 3 hours at a charging voltage of 4.2 V, discharging was performed to 3.0 V at a constant current of 400 mA. The discharge capacity obtained at this time is 0.2 CmA capacity. Next, after charging under the above conditions, the battery was discharged to 3.0 V at a constant current of 4000 mA. The discharge capacity obtained at this time is defined as 2 CmA capacity.

2CmAの0.2CmA容量に対する維持率を高効率放電特性とした。   The maintenance rate with respect to 0.2 CmA capacity of 2 CmA was defined as high efficiency discharge characteristics.

また、上記条件で充電の後、2000mAの一定電流で3.0Vまで放電を行った。
この時得られた放電容量を1CmA(1st)容量とする。
Further, after charging under the above conditions, the battery was discharged to 3.0 V at a constant current of 2000 mA.
The discharge capacity obtained at this time is defined as 1 CmA (1st) capacity.

この条件で、充放電を300サイクル繰り返し、300サイクル目の放電容量を1CmA(300th)容量とする。   Under these conditions, charge / discharge is repeated for 300 cycles, and the discharge capacity at the 300th cycle is set to 1 CmA (300th) capacity.

1CmA(300th)容量の1CmA(1st)容量に対する維持率をサイクル寿命特性とした。   The maintenance ratio of 1 CmA (300th) capacity to 1 CmA (1st) capacity was defined as cycle life characteristics.

次に電池特性の評価結果を表2に示す。   Next, evaluation results of battery characteristics are shown in Table 2.

電池1〜5と比較電池6、および比較電池11〜15の電池特性の比較より、DBP吸収量が低い正極活物質を用いることにより、少量の導電剤や結着剤でも優れた高効率保存特性やサイクル寿命特性を示すことが分かった。   By comparing the battery characteristics of the batteries 1 to 5, the comparative battery 6, and the comparative batteries 11 to 15, a high-efficiency storage characteristic that is excellent even with a small amount of a conductive agent and a binder by using a positive electrode active material having a low DBP absorption amount. And cycle life characteristics.

これは、正極板作製時、DBP吸収量が低い正極活物質の方が、導電剤および結着剤の分散性が向上し、機能的なネットワークを形成していること示唆される。   This suggests that the positive electrode active material having a lower DBP absorption amount improves the dispersibility of the conductive agent and the binder and forms a functional network during the production of the positive electrode plate.

しかしながら比較電池7〜10からDBP吸収量が低い正極活物質を用いても、物性面が適正な範囲から外れると、電池特性に悪影響が及ぶことが分かった。   However, it was found that even when a positive electrode active material having a low DBP absorption amount was used from the comparative batteries 7 to 10, the battery characteristics were adversely affected if the physical properties were out of the proper range.

また、電池6〜7と比較電池11〜12との比較から、導電剤や結着剤の添加量においても適正な範囲があることが分かった。   Moreover, it turned out that there exists an appropriate range also in the addition amount of a electrically conductive agent or a binder from the comparison with the batteries 6-7 and the comparative batteries 11-12.

電池8の評価結果から、溶媒に水を使用した場合でも、本発明が有効に機能することが分かった。   From the evaluation results of the battery 8, it was found that the present invention functions effectively even when water is used as the solvent.

近年、電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要望が高い。このような観点で非水電解液二次電池は高電圧、高エネルギー密度を有する電池としてその期待は大き
い。したがって、本発明の非水電解液二次電池は、高容量化とサイクル特性の両立がされているので、ポータブル機器等の電源として有用である。
In recent years, electronic devices have become increasingly portable and cordless, and there is a strong demand for secondary batteries that are small, light, and have high energy density as power sources for driving these devices. From such a viewpoint, the nonaqueous electrolyte secondary battery is highly expected as a battery having a high voltage and a high energy density. Therefore, the non-aqueous electrolyte secondary battery of the present invention is useful as a power source for portable devices and the like because it has both high capacity and cycle characteristics.

本実施例で用いた電池の縦断面図Vertical section of the battery used in this example

符号の説明Explanation of symbols

1 電池ケース
2 封口板
3 ガスケット
4 極板群
5 正極板
6 負極板
5a 正極リード
6a 負極リード
7 セパレータ
8 絶縁リング

DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Gasket 4 Electrode plate group 5 Positive electrode plate 6 Negative electrode plate 5a Positive electrode lead 6a Negative electrode lead 7 Separator 8 Insulation ring

Claims (2)

リチウム含有複合酸化物を正極活物質として用いた非水電解液二次電池の製造方法であって、前記正極活物質と導電剤であるカーボンブラックと結着剤および分散媒とを加えて練合して粘性溶液と作成し、前記粘性溶液を集電体表面に塗着し、乾燥させる正極板作成工程を少なくとも含む非水電解液二次電池の製造方法において、
前記リチウム含有複合酸化物は、平均粒子径5〜20μm、比表面積が0.2〜2.0m2 /gであって、且つJIS K−6217−4「ゴム用カーボンブラック―基本特性―第4部:DBP吸収量の求め方」に規定されているDBP(ジブチルフタレート)吸収量A法に準拠したアブソープトメータを用い、試薬液体を定速度ビュレットで適定し、その際の粘度特性の変化をトルク検出器によって測定、記録し、発生した最大トルクの70%時点のトルクに対応する試薬液体の添加量を吸液量としたときの前記吸液量が、20ml/100g未満である非水電解液二次電池の製造方法。
A method for producing a non-aqueous electrolyte secondary battery using a lithium-containing composite oxide as a positive electrode active material, wherein the positive electrode active material, carbon black as a conductive agent, a binder and a dispersion medium are added and kneaded. In the method for producing a non-aqueous electrolyte secondary battery including at least a positive electrode plate creating step in which a viscous solution is prepared, the viscous solution is applied to the surface of a current collector, and dried.
The lithium-containing composite oxide has an average particle diameter of 5 to 20 μm, a specific surface area of 0.2 to 2.0 m 2 / g, and JIS K-6217-4 “carbon black for rubber—basic characteristics—fourth. Part: How to determine the DBP absorption amount "Using an absorption meter conforming to the DBP (dibutyl phthalate) absorption amount A method defined in" Method of determining the reagent liquid with a constant speed burette, The change is measured and recorded by a torque detector, and the liquid absorption amount is less than 20 ml / 100 g when the addition amount of the reagent liquid corresponding to the torque at 70% of the generated maximum torque is taken as the liquid absorption amount. A method for producing a water electrolyte secondary battery.
前記導電剤が正極活物質100重量%に対して0.5〜5.0重量%であって、前記結着剤が1.0〜10.0重量%であることを特徴とする請求項1記載の非水電解液二次電池の製造方法。

2. The conductive agent is 0.5 to 5.0% by weight with respect to 100% by weight of the positive electrode active material, and the binder is 1.0 to 10.0% by weight. The manufacturing method of the nonaqueous electrolyte secondary battery of description.

JP2005284362A 2005-09-29 2005-09-29 Method of manufacturing nonaqueous electrolyte secondary battery Pending JP2007095534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005284362A JP2007095534A (en) 2005-09-29 2005-09-29 Method of manufacturing nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005284362A JP2007095534A (en) 2005-09-29 2005-09-29 Method of manufacturing nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2007095534A true JP2007095534A (en) 2007-04-12

Family

ID=37980971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005284362A Pending JP2007095534A (en) 2005-09-29 2005-09-29 Method of manufacturing nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2007095534A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078628A1 (en) * 2006-12-22 2008-07-03 Panasonic Corporation Nickel hydroxide, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2011033707A1 (en) * 2009-09-18 2011-03-24 パナソニック株式会社 Electrode for non-aqueous electrolyte secondary cell, method for producing same, and non-aqueous electrolyte secondary cell
WO2013057826A1 (en) * 2011-10-20 2013-04-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and use of same
WO2013183530A1 (en) * 2012-06-04 2013-12-12 Necエナジーデバイス株式会社 Negative electrode for lithium ion secondary cell, negative electrode slurry for lithium ion secondary cell, and lithium ion secondary cell
JP2015191854A (en) * 2014-03-28 2015-11-02 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2022113796A1 (en) * 2020-11-24 2022-06-02 三洋電機株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN114914444A (en) * 2021-02-10 2022-08-16 中国石油化工股份有限公司 Silicon-carbon negative electrode plate, preparation method thereof and lithium ion battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114915A (en) * 1993-10-15 1995-05-02 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2002338247A (en) * 2001-05-17 2002-11-27 Dainippon Toryo Co Ltd Lithium manganese based compound oxide particle, manufacturing method therefor and secondary battery
JP2003048719A (en) * 2001-05-31 2003-02-21 Mitsubishi Chemicals Corp Method for producing lithium transition metal multiple oxide, positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2003068298A (en) * 2001-08-24 2003-03-07 Seimi Chem Co Ltd Lithium containing transition metal composite oxide and its producing method
JP2005011713A (en) * 2003-06-19 2005-01-13 Kureha Chem Ind Co Ltd Positive electrode material for lithium secondary battery and its manufacturing method
JP2005063674A (en) * 2003-08-08 2005-03-10 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2005150102A (en) * 2003-10-24 2005-06-09 Hitachi Metals Ltd Cathode active material for lithium secondary cell and its manufacturing mathod as well as nouaqueous lithium secondary cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114915A (en) * 1993-10-15 1995-05-02 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2002338247A (en) * 2001-05-17 2002-11-27 Dainippon Toryo Co Ltd Lithium manganese based compound oxide particle, manufacturing method therefor and secondary battery
JP2003048719A (en) * 2001-05-31 2003-02-21 Mitsubishi Chemicals Corp Method for producing lithium transition metal multiple oxide, positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2003068298A (en) * 2001-08-24 2003-03-07 Seimi Chem Co Ltd Lithium containing transition metal composite oxide and its producing method
JP2005011713A (en) * 2003-06-19 2005-01-13 Kureha Chem Ind Co Ltd Positive electrode material for lithium secondary battery and its manufacturing method
JP2005063674A (en) * 2003-08-08 2005-03-10 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2005150102A (en) * 2003-10-24 2005-06-09 Hitachi Metals Ltd Cathode active material for lithium secondary cell and its manufacturing mathod as well as nouaqueous lithium secondary cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078628A1 (en) * 2006-12-22 2008-07-03 Panasonic Corporation Nickel hydroxide, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US8802294B2 (en) 2006-12-22 2014-08-12 Panasonic Corporation Nickel hydroxide, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2011033707A1 (en) * 2009-09-18 2011-03-24 パナソニック株式会社 Electrode for non-aqueous electrolyte secondary cell, method for producing same, and non-aqueous electrolyte secondary cell
WO2013057826A1 (en) * 2011-10-20 2013-04-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and use of same
CN103891030A (en) * 2011-10-20 2014-06-25 丰田自动车株式会社 Nonaqueous electrolyte secondary battery and use of same
WO2013183530A1 (en) * 2012-06-04 2013-12-12 Necエナジーデバイス株式会社 Negative electrode for lithium ion secondary cell, negative electrode slurry for lithium ion secondary cell, and lithium ion secondary cell
JPWO2013183530A1 (en) * 2012-06-04 2016-01-28 Necエナジーデバイス株式会社 Negative electrode for lithium ion secondary battery, negative electrode slurry for lithium ion secondary battery, and lithium ion secondary battery
JP2015191854A (en) * 2014-03-28 2015-11-02 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2022113796A1 (en) * 2020-11-24 2022-06-02 三洋電機株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN114914444A (en) * 2021-02-10 2022-08-16 中国石油化工股份有限公司 Silicon-carbon negative electrode plate, preparation method thereof and lithium ion battery

Similar Documents

Publication Publication Date Title
JP5219387B2 (en) Nonaqueous electrolyte secondary battery
CN102844914B (en) Positive electrode active material for non-aqueous electrolyte secondary battery and process for production thereof, and non-aqueous electrolyte secondary battery produced using the positive electrode active material
WO2010064440A1 (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
WO2013137380A1 (en) Lithium composite oxide particle powder for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
WO2011155523A1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP2015122234A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and method for manufacturing the same
JP2008153017A (en) Positive active material for nonaqueous electrolyte secondary battery
JP5435810B2 (en) Lithium nickel manganese composite oxide, positive electrode active material for secondary battery containing the same, and production method thereof
JP4746278B2 (en) Nonaqueous electrolyte secondary battery
JP2010199001A (en) Cathode material for lithium-ion secondary battery, and lithium-ion secondary battery using it
JP2020092090A (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP4604347B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2012146590A (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery
JP2007095534A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP2017139168A (en) Positive electrode for nonaqueous electrolyte secondary battery
KR20110108301A (en) Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP2017010841A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method for the same and nonaqueous electrolyte secondary battery using the positive electrode active material
JP2009193805A (en) Paste for nonaqueous electrolyte secondary battery and cathode plate using the same and nonaqueous electrolyte secondary battery
KR20190047196A (en) Silicon-carbon composite, and lithium secondary battery comprising the same
WO2016035396A1 (en) Lithium ion secondary battery
JP3996554B2 (en) Lithium secondary battery
JP6848199B2 (en) A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery.
JP2016051548A (en) Positive electrode material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use of positive electrode material
JP6819859B2 (en) A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery.
JP2003288899A (en) Positive electrode active material for nonaqueous electrolyte secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130115