JP4534559B2 - Lithium secondary battery and positive electrode material for lithium secondary battery - Google Patents

Lithium secondary battery and positive electrode material for lithium secondary battery Download PDF

Info

Publication number
JP4534559B2
JP4534559B2 JP2004112657A JP2004112657A JP4534559B2 JP 4534559 B2 JP4534559 B2 JP 4534559B2 JP 2004112657 A JP2004112657 A JP 2004112657A JP 2004112657 A JP2004112657 A JP 2004112657A JP 4534559 B2 JP4534559 B2 JP 4534559B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
composite oxide
secondary battery
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004112657A
Other languages
Japanese (ja)
Other versions
JP2005302338A (en
Inventor
賢二 原
昇次 平畑
克典 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2004112657A priority Critical patent/JP4534559B2/en
Publication of JP2005302338A publication Critical patent/JP2005302338A/en
Application granted granted Critical
Publication of JP4534559B2 publication Critical patent/JP4534559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明はリチウム二次電池及びリチウム二次電池用正極材に係り、特に、層状結晶構造を有するリチウムマンガンニッケルコバルト複合酸化物及び導電材を含む正極合剤を正極集電体に塗着した正極と、リチウムイオンを脱離挿入可能な炭素材を含む負極とを非水電解液に浸潤させたリチウム二次電池及び該リチウム二次電池用正極材に関する。   The present invention relates to a lithium secondary battery and a positive electrode material for a lithium secondary battery, and in particular, a positive electrode in which a positive electrode mixture containing a lithium manganese nickel cobalt composite oxide having a layered crystal structure and a conductive material is applied to a positive electrode current collector. The present invention also relates to a lithium secondary battery in which a non-aqueous electrolyte is infiltrated with a negative electrode containing a carbon material capable of detaching and inserting lithium ions, and the positive electrode material for the lithium secondary battery.

従来、再充電可能な二次電池の分野では、鉛電池、ニッケル−カドミウム電池、ニッケル−水素電池等の水溶液系電池が主流であった。近年、地球温暖化や燃料枯渇の問題から電気自動車(EV)や駆動の一部を電気モータで補助するハイブリッド自動車(HEV)が着目され、これらの電源となる電池には高容量、高出力が求められるようになってきた。このような要求に合致する電池として、高電圧を有するリチウム二次電池が注目されている。   Conventionally, in the field of rechargeable secondary batteries, aqueous batteries such as lead batteries, nickel-cadmium batteries, and nickel-hydrogen batteries have been mainstream. In recent years, electric vehicles (EVs) and hybrid vehicles (HEVs) that assist a part of driving with electric motors have attracted attention due to problems of global warming and fuel depletion, and batteries serving as power sources have high capacity and high output. It has come to be required. As a battery that meets such requirements, a lithium secondary battery having a high voltage has attracted attention.

リチウム二次電池の正極材には、リチウム遷移金属複合酸化物が用いられており、中でも容量やサイクル特性等のバランスからコバルト酸リチウムが用いられているが、原料であるコバルトの資源量が少なくコスト高となることから、EVやHEV用の正極材としてはマンガン酸リチウムなどマンガンを含むリチウム遷移金属複合酸化物が有望視され開発が進められている。このリチウム遷移金属複合酸化物の結晶構造がスピネル結晶構造の場合にはリチウムイオンの拡散経路が三次元的であるのに対し、層状結晶構造の場合には二次元的である。このため、層状結晶構造のリチウム遷移金属複合酸化物は、常温環境下ではリチウムイオンの拡散性が高く出力特性に優れるものの、低温環境下では結晶が収縮してリチウムイオンの拡散性が低下するため、出力の低下を招く。   A lithium transition metal composite oxide is used for the positive electrode material of a lithium secondary battery. Among them, lithium cobaltate is used from the balance of capacity, cycle characteristics, etc., but the amount of cobalt as a raw material is small. Due to the high cost, lithium transition metal composite oxides containing manganese such as lithium manganate are promising as positive electrode materials for EV and HEV and are being developed. When the lithium transition metal composite oxide has a spinel crystal structure, the lithium ion diffusion path is three-dimensional, whereas in the case of a layered crystal structure, it has a two-dimensional structure. Therefore, the lithium transition metal composite oxide with a layered crystal structure has high lithium ion diffusibility and excellent output characteristics under normal temperature environment, but the crystal shrinks and the lithium ion diffusivity decreases under low temperature environment. Incurs a decrease in output.

一方、負極材には、一般に、天然黒鉛や燐片状、塊状等の人造黒鉛、メソフェーズピッチ系黒鉛等の黒鉛系炭素材料、フルフリルアルコール等のフラン樹脂等を焼成した非晶質炭素材料が用いられている。非晶質炭素材料は、理論容量値が黒鉛系炭素材料より高いため、容量、サイクル特性に優れるリチウム二次電池を得ることができる。また、充放電時の電圧特性に傾きを有しているため、電圧測定で電池の状態を容易かつ正確に推定することが可能となる。ところが、非晶質炭素材料は不可逆容量が黒鉛系炭素材料より大きいため、電池での高容量化が難しく、また、負極材粒子間の電子伝導性が黒鉛系炭素材料に比べて劣る、という欠点がある。これに対して、黒鉛系炭素材料は、不可逆容量が小さく電圧特性も平坦であるため、高容量、高出力のリチウム二次電池を得ることができるが、充放電に伴う結晶の体積変化が大きいため、負極材粒子間の電子伝導性を長期間維持できず早期に寿命に至り、また、大電流密度での充電受け入れ性が非晶質炭素材料に比べて劣る、という問題がある。   On the other hand, the negative electrode material is generally an amorphous carbon material obtained by firing natural graphite, artificial graphite such as flakes or lumps, graphite carbon material such as mesophase pitch graphite, furan resin such as furfuryl alcohol, and the like. It is used. Since the amorphous carbon material has a theoretical capacity value higher than that of the graphite-based carbon material, a lithium secondary battery excellent in capacity and cycle characteristics can be obtained. In addition, since the voltage characteristics during charging and discharging have an inclination, it is possible to easily and accurately estimate the state of the battery by voltage measurement. However, since the irreversible capacity of the amorphous carbon material is larger than that of the graphite-based carbon material, it is difficult to increase the capacity in the battery, and the electronic conductivity between the negative electrode particles is inferior to that of the graphite-based carbon material. There is. On the other hand, the graphite-based carbon material has a low irreversible capacity and flat voltage characteristics, so that a high-capacity, high-power lithium secondary battery can be obtained, but the volume change of the crystal accompanying charge / discharge is large. Therefore, there is a problem that the electron conductivity between the negative electrode material particles cannot be maintained for a long period of time and the life is reached early, and the charge acceptability at a large current density is inferior to that of the amorphous carbon material.

上述したEVやHEV用の電池では、充放電における電流密度が大きく、長寿命、高出力特性が要求されるため、複数個の単電池が接続されて用いられる。単電池の特性のバラツキが寿命や安全性を大きく左右することから、通常、制御システムを併用して単電池の電圧等を監視・制御することでバラツキの抑制が図られている。ところが、黒鉛系炭素材料では電圧特性が平坦であるため、電圧から電池の状態を正確に監視することが難しく、これを行うためには高精度な制御システムが必要となる。従って、EVやHEV用の電源に用いられるリチウム二次電池の負極材としては、非晶質炭素材料を主とすることが望ましく、正極材に層状結晶構造のリチウム遷移金属複合酸化物を用いて、高出力化の改善を進めることが有望である。   The above-described batteries for EV and HEV have a large current density in charge / discharge, and require a long life and high output characteristics. Therefore, a plurality of single cells are connected and used. Since the variation in the characteristics of the single cells greatly affects the life and safety, usually, the variation is suppressed by monitoring and controlling the voltage of the single cells in combination with a control system. However, since the voltage characteristics of the graphite-based carbon material are flat, it is difficult to accurately monitor the state of the battery from the voltage, and in order to do this, a highly accurate control system is required. Accordingly, it is desirable that the negative electrode material of the lithium secondary battery used for the power source for EV or HEV is mainly an amorphous carbon material, and the positive electrode material is made of a lithium transition metal composite oxide having a layered crystal structure. It is promising to improve the output.

リチウム二次電池の高出力化を図るためには、正負極合剤層内の電子伝導性及びリチウムイオンの拡散性を向上させる必要があり、正極材の粉体特性や電極合剤の改良が種々検討されている。電子伝導性を向上させるためには、正負極合剤に導電材を添加したり、正負極合剤密度を大きくしたりして、電子伝導のネットワークを確保する等種々の低抵抗化の改善がなされている。一方、リチウムイオンの拡散性を向上させるためには、正負極合剤層中に非水電解液の浸透する空間が必要である。例えば、スピネル結晶構造のマンガン酸リチウムを用いたときに、正極合剤層の厚さに応じて正極合剤層の空孔率を設定する技術が開示されている(特許文献1参照)。また、低温環境下では、非水電解液中でのリチウムイオンの移動性が低下すると共に、正負極合剤層中の非水電解液の分布により出力特性が著しく変化する。これを解決するために、非水電解液に混合有機溶媒を用いることにより低温環境下でのリチウムイオン移動性の低下を抑制する技術が開示されている(例えば、特許文献2参照)。   In order to increase the output of the lithium secondary battery, it is necessary to improve the electron conductivity and lithium ion diffusibility in the positive and negative electrode mixture layers. Various studies have been made. In order to improve the electron conductivity, various low resistance improvements such as adding a conductive material to the positive and negative electrode mixture and increasing the positive and negative electrode mixture density to secure an electron conduction network Has been made. On the other hand, in order to improve the diffusibility of lithium ions, a space through which the nonaqueous electrolyte solution permeates is required in the positive and negative electrode mixture layers. For example, when lithium manganate having a spinel crystal structure is used, a technique for setting the porosity of the positive electrode mixture layer according to the thickness of the positive electrode mixture layer is disclosed (see Patent Document 1). Further, under a low temperature environment, the mobility of lithium ions in the non-aqueous electrolyte is lowered, and the output characteristics are remarkably changed due to the distribution of the non-aqueous electrolyte in the positive and negative electrode mixture layers. In order to solve this, a technique for suppressing a decrease in lithium ion mobility in a low temperature environment by using a mixed organic solvent in a nonaqueous electrolytic solution is disclosed (for example, see Patent Document 2).

特開2001−325948号公報JP 2001-325948 A 特開2001−155766号公報JP 2001-155766 A

しかしながら、特許文献1の技術では、スピネル結晶構造のマンガン酸リチウムの場合は非水電解液の浸透する空間が確保されるが、上述したように低温環境下で結晶の収縮が起こる層状結晶構造のリチウム遷移金属複合酸化物の場合は、非水電解液の浸透する空間が十分とはいえない。また、特許文献2の技術では、非水電解液中のリチウムイオン移動性の低下は抑制されるものの、正負極合剤層内のリチウムイオンの拡散性を向上させることは難しい。更に、正負極合剤密度を大きくすることで電子伝導性は向上するが、正負極合剤密度が大きくなると、正負極合剤中に浸透する非水電解液の量が減少しリチウムイオンの拡散性が低下するため、電極反応に部分的な偏りを生ずることから、電子伝導のネットワークの形成が阻害されることとなる。   However, in the technique of Patent Document 1, in the case of lithium manganate having a spinel crystal structure, a space through which a non-aqueous electrolyte permeates is ensured. However, as described above, a layered crystal structure in which crystal shrinkage occurs in a low temperature environment. In the case of a lithium transition metal composite oxide, it cannot be said that the space through which the nonaqueous electrolyte permeates is sufficient. Moreover, although the technique of patent document 2 suppresses the fall of the lithium ion mobility in a non-aqueous electrolyte, it is difficult to improve the diffusibility of the lithium ion in a positive / negative electrode mixture layer. Furthermore, increasing the positive and negative electrode mixture density improves the electronic conductivity, but as the positive and negative electrode mixture density increases, the amount of non-aqueous electrolyte that permeates into the positive and negative electrode mixture decreases and the diffusion of lithium ions As a result, the electrode reaction is partially biased, which prevents the formation of an electron conduction network.

本発明は上記事案に鑑み、低温環境下で高出力化することができ、寿命を改善可能なリチウム二次電池を提供することを課題とする。   In view of the above-described case, an object of the present invention is to provide a lithium secondary battery that can increase the output in a low temperature environment and can improve the life.

上記課題を解決するために、本発明の第1の態様は、層状結晶構造を有するリチウムマンガンニッケルコバルト複合酸化物及び導電材を含む正極合剤を正極集電体に塗着した正極と、リチウムイオンを脱離挿入可能な炭素材を含む負極とを非水電解液に浸潤させたリチウム二次電池において、前記リチウムマンガンニッケルコバルト複合酸化物のタッピング密度が1.6g/cm以上2.2g/cm以下であり、かつ、安息角が47.5度以上50度以下であることを特徴とする。 In order to solve the above-described problem, a first aspect of the present invention includes a positive electrode in which a positive electrode mixture including a lithium manganese nickel cobalt composite oxide having a layered crystal structure and a conductive material is applied to a positive electrode current collector, lithium In a lithium secondary battery in which a nonaqueous electrolyte is infiltrated with a negative electrode containing a carbon material capable of desorbing and inserting ions, the lithium manganese nickel cobalt composite oxide has a tapping density of 1.6 g / cm 3 or more and 2.2 g. / Cm 3 or less, and an angle of repose is 47.5 degrees or more and 50 degrees or less.

第1の態様のリチウム二次電池では、リチウムマンガンニッケルコバルト複合酸化物の安息角を47.5度以上50度以下とすることで、正極合剤を正極集電体に塗着するときの分散媒に対するリチウムマンガンニッケルコバルト複合酸化物の濡れ性が適正化されるため、リチウムマンガンニッケルコバルト複合酸化物が分離、沈降することなく正極合剤を略均等に塗着することができ、タッピング密度を1.6g/cm以上2.2g/cm以下とすることで、正極合剤に占めるリチウムマンガンニッケルコバルト複合酸化物の量を確保しつつ、非水電解液がリチウムマンガンニッケルコバルト複合酸化物に浸透するため、低温環境下でも電極反応のバラツキを抑制することができる。 In the lithium secondary battery according to the first aspect, the repose angle of the lithium manganese nickel cobalt composite oxide is set to 47.5 degrees or more and 50 degrees or less, whereby dispersion when applying the positive electrode mixture to the positive electrode current collector is performed. Since the wettability of the lithium manganese nickel cobalt composite oxide to the medium is optimized, the lithium manganese nickel cobalt composite oxide can be applied almost uniformly without separation and settling, and the tapping density can be reduced. By making the amount 1.6 g / cm 3 or more and 2.2 g / cm 3 or less, the amount of the lithium manganese nickel cobalt composite oxide occupying the positive electrode mixture is secured, and the non-aqueous electrolyte is a lithium manganese nickel cobalt composite oxide. Therefore, it is possible to suppress variations in the electrode reaction even in a low temperature environment.

第1の態様によれば、リチウムマンガンニッケルコバルト複合酸化物のタッピング密度を1.6g/cm以上2.2g/cm以下、かつ、安息角を47.5度以上50度以下とすることで、正極集電体に略均等に塗着された正極合剤の剥離が防止されると共に、低温環境下でも電極反応の部分的な集中が抑制されるので、リチウム二次電池の出力、寿命の低下を抑制することができる。 According to the first aspect, the tapping density of the lithium manganese nickel cobalt composite oxide is 1.6 g / cm 3 or more and 2.2 g / cm 3 or less, and the angle of repose is 47.5 degrees or more and 50 degrees or less. Thus, peeling of the positive electrode mixture applied substantially uniformly to the positive electrode current collector is prevented, and partial concentration of the electrode reaction is suppressed even in a low temperature environment, so the output and life of the lithium secondary battery Can be suppressed.

本発明の第2の態様は、層状結晶構造を有するリチウムマンガンニッケルコバルト複合酸化物を用いたリチウム二次電池用正極材において、前記リチウムマンガンニッケルコバルト複合酸化物のタッピング密度が1.6g/cm以上2.2g/cm以下であり、かつ、安息角が47.5度以上50度以下であることを特徴とする。本態様において、リチウムマンガンニッケルコバルト複合酸化物を、化学式LiNiMnCo(1−Y−Z)(0<X≦1.2、Y+Z<1)で表されるようにしてもよい。また、リチウムマンガンニッケルコバルト複合酸化物の平均粒子径を20μm以下としてもよい。 According to a second aspect of the present invention, in the positive electrode material for a lithium secondary battery using the lithium manganese nickel cobalt composite oxide having a layered crystal structure, the tapping density of the lithium manganese nickel cobalt composite oxide is 1.6 g / cm. 3 or more and 2.2 g / cm 3 or less, and the angle of repose is 47.5 degrees or more and 50 degrees or less. In the present embodiment, a lithium-manganese-nickel-cobalt composite oxide represented by the chemical formula Li X Ni Y Mn Z Co ( 1-Y-Z) O 2 (0 <X ≦ 1.2, Y + Z <1) so as to be represented by Also good. Moreover, the average particle diameter of the lithium manganese nickel cobalt composite oxide may be 20 μm or less.

本発明によれば、リチウムマンガンニッケルコバルト複合酸化物のタッピング密度を1.6g/cm以上2.2g/cm以下、かつ、安息角を47.5度以上50度以下とすることで、正極集電体に略均等に塗着された正極合剤の剥離が防止されると共に、低温環境下でも電極反応の部分的な集中が抑制されるので、リチウム二次電池の出力、寿命の低下を抑制することができる、という効果を奏することができる。 According to the present invention, the tapping density of the lithium manganese nickel cobalt composite oxide is 1.6 g / cm 3 or more and 2.2 g / cm 3 or less, and the angle of repose is 47.5 degrees or more and 50 degrees or less. The positive electrode mixture applied almost evenly to the positive electrode current collector is prevented from being peeled off, and partial concentration of electrode reactions is suppressed even in a low temperature environment, so the output and life of the lithium secondary battery are reduced. The effect that it can suppress can be show | played.

以下、図面を参照して、本発明を円筒型リチウムイオン二次電池に適用した実施の形態について説明する。   Embodiments in which the present invention is applied to a cylindrical lithium ion secondary battery will be described below with reference to the drawings.

(構成)
本実施形態の円筒型リチウムイオン二次電池20は、図1に示すように、電池容器となるニッケルメッキが施されたスチール製で有底円筒状の電池缶7及びポリプロピレン樹脂製で円筒状の巻き芯1の周囲に帯状の正極板及び負極板がセパレータを介して断面渦巻状に捲回された極板群6を有している。
(Constitution)
As shown in FIG. 1, the cylindrical lithium ion secondary battery 20 of the present embodiment is made of nickel-plated steel and bottomed cylindrical battery can 7 and a polypropylene resin and is cylindrical. Around the winding core 1, there is an electrode plate group 6 in which a belt-like positive electrode plate and a negative electrode plate are wound in a cross-sectional spiral shape via a separator.

極板群6の上側には、正極板からの電位を集電するためのリング状の正極集電リング4が配置されている。正極集電リング4は、正極集電リング4を支持する正極集電リング支えを介して巻き芯1の上端部に固定されている。正極集電リング4の周縁には、正極板から延出された正極リード片2の端部が超音波溶接されている。正極集電リング4の上方には、中央部が凸状に成形された円盤状の電池蓋13が配置されている。正極集電リング4の上部には、アルミニウム製でリボン状の正極リード板9の一端が固定されている。正極リード板9の他端は、蓋リード板を介して電池蓋13の下部に溶接で接合されている。   On the upper side of the electrode plate group 6, a ring-shaped positive electrode current collecting ring 4 for collecting the electric potential from the positive electrode plate is disposed. The positive electrode current collecting ring 4 is fixed to the upper end portion of the winding core 1 via a positive electrode current collecting ring support that supports the positive electrode current collecting ring 4. The edge of the positive electrode lead piece 2 extended from the positive electrode plate is ultrasonically welded to the periphery of the positive electrode current collecting ring 4. Above the positive electrode current collecting ring 4, a disk-shaped battery lid 13 having a central portion formed in a convex shape is disposed. One end of a ribbon-like positive electrode lead plate 9 made of aluminum is fixed to the upper part of the positive electrode current collecting ring 4. The other end of the positive electrode lead plate 9 is joined to the lower portion of the battery lid 13 by welding via the lid lead plate.

一方、極板群6の下側には負極板からの電位を集電するためのリング状の負極集電リング5が配置されており、負極集電リング5は負極集電リング5を支持する負極集電リング支えを介して巻き芯1の下端部に固定されている。負極集電リング5の周縁には、負極板から延出された負極リード片3の端部が溶接されている。負極集電リング5の下部には負極リード板8が溶接されており、負極リード板8は電池缶7の内底部に溶接されている。電池缶7は、外径40mm、内径39mmに設定されている。   On the other hand, a ring-shaped negative electrode current collecting ring 5 for collecting a potential from the negative electrode plate is disposed below the electrode plate group 6, and the negative electrode current collecting ring 5 supports the negative electrode current collecting ring 5. It is fixed to the lower end portion of the winding core 1 via a negative electrode current collecting ring support. The edge of the negative electrode lead piece 3 extending from the negative electrode plate is welded to the periphery of the negative electrode current collecting ring 5. A negative electrode lead plate 8 is welded to the lower part of the negative electrode current collecting ring 5, and the negative electrode lead plate 8 is welded to the inner bottom portion of the battery can 7. The battery can 7 has an outer diameter of 40 mm and an inner diameter of 39 mm.

電池蓋13は、絶縁性及び耐熱性の樹脂製ガスケットを介して電池缶7の上部にカシメられて固定されている。このため、リチウムイオン二次電池20の内部は密封されている。また、電池缶7内には、図示しない非水電解液が所定量注液されている。非水電解液には、例えば、エチレンカーボネートとジメチルカーボネートとの混合溶媒中に6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解して使用することができる。なお、電池蓋13には、リチウムイオン二次電池20の内圧上昇により開裂する開裂弁(内圧開放機構)が配置されており、開裂圧は9×10Paに設定されている。また、リチウムイオン二次電池20には、電池温度の上昇に応じて電気的に作動する、例えば、PTC素子や、電池内圧の上昇に応じて正極又は負極の電気的リードが切断される電流遮断機構は配置されていない。 The battery lid 13 is crimped and fixed to the upper part of the battery can 7 via an insulating and heat resistant resin gasket. For this reason, the inside of the lithium ion secondary battery 20 is sealed. Further, a predetermined amount of non-aqueous electrolyte (not shown) is injected into the battery can 7. For the non-aqueous electrolyte, for example, 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) can be used by dissolving in a mixed solvent of ethylene carbonate and dimethyl carbonate. The battery lid 13 is provided with a cleavage valve (internal pressure release mechanism) that cleaves when the internal pressure of the lithium ion secondary battery 20 increases, and the cleavage pressure is set to 9 × 10 5 Pa. Further, the lithium ion secondary battery 20 is electrically operated in response to an increase in battery temperature, for example, a PTC element, or a current interruption in which a positive or negative electrical lead is disconnected in response to an increase in battery internal pressure. The mechanism is not arranged.

極板群6は、正極板と負極板とがこれら両極板が直接接触しないように、例えば、幅90mm、厚さ40μmのポリエチレン製セパレータを介して捲き芯1の周囲に捲回されている。正極リード片2と負極リード片3とは、それぞれ極板群6の互いに反対側の両端面に配置されている。極板群6及び正極集電リング4の外周面全周には、絶縁被覆が施されている。絶縁被覆には、例えば、ポリイミド製の基材の片面にヘキサメタアクリレートの粘着剤が塗布された粘着テープが用いられている。正極板、負極板、セパレータの長さを調整することで、極板群6の直径が38±0.1mmに設定されている。   In the electrode plate group 6, the positive electrode plate and the negative electrode plate are wound around the core 1 through, for example, a polyethylene separator having a width of 90 mm and a thickness of 40 μm so that the two electrode plates do not directly contact each other. The positive electrode lead piece 2 and the negative electrode lead piece 3 are respectively disposed on opposite end surfaces of the electrode plate group 6. An insulating coating is applied to the entire outer peripheral surfaces of the electrode plate group 6 and the positive electrode current collecting ring 4. For the insulating coating, for example, an adhesive tape in which a hexamethacrylate adhesive is applied to one side of a polyimide base material is used. The diameter of the electrode plate group 6 is set to 38 ± 0.1 mm by adjusting the lengths of the positive electrode plate, the negative electrode plate, and the separator.

極板群6を構成する負極板は、負極集電体として厚さ10μmの圧延銅箔を有している。圧延銅箔の両面には、負極活物質としてリチウムイオンを吸蔵、放出可能な平均粒子径5〜20μmの非晶質炭素粉末を含む負極合剤がほぼ均等かつ均質に塗着されている。負極合剤には、バインダ(結着材)のポリフッ化ビニリデン(PVDF)が配合されており、負極活物質、バインダの配合比は、例えば、質量比100:5に設定されている。圧延銅箔に負極合剤を塗着するときの分散溶媒にはN−メチルピロリドン(NMP)が用いられる。圧延銅箔の長寸方向一側の側縁には、幅30mmの負極合剤の未塗着部が形成されている。未塗着部は櫛状に切り欠かれており、切り欠き残部で負極リード片3が形成されている。負極板は、負極合剤密度が1.0g/cmとなるように、加熱可能なロールプレス機でプレス加工され、幅85mmに裁断されている。 The negative electrode plate constituting the electrode plate group 6 has a rolled copper foil having a thickness of 10 μm as a negative electrode current collector. On both surfaces of the rolled copper foil, a negative electrode mixture containing amorphous carbon powder having an average particle diameter of 5 to 20 μm capable of occluding and releasing lithium ions as a negative electrode active material is applied almost uniformly and uniformly. In the negative electrode mixture, polyvinylidene fluoride (PVDF) as a binder (binder) is blended, and the blend ratio of the negative electrode active material and the binder is set to, for example, a mass ratio of 100: 5. N-methylpyrrolidone (NMP) is used as a dispersion solvent when applying the negative electrode mixture to the rolled copper foil. An uncoated portion of a negative electrode mixture having a width of 30 mm is formed on the side edge on one side in the longitudinal direction of the rolled copper foil. The uncoated part is notched in a comb shape, and the negative electrode lead piece 3 is formed in the notch remaining part. The negative electrode plate is pressed by a heatable roll press so that the negative electrode mixture density is 1.0 g / cm 3 and is cut into a width of 85 mm.

一方、正極板は、正極集電体として厚さ20μmのアルミニウム箔を有している。アルミニウム箔の両面には、正極活物質として層状結晶構造を有するリチウムマンガンニッケルコバルト複合酸化物粉末(以下、単に複合酸化物という。)を含む正極合剤がほぼ均等かつ均質に塗着されている。正極合剤には、導電材の燐片状黒鉛及びバインダのPVDFが配合されている。複合酸化物、導電剤、バインダの配合比は、例えば、質量比100:10:5に設定されている。アルミニウム箔に正極合剤を塗着するときの分散溶媒には、NMPが用いられる。アルミニウム箔の長寸方向一側の側縁には、負極板と同様に正極合剤の未塗着部が形成されており、正極リード片2が形成されている。正極板は、正極合剤密度が2.70g/cmとなるように、負極板と同様にプレス加工され、幅80mmに裁断されている。 On the other hand, the positive electrode plate has an aluminum foil having a thickness of 20 μm as a positive electrode current collector. A positive electrode mixture containing lithium manganese nickel cobalt composite oxide powder having a layered crystal structure (hereinafter simply referred to as composite oxide) as a positive electrode active material is applied to both surfaces of the aluminum foil almost uniformly and uniformly. . In the positive electrode mixture, flake graphite as a conductive material and PVDF as a binder are blended. The compounding ratio of the composite oxide, the conductive agent, and the binder is set to, for example, a mass ratio of 100: 10: 5. NMP is used as a dispersion solvent when the positive electrode mixture is applied to the aluminum foil. An uncoated portion of the positive electrode mixture is formed on the side edge on one side in the longitudinal direction of the aluminum foil in the same manner as the negative electrode plate, and the positive electrode lead piece 2 is formed. The positive electrode plate is pressed in the same manner as the negative electrode plate so as to have a positive electrode mixture density of 2.70 g / cm 3 and cut into a width of 80 mm.

(正極材の作製)
上述した複合酸化物は、下記一般式(1)で示すことができ、リチウム、ニッケル、マンガン、コバルトを含む原料を混合・焼成することで得ることができる。一般式(1)において、Xは0<X≦1.2を、Y及びZは(Y+Z)<1を満たす数である。マンガンの割合が大きくなると単一相の複合酸化物が合成しにくくなるため、Z≦0.4とすることが望ましく、コバルトの割合が大きくなるとコスト高となり電池容量も著しく低下するため、(1−Y−Z)<Y、Zとすることが望ましい。なお、一般式(1)の酸素の価数は2に限定されるものではなく、若干の酸素欠損が生じてもよい。
(Preparation of positive electrode material)
The composite oxide described above can be represented by the following general formula (1), and can be obtained by mixing and firing raw materials containing lithium, nickel, manganese, and cobalt. In the general formula (1), X is a number that satisfies 0 <X ≦ 1.2, and Y and Z are numbers that satisfy (Y + Z) <1. When the proportion of manganese increases, it becomes difficult to synthesize a single-phase composite oxide. Therefore, Z ≦ 0.4 is desirable, and when the proportion of cobalt increases, the cost increases and the battery capacity significantly decreases. -Y-Z) <Y, Z are desirable. Note that the valence of oxygen in the general formula (1) is not limited to 2, and some oxygen deficiency may occur.

原料としては、例えば、リチウム源には、炭酸リチウム、硝酸リチウム、水酸化リチウム等を挙げることができる。ニッケル源には、炭酸ニッケル、硫酸ニッケル、水酸化ニッケル、酸化ニッケル、過酸化ニッケル等を挙げることができる。マンガン源には、二酸化マンガン、三酸化ニマンガン、四酸化三マンガン、炭酸マンガン、硝酸マンガン、硫酸マンガン等を挙げることができる。コバルト源には、酸化コバルト、三酸化ニコバルト、四酸化三コバルト、水酸化コバルト、硝酸コバルト、硫酸コバルト等を挙げることができる。これらニッケル源、マンガン源、コバルト源を湿式で混合後、アルカリ雰囲気下で共沈させて乾燥・粉砕し、リチウム源を乾式で混合する2段階方式で焼成原料を得る。なお、焼成原料は、リチウム源、ニッケル源、マンガン源、コバルト源を乾式で混合・粉砕する方法、各原料を湿式で混合して造粒・乾燥する方法、各原料を湿式で混合後共沈させて粉砕・乾燥する方法で得ることもできる。   Examples of the raw material include lithium carbonate, lithium nitrate, and lithium hydroxide. Examples of the nickel source include nickel carbonate, nickel sulfate, nickel hydroxide, nickel oxide, nickel peroxide and the like. Manganese sources include manganese dioxide, nitric oxide, trimanganese tetroxide, manganese carbonate, manganese nitrate, manganese sulfate and the like. Examples of the cobalt source include cobalt oxide, niobium trioxide, tricobalt tetroxide, cobalt hydroxide, cobalt nitrate, and cobalt sulfate. These nickel source, manganese source, and cobalt source are mixed in a wet manner, then co-precipitated in an alkaline atmosphere, dried and pulverized, and a fired raw material is obtained by a two-stage method in which a lithium source is mixed in a dry manner. The firing raw materials are a method of mixing and pulverizing a lithium source, nickel source, manganese source and cobalt source in a dry manner, a method of mixing raw materials in a wet manner, granulating and drying, and a co-precipitation after mixing the raw materials in a wet manner. It can also be obtained by a method of pulverizing and drying.

各原料の湿式混合には分散媒として水又は有機溶媒を用いることができるが、水を用いることが好ましい。混合機及び分散機としてはビーズミル、ボールミル、ジェットミル等の装置が代表的である。また、乾燥方法としては、特に限定するものではないが、適正な乾燥温度と噴霧量で容易に乾燥可能な噴霧乾燥方式を採用することができる。噴霧ガスには空気や不活性ガスを使用することができるが、通常、空気が使用される。乾燥温度が低い場合には、乾燥不良や炉内結露が発生する原因となるため、60°C以上とすることが好ましい。噴霧乾燥時の噴霧速度、乾燥温度、噴霧ノズル形状及び噴霧ガス供給量等を調整することで、焼成原料の粒子径や充填密度を制御することができる。   In the wet mixing of each raw material, water or an organic solvent can be used as a dispersion medium, but water is preferably used. Representative examples of the mixer and the disperser include a bead mill, a ball mill, and a jet mill. The drying method is not particularly limited, and a spray drying method that can be easily dried at an appropriate drying temperature and spray amount can be employed. Air or an inert gas can be used as the atomizing gas, but air is usually used. When the drying temperature is low, it may cause poor drying or dew condensation in the furnace. By adjusting the spray speed, the drying temperature, the spray nozzle shape, the spray gas supply amount, and the like during spray drying, the particle diameter and packing density of the calcined raw material can be controlled.

次に、得られた焼成原料を電気炉内に静置して焼成する。焼成は、通常、温度700〜1100°Cで8〜48時間かけて行う。昇温速度は、特に限定されるものではないが、単一の結晶層を生成させるため、焼成温度に保持する時間は少なくとも4時間以上が必要である。焼成温度が低い場合には、焼成時間が長くなると共に結晶成長が不十分なため、得られた複合酸化物の二次粒子中の一次粒子の充填密度も小さくなる。反対に、焼成温度が高い場合には、別の結晶相が生成したり、欠陥が増加したりする。また、リチウム源が昇華して組成ズレが生じることもある。焼成後の冷却でも、別の結晶相の生成や欠陥の多い複合酸化物の生成を抑制するため、冷却速度を制限して徐冷することが望ましく、例えば、300°C/h以下の冷却速度で行うことが望ましい。焼成装置としては、電気炉以外に、ガス炉、トンネル炉、ロータリーキルン等を使用することもできる。   Next, the obtained firing raw material is left standing in an electric furnace and fired. Firing is usually performed at a temperature of 700 to 1100 ° C for 8 to 48 hours. The rate of temperature increase is not particularly limited, but it is necessary to maintain the firing temperature for at least 4 hours in order to form a single crystal layer. When the firing temperature is low, the firing time becomes long and the crystal growth is insufficient, so that the packing density of the primary particles in the secondary particles of the obtained composite oxide becomes small. On the other hand, when the firing temperature is high, another crystal phase is formed or defects are increased. Further, the lithium source may sublimate and compositional deviation may occur. In order to suppress the formation of another crystal phase and the formation of complex oxides with many defects even after cooling after firing, it is desirable to slowly cool by limiting the cooling rate, for example, a cooling rate of 300 ° C / h or less It is desirable to do in. As a baking apparatus, a gas furnace, a tunnel furnace, a rotary kiln, etc. can be used besides an electric furnace.

焼成した複合酸化物は、タッピング密度1.6g/cm以上2.2g/cm以下であること、かつ、安息角47.5度以上50度以下であることを、粉体特性測定装置(ホソカワミクロン株式会社製、パウダーテスタPT−R型)で測定し、層状結晶構造であることを粉末X線回折測定で確認した。また、平均粒子径が20μm以下であることをレーザ式粒度測定装置で確認した。タッピング密度の測定では、100ccのタッピングセルを用い、タッピング高さ3mm、タッピング回数5分間で180回に設定した。このタッピング密度は、日本工業規格(JIS K 7370)に記載の方法で測定することもできる。安息角の測定は、日本工業規格(JIS R 9301−2−2)に準じて行った。 The calcined composite oxide has a tapping density of 1.6 g / cm 3 or more and 2.2 g / cm 3 or less and a repose angle of 47.5 degrees or more and 50 degrees or less. Measured with a powder tester PT-R type manufactured by Hosokawa Micron Corporation), it was confirmed by powder X-ray diffraction measurement that it was a layered crystal structure. Moreover, it confirmed that the average particle diameter was 20 micrometers or less with the laser type particle size measuring apparatus. In the measurement of the tapping density, a 100 cc tapping cell was used, the tapping height was set to 3 mm, and the tapping frequency was set to 180 times for 5 minutes. This tapping density can also be measured by the method described in Japanese Industrial Standard (JIS K 7370). The angle of repose was measured according to Japanese Industrial Standard (JIS R 9301-2-2).

次に、本実施形態に従って、上述した噴霧乾燥条件、焼成条件を変えることでタッピング密度及び安息角を変えた複合酸化物を用いて作製したリチウムイオン二次電池20の実施例について説明する。なお、比較のために作製した比較例のリチウムイオン二次電池についても併記する。   Next, an example of the lithium ion secondary battery 20 manufactured using the composite oxide in which the tapping density and the angle of repose are changed by changing the above-described spray drying conditions and firing conditions according to the present embodiment will be described. In addition, it describes together about the lithium ion secondary battery of the comparative example produced for the comparison.

(実施例1)
下表1に示すように、実施例1では、各元素のモル比がLi:Ni:Mn:Co=1:0.34:0.33:0.33で結晶構造が菱面体晶の複合酸化物(組成LiNi0.34Mn0.33Co0.33)を合成し、タッピング密度1.6g/cm、安息角50度の複合酸化物を用いた。原料として、平均粒子径1μmの硫酸ニッケル・6水和物の89.4g、平均粒子径1μmの硫酸コバルト・7水和物の92.8g、平均粒子径1μmの硫酸マンガン・6水和物の79.6g、を1リットルのイオン交換水に溶解・分散させた後、400メッシュのフィルタを通して凝集塊を取り除いた。得られた溶液に0.5モル/リットルの水酸化ナトリウム水溶液を徐々に加えて、ニッケル・コバルト・マンガン混合の水酸化物を共沈させた。アコーディオン型のフィルタプレス装置で共沈物をろ過し、120°Cで1時間撹拌しながら乾燥させた後、ジェットミルで種々の平均粒子径となるように粉砕したニッケル・コバルト・マンガン混合の水酸化物に炭酸リチウムの74gを加えてジェットミルで混合し、焼成原料とした。ジルコニア製の容器に入れた焼成原料を電気炉内に静置して昇温速度5°C/分で焼成温度850〜1050°Cに昇温した。最高温度で8時間保持した後、5°C/分の冷却速度で徐冷した。
Example 1
As shown in Table 1 below, in Example 1, the compound oxide was a rhombohedral crystal in which the molar ratio of each element was Li: Ni: Mn: Co = 1: 0.34: 0.33: 0.33. (Composition LiNi 0.34 Mn 0.33 Co 0.33 O 2 ) was synthesized, and a composite oxide having a tapping density of 1.6 g / cm 3 and an angle of repose of 50 degrees was used. As raw materials, 89.4 g of nickel sulfate hexahydrate having an average particle diameter of 1 μm, 92.8 g of cobalt sulfate heptahydrate having an average particle diameter of 1 μm, and manganese sulfate hexahydrate having an average particle diameter of 1 μm 79.6 g was dissolved and dispersed in 1 liter of ion exchange water, and then the aggregate was removed through a 400 mesh filter. A 0.5 mol / liter aqueous sodium hydroxide solution was gradually added to the resulting solution to coprecipitate a nickel / cobalt / manganese mixed hydroxide. The coprecipitate is filtered with an accordion type filter press, dried with stirring at 120 ° C. for 1 hour, and then pulverized with a jet mill to have various average particle sizes. 74 g of lithium carbonate was added to the oxide and mixed with a jet mill to obtain a firing raw material. The firing raw material placed in a zirconia container was left in an electric furnace and heated to a firing temperature of 850 to 1050 ° C. at a heating rate of 5 ° C./min. After maintaining at the maximum temperature for 8 hours, it was gradually cooled at a cooling rate of 5 ° C / min.

(実施例2〜実施例5)
表1に示すように、実施例2〜実施例5では、タッピング密度及び安息角を変える以外は実施例1と同様にした。実施例2ではタッピング密度1.8g/cm、安息角49度、実施例3ではタッピング密度2.0g/cm、安息角48度、実施例4ではタッピング密度2.0g/cm、安息角47.5度、実施例5ではタッピング密度1.8g/cm、安息角50度、の複合酸化物を得た。
(Example 2 to Example 5)
As shown in Table 1, Examples 2 to 5 were the same as Example 1 except that the tapping density and the angle of repose were changed. In Example 2, the tapping density was 1.8 g / cm 3 and the angle of repose was 49 degrees. In Example 3, the tapping density was 2.0 g / cm 3 and the angle of repose was 48 degrees. In Example 4, the tapping density was 2.0 g / cm 3 and the repose was. A composite oxide having an angle of 47.5 °, a tapping density of 1.8 g / cm 3 in Example 5, and an angle of repose of 50 ° was obtained.

(比較例1〜比較例3)
表1に示すように、比較例1〜比較例3では、タッピング密度及び安息角を変える以外は実施例1と同様にした。比較例1ではタッピング密度1.5g/cm、安息角50度、比較例2ではタッピング密度2.3g/cm、安息角46度、比較例3ではタッピング密度1.8g/cm、安息角52度、の複合酸化物を得た。
(Comparative Examples 1 to 3)
As shown in Table 1, Comparative Examples 1 to 3 were the same as Example 1 except that the tapping density and the angle of repose were changed. In Comparative Example 1, the tapping density is 1.5 g / cm 3 and the angle of repose is 50 degrees. In Comparative Example 2, the tapping density is 2.3 g / cm 3 and the angle of repose is 46 degrees. In Comparative Example 3, the tapping density is 1.8 g / cm 3 and the repose is A composite oxide having an angle of 52 degrees was obtained.

(複合酸化物の評価)
各実施例及び比較例で得た複合酸化物について、上述した正極合剤をNMPに分散、溶解させた塗布溶液の安定性、及び、アルミニウム箔に塗着したときの電極表面の状態を目視にて評価した。評価結果を表1に合わせて示している。
(Evaluation of composite oxide)
Regarding the composite oxides obtained in each Example and Comparative Example, the stability of the coating solution in which the above-described positive electrode mixture was dispersed and dissolved in NMP and the state of the electrode surface when applied to the aluminum foil were visually observed. And evaluated. The evaluation results are shown in Table 1.

表1に示すように、タッピング密度が1.6g/cm未満の比較例1、安息角が50度を超える比較例3の複合酸化物を用いた塗布溶液では、低固形分濃度でしか溶液にならないこともあり、放置するだけで徐々にNMPの遊離や正極合剤粒子の沈降が認められた。また、アルミニウム箔に塗布する際に、撹拌する塗布溶液中で複合酸化物が凝集して平滑な塗布を行うことができなくなり、電極表面には部分的に凹凸が認められた。これに対して、タッピング密度が1.6g/cm以上2.2g/cm以下、かつ、安息角が47.5度以上50度以下の複合酸化物を用いた塗布溶液では、放置してもNMPの遊離や沈降は見られず安定であり、これを塗布した電極表面には凹凸がなく平滑であった。 As shown in Table 1, in the coating solution using the composite oxide of Comparative Example 1 having a tapping density of less than 1.6 g / cm 3 and Comparative Example 3 having an angle of repose of more than 50 degrees, the solution was only in a low solid content concentration. In some cases, the release of NMP and the precipitation of the positive electrode mixture particles were gradually observed only by leaving it to stand. Moreover, when apply | coating to aluminum foil, complex oxide aggregated in the application | coating solution to stir and it became impossible to perform smooth application | coating, and the unevenness | corrugation was recognized partially on the electrode surface. On the other hand, in a coating solution using a complex oxide having a tapping density of 1.6 g / cm 3 or more and 2.2 g / cm 3 or less and an angle of repose of 47.5 degrees or more and 50 degrees or less, it is left as it is. Also, no release or sedimentation of NMP was observed and it was stable, and the electrode surface coated with NMP was smooth without any irregularities.

(電池試験)
次に、各実施例及び比較例の電池について、以下の試験を実施した。まず、室温(25°C)雰囲気下にて3時間率(0.33C)で定電流定電圧充電(設定電圧4.1V)を5時間行った後、1時間率(1C)で放電終止電圧2.7Vに至るまで放電し、再度同条件で充電した。次に、日本工業規格(JIS C 8711)に準じ、放電電流1、3、6Aの各電流値で放電して5秒目電圧を測定し、この電流−電圧特性から初期出力を求めた。初期出力を測定した電池を低温(−25°C)の恒温槽内に24時間静置して電池全体が−25°Cとなるように冷却し、上述した室温での初期出力の測定と同条件で、低温雰囲気下での出力を測定した。更に、充放電サイクルによる出力低下を測定するため、室温に24時間静置した後、25°Cの雰囲気下にて3時間率(0.33C)で定電流定電圧充電(設定電圧4.1V)を5時間行った後、1時間率(1C)で放電終止電圧2.7Vに至るまでの充放電を繰り返した。100サイクル経過後、初期出力の測定と同様に電池の出力を測定し、初期出力に対する100サイクル後の出力の割合を百分率で求め、維持率とした。室温、低温雰囲気下での出力及び維持率の測定結果を下表2に示す。
(Battery test)
Next, the following tests were performed on the batteries of the examples and comparative examples. First, a constant-current / constant-voltage charge (set voltage 4.1 V) is performed for 5 hours at a 3-hour rate (0.33 C) in a room temperature (25 ° C.) atmosphere, and then a discharge end voltage is set at a 1-hour rate (1 C). The battery was discharged to 2.7 V and charged again under the same conditions. Next, in accordance with Japanese Industrial Standard (JIS C 8711), discharge was performed at each current value of discharge current 1, 3, 6A, the voltage at the 5th second was measured, and the initial output was obtained from this current-voltage characteristic. The battery for which the initial output was measured was left in a low temperature (−25 ° C.) constant temperature bath for 24 hours to cool the entire battery to −25 ° C., which was the same as the measurement of the initial output at room temperature described above. Under the conditions, the output under a low temperature atmosphere was measured. Furthermore, in order to measure the decrease in output due to the charge / discharge cycle, the sample was allowed to stand at room temperature for 24 hours and then charged at a constant current and constant voltage (set voltage 4.1 V) at a rate of 3 hours (0.33 C) in an atmosphere of 25 ° C. ) Was performed for 5 hours, and charging and discharging were repeated at a rate of 1 hour (1C) until reaching a final discharge voltage of 2.7 V. After 100 cycles, the output of the battery was measured in the same manner as the measurement of the initial output, and the ratio of the output after 100 cycles to the initial output was obtained as a percentage to obtain the maintenance rate. Table 2 below shows the measurement results of the output and the maintenance factor in a room temperature and low temperature atmosphere.

表2に示すように、安息角50度以下でもタッピング密度2.2g/cmを超える複合酸化物を用いた比較例2のリチウムイオン二次電池では、低温雰囲気下での出力の低下が著しく、また、過充電試験において、電池が破裂して安全性を著しく損ねていることが確認された。これは、正極合剤層中の非水電解液の分布が不均一なため、非水電解液の存在する部分に電極反応が集中して、その部分が早期から過充電状態に到ったものと考えられる。また、タッピング密度が1.6g/cm未満の比較例1のリチウムイオン二次電池、安息角が50度を超える比較例3のリチウムイオン二次電池では、初期出力が低く、100サイクル後維持率の低下も大きい。これは、複合酸化物の二次粒子の空隙にバインダが選択的に取り込まれてリチウムイオンの移動を阻害し、また、充放電を繰り返すことに伴う複合酸化物の体積変化のため、二次粒子が徐々に崩壊して正極合剤が剥離することから、電子伝導性の低下や電極反応の不均一化が起こっていることが原因と考えられる。 As shown in Table 2, in the lithium ion secondary battery of Comparative Example 2 using a composite oxide having a tapping density of 2.2 g / cm 3 or less even at an angle of repose of 50 degrees or less, the output under a low temperature atmosphere is significantly reduced. Moreover, in the overcharge test, it was confirmed that the battery ruptured and the safety was significantly impaired. This is because the nonaqueous electrolyte distribution in the positive electrode mixture layer is non-uniform, so the electrode reaction is concentrated in the area where the nonaqueous electrolyte is present, and that part has reached an overcharged state from an early stage. it is conceivable that. Further, in the lithium ion secondary battery of Comparative Example 1 having a tapping density of less than 1.6 g / cm 3 and the lithium ion secondary battery of Comparative Example 3 having an angle of repose exceeding 50 degrees, the initial output is low and maintained after 100 cycles. The decline in rate is also great. This is because the binder is selectively taken into the voids of the secondary particles of the composite oxide to inhibit the migration of lithium ions, and because of the volume change of the composite oxide due to repeated charge and discharge, the secondary particles This is thought to be due to a decrease in electron conductivity and non-uniformity of the electrode reaction.

これに対して、タッピング密度が1.6g/cm以上2.2g/cm以下、かつ、安息角が47.5度以上50度以下の複合酸化物を用いた実施例1〜実施例5のリチウムイオン二次電池20では、低温雰囲気下での出力が300W以上確保され、また、100サイクル後でも初期出力の90%以上の出力が維持されている。中でも、タッピング密度1.6g/cm以上2.0g/cm以下、かつ、安息角48度〜50度とした実施例1〜実施例3及び実施例5では、室温環境下での出力850W以上、低温環境下での出力330W以上を確保することができた。 In contrast, the tapping density is 1.6 g / cm 3 or more 2.2 g / cm 3 or less, and angle of repose were used following composite oxides 50 degrees 47.5 degrees Example 1 to Example 5 In the lithium ion secondary battery 20, an output of 300 W or more in a low temperature atmosphere is secured, and an output of 90% or more of the initial output is maintained even after 100 cycles. Among them, in Examples 1 to 3 and 5 in which the tapping density is 1.6 g / cm 3 or more and 2.0 g / cm 3 or less and the angle of repose is 48 degrees to 50 degrees, the output is 850 W in a room temperature environment. As described above, it was possible to secure an output of 330 W or more in a low temperature environment.

以上のように、タッピング密度が1.6g/cm以上2.2g/cm以下であり、かつ、安息角が47.5度以上50度以下である複合酸化物を正極材に用いることで、高容量、高出力であり、寿命性能に優れたリチウムイオン二次電池を得ることができることが判明した。 As described above, the tapping density is at 1.6 g / cm 3 or more 2.2 g / cm 3 or less, and, by using the angle of repose is not more than 50 degrees 47.5 degrees composite oxide in the positive electrode material It was found that a lithium ion secondary battery having high capacity, high output and excellent life performance can be obtained.

(作用等)
次に、本実施形態のリチウムイオン二次電池20の作用等について説明する。
(Action etc.)
Next, the operation and the like of the lithium ion secondary battery 20 of the present embodiment will be described.

焼成して得られる複合酸化物では、一次粒子が凝集した二次粒子が形成されており、焼成原料の乾燥条件や焼成条件により二次粒子内の空隙容積が変化する。このため、測定容器に入れた複合酸化物に振動(タッピング)を加えた後の見かけ密度を表すタッピング密度では、複合酸化物の粒度分布や二次粒子中の一次粒子密度の影響により変化するが、一次粒子及び二次粒子表面の平滑性、表面電荷や表面張力でも変化する。例えば、二次粒子内の空隙容積の増加(一次粒子の密度の低下)、粒子表面の平滑性の増加、表面張力の低下等によりタッピング密度が小さくなる。また、複合酸化物を落下させて形成される山の(すそ野の)角度を表す安息角では、一次粒子及び二次粒子表面の平滑性、表面電荷や表面張力が大きく影響する。例えば、粒子表面の平滑性の増加、表面張力の低下等により安息角が小さくなる。   In the composite oxide obtained by firing, secondary particles in which primary particles are aggregated are formed, and the void volume in the secondary particles varies depending on the drying conditions and firing conditions of the firing raw material. For this reason, the tapping density that represents the apparent density after applying vibration (tapping) to the composite oxide placed in the measurement vessel varies depending on the particle size distribution of the composite oxide and the influence of the primary particle density in the secondary particles. It also changes with the smoothness, surface charge and surface tension of the primary and secondary particle surfaces. For example, the tapping density is decreased by increasing the void volume in the secondary particles (decreasing the density of the primary particles), increasing the smoothness of the particle surface, decreasing the surface tension, and the like. In addition, the repose angle, which represents the angle of the peaks formed by dropping the composite oxide, is greatly affected by the smoothness, surface charge, and surface tension of the primary and secondary particle surfaces. For example, the angle of repose decreases due to an increase in the smoothness of the particle surface, a decrease in surface tension, and the like.

タッピング密度が1.6g/cmより小さく、安息角が50度を超える複合酸化物を用いると、アルミニウム箔に正極合剤を塗布するときの塗布溶液の作製時に希釈分散媒のNMPとの濡れ性が悪化しつつ、得られた塗布溶液の安定性(例えば、分離、沈降など)も悪化する。この結果、正極合剤中に占める複合酸化物の量が少なくなると共に、正極合剤中の導電材やバインダの分布の不均一化により正極合剤の剥離が生じる。また、正極合剤密度を大きくして出力低下を抑制するため、プレス加工で強い圧力が必要となり、電極端部の両側が著しく伸びて、電極表面の平滑性と直線性を失うこととなる。このような電極作製時の不具合が電池特性やそのバラツキを引き起こし、容量、出力が低下すると共に、寿命や安全性の低下を招く。一方、タッピング密度が2.2g/cmを超える複合酸化物を用いると、二次粒子中の空隙が小さいため、導電材の分布が二次粒子表面に偏り、正極合剤中の緻密な導電ネットワークを形成しにくくなり、また、非水電解液の浸透も不十分となることから、二次粒子内での電極反応にバラツキが生じて部分的に集中する。このため、複合酸化物が劣化して寿命が低下する。特に、低温環境下では複合酸化物の層状結晶が収縮するため、リチウムイオン拡散性が低下し電極反応のバラツキが顕著となる。 Tapping density is less than 1.6 g / cm 3, wetting of the use of composite oxide angle of repose exceeds 50 °, the NMP for dilution dispersing medium during the production of the coating solution when applying a positive electrode mixture to the aluminum foil The stability (for example, separation, sedimentation, etc.) of the obtained coating solution also deteriorates while the properties deteriorate. As a result, the amount of the composite oxide in the positive electrode mixture is reduced, and peeling of the positive electrode mixture occurs due to non-uniform distribution of the conductive material and binder in the positive electrode mixture. Moreover, in order to suppress the output fall by increasing the positive electrode mixture density, a strong pressure is required in the press working, and both sides of the electrode end portion are remarkably extended, and the smoothness and linearity of the electrode surface are lost. Such a failure during electrode production causes battery characteristics and variations thereof, resulting in a decrease in capacity and output, and a decrease in life and safety. On the other hand, when a composite oxide having a tapping density of more than 2.2 g / cm 3 is used, since the voids in the secondary particles are small, the distribution of the conductive material is biased toward the surface of the secondary particles, and the dense conductive in the positive electrode mixture Since it becomes difficult to form a network and the penetration of the non-aqueous electrolyte solution is insufficient, the electrode reaction in the secondary particles varies and partially concentrates. For this reason, the composite oxide is deteriorated and the life is shortened. In particular, since the layered crystal of the composite oxide shrinks in a low temperature environment, the lithium ion diffusibility is lowered and the variation in electrode reaction becomes remarkable.

本実施形態のリチウムイオン二次電池20では、複合酸化物のタッピング密度を1.6g/cm以上2.2g/cm以下、かつ、安息角を47.5度以上50度以下とする。このため、正極合剤中に占める複合酸化物の量を確保しつつ、非水電解液が複合酸化物に浸透するため、低温環境下でも電極反応のバラツキを抑制することができる。また、NMPに対する複合酸化物の濡れ性が適正化されるため、塗布溶液中で複合酸化物が分離、沈降することなく正極合剤を略均等に塗着することができる。従って、電極反応の集中が抑制されると共に、正極合剤の剥離が防止されるので、リチウム二次電池の出力、寿命の低下を抑制することができる。 In the lithium ion secondary battery 20 of this embodiment, the tapping density of the composite oxide is 1.6 g / cm 3 or more and 2.2 g / cm 3 or less, and the angle of repose is 47.5 degrees or more and 50 degrees or less. For this reason, since the non-aqueous electrolyte permeates the composite oxide while securing the amount of the composite oxide in the positive electrode mixture, variations in the electrode reaction can be suppressed even in a low temperature environment. Moreover, since the wettability of the composite oxide with respect to NMP is optimized, the positive electrode mixture can be applied substantially evenly without the composite oxide being separated and settled in the coating solution. Accordingly, concentration of the electrode reaction is suppressed and peeling of the positive electrode mixture is prevented, so that it is possible to suppress a decrease in output and life of the lithium secondary battery.

また、本実施形態では、複合酸化物のタッピング密度及び安息角を上述した範囲とすることで、複合酸化物の流動性が適正化されるため、NMPへの混合分散を容易に行うことができると共に、凝集塊の形成を抑制することができるので、正極作製時の作業性を改善することができる。   Moreover, in this embodiment, since the fluidity of the composite oxide is optimized by setting the tapping density and the angle of repose of the composite oxide within the above-described ranges, mixing and dispersion in NMP can be easily performed. At the same time, since the formation of aggregates can be suppressed, the workability during the production of the positive electrode can be improved.

なお、本実施形態では、リチウムマンガンニッケルコバルト複合酸化物のマンガン/ニッケル/コバルトの比を1:1:1とした組成LiNi0.34Mn0.33Co0.33を例示したが、本発明はこれに限定されるものではなく、層状結晶構造を有する比率であればよい。また、リチウム/(マンガン+ニッケル+コバルト)比を1.0とする例を示したが、リチウム過剰としてもよい。更に、リチウム、マンガン、ニッケル、コバルト、酸素の一部を、例えば、Fe、Cu、Al、Cr、Mg、Zn、V、Ga、B、Fの少なくとも1種以上の元素で置換又はドープした材料を用いることもできる。 In this embodiment, the composition LiNi 0.34 Mn 0.33 Co 0.33 O 2 in which the manganese / nickel / cobalt ratio of the lithium manganese nickel cobalt composite oxide is 1: 1: 1 is exemplified. This invention is not limited to this, What is necessary is just a ratio which has a layered crystal structure. Moreover, although the example which made lithium / (manganese + nickel + cobalt) ratio 1.0 was shown, it is good also as lithium excess. Furthermore, a material in which a part of lithium, manganese, nickel, cobalt, oxygen is substituted or doped with at least one element of, for example, Fe, Cu, Al, Cr, Mg, Zn, V, Ga, B, F Can also be used.

また、本実施形態では、正負極を捲回して有底円筒状の電池缶に収容した円筒型電池を例示したが、本発明は電池の形状や構造に限定されるものではなく、例えば、角形、その他の多角形の電池や正負極を積層した積層タイプの電池にも適用可能である。また、本発明の適用可能な電池の構造としては、例えば、正負外部端子が電池蓋を貫通し電池容器内で捲き芯を介して押し合っている構造の電池を挙げることができる。   Further, in the present embodiment, the cylindrical battery is illustrated in which the positive and negative electrodes are wound and accommodated in a bottomed cylindrical battery can. However, the present invention is not limited to the shape and structure of the battery. The present invention can also be applied to other polygonal batteries and stacked type batteries in which positive and negative electrodes are stacked. Moreover, as a battery structure to which the present invention can be applied, for example, a battery having a structure in which positive and negative external terminals pass through a battery lid and are pressed through a winding core in a battery container can be exemplified.

更に、本実施形態では、負極活物質に非晶質炭素を例示したが、本発明はこれに限定されるものではない。例えば、天然黒鉛、人造の各種黒鉛材、コークス等の黒鉛系炭素材を用いてもよく、粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。   Furthermore, in the present embodiment, amorphous carbon is exemplified as the negative electrode active material, but the present invention is not limited to this. For example, graphite-based carbon materials such as natural graphite, various artificial graphite materials, and coke may be used, and the particle shape is not particularly limited, such as scaly, spherical, fibrous, or massive.

また更に、本実施形態では、バインダにPVDFを例示したが、本発明はこれに限定されるものではなく、例えば、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン等の重合体及びこれらの混合体を用いてもよい。   Furthermore, in this embodiment, PVDF is exemplified as the binder, but the present invention is not limited to this. For example, polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / Polybutadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and mixtures thereof may be used.

更にまた、本実施形態では、正極導電材に鱗片状黒鉛を例示したが、本発明はこれに限定されるものではなく、黒鉛系炭素材であればよい。本実施形態以外で用いることのできる正極導電材としては、天然黒鉛、人造の各種黒鉛材、コークス等を挙げることができ、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。また、負極に導電材を配合してもよく、例えば、ケッチェンブラック、アセチレンブラック等の無定形炭素を用いることができる。   Furthermore, in the present embodiment, scaly graphite is exemplified as the positive electrode conductive material, but the present invention is not limited to this, and any graphite-based carbon material may be used. Examples of the positive electrode conductive material that can be used other than the present embodiment include natural graphite, various artificial graphite materials, coke, and the like, and also in the particle shape, particularly in the form of scaly, spherical, fibrous, massive, etc. It is not limited. Moreover, you may mix | blend a electrically conductive material with a negative electrode, for example, amorphous carbon, such as ketjen black and acetylene black, can be used.

また、本実施形態では、非水電解液にエチレンカーボネートとジメチルカーボネートとの混合溶媒中へ6フッ化リン酸リチウムを溶解したものを例示したが、本発明はこれに限定されるものではなく、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解して用いることができる。用いられるリチウム塩や有機溶媒にも特に制限はない。例えば、電解質としては、LiClO、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLi等やこれらの混合物を用いてもよい。また、有機溶媒としては、例えば、プロピレンカーボネート、ジエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル等、又はこれら2種以上の混合溶媒を用いてもよい。混合配合比についても制限されるものではない。 In the present embodiment, the non-aqueous electrolytic solution is exemplified by dissolving lithium hexafluorophosphate in a mixed solvent of ethylene carbonate and dimethyl carbonate, but the present invention is not limited to this, A general lithium salt can be used as an electrolyte, which is dissolved in an organic solvent. There are no particular limitations on the lithium salt or organic solvent used. For example, as the electrolyte, LiClO 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, or a mixture thereof may be used. Examples of the organic solvent include propylene carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3- Dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, or a mixed solvent of two or more of these may be used. The mixing ratio is not limited.

本発明は、低温環境下で高出力化することができ、寿命を改善可能なリチウム二次電池を提供するものであり、製造、販売に寄与し、産業上利用することができる。   The present invention provides a lithium secondary battery that can increase the output under a low temperature environment and can improve the life, contribute to manufacture and sales, and can be used industrially.

本発明を適用可能な実施形態の円筒型リチウムイオン二次電池を示す断面図である。It is sectional drawing which shows the cylindrical lithium ion secondary battery of embodiment which can apply this invention.

符号の説明Explanation of symbols

6 極板群
20 円筒型リチウムイオン二次電池(リチウム二次電池)
6 electrode plate group 20 cylindrical lithium ion secondary battery (lithium secondary battery)

Claims (4)

層状結晶構造を有するリチウムマンガンニッケルコバルト複合酸化物及び導電材を含む正極合剤を正極集電体に塗着した正極と、リチウムイオンを脱離挿入可能な炭素材を含む負極とを非水電解液に浸潤させたリチウム二次電池において、前記リチウムマンガンニッケルコバルト複合酸化物のタッピング密度が1.6g/cm以上2.2g/cm以下であり、かつ、安息角が47.5度以上50度以下であることを特徴とするリチウム二次電池。 Nonaqueous electrolysis of a positive electrode in which a positive electrode mixture containing a lithium manganese nickel cobalt composite oxide having a layered crystal structure and a conductive material is applied to a positive electrode current collector, and a negative electrode containing a carbon material capable of desorbing and inserting lithium ions In the lithium secondary battery infiltrated in the liquid, the lithium manganese nickel cobalt composite oxide has a tapping density of 1.6 g / cm 3 or more and 2.2 g / cm 3 or less, and an angle of repose of 47.5 degrees or more. A lithium secondary battery, which is 50 degrees or less. 層状結晶構造を有するリチウムマンガンニッケルコバルト複合酸化物を用いたリチウム二次電池用正極材において、前記リチウムマンガンニッケルコバルト複合酸化物のタッピング密度が1.6g/cm以上2.2g/cm以下であり、かつ、安息角が47.5度以上50度以下であることを特徴とする正極材。 In a positive electrode material for a lithium secondary battery using a lithium manganese nickel cobalt composite oxide having a layered crystal structure, a tapping density of the lithium manganese nickel cobalt composite oxide is 1.6 g / cm 3 or more and 2.2 g / cm 3 or less. And an angle of repose of 47.5 degrees or more and 50 degrees or less. 前記リチウムマンガンニッケルコバルト複合酸化物は、化学式LiNiMnCo(1−Y−Z)(0<X≦1.2、Y+Z<1)で表されることを特徴とする請求項2に記載の正極材。 The lithium-manganese-nickel-cobalt composite oxide has the formula Li X Ni Y Mn Z Co ( 1-Y-Z) O 2 (0 <X ≦ 1.2, Y + Z <1) claims, characterized by being represented by Item 3. The positive electrode material according to Item 2. 前記リチウムマンガンニッケルコバルト複合酸化物は、平均粒子径が20μm以下であることを特徴とする請求項2に記載の正極材。   The positive electrode material according to claim 2, wherein the lithium manganese nickel cobalt composite oxide has an average particle size of 20 μm or less.
JP2004112657A 2004-04-07 2004-04-07 Lithium secondary battery and positive electrode material for lithium secondary battery Expired - Fee Related JP4534559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004112657A JP4534559B2 (en) 2004-04-07 2004-04-07 Lithium secondary battery and positive electrode material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004112657A JP4534559B2 (en) 2004-04-07 2004-04-07 Lithium secondary battery and positive electrode material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2005302338A JP2005302338A (en) 2005-10-27
JP4534559B2 true JP4534559B2 (en) 2010-09-01

Family

ID=35333600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004112657A Expired - Fee Related JP4534559B2 (en) 2004-04-07 2004-04-07 Lithium secondary battery and positive electrode material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4534559B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5028985B2 (en) * 2006-12-07 2012-09-19 株式会社日立製作所 Lithium secondary battery
KR101135491B1 (en) 2009-02-13 2012-04-13 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium and rechargeable lithium battery comprising same
KR101096936B1 (en) * 2009-07-23 2011-12-22 지에스칼텍스 주식회사 Negative active material for rechargeable lithium battery, method of manufacturing the same and rechargeable lithium battery having the same
JP5805104B2 (en) * 2010-12-03 2015-11-04 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN105514420A (en) * 2010-12-03 2016-04-20 Jx日矿日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
CN102064314A (en) * 2010-12-20 2011-05-18 东莞新能源科技有限公司 Anode piece of lithium ion secondary battery

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11224668A (en) * 1998-02-04 1999-08-17 Matsushita Electric Ind Co Ltd Nickel-cobalt hydroxide for active material of nonaqueous electrolyte battery
JPH11329432A (en) * 1998-05-21 1999-11-30 Japan Energy Corp Positive electrode material for lithium secondary battery
JP2000323123A (en) * 1999-05-06 2000-11-24 Dowa Mining Co Ltd Positive electrode active material and positive electrode for non-aqueous secondary battery
JP2001325948A (en) * 2000-05-19 2001-11-22 Shin Kobe Electric Mach Co Ltd Lithium ion cell
JP2001338640A (en) * 2000-05-29 2001-12-07 Hitachi Maxell Ltd Non-aqueous secondary battery
JP2002100358A (en) * 2000-09-25 2002-04-05 Seimi Chem Co Ltd Lithium secondary battery
JP2003081639A (en) * 2001-06-29 2003-03-19 Mitsui Mining & Smelting Co Ltd Manganese-containing layer lithium-transition metal compound oxide, and production method therefor
JP2003089526A (en) * 2001-09-12 2003-03-28 Mitsubishi Chemicals Corp Lithium nickel manganese multiple oxide, positive electrode material for lithium secondary cell by using the same, positive electrode for lithium secondary cell, and lithium secondary cell
JP2003187786A (en) * 2001-12-18 2003-07-04 Japan Storage Battery Co Ltd Nonacqueous secondary battery
JP2003238165A (en) * 2000-11-16 2003-08-27 Hitachi Maxell Ltd Lithium-containing compound oxide and its production method
JP2003288899A (en) * 2002-03-27 2003-10-10 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte secondary cell
JP2004006277A (en) * 2002-03-28 2004-01-08 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP2005174847A (en) * 2003-12-15 2005-06-30 Toshiba Corp Electrode and nonaqueous electrolyte secondary battery

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11224668A (en) * 1998-02-04 1999-08-17 Matsushita Electric Ind Co Ltd Nickel-cobalt hydroxide for active material of nonaqueous electrolyte battery
JPH11329432A (en) * 1998-05-21 1999-11-30 Japan Energy Corp Positive electrode material for lithium secondary battery
JP2000323123A (en) * 1999-05-06 2000-11-24 Dowa Mining Co Ltd Positive electrode active material and positive electrode for non-aqueous secondary battery
JP2001325948A (en) * 2000-05-19 2001-11-22 Shin Kobe Electric Mach Co Ltd Lithium ion cell
JP2001338640A (en) * 2000-05-29 2001-12-07 Hitachi Maxell Ltd Non-aqueous secondary battery
JP2002100358A (en) * 2000-09-25 2002-04-05 Seimi Chem Co Ltd Lithium secondary battery
JP2003238165A (en) * 2000-11-16 2003-08-27 Hitachi Maxell Ltd Lithium-containing compound oxide and its production method
JP2003081639A (en) * 2001-06-29 2003-03-19 Mitsui Mining & Smelting Co Ltd Manganese-containing layer lithium-transition metal compound oxide, and production method therefor
JP2003089526A (en) * 2001-09-12 2003-03-28 Mitsubishi Chemicals Corp Lithium nickel manganese multiple oxide, positive electrode material for lithium secondary cell by using the same, positive electrode for lithium secondary cell, and lithium secondary cell
JP2003187786A (en) * 2001-12-18 2003-07-04 Japan Storage Battery Co Ltd Nonacqueous secondary battery
JP2003288899A (en) * 2002-03-27 2003-10-10 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte secondary cell
JP2004006277A (en) * 2002-03-28 2004-01-08 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP2005174847A (en) * 2003-12-15 2005-06-30 Toshiba Corp Electrode and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2005302338A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
US11909045B2 (en) Positive electrode active material for lithium secondary battery and preparation method thereof
CN102668218B (en) Non-aqueous secondary battery
JP5175826B2 (en) Active material particles and use thereof
JP4740409B2 (en) Lithium secondary battery for electric vehicle or hybrid vehicle
JP2005327644A (en) Manufacturing method for positive electrode material for lithium secondary battery, the positive electrode material, and the lithium secondary battery
JP3769291B2 (en) Non-aqueous electrolyte battery
JP5709010B2 (en) Non-aqueous electrolyte secondary battery
JP2017520892A (en) Positive electrode for lithium battery
JP5449265B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
JP4740415B2 (en) Lithium secondary battery for electric or hybrid vehicles
JP6493757B2 (en) Lithium ion secondary battery
JP5373857B2 (en) ELECTRODE COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND LITHIUM ION BATTERY USING THE SAME
JP2011054334A (en) Lithium secondary battery
JP2005158623A (en) Nonaqueous electrolyte secondary battery
JP4534559B2 (en) Lithium secondary battery and positive electrode material for lithium secondary battery
JP2019212365A (en) Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery using the same
JP7412883B2 (en) Positive electrode active material for lithium ion secondary battery and method for manufacturing the same
JP2005158624A (en) Positive electrode material for lithium secondary battery and lithium secondary battery
US11967714B2 (en) Positive electrode active material for lithium secondary battery and preparation method thereof
KR101657265B1 (en) Porous manganese-based cathode active material, a method of making the same and lithium secondary battery comprising the same
WO2024042897A1 (en) Negative electrode for secondary batteries and nonaqueous electrolyte secondary battery
WO2023145630A1 (en) Nonaqueous electrolyte secondary battery
EP4287315A1 (en) Active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2002184392A (en) Nonaqueous secondary cell
WO2023189507A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees