JP2003288899A - Positive electrode active material for nonaqueous electrolyte secondary cell - Google Patents

Positive electrode active material for nonaqueous electrolyte secondary cell

Info

Publication number
JP2003288899A
JP2003288899A JP2002087863A JP2002087863A JP2003288899A JP 2003288899 A JP2003288899 A JP 2003288899A JP 2002087863 A JP2002087863 A JP 2002087863A JP 2002087863 A JP2002087863 A JP 2002087863A JP 2003288899 A JP2003288899 A JP 2003288899A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
electrolyte secondary
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002087863A
Other languages
Japanese (ja)
Inventor
Takahiro Okuyama
高弘 奥山
Shinji Arimoto
真司 有元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002087863A priority Critical patent/JP2003288899A/en
Publication of JP2003288899A publication Critical patent/JP2003288899A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode active material for a nonaqueous electrolyte secondary cell, with improved current collecting efficiency, a good rate property and cycle property. <P>SOLUTION: The positive electrode active material for a nonaqueous electrolyte secondary cell is made of a lithium composite cobalt oxide represented as a formula LiCoXO<SB>2</SB>(note, 1.0<X≤1.05), of which, one to 20 primary particles agglutinate and form secondary particles, with a repose angle of not more than 60 degrees, an average particle diameter from 1 to 10 μm, and a specific surface area from 0.5 to 1.0 m<SP>2</SP>/g. Since the number of primary particles to structure the secondary particles is fewer than usual, a dispersion property of a conductive material is better, so that, a rate property and a cycle property are greatly improved. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、非水電解液二次電
池の、特にその正極活物質に関するものである。 【0002】 【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急激に進んでいる。これらが進展するに
従い、駆動用電源となる二次電池の高エネルギー密度
化、小型軽量化の要望が強くなっている。また、近年は
携帯電話の電源として用いられ、急激な市場の拡大と共
に通話時間の長時間化、長寿命化が望まれ、二次電池の
高エネルギー密度化、サイクル寿命の改善の要望は非常
に大きいものとなっている。このような状況から、高い
充放電電圧を示すリチウム複合遷移金属酸化物、例えば
LiCoO2を正極活物質に用い、リチウムイオンの吸
蔵、放出を利用した非水電解液二次電池が提案され(特
開昭63−59507号公報)、改善されている。 【0003】LiCoO2については、例えば特開平1
−304664号公報、特開平5−151998号公
報、特開平5−54888号公報に見られるようにその
製法や粒子の形状、大きさ等が検討されている。 【0004】 【発明が解決しようとする課題】非水電解液二次電池用
正極活物質であるLiCoX2は、非常に多くの1次粒
子が凝集し、2次粒子を形成しており、一般的には集電
のために導電材としてカーボンブラックを混ぜて、集電
網を形成させているが、このカーボンブラックは、2次
粒子の表面に分布するのみで、1次粒子の表面まで行き
渡らず、集電効率が悪い部分ができてしまい、レート特
性、サイクル特性が悪いという問題が生じていた。 【0005】本発明は、このような課題を解決するもの
であり、集電効率を向上し、レート特性およびサイクル
特性の良い正極活物質を提供することを目的とするもの
である。 【0006】 【課題を解決するための手段】上記課題を解決するため
に、本発明は式LiCoX2(ただし、1.0<X≦
1.05) で表されるリチウム複合コバルト酸化物から
なる非水電解液二次電池用正極活物質であり、1〜20
個の1次粒子が凝集し、2次粒子を形成するとともに、
安息角60°以下、平均粒径1〜10μmおよび比表面
積が0.5〜1.0m2/gであることを特徴とする非
水電解液二次電池用正極活物質であり、通常より2次粒
子を構成する1次粒子の数が少ないため、導電材の分散
性がよく、レート特性、サイクル特性を大きく改善する
ものである。 【0007】 【発明の実施の形態】本発明は、式LiCoX2(ただ
し、1.0<X≦1.05) で表されるリチウム複合コ
バルト酸化物の粉末であり、1〜20個の1次粒子が凝
集し2次粒子を形成しており、安息角60°以下、平均
粒径1〜10μm、比表面積が0.5〜1.0m2/g
であることを特徴とした非水電解液二次電池用正極活物
質である。 【0008】LiCoO2の合成方法として、出発原料
であるコバルト化合物とリチウム化合物の所定量を定比
混合して高温で焼成する方法は従来からよく知られた一
般的方法である。また、焼成する熱処理工程を二段階に
分ける方法も種々の目的により温度、時間など各条件が
多く研究されている。 【0009】本発明のリチウム複合コバルト酸化物の合
成方法としては、原料のCo34を300℃〜500℃
で熱処理することにより、酸化コバルト(Co34)と
リチウム化合物の反応を阻害しないように酸化コバルト
の比表面積を制御してLiCoO2の合成率を下げず、
かつCo34の熱処理により2次粒子を構成する1次粒
子の数を制御することで、LiCoO2上の導電材の分
散性を向上し、集電網の集電効率が上昇し、レート特性
及びサイクル特性の改善ができる。 【0010】 【実施例】以下、本発明の実施例について図面を用いて
説明する。 【0011】(実施例1)本実施例のLiCoO2の合
成方法について説明する。 【0012】水酸化コバルト(Co(OH)3)をセラ
ミック製の容器に入れ、400℃温度まで1時間で昇温
し、昇温後400℃で2時間保持することにより、酸化
コバルト(Co34)Aを得た。酸化コバルトAと炭酸
リチウム(Li2CO3)をLiとCoの原子モル比が
1:1.01となるように混合した。この混合物をセラ
ミック製の容器に入れ、一方から20l/minの空気
を挿入し、3時間で900℃まで昇温し、昇温後10時
間保持し、合成後、粉砕、分級することにより正極活物
質Aを得た。 【0013】1次粒子とは1つの結晶粒子であり、形
状、大きさを電子顕微鏡写真で規定する。2次粒子は1
次粒子が凝集、焼結した粒子群であり、形状は電子顕微
鏡写真で観察し、粒径はレーザー解析式粒度分布計によ
り測定した。安息角は粉体の流動性を示す指標であり、
ふるいを通して粉体を円筒上に落下させ、積載してでき
た円錐の斜面の角度であり、ホソカワミクロンのパウダ
ーテスターにより測定した。比表面積は気体吸着(BE
T)法で求めた。 【0014】(比較例1)水酸化コバルト(Co(O
H)3)をセラミック製の容器に入れ、250℃温度ま
で1時間で昇温し、昇温後250℃で2時間保持するこ
とにより、酸化コバルトBを得た。得られた酸化コバル
トBから実施例1と同様に正極活物質Bを得た。 【0015】(比較例2)水酸化コバルト(Co(O
H)3)をセラミック製の容器に入れ、650℃温度ま
で1時間で昇温し、昇温後650℃で2時間保持するこ
とにより、酸化コバルトCを得た。得られた酸化コバル
トCから実施例1と同様に正極活物質Cを得た。 【0016】酸化コバルトA〜Cの比表面積を(表1)
に示す。正極活物質A〜Cの模式図を図1に、粉体物性
を(表2)に示す。 【0017】 【表1】 【0018】 【表2】 【0019】上記、実施例1および比較例1、2で得ら
れた正極活物質A、BおよびCを用いて電池評価を行っ
た。図2に本実施例で用いた円筒型リチウム二次電池の
縦断面図を示す。図2において正極板5および負極板6
がセパレータ7を介して複数回渦巻状に巻回し構成され
た極板群4が耐有機電解液性のステンレス鋼板を加工し
た電池ケース1内に収納されている。正極板5からは正
極アルミリード5aが引き出されて封口板2に接続さ
れ、負極板6からは負極ニッケルリード6aが引き出さ
れて電池ケース1の底部に接続されている。極板群4の
上下部にそれぞれ絶縁リング8が設けられており、電池
ケース1の開口部は、安全弁を設けた封口板2および絶
縁パッキング3により封口されている。 【0020】負極板6は、炭素材料(本実施例において
はピッチ系球状黒鉛を用いた)にスチレン−ブタジエン
ゴムの水性ディスパージョンを重量比で100:3.5
の割合で混合し、これをカルボキシメチルセルロースの
水溶液に懸濁させてペースト状にしたものを銅箔の両面
に塗着し、乾燥後、圧延し所定の大きさに切り出し負極
板を作製した。なお、スチレン−ブタジエンゴムの水性
ディスパージョンの混合比率はその固形分で計算してい
る。 【0021】正極板5は、合成した正極活物質A、Bお
よびCのLiCoO2にアセチレンブラックおよびポリ
四フッ化エチレンの水性ディスパージョンを重量比で1
00:2.5:7.5の割合で混合し、これをカルボキ
シメチルセルロースの水溶液に懸濁させてペースト状に
した。次いでこのペーストをアルミ箔の両面に塗着し、
乾燥後圧延し、所定の大きさに切り出して正極板を作製
した。なお、ポリ四フッ化エチレンの水性ディスパージ
ョンの混合比率はその固形分で計算している。 【0022】上記方法により作製した正、負極板5、6
にそれぞれリード5a、6aを取付け、ポリエチレン製
のセパレータ7を介して渦巻き状に巻回し、電池ケース
1に収納した。電解液にはエチレンカーボネートとエチ
ルメチルカーボネートを体積比で1:3で混合した溶媒
に6フッ化リン酸リチウム(LiPF6)を1.5mo
l/l溶解したものを用いた。この電解液を上記の電池
ケース1に減圧注液後封口し、電池A、BおよびCとし
た。なお本実施例においては、正極活物質の特性を評価
するため、予め負極の容量を大きくしたものを用いた。 【0023】これら電池A、BおよびCを用いて下記の
条件で試験を行った。まず、20℃で電池電圧4.2V
まで120mAの定電流で充電した後1時間休止を行
い、その後120mAの定電流で電池電圧3.0Vまで
放電する。この方法で充放電を3回繰り返し、3回目の
放電容量を初期容量とした。その後、電池電圧4.2V
まで120mAの定電流で充電した後1時間休止を行
い、1200mAの定電流で電池電圧3.0Vまで放電
する。この放電容量を放電容量(1200mA)とす
る。初期容量に対する放電容量(1200mA)を%で
表したものを容量維持率として算出した。 【0024】さらに、20℃で充放電電流を120mA
とし、充電終止電圧4.2V、放電終止電圧3.0Vの
条件で定電流充放電サイクル試験を行った。初期容量に
対する300サイクル時点での放電容量を%で表したも
のをサイクル容量維持率として算出した。 【0025】電池A、BおよびCを用いた電池の容量維
持率とサイクル容量維持率を(表3)に示す。 【0026】 【表3】 【0027】正極活物質Bは原料となる酸化コバルトの
1次粒子が非常に小さく、凝集が強いため、正極活物質
Bの導電材の分散性は低く、電池Bのレート特性及びサ
イクル特性は悪いものであった。正極活物質Cは原料と
なる酸化コバルトの比表面積が小さく、反応性が悪いた
めLiCoO2の合成率は低下し、余剰Liによる焼結
で2次粒子の凝集が強くなり、電池Cのレート特性及び
サイクル特性は悪いものであった。しかし、正極活物質
Aは1次粒子の数が1〜20個で一番少なく2次粒子が
形成され、また(表2)より安息角がもっとも小さく、
高分散性を有しているので、導電材の分散が良く、集電
効率が良くなりレート特性及びサイクル特性を向上し
た。 【0028】本実施例では1〜20個の1次粒子が凝集
し、2次粒子を形成すると共に安息角55°、平均粒径
4.5μm、比表面積が0.6m2/gである非水電解
液二次電池用正極活物質を使用したが、1〜20個の1
次粒子が凝集し、2次粒子を形成すると共に安息角60
°以下、平均粒径1〜10μmおよび比表面積が0.5
〜1.0m2/gの非水電解液二次電池用正極活物質を
使用しても同様にレート特性及びサイクル特性を向上す
る効果が得られた。 【0029】なお、本実施例においては、LiCoO2
の出発材料として四酸化三コバルト(Co34)と炭酸
リチウム(Li2CO3)の組み合せを用いたが、四酸化
三コバルト(Co34)、コバルトの低級酸化物とLi
2CO3、LiNO3、LiOHを組み合せて用いても同
様の効果が得られる。 【0030】また、負極としてリチウムの吸蔵放出が可
能な種々の炭素質材、リチウム合金、インターカレーシ
ョンが可能な無機物系負極を用いた電池においても同様
の効果が得られる。さらに、電解質として本実施例で用
いたエチレンカーボネートとエチルメチルカーボネート
の混合溶媒に六フッ化リン酸リチウムを溶解したもの以
外の組み合せの溶媒にリチウム塩を溶解した電解液、ポ
リマー電解質を用いた電池においても同様の効果が得ら
れる。 【0031】 【発明の効果】以上のように本発明によれば、2次粒子
を1〜20個の1次粒子で構成し、安息角60°以下、
平均粒径1〜10μmおよび比表面積が0.5〜1.0
2/gとすることにより、分散性を向上し、レート特
性及びサイクル特性に優れた非水電解液二次電池用正極
活物質を得ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a positive electrode active material thereof. 2. Description of the Related Art In recent years, portable electronic devices have become portable.
Cordless use is rapidly progressing. As these advances, there is an increasing demand for a secondary battery serving as a driving power source to have a high energy density and a small size and light weight. In recent years, it has been used as a power source for mobile phones, and demand for longer talk time and longer life has been desired along with rapid market expansion, and there has been a great demand for higher energy density and improved cycle life of secondary batteries. It is big. Under such circumstances, a non-aqueous electrolyte secondary battery using a lithium composite transition metal oxide exhibiting a high charge / discharge voltage, for example, LiCoO 2 as a positive electrode active material and utilizing occlusion and release of lithium ions has been proposed. JP-A-63-59507), which has been improved. [0003] For LiCoO 2 , for example,
As described in JP-A-304664, JP-A-5-151998, and JP-A-5-54888, the production method and the shape and size of particles have been studied. [0004] LiCo X O 2, which is a positive electrode active material for a non-aqueous electrolyte secondary battery, has a large number of primary particles aggregated to form secondary particles. Generally, carbon black is mixed as a conductive material for current collection to form a current collection network. However, this carbon black is distributed only on the surface of the secondary particles, and extends to the surface of the primary particles. As a result, there is a problem that a portion having poor current collection efficiency is formed and the rate characteristics and the cycle characteristics are poor. An object of the present invention is to solve such a problem, and an object of the present invention is to provide a positive electrode active material having improved current collection efficiency and excellent rate characteristics and cycle characteristics. [0006] In order to solve the above-mentioned problems, the present invention provides a compound of the formula LiCo X O 2 (where 1.0 <X ≦
1.05) is a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium composite cobalt oxide represented by the following formula:
Primary particles aggregate to form secondary particles,
A positive electrode active material for a non-aqueous electrolyte secondary battery characterized by having a repose angle of 60 ° or less, an average particle diameter of 1 to 10 μm and a specific surface area of 0.5 to 1.0 m 2 / g, Since the number of primary particles constituting the secondary particles is small, the dispersibility of the conductive material is good, and the rate characteristics and the cycle characteristics are greatly improved. [0007] DETAILED DESCRIPTION OF THE INVENTION The present invention has the formula LiCo X O 2 (however, 1.0 <X ≦ 1.05) is a powder of the lithium composite cobalt oxide represented by, 1-20 Primary particles are aggregated to form secondary particles, the angle of repose is 60 ° or less, the average particle diameter is 1 to 10 μm, and the specific surface area is 0.5 to 1.0 m 2 / g.
It is a positive electrode active material for non-aqueous electrolyte secondary batteries characterized by the following. [0008] As a method for synthesizing LiCoO 2, a method in which a predetermined amount of a cobalt compound as a starting material and a predetermined amount of a lithium compound are mixed in a fixed ratio and fired at a high temperature is a well-known general method. Also, a method of dividing the heat treatment step of firing into two steps has been studied for various purposes such as temperature and time for various purposes. In the method of synthesizing the lithium composite cobalt oxide of the present invention, the raw material Co 3 O 4
By controlling the specific surface area of cobalt oxide so as not to hinder the reaction between cobalt oxide (Co 3 O 4 ) and the lithium compound without lowering the synthesis rate of LiCoO 2 ,
In addition, by controlling the number of primary particles constituting the secondary particles by heat treatment of Co 3 O 4 , the dispersibility of the conductive material on LiCoO 2 is improved, the current collection efficiency of the current collection network is increased, and the rate characteristics are improved. And the cycle characteristics can be improved. Embodiments of the present invention will be described below with reference to the drawings. (Example 1) A method for synthesizing LiCoO 2 of this example will be described. Cobalt hydroxide (Co (OH) 3 ) is placed in a ceramic container, heated to a temperature of 400 ° C. in one hour, and maintained at 400 ° C. for two hours after the temperature is raised, thereby obtaining cobalt oxide (Co 3). O 4 ) A was obtained. Cobalt oxide A and lithium carbonate (Li 2 CO 3 ) were mixed such that the atomic molar ratio of Li and Co was 1: 1.01. This mixture was placed in a ceramic container, air was introduced at a rate of 20 l / min from one side, the temperature was raised to 900 ° C. in 3 hours, and the temperature was maintained for 10 hours. Substance A was obtained. A primary particle is a single crystal particle, and its shape and size are defined by an electron micrograph. Secondary particles are 1
The particles were a group of particles in which the next particles were aggregated and sintered. The shape was observed with an electron microscope photograph, and the particle size was measured with a laser analysis type particle size distribution meter. The angle of repose is an index indicating the fluidity of the powder,
The angle of the slope of a cone formed by dropping powder onto a cylinder through a sieve and measured by a Hosokawa Micron powder tester. Specific surface area is determined by gas adsorption (BE
T) was determined by the method. Comparative Example 1 Cobalt hydroxide (Co (O
H) 3 ) was placed in a ceramic container, heated to a temperature of 250 ° C. in 1 hour, and kept at 250 ° C. for 2 hours after heating to obtain cobalt oxide B. A positive electrode active material B was obtained from the obtained cobalt oxide B in the same manner as in Example 1. Comparative Example 2 Cobalt hydroxide (Co (O
H) 3 ) was placed in a ceramic container, the temperature was raised to 650 ° C. in 1 hour, and the temperature was maintained at 650 ° C. for 2 hours to obtain cobalt oxide C. A positive electrode active material C was obtained from the obtained cobalt oxide C in the same manner as in Example 1. The specific surface areas of the cobalt oxides A to C are shown in Table 1.
Shown in FIG. 1 shows a schematic view of the positive electrode active materials A to C, and Table 2 shows physical properties of the powder. [Table 1] [Table 2] Battery evaluation was performed using the positive electrode active materials A, B and C obtained in Example 1 and Comparative Examples 1 and 2. FIG. 2 shows a longitudinal sectional view of the cylindrical lithium secondary battery used in this example. In FIG. 2, the positive electrode plate 5 and the negative electrode plate 6
The electrode group 4 is formed by spirally winding a plurality of times through a separator 7 and is housed in a battery case 1 formed by processing a stainless steel plate having resistance to an organic electrolytic solution. A positive electrode aluminum lead 5a is pulled out from the positive electrode plate 5 and connected to the sealing plate 2, and a negative electrode nickel lead 6a is pulled out from the negative electrode plate 6 and connected to the bottom of the battery case 1. An insulating ring 8 is provided on each of the upper and lower portions of the electrode group 4, and an opening of the battery case 1 is closed by a sealing plate 2 provided with a safety valve and an insulating packing 3. The negative electrode plate 6 is composed of a carbon material (in this embodiment, pitch-based spheroidal graphite is used) and an aqueous dispersion of styrene-butadiene rubber in a weight ratio of 100: 3.5.
, And this was suspended in an aqueous solution of carboxymethylcellulose to form a paste. The paste was applied to both surfaces of a copper foil, dried, rolled, cut into a predetermined size, and a negative electrode plate was produced. The mixing ratio of the aqueous dispersion of styrene-butadiene rubber is calculated based on the solid content. The positive electrode plate 5 is composed of LiCoO 2 of the synthesized positive electrode active materials A, B and C and an aqueous dispersion of acetylene black and polytetrafluoroethylene in a weight ratio of 1%.
The mixture was mixed at a ratio of 00: 2.5: 7.5, and this was suspended in an aqueous solution of carboxymethyl cellulose to form a paste. Then apply this paste on both sides of the aluminum foil,
After drying, the resultant was rolled and cut into a predetermined size to produce a positive electrode plate. The mixing ratio of the aqueous dispersion of polytetrafluoroethylene is calculated based on the solid content. The positive and negative electrode plates 5, 6 produced by the above method
The leads 5a and 6a were respectively attached to the battery case 1 and spirally wound through a polyethylene separator 7 and stored in the battery case 1. For the electrolyte, 1.5 mol of lithium hexafluorophosphate (LiPF 6 ) was used as a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 3.
1 / l was used. This electrolyte solution was injected into the battery case 1 under reduced pressure and sealed, to obtain batteries A, B and C. In this example, in order to evaluate the characteristics of the positive electrode active material, a negative electrode having a larger capacity was used. Using these batteries A, B and C, a test was conducted under the following conditions. First, a battery voltage of 4.2 V at 20 ° C.
After charging at a constant current of 120 mA, the battery is paused for 1 hour, and then discharged to a battery voltage of 3.0 V at a constant current of 120 mA. Charge / discharge was repeated three times by this method, and the third discharge capacity was used as the initial capacity. Thereafter, the battery voltage was 4.2 V
After charging at a constant current of 120 mA, the battery is paused for 1 hour, and discharged to a battery voltage of 3.0 V at a constant current of 1200 mA. This discharge capacity is defined as a discharge capacity (1200 mA). The discharge capacity (1200 mA) in% with respect to the initial capacity was calculated as a capacity retention rate. Further, the charging / discharging current at 120 ° C. is 120 mA.
A constant current charge / discharge cycle test was performed under the conditions of a charge end voltage of 4.2 V and a discharge end voltage of 3.0 V. The discharge capacity at the time of 300 cycles with respect to the initial capacity expressed in% was calculated as the cycle capacity retention rate. Table 3 shows the capacity retention rates and cycle capacity retention rates of the batteries using the batteries A, B and C. [Table 3] Since the positive electrode active material B has very small primary particles of cobalt oxide as a raw material and has strong agglomeration, the dispersibility of the conductive material of the positive electrode active material B is low, and the rate and cycle characteristics of the battery B are poor. Was something. The positive electrode active material C has a small specific surface area of cobalt oxide as a raw material and has a low reactivity, so that the synthesis rate of LiCoO 2 is reduced, and the secondary particles are strongly agglomerated by sintering with excess Li. And the cycle characteristics were poor. However, in the positive electrode active material A, the number of primary particles is 1 to 20 and the secondary particles are least formed, and the angle of repose is smaller than that in (Table 2).
Because of the high dispersibility, the dispersion of the conductive material was good, the current collection efficiency was improved, and the rate characteristics and cycle characteristics were improved. In this embodiment, 1 to 20 primary particles are aggregated to form secondary particles and have a repose angle of 55 °, an average particle size of 4.5 μm, and a specific surface area of 0.6 m 2 / g. A positive electrode active material for a water electrolyte secondary battery was used.
The secondary particles aggregate to form secondary particles, and the angle of repose is 60
° or less, an average particle size of 1 to 10 μm and a specific surface area of 0.5
Even when a positive electrode active material for a non-aqueous electrolyte secondary battery of about 1.0 m 2 / g was used, the effect of similarly improving the rate characteristics and cycle characteristics was obtained. In this embodiment, LiCoO 2
Used a combination of tricobalt tetroxide (Co 3 O 4 ) and lithium carbonate (Li 2 CO 3 ) as a starting material, but tricobalt tetroxide (Co 3 O 4 ), a lower cobalt oxide and Li
The same effect can be obtained by using a combination of 2 CO 3 , LiNO 3 and LiOH. The same effect can be obtained in a battery using various carbonaceous materials capable of inserting and extracting lithium, a lithium alloy, and an inorganic negative electrode capable of intercalation as the negative electrode. Further, as an electrolyte, a battery using an electrolyte solution in which a lithium salt is dissolved in a solvent of a combination other than a solution in which lithium hexafluorophosphate is dissolved in a mixed solvent of ethylene carbonate and ethyl methyl carbonate used in the present example, and a polymer electrolyte are used. The same effect can be obtained in As described above, according to the present invention, the secondary particles are composed of 1 to 20 primary particles, and the angle of repose is 60 ° or less.
Average particle size of 1 to 10 μm and specific surface area of 0.5 to 1.0
By adjusting to m 2 / g, a positive electrode active material for a non-aqueous electrolyte secondary battery having improved dispersibility and excellent rate characteristics and cycle characteristics can be obtained.

【図面の簡単な説明】 【図1】正極活物質A〜Cの模式図 【図2】本発明の円筒型リチウム二次電池の縦断面図 【符号の説明】 1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極板 5a 正極リード 6 負極板 6a 負極リード 7 セパレータ 8 絶縁リング[Brief description of the drawings] FIG. 1 is a schematic view of cathode active materials A to C. FIG. 2 is a longitudinal sectional view of a cylindrical lithium secondary battery of the present invention. [Explanation of symbols] 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode group 5 Positive electrode plate 5a Positive electrode lead 6 Negative electrode plate 6a Negative electrode lead 7 Separator 8 Insulation ring

フロントページの続き Fターム(参考) 5H050 AA02 AA07 BA17 CA08 CB07 CB08 EA10 EA23 EA24 FA05 FA17 HA00 HA02 HA05 HA07Continuation of front page    F-term (reference) 5H050 AA02 AA07 BA17 CA08 CB07                       CB08 EA10 EA23 EA24 FA05                       FA17 HA00 HA02 HA05 HA07

Claims (1)

【特許請求の範囲】 【請求項1】 式LiCoX2(ただし、1.0<X≦
1.05) で表されるリチウム複合コバルト酸化物から
なる非水電解液二次電池用正極活物質であり、1〜20
個の1次粒子が凝集し、2次粒子を形成すると共に安息
角60°以下、平均粒径1〜10μmおよび比表面積が
0.5〜1.0m2/gである非水電解液二次電池用正
極活物質。
Claims: 1. The formula LiCo X O 2 (where 1.0 <X ≦
1.05) is a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium composite cobalt oxide represented by the following formula:
Secondary particles are aggregated to form secondary particles and have a repose angle of 60 ° or less, an average particle diameter of 1 to 10 μm, and a specific surface area of 0.5 to 1.0 m 2 / g. Positive electrode active material for batteries.
JP2002087863A 2002-03-27 2002-03-27 Positive electrode active material for nonaqueous electrolyte secondary cell Pending JP2003288899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002087863A JP2003288899A (en) 2002-03-27 2002-03-27 Positive electrode active material for nonaqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002087863A JP2003288899A (en) 2002-03-27 2002-03-27 Positive electrode active material for nonaqueous electrolyte secondary cell

Publications (1)

Publication Number Publication Date
JP2003288899A true JP2003288899A (en) 2003-10-10

Family

ID=29233906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087863A Pending JP2003288899A (en) 2002-03-27 2002-03-27 Positive electrode active material for nonaqueous electrolyte secondary cell

Country Status (1)

Country Link
JP (1) JP2003288899A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302338A (en) * 2004-04-07 2005-10-27 Shin Kobe Electric Mach Co Ltd Lithium secondary battery and positive electrode material for lithium secondary battery
JP2007087758A (en) * 2005-09-21 2007-04-05 Nissan Motor Co Ltd Electrode for battery
WO2008001830A1 (en) * 2006-06-26 2008-01-03 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2008078784A1 (en) 2006-12-26 2008-07-03 Santoku Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode and secondary battery
WO2011043296A1 (en) * 2009-10-05 2011-04-14 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
JP2012533864A (en) * 2009-07-23 2012-12-27 ジーエス カルテックス コーポレイション Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP2014066623A (en) * 2012-09-26 2014-04-17 Alps Green Devices Co Ltd Current sensor
JP2017188445A (en) * 2016-03-31 2017-10-12 本田技研工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery
US10622629B2 (en) 2016-03-31 2020-04-14 Honda Motor Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534559B2 (en) * 2004-04-07 2010-09-01 新神戸電機株式会社 Lithium secondary battery and positive electrode material for lithium secondary battery
JP2005302338A (en) * 2004-04-07 2005-10-27 Shin Kobe Electric Mach Co Ltd Lithium secondary battery and positive electrode material for lithium secondary battery
JP2007087758A (en) * 2005-09-21 2007-04-05 Nissan Motor Co Ltd Electrode for battery
WO2008001830A1 (en) * 2006-06-26 2008-01-03 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2008078784A1 (en) 2006-12-26 2008-07-03 Santoku Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode and secondary battery
US8920687B2 (en) 2006-12-26 2014-12-30 Santoku Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode and secondary battery
JP2012533864A (en) * 2009-07-23 2012-12-27 ジーエス カルテックス コーポレイション Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
US9227850B2 (en) 2009-10-05 2016-01-05 Nippon Chemical Industrial Co., Ltd. Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2011043296A1 (en) * 2009-10-05 2011-04-14 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
CN102576872A (en) * 2009-10-05 2012-07-11 日本化学工业株式会社 Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
JP5749650B2 (en) * 2009-10-05 2015-07-15 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2014066623A (en) * 2012-09-26 2014-04-17 Alps Green Devices Co Ltd Current sensor
JP2017188445A (en) * 2016-03-31 2017-10-12 本田技研工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery
US10622629B2 (en) 2016-03-31 2020-04-14 Honda Motor Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery
US11380892B2 (en) 2016-03-31 2022-07-05 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery
US11804600B2 (en) 2016-03-31 2023-10-31 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP3897387B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP5079951B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, its manufacturing method, non-aqueous electrolyte secondary battery, and positive electrode manufacturing method
JPWO2004082046A1 (en) Positive electrode active material powder for lithium secondary battery
JP6755253B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery including this
KR20110094023A (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
JP2004220897A (en) Positive electrode active substance powder for lithium secondary battery
JPH08180904A (en) Nonaqueous electrolyte secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP2004146253A (en) Negative electrode and battery, and manufacturing method of these
JP4997700B2 (en) Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JPH11135119A (en) Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
JP2011249293A (en) Lithium transition metal compound and its manufacturing method, and lithium ion battery
JP2011014254A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP3951715B2 (en) Cathode active material for lithium ion secondary battery and method for producing the same
JP2003077534A (en) Nonaqueous secondary battery
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2001243949A (en) Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it
JP2007095534A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP2003288899A (en) Positive electrode active material for nonaqueous electrolyte secondary cell
JP4267885B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode using the negative electrode material, and lithium ion secondary battery
JP4581157B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2004207034A (en) Nonaqueous electrolyte secondary battery
JP4810729B2 (en) Lithium transition metal composite oxide and method for producing the same
JP4456668B2 (en) Nonaqueous secondary battery and its positive electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513