JPH11224668A - Nickel-cobalt hydroxide for active material of nonaqueous electrolyte battery - Google Patents

Nickel-cobalt hydroxide for active material of nonaqueous electrolyte battery

Info

Publication number
JPH11224668A
JPH11224668A JP10023448A JP2344898A JPH11224668A JP H11224668 A JPH11224668 A JP H11224668A JP 10023448 A JP10023448 A JP 10023448A JP 2344898 A JP2344898 A JP 2344898A JP H11224668 A JPH11224668 A JP H11224668A
Authority
JP
Japan
Prior art keywords
nickel
cobalt hydroxide
cobalt
active material
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10023448A
Other languages
Japanese (ja)
Other versions
JP3986148B2 (en
Inventor
Tomoko Kono
智子 河野
Shoichiro Watanabe
庄一郎 渡邊
Shigeo Kobayashi
茂雄 小林
Takeshi Usui
臼井  猛
Takaaki Tanaka
孝明 田中
Tokuyoshi Iida
得代志 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TANAKA KAGAKU KENKYUSHO KK
Panasonic Holdings Corp
Original Assignee
TANAKA KAGAKU KENKYUSHO KK
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TANAKA KAGAKU KENKYUSHO KK, Matsushita Electric Industrial Co Ltd filed Critical TANAKA KAGAKU KENKYUSHO KK
Priority to JP02344898A priority Critical patent/JP3986148B2/en
Publication of JPH11224668A publication Critical patent/JPH11224668A/en
Application granted granted Critical
Publication of JP3986148B2 publication Critical patent/JP3986148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide nickel-cobalt hydroxide which is a raw material for synthesizing a positive electrode active material enabling to provide a nonaqueous electrolyte secondary battery having an excellent cycle characteristic and excellent thermo-stability. SOLUTION: The nickel-cobalt hydroxide for an active material of a nonaqueous electrolyte battery represented by a chemical formula Niv Cow (OH)2 (0.7<=v<=0.9, v+w=1) forms secondary particles where innumerable primary particles coheres in SEM photo-observation. Here, the manufacturing method of the secondary particles is controlled such that the average diameter of the secondary particles is 10-18 μm, and the weight ratio of the secondary particles having diameter less than 1 μm is less than 7%, further BET specific surface measured by nitrogen gas absorption is 5-25 m<2> /g.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液電池の
正極活物質のLix Niy Coz 2 (0.90≦x≦
1.05、0.7≦y≦0.9、y+z=1)で表され
るリチウム複合ニッケル−コバルト酸化物の合成に原材
料として用いるニッケル−コバルト水酸化物に関するも
のである。
The present invention relates to Li x Ni y Co z O 2 (0.90 ≦ x ≦) as a positive electrode active material of a non-aqueous electrolyte battery.
The present invention relates to a nickel-cobalt hydroxide used as a raw material for synthesizing a lithium composite nickel-cobalt oxide represented by 1.05, 0.7 ≦ y ≦ 0.9, y + z = 1).

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急激に進んでいる。現在、これら電子機
器の駆動用電源としての役割を、ニッケル−カドミウム
電池あるいは密閉型小型鉛蓄電池が担っているが、ポー
タブル化、コードレス化が進展し、定着するにしたが
い、駆動用電源となる二次電池の高エネルギー密度化、
小型軽量化の要望が強くなっている。また、近年は携帯
電話用の電源として注目されており、急速な市場の拡大
とともに、通話時間の長期化、サイクル寿命の改善への
要望は非常に大きいものとなっている。
2. Description of the Related Art In recent years, portable electronic devices have become more portable.
Cordless use is rapidly progressing. Currently, nickel-cadmium batteries or sealed small lead-acid batteries play the role of power sources for driving these electronic devices. However, as portable devices and cordless devices have progressed and they have become established, they will become drive power sources. High energy density of secondary batteries,
The demand for smaller and lighter is increasing. In recent years, it has been drawing attention as a power source for mobile phones. With the rapid market expansion, demands for longer talk time and improved cycle life have become extremely large.

【0003】このような状況から、高い充放電電圧を示
すリチウム複合遷移金属酸化物、例えばLiCoO
2 (例えば特開昭63−59507号公報)や、さらに
高容量を目指したLiNiO2 (例えば米国特許第43
02518号明細書)が報告されている。特に、LiN
iO2 はLiCoO2 に比べ、高エネルギー密度が期待
され、各方面で開発が進められているが、LiNiO2
は充電時の分極が大きく、Liを十分取り出せないうち
に電解液の酸化分解電圧に達してしまうため、期待され
る大きい容量が得られなかった。
Under such circumstances, a lithium composite transition metal oxide exhibiting a high charge / discharge voltage, for example, LiCoO
2 (for example, JP-A-63-59507) or LiNiO 2 (for example, US Pat.
02518). In particular, LiN
iO 2 compared to LiCoO 2, a high energy density is expected, but the development in various fields is proceeding, LiNiO 2
Has a large polarization at the time of charging and reaches the oxidative decomposition voltage of the electrolytic solution before Li can not be sufficiently taken out, so that the expected large capacity could not be obtained.

【0004】このような問題を解決するためにNi元素
の一部をCoに置換したものを正極活物質に用い、リチ
ウムイオンの挿入、離脱を利用した非水電解液二次電池
が提案されている。
In order to solve such a problem, there has been proposed a non-aqueous electrolyte secondary battery using a positive electrode active material in which a part of Ni element is replaced by Co and utilizing insertion and extraction of lithium ions. I have.

【0005】例えば特開昭62−256371号公報で
は、炭酸リチウム、炭酸コバルト、炭酸ニッケルを混合
し、900°Cで焼成することによってリチウム複合ニ
ッケル−コバルト酸化物を合成している。
[0005] For example, in Japanese Patent Application Laid-Open No. 62-256371, lithium composite nickel-cobalt oxide is synthesized by mixing lithium carbonate, cobalt carbonate, and nickel carbonate and firing at 900 ° C.

【0006】また、特開昭63−299056号公報で
は、リチウム、コバルト、ニッケルの水酸化物、酸化物
を混合する方法が報告されている。
[0006] JP-A-63-299056 reports a method of mixing hydroxides and oxides of lithium, cobalt and nickel.

【0007】さらに、特開平1−294364号公報で
は、ニッケルイオンとコバルトイオンを含む水溶液中か
ら、炭酸塩としてニッケルイオンとコバルトイオンを共
沈させ、その後炭酸リチウムと混合し、リチウム複合ニ
ッケル−コバルト酸化物の合成を行った例が報告されて
いる。
Further, Japanese Patent Application Laid-Open No. 1-294364 discloses that nickel ions and cobalt ions are coprecipitated as carbonates from an aqueous solution containing nickel ions and cobalt ions and then mixed with lithium carbonate to form a lithium composite nickel-cobalt. An example of synthesizing an oxide has been reported.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、これま
で報告されているようにして合成されたLix Niy
z 2 (0.90≦x≦1.05、0.7≦y≦0.
9、y+z=1)で表されるリチウム複合ニッケル−コ
バルト酸化物では、置換Co量(z値)が大きくなるに
つれて放電容量は徐々に大きくなるものの、充放電サイ
クルを繰り返し行うことにより、その電池充放電容量が
徐々に減少するサイクル劣化の問題があることが明らか
になった。
However, Li x Ni y C synthesized as reported so far.
o z O 2 (0.90 ≦ x ≦ 1.05,0.7 ≦ y ≦ 0.
In the lithium composite nickel-cobalt oxide represented by (9, y + z = 1), the discharge capacity gradually increases as the amount of substituted Co (z value) increases, but the charge / discharge cycle is repeatedly performed. It became clear that there was a problem of cycle deterioration in which the charge / discharge capacity gradually decreased.

【0009】本発明者らが十分検討を重ねた結果、この
ような特性劣化は以下のことが原因であることが分かっ
た。
As a result of extensive studies by the present inventors, it has been found that such characteristic deterioration is caused by the following.

【0010】サイクル劣化した電池を分解し、極板の観
察を行った結果、充放電サイクルを繰り返した正極で
は、正極活物質の結晶構造に変化が起こっていることが
判明した。LiNiO2 は電池の充放電にともない、そ
の格子定数が変化することが報告されており(W.L
i,J.N.Reimers and J.R.Dah
n,Solid State Ionics,67,1
23(1993))、Liを脱離するに伴い結晶相が六
方晶(Hexagonal)から単斜晶(Monocl
inic)、さらに第2六方晶(Hexagona
l)、第3六方晶(Hexagonal)へと変化して
行くことが報告されている。このような結晶相変化は可
逆性に乏しく、充放電反応を繰り返すうちにLiを挿
入、脱離できるサイトが徐々に失われてしまうことが原
因と考えられた。
[0010] As a result of disassembling the cycle-degraded battery and observing the electrode plate, it was found that the crystal structure of the positive electrode active material had changed in the positive electrode subjected to repeated charge / discharge cycles. It has been reported that the lattice constant of LiNiO 2 changes as the battery is charged and discharged (W.L.
i. N. Reimers and J.M. R. Dah
n, Solid State Ionics, 67, 1
23 (1993)), the crystal phase changes from hexagonal (Hexagonal) to monoclinic (Monocl) as Li is desorbed.
inic) and a second hexagonal crystal (Hexagona)
1) It is reported that the compound changes to a third hexagonal crystal (Hexagonal). Such a crystal phase change is poor in reversibility, and it is considered that the cause is that sites where Li can be inserted and desorbed gradually are lost during repeated charge / discharge reactions.

【0011】Niの一部をCoで置換することによっ
て、このような結晶相の変化は著しく緩和される。これ
はCoの酸素との結合力がNiに比べ強いため結晶構造
がより安定化したためと考えられ、Co置換しない(z
=0)場合のような結晶相の変化が起こらなくなる。こ
のため、Co置換量(z値)が大きくなるほど結晶相が
より安定化し、放電容量、サイクル特性ともに改善され
ると考えられた。
By replacing a part of Ni with Co, such a change in the crystal phase is remarkably reduced. This is considered to be because the crystal structure was further stabilized because the bonding force of Co with oxygen was stronger than that of Ni.
= 0), no change in crystal phase occurs. Therefore, it was considered that as the Co substitution amount (z value) increases, the crystal phase becomes more stable, and both the discharge capacity and the cycle characteristics are improved.

【0012】しかし、実際には特開昭62−25637
1号公報や特開昭63−299056号公報で報告され
ているようなコバルト、ニッケルの炭酸塩、水酸化物、
酸化物等のそれぞれの化合物を混合することによって合
成されたリチウム複合ニッケル−コバルト酸化物は、C
o置換量(z値)が大きくなると(z≧0.1)、実際
にはニッケルとコバルトが均一に分散されておらず、部
分的にLiNiO2 とLiCoO2 の混合物になってい
ることが明らかになった。
However, actually, Japanese Patent Application Laid-Open No. 62-25637
No. 1 and JP-A-63-299056, cobalt and nickel carbonates and hydroxides,
Lithium composite nickel-cobalt oxide synthesized by mixing each compound such as oxide,
When the o-substitution amount (z value) becomes large (z ≧ 0.1), it is apparent that nickel and cobalt are not actually uniformly dispersed, but are partially a mixture of LiNiO 2 and LiCoO 2. Became.

【0013】このため、このような活物質では放電容量
はある程度大きいものの、充放電を繰り返すと、Coが
十分に置換されていない部分において、上記結晶相変化
により結晶構造が破壊され、放電容量が低下し、電池活
物質として十分なものではなかった。
[0013] For this reason, although the discharge capacity of such an active material is large to some extent, when charge and discharge are repeated, the crystal structure is destroyed by the above-mentioned crystal phase change in the portion where Co is not sufficiently substituted, and the discharge capacity is reduced. It was not enough as a battery active material.

【0014】また、Coが十分置換されていない部分
は、電池の満充電時の結晶構造が不安定であり、満充電
状態の電池を加熱、もしくは圧壊した場合の熱安定性が
低く、発火、発煙することがあった。電池を圧壊した場
合、物理的に極板が崩れるため部分的に短絡して大電流
が流れ、ジュール熱が発生する。このとき、電池活物質
の結晶構造が不安定であると、結晶中から酸素を放しや
すくなり、発火する恐れがある。
The portion where Co is not sufficiently substituted has an unstable crystal structure when the battery is fully charged, has low thermal stability when the battery in a fully charged state is heated or crushed, and has poor ignition, There was a fume. When the battery is crushed, the electrode plate physically collapses, causing a partial short circuit, causing a large current to flow and generating Joule heat. At this time, if the crystal structure of the battery active material is unstable, oxygen is easily released from the crystal, which may cause ignition.

【0015】また、特開平1−294364号公報のよ
うに、ニッケルイオンとコバルトイオンを炭酸塩として
共沈させた場合、ニッケルとコバルトが均一に分散する
ため良好なサイクル特性が確保されたが、この場合塩基
性炭酸塩として析出するため、実際には不定含量のNi
(OH)2 を含む複塩であるNiCO3 ・xNi(O
H)2 となっており、リチウムとの合成過程が均一でな
い。このため、電池特性のばらつきが大きく、実使用上
に問題があった。
When nickel ions and cobalt ions are coprecipitated as carbonates as disclosed in JP-A-1-294364, good cycle characteristics are ensured because nickel and cobalt are uniformly dispersed. In this case, since it precipitates as a basic carbonate, an indefinite amount of Ni
NiOH 3 xNi (O) which is a double salt containing (OH) 2
H) 2 and the synthesis process with lithium is not uniform. For this reason, there are large variations in battery characteristics, and there is a problem in practical use.

【0016】本発明は、上記従来の問題点に鑑み、充放
電特性、熱安定性に優れた非水電解液二次電池が得られ
る正極活物質を合成できるようにその物性を制御したニ
ッケル−コバルト水酸化物を提供することを目的として
いる。
The present invention has been made in view of the above-mentioned problems, and has been developed in view of the above problems. It is intended to provide cobalt hydroxide.

【0017】[0017]

【課題を解決するための手段】本発明の非水電解液電池
活物質用ニッケル−コバルト水酸化物は、正極活物質の
原料であるニッケル、コバルト源として、共沈によって
生成した水酸化物を用いるとともに、その物性について
鋭意検討を行い、粒子内におけるニッケル、コバルト原
子の配列、粒子形状、粒子径、比表面積、タップ密度、
細孔の空間体積、細孔の占有率を制御することにより、
サイクル劣化を防止するとともに、良好な熱安定性を電
池の開発に至ったものである。
SUMMARY OF THE INVENTION The nickel-cobalt hydroxide for a non-aqueous electrolyte battery active material according to the present invention comprises, as a source of nickel and cobalt as raw materials of a positive electrode active material, a hydroxide produced by coprecipitation. In addition to using it, the physical properties are studied diligently, and the arrangement of nickel and cobalt atoms in the particles, particle shape, particle size, specific surface area, tap density,
By controlling the spatial volume of the pores and the occupancy of the pores,
This has led to the development of a battery having good thermal stability while preventing cycle deterioration.

【0018】具体的には、Lix Niy Coz 2 (y
+z=1)を正極活物質として合成する際のニッケル−
コバルト源として、Niv Cow (OH)2 (v+w=
1)で表され、そのCo置換量(w値)が0.1〜0.
3の範囲に制御されたニッケル−コバルト水酸化物を用
いるものである。そのニッケル−コバルト水酸化物は、
SEM写真観察において米粒状の一次粒子が無数に凝集
した二次粒子を形成しており、その二次粒子の平均粒子
径が10〜18μmであり、かつ二次粒子径が1μm以
下の粒子が重量比で7%以下になるように制御されたも
のである。また、窒素ガス吸着により測定されるBET
比表面積が5〜25m2 /gとすることで、十分な熱安
定性が確保できる。
[0018] Specifically, Li x Ni y Co z O 2 (y
+ Z = 1) when nickel is synthesized as a positive electrode active material.
As a cobalt source, Ni v Co w (OH) 2 (v + w =
1), and its Co substitution amount (w value) is 0.1 to 0.1.
A nickel-cobalt hydroxide controlled in the range of 3 is used. The nickel-cobalt hydroxide is
In SEM photograph observation, secondary particles in which countless rice granular primary particles are aggregated are formed, and the average particle size of the secondary particles is 10 to 18 μm, and the particles having a secondary particle size of 1 μm or less are weight. The ratio was controlled to be 7% or less. In addition, BET measured by nitrogen gas adsorption
By setting the specific surface area to 5 to 25 m 2 / g, sufficient thermal stability can be secured.

【0019】また、ニッケル−コバルト水酸化物の粒子
形状は、球状又は楕円球状であると、高充填性が実現で
きて望ましい。また、ニッケル−コバルト水酸化物は、
タップ密度が1.6〜2.6g/cm3 、細孔の空間体
積が0.008〜0.10cm3 /g、細孔占有率が3
〜40%であることが望ましい。
It is desirable that the particle shape of the nickel-cobalt hydroxide be spherical or elliptical, since high filling properties can be realized. Also, nickel-cobalt hydroxide,
Tap density is 1.6 to 2.6 g / cm 3 , pore volume is 0.008 to 0.10 cm 3 / g, and pore occupancy is 3
Desirably, it is about 40%.

【0020】[0020]

【発明の実施の形態】以下、非水電解液電池活物質Li
x Niy Coz 2 (y+z=1)を合成する原材料で
ある本発明にかかるニッケル−コバルト水酸化物Niv
Cow (OH)2 (v+w=1)の実施形態について説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The non-aqueous electrolyte battery active material Li
x Ni y Co z O 2 ( y + z = 1) according to the present invention as a raw material for synthesizing a nickel - cobalt hydroxide Ni v
An embodiment of Co w (OH) 2 (v + w = 1) will be described.

【0021】本実施形態において、化学式Niv Cow
(OH)2 (0.7≦v≦0.9、v+w=1)で表さ
れるニッケル−コバルト水酸化物は、PH、温度を調整
した槽内にニッケル塩水溶液とコバルト塩水溶液とカ性
アルカリ水溶液を、その濃度、流量を制御しながら連続
的に供給、採取することによってその物性が制御され
る。
[0021] In the present embodiment, the chemical formula Ni v Co w
Nickel-cobalt hydroxide represented by (OH) 2 (0.7 ≦ v ≦ 0.9, v + w = 1) is mixed with nickel salt aqueous solution and cobalt salt aqueous solution in a tank whose pH and temperature are adjusted. The physical properties are controlled by continuously supplying and sampling the alkaline aqueous solution while controlling its concentration and flow rate.

【0022】このようにニッケルとコバルトを水酸化物
として共沈させる方法は、ニッケル−カドミウム電池用
正極に使用される水酸化ニッケルの製法として報告がな
されている。例えば、特開昭63−16556号公報、
特開昭64−42330号公報では、水酸化ニッケルの
製造方法として、PH、温度を調整した槽内にニッケル
塩水溶液とコバルト塩水溶液とカ性アルカリ水溶液をそ
の濃度、流量を制御しながら連続的に供給、採取する方
法が報告されている。さらに、特開昭63−15286
6号公報、特開平5−41212号公報、特開平7−7
3877号公報では、反応槽内にCoを含む多種の金属
元素を共沈法により水酸化ニッケル中に固溶させる方法
が報告されている。
The method of coprecipitating nickel and cobalt as a hydroxide as described above has been reported as a method for producing nickel hydroxide used for a positive electrode of a nickel-cadmium battery. For example, JP-A-63-16556,
In JP-A-64-42330, as a method for producing nickel hydroxide, a nickel salt aqueous solution, a cobalt salt aqueous solution, and a caustic alkali aqueous solution are continuously introduced into a tank whose pH and temperature are adjusted while controlling the concentration and flow rate thereof. It has been reported how to supply and collect the water. Further, JP-A-63-15286
6, JP-A-5-41212, JP-A-7-7
Japanese Patent No. 3877 reports a method in which various metal elements including Co are dissolved in nickel hydroxide by a coprecipitation method in a reaction vessel.

【0023】しかし、これらの発明におけるCoの添加
は、いずれも水溶液系のニッケル−カドミウム電池もし
くはニッケル−水素吸蔵合金電池等のアルカリ蓄電池の
特性改良が目的であり、以下の理由によって行われてい
る。
However, the addition of Co in these inventions is aimed at improving the characteristics of alkaline storage batteries such as aqueous nickel-cadmium batteries or nickel-hydrogen storage alloy batteries, and is carried out for the following reasons. .

【0024】(1)電池の放電容量の低下をもたらすγ
−NiOOHの生成を抑制させる。(例えば、M.Osh
itani ,K.Takashima ,and Y.Matsumura ,Proce
edingsof the Symp. on Nickel Hydroxide Electr
odes ,Volume90-4 ,TheElectrochemical Soc.,
197(1989)、特開平5−41212号公報) (2)水酸化ニッケル表面における水素のイオン化速度
や、水酸化ニッケル中のプロトン伝導の促進により利用
率、高率充放電効率を向上する。(例えば、I.Matsu
moto, M.Ikeyama, T.Iwaki, Y.Umeo, and
Y.Ogawa, Denkikagaku,54, 159〜164(1986) 等) 以上のようにこれらの発明におけるCoの役割はいずれ
も触媒的作用を目的としており、水酸化ニッケル結晶マ
トリックス内での活物質として添加されているわけでは
ない。このため、あまりCoの添加量が増すと、逆に活
物質の比容積が小さくなるため通常添加される量は、N
v Cow (OH)2 (v+w=1)において、w≦
0.1である場合が殆どである。
(1) γ causing a decrease in the discharge capacity of the battery
-Suppress formation of NiOOH. (For example, M. Osh
itani, K .; Takashima, and Y. Matsumura, Proce
edingsof the Symp. on Nickel Hydroxide Electr
odes, Volume90-4, The Electrochemical Soc.,
197 (1989), Japanese Patent Application Laid-Open No. 5-41212) (2) Utilization rate and high rate charge / discharge efficiency are improved by promoting the ionization rate of hydrogen on the surface of nickel hydroxide and promoting proton conduction in nickel hydroxide. (For example, I. Matsu
moto, M. Ikeyama, T .; Iwaki, Y .; Umeo, and
Y. Ogawa, Denkikagaku, 54, 159-164 (1986) etc.) As described above, the role of Co in these inventions is to serve as a catalytic action, and is added as an active material in a nickel hydroxide crystal matrix. Not necessarily. For this reason, if the amount of Co is increased too much, the specific volume of the active material is reduced, and consequently the amount normally added is N
In i v Co w (OH) 2 (v + w = 1), w ≦
In most cases, it is 0.1.

【0025】本発明は非水電解液電池の特性改良を目的
としたものであり、活物質Lix Niy Coz
2 (0.90≦x≦1.05、0.7≦y≦0.9、y
+z=1)で表されるリチウム複合ニッケル−コバルト
酸化物の合成に原材料として用いるニッケル−コバルト
水酸化物Niv Cow (OH)2 (0.7≦v≦0.
9、v+w=1)の物性及びその製造法を制御したもの
である。
An object of the present invention is to improve the characteristics of a non-aqueous electrolyte battery, and an active material Li x Ni y Co z O
2 (0.90 ≦ x ≦ 1.05, 0.7 ≦ y ≦ 0.9, y
+ Z = 1) by the lithium nickel composite represented - nickel is used as a raw material for the synthesis of cobalt oxide - cobalt hydroxide Ni v Co w (OH) 2 (0.7 ≦ v ≦ 0.
9, v + w = 1) and the production method thereof is controlled.

【0026】当然のことながらCoは活物質の結晶マト
リックス中に固溶しており、活物質として作用するた
め、従来のアルカリ蓄電池の特性改善とは全く異なるも
のである。
As a matter of course, Co is dissolved in the crystal matrix of the active material and acts as the active material, which is completely different from the characteristic improvement of the conventional alkaline storage battery.

【0027】本発明における非水電解液電池の活物質L
iNiO2 の合成反応は、熱処理を加えることによりニ
ッケル塩の結晶中にリチウム原子が拡散する形で進行
し、LiNiO2 が合成される。従来から報告されてい
る炭酸ニッケル、酸化ニッケル等は粒子中における結晶
はランダムに配列したいわゆる多結晶状態であり、この
ためこれらを原料に用いたLiNiO2 は同様の多結晶
状態となる。
The active material L of the non-aqueous electrolyte battery according to the present invention
The reaction for synthesizing iNiO 2 proceeds by applying heat treatment so that lithium atoms diffuse into crystals of the nickel salt, whereby LiNiO 2 is synthesized. Conventionally reported nickel carbonate, nickel oxide and the like are in a so-called polycrystalline state in which the crystals in the particles are randomly arranged, and therefore LiNiO 2 using these as a raw material is in the same polycrystalline state.

【0028】このような多結晶構造を持つLiNiO2
を用いて二次電池を構成し、充放電を行った場合、充放
電に伴う結晶相の転移の繰り返しによりLiを収容でき
るサイトが破壊されるとともに、微細な結晶が膨張、収
縮を繰り返し、粒子が微細化し、電池集電体から脱離す
る。その結果、電池の放電容量が低下し、サイクル劣化
を引き起こしてしまう。
LiNiO 2 having such a polycrystalline structure
When a secondary battery is configured using and charged and discharged, sites capable of accommodating Li are destroyed due to repetition of transition of the crystal phase accompanying charge and discharge, and fine crystals repeat expansion and contraction, and particles Are miniaturized and detached from the battery current collector. As a result, the discharge capacity of the battery decreases, causing cycle deterioration.

【0029】また、Coの添加方法として合成時に酸化
コバルトや炭酸コバルト、水酸化コバルトを添加した場
合、共沈法で得られるような原子レベルでの固溶は実現
できず、部分的にLiNiO2 やLiCoO2 として存
在してしまうため、同様の理由によりサイクル劣化を引
き起こす。
When cobalt oxide, cobalt carbonate, or cobalt hydroxide is added during synthesis as a method of adding Co, solid solution at the atomic level as obtained by the coprecipitation method cannot be realized, and LiNiO 2 And LiCoO 2 , causing cycle deterioration for the same reason.

【0030】これに対して本発明におけるニッケル−コ
バルト水酸化物の製造方法を用いた場合、コバルト濃
度、槽温度、攪拌速度、PH等を制御することにり、槽
内で生成した微細な結晶が成長する形で、ニッケル−コ
バルト水酸化物粒子を形成するため、Co置換量(w
値)が0.1以上と大きくても、ニッケルとコバルトが
原子レベルで固溶するとともに、結晶が非常に良く同一
方向に配列する。しかも、結晶構造がLix Niy Co
z 2 と同じ六方晶であるため、リチウム塩と混合して
合成を行っても、原子の配列は維持される。
On the other hand, when the method for producing a nickel-cobalt hydroxide according to the present invention is used, by controlling the cobalt concentration, the tank temperature, the stirring speed, the PH, etc., the fine crystals formed in the tank are controlled. Grows to form nickel-cobalt hydroxide particles, so that the amount of Co substitution (w
Value) as large as 0.1 or more, nickel and cobalt form a solid solution at the atomic level, and crystals are very well arranged in the same direction. Moreover, the crystal structure is Li x Ni y Co
It is the same hexagonal and z O 2, even if the synthesis is mixed with a lithium salt, arrangement of atoms is maintained.

【0031】なお、Co置換量(w値)が0.3を越え
ると、結晶成長が困難となり、多結晶のNiv Co
w (OH)2 が成長してしまう。このためCoの置換量
は0.1≦w≦0.3であることが望ましい。
If the Co substitution amount (w value) exceeds 0.3, crystal growth becomes difficult and polycrystalline Ni v Co
w (OH) 2 grows. Therefore, it is desirable that the substitution amount of Co is 0.1 ≦ w ≦ 0.3.

【0032】この結果、結晶粒界の非常に少ないLix
Niy Coz 2 が可能となる。このような構造を持つ
Niv Cow (OH)2 (0.7≦v≦0.9、v+w
=1)を合成の原材料としたLix Niy Coz
2 (0.90≦x≦1.05、0.7≦y≦0.9、y
+z=1)を用いて二次電池を構成し、充放電を行った
場合、Coを添加することによって結晶の安定性が向上
し、充放電に伴う結晶相の転移がなくなるとともに、粒
子構造破壊の原因となる結晶粒界が非常に少ないため、
粒子の微細化、脱落が防止でき、良好なサイクル特性を
実現することができる。
As a result, Li x having very few crystal grain boundaries was obtained.
Ni y Co z O 2 becomes possible. Ni v Co w (OH) 2 (0.7 ≦ v ≦ 0.9 having such a structure, v + w
= 1) was the synthesis of raw materials Li x Ni y Co z O
2 (0.90 ≦ x ≦ 1.05, 0.7 ≦ y ≦ 0.9, y
+ Z = 1), when charging and discharging are performed, the stability of the crystal is improved by adding Co, the transition of the crystal phase accompanying the charging and discharging is eliminated, and the particle structure is destroyed. Very few grain boundaries that cause
Fine particles and falling off can be prevented, and good cycle characteristics can be realized.

【0033】また、Coを添加することによって充電状
態の結晶の安定性が向上し、満充電状態の電池を加熱、
あるいは圧壊した場合の熱安定性を向上し得る。
Further, by adding Co, the stability of the crystal in the charged state is improved, and the fully charged battery is heated.
Alternatively, the thermal stability when crushed can be improved.

【0034】さらに、ニッケル−コバルト水酸化物粒子
の粒径、BET比表面積、タップ密度、細孔の空間体
積、細孔占有率を制御することによって、合成後のリチ
ウム複合ニッケル−コバルト酸化物の物性を制御し、満
充電状態の電池を加熱、あるいは圧壊した場合の熱反応
面積を低減できるため、電池を構成した場合に良好な熱
安定性が確保できる。
Further, by controlling the particle size, BET specific surface area, tap density, pore volume, and pore occupancy of the nickel-cobalt hydroxide particles, the lithium composite nickel-cobalt oxide after synthesis is controlled. Since the physical properties can be controlled to reduce the heat reaction area when a fully charged battery is heated or crushed, good thermal stability can be ensured when the battery is configured.

【0035】[0035]

【実施例】以下、本発明の非水電解液電池活物質合成用
の原材料であるニッケル−コバルト水酸化物の各実施例
について説明する。
EXAMPLES Examples of nickel-cobalt hydroxide, which is a raw material for synthesizing a non-aqueous electrolyte battery active material of the present invention, will be described below.

【0036】(実施例1)図1に本実施例及び比較例で
ニッケル−コバルト水酸化物を原料として合成した非水
電解液二次電池用活物質を用いた円筒形電池の縦断面図
を示す。図1において、1は耐有機電解液性のステンレ
ス鋼板を加工した電池ケース、2は安全弁を設けた封口
板、3は絶縁パッキングを示す。4は極板群であり、正
極板5および負極板6がセパレータ7を介して複数回渦
巻状に巻回されて電池ケース1内に収納されている。正
極板5からは正極アルミリード5aが引き出されて封口
板2に接続され、負極板6からは負極ニッケルリード6
aが引き出されて電池ケース1の底部に接続されてい
る。8は絶縁リングで極板群4の上下部にそれぞれ設け
られている。
Example 1 FIG. 1 is a longitudinal sectional view of a cylindrical battery using an active material for a non-aqueous electrolyte secondary battery synthesized from nickel-cobalt hydroxide in this example and a comparative example. Show. In FIG. 1, reference numeral 1 denotes a battery case formed by processing a stainless steel sheet having resistance to organic electrolyte, 2 denotes a sealing plate provided with a safety valve, and 3 denotes an insulating packing. Reference numeral 4 denotes an electrode plate group, in which the positive electrode plate 5 and the negative electrode plate 6 are spirally wound a plurality of times via a separator 7 and housed in the battery case 1. A positive electrode aluminum lead 5 a is pulled out from the positive electrode plate 5 and connected to the sealing plate 2, and a negative electrode nickel lead 6
a is pulled out and connected to the bottom of the battery case 1. Reference numeral 8 denotes an insulating ring provided on the upper and lower portions of the electrode plate group 4, respectively.

【0037】次に、負極板6、電解液等について詳しく
説明する。黒鉛粉100重量部にフッ素樹脂系結着剤1
0重量部を混合し、カルボキシメチルセルロース水溶液
に懸濁させてペースト状にした。そしてこのペーストを
厚さ0.015mmの銅箔の表面に塗着し、乾燥後0.
2mmに圧延し、幅37mm、長さ280mmの大きさ
に切り出して負極板6を得た。
Next, the negative electrode plate 6, the electrolyte and the like will be described in detail. 100 parts by weight of graphite powder to fluororesin binder 1
0 parts by weight were mixed and suspended in an aqueous solution of carboxymethyl cellulose to form a paste. Then, this paste is applied to the surface of a copper foil having a thickness of 0.015 mm, dried, and dried.
It was rolled to 2 mm and cut into a size of 37 mm in width and 280 mm in length to obtain a negative electrode plate 6.

【0038】電解液には、炭酸エチレンと炭酸ジエチル
の等容積混合溶媒に、六フッ化リン酸リチウム1モル/
lの割合で溶解したものを用いた。この電解液を極板群
4に注入した後、電池を密封口し、試験電池とした。
In the electrolyte, 1 mol / mol of lithium hexafluorophosphate was mixed in an equal volume mixed solvent of ethylene carbonate and diethyl carbonate.
What was dissolved at a ratio of 1 was used. After injecting this electrolytic solution into the electrode plate group 4, the battery was sealed and a test battery was obtained.

【0039】次に、ニッケル−コバルト水酸化物を用い
たリチウム複合ニッケル−コバルト酸化物の製造法につ
いて詳しく説明する。コバルト水酸化物を製造する析出
槽としてタンクを用い、ニッケル塩水溶液としてニッケ
ル金属を溶解した硫酸ニッケル溶液に、コバルトがモル
比が0、5、10、20、30、40%になるようにコ
バルト金属を添加、溶解した硫酸ニッケル−コバルト混
合溶液と、カ性アルカリ水溶液として25重量%の水酸
化ナトリウム溶液を用いた。このタンク内ヘニッケル−
コバルト混合塩溶液を一定流量で導入し、十分攪拌しな
がら、水酸化ナトリウム溶液を導入し、生成するニッケ
ル−コバルト水酸化物の平均粒径が12〜14μmの範
囲になるように反応槽のPH値、塩濃度、流量を制御し
た。得られたニッケル−コバルト水酸化物を水中で水洗
し、80℃で乾燥を行い、ニッケル−コバルト水酸化物
とした。
Next, a method for producing a lithium composite nickel-cobalt oxide using nickel-cobalt hydroxide will be described in detail. A tank is used as a precipitation tank for producing cobalt hydroxide, and a nickel salt solution is dissolved in a nickel sulfate solution in which nickel metal is dissolved so that the molar ratio of cobalt is 0, 5, 10, 20, 30, 40%. A mixed solution of nickel sulfate and cobalt in which a metal was added and dissolved, and a 25% by weight sodium hydroxide solution were used as a caustic alkali aqueous solution. Nickel in this tank
A cobalt mixed salt solution is introduced at a constant flow rate, and while sufficiently stirring, a sodium hydroxide solution is introduced, and the pH of the reaction vessel is adjusted so that the average particle size of the generated nickel-cobalt hydroxide is in the range of 12 to 14 μm. The value, salt concentration, and flow rate were controlled. The obtained nickel-cobalt hydroxide was washed with water and dried at 80 ° C. to obtain a nickel-cobalt hydroxide.

【0040】なお、平均粒径及び重量は、レーザー回折
式粒度分布測定装置で測定し、累積50%に相当する値
を平均粒径とした。また、比表面積は窒素を用いたBE
T法で測定した。タップ密度は20cm3 のメスシリン
ダ(重量Ag)にニッケル−コバルト水酸化物を充填
し、200回タッピング後、メスシリンダの重量(B
g)、ニッケル−コバルト水酸化物の体積(Dcm3
を測定し、次式により求めた。
The average particle size and weight were measured by a laser diffraction type particle size distribution analyzer, and the value corresponding to a cumulative 50% was defined as the average particle size. The specific surface area is the BE using nitrogen.
It was measured by the T method. A 20 cm 3 graduated cylinder (weight Ag) is filled with nickel-cobalt hydroxide, and the tap density is 200 times.
g), volume of nickel-cobalt hydroxide (Dcm 3 )
Was measured and determined by the following equation.

【0041】 タップ密度(g/cm3 )=(B−A)/D ニッケル−コバルト水酸化物の細孔分布及び細孔の空間
体積は、窒素吸着を用いたBJH法を用いて10〜20
0Åの範囲の細孔を測定した。なお、10Å以下の細孔
分布は窒素ガス吸着による方法では測定が困難であり、
実際には10Å以下の細孔を有する空間は存在すると考
えられる。
Tap density (g / cm 3 ) = (BA) / D The pore distribution and the spatial volume of the pores of the nickel-cobalt hydroxide are 10 to 20 using the BJH method using nitrogen adsorption.
The pores in the range of 0 ° were measured. The pore distribution of 10 ° or less is difficult to measure by the method using nitrogen gas adsorption.
It is considered that a space having pores of 10 ° or less actually exists.

【0042】また、ニッケル−コバルト水酸化物の細孔
占有率は、窒素を用いたBJH法によって測定した細孔
の空間体積の値(cm3 /g)と、ピクノメータを用い
たアルコール法によって測定した真密度(g/cm3
の値から次式により算出した。
The pore occupancy of the nickel-cobalt hydroxide is measured by the value of the spatial volume of the pores (cm 3 / g) measured by the BJH method using nitrogen and the alcohol method using a pycnometer. True density (g / cm 3 )
Was calculated by the following equation.

【0043】細孔占有率(%)=細孔の空間体積値(c
3 /g)×真密度(g/cm3 )また、原子吸光分析
により試料A〜Fのニッケル−コバルト水酸化物中に含
まれるCo量を分析した。
Pore occupancy (%) = Space volume value of pore (c)
m 3 / g) × true density (g / cm 3 ) Further, the amount of Co contained in the nickel-cobalt hydroxides of Samples A to F was analyzed by atomic absorption analysis.

【0044】以上の条件で作成したニッケル−コバルト
水酸化物の物性を表1に示す。
Table 1 shows the physical properties of the nickel-cobalt hydroxide prepared under the above conditions.

【0045】[0045]

【表1】 [Table 1]

【0046】次に、Lix Niy Coz 2 の合成方法
について説明する。
Next, a method of synthesizing Li x Ni y Co z O 2 will be described.

【0047】上記方法で作成したニッケル−コバルト水
酸化物A〜Fを、水酸化リチウムと(ニッケル+コバル
ト)が原子比で1.05対1になるように混合し、酸化
雰囲気下において750℃で10時間焼成して、Lix
Niy Coz 2 (y+z=1)の活物質A〜Fを合成
した。
The nickel-cobalt hydroxides A to F prepared by the above method are mixed such that lithium hydroxide and (nickel + cobalt) have an atomic ratio of 1.05 to 1, and are mixed at 750 ° C. in an oxidizing atmosphere. For 10 hours, Li x
Active materials A to F of Ni y Co z O 2 (y + z = 1) were synthesized.

【0048】また、比較例として、ニッケル−コバルト
水酸化物AにCo置換量(z値)が0.2となるように
酸化コバルトを添加、混合した後、水酸化リチウムと
(ニッケル+コバルト)が原子比で1.05対1になる
ように混合し、同様の条件で合成を行い、活物質Gとし
た。
As a comparative example, cobalt oxide was added to nickel-cobalt hydroxide A so that the amount of Co substitution (z value) was 0.2, mixed, and then lithium hydroxide and (nickel + cobalt) were added. Were mixed such that the atomic ratio became 1.05 to 1, and synthesis was performed under the same conditions to obtain an active material G.

【0049】合成されたLix Niy Coz 2 は比較
的ほぐれやすい凝集塊状物として得られ、乳鉢を用いて
粉砕した。
The synthesized Li x Ni y Co z O 2 was obtained as an agglomerate that was relatively easy to loosen, and was ground using a mortar.

【0050】次に、正極板の製造法を説明する。正極板
は、まず正極活物質であるLix Niy Coz 2 (y
+z=1)の粉末100重量部に、アセチレンブラック
3重量部、フッ素樹脂系結着剤5重量部を混合し、N−
メチルピロリドン溶液に懸濁させてペースト状にする。
このペーストを厚さ0.020mmのアルミ箔の両面に
塗着し、乾燥後厚み0.130mm、幅35mm、長さ
270mmの正極板5を作成した。
Next, a method for manufacturing the positive electrode plate will be described. First, the positive electrode plate is made of Li x Ni y Co z O 2 (y
+ Z = 1), 100 parts by weight of the powder, 3 parts by weight of acetylene black and 5 parts by weight of a fluororesin binder were mixed, and N-
Suspend in methylpyrrolidone solution to make a paste.
This paste was applied on both sides of an aluminum foil having a thickness of 0.020 mm, and after drying, a positive electrode plate 5 having a thickness of 0.130 mm, a width of 35 mm and a length of 270 mm was prepared.

【0051】そして、正極板と負極板をセパレータを介
して渦巻状に巻回し、直径13.8mm、高さ50mm
の電池ケース内に収納した。電解液には、炭酸エチレン
と炭酸エチルメチルの等容積混合溶媒に、六フッ化リン
酸リチウム1モル/lの割合で溶解したものを用いて極
板群4に注入した後、電池を密封口し、試験電池とし
た。
Then, the positive electrode plate and the negative electrode plate are spirally wound via a separator, and have a diameter of 13.8 mm and a height of 50 mm.
In the battery case. As an electrolyte, a solution prepared by dissolving lithium hexafluorophosphate at a ratio of 1 mol / l in a mixed solvent of equal volumes of ethylene carbonate and ethyl methyl carbonate was injected into the electrode group 4, and then the battery was sealed. And used as a test battery.

【0052】以上の実施例1における試験電池をそれぞ
れ電池A〜Gとし、これらの電池を用いて以下の条件下
で試験を行った。
The test batteries in Example 1 were referred to as batteries A to G, respectively, and tests were performed using these batteries under the following conditions.

【0053】20℃の環境下で、120mAで4.2V
まで充電した後、1時間休止を行い、その後同様に12
0mAで3Vまで放電する。この方法で充放電を3回繰
り返し、3回目の放電容量を初期容量とした。
Under an environment of 20 ° C., 4.2 V at 120 mA
After charging for 1 hour, pause for 1 hour.
Discharge to 3 V at 0 mA. Charge / discharge was repeated three times by this method, and the third discharge capacity was used as the initial capacity.

【0054】また、20℃の環境下で、120mAで
4.2Vまで充電した後、1時間休止を行い、その後同
様に120mAで3Vまで放電する充放電を繰り返し、
放電が初期の半分に減少したサイクルを寿命末期サイク
ルとした。
After charging to 4.2 V at 120 mA in an environment of 20 ° C., the battery was paused for 1 hour, and then similarly charged and discharged to discharge to 3 V at 120 mA.
The cycle in which the discharge was reduced to half of the initial period was defined as the end-of-life cycle.

【0055】また、それぞれの電池について、10個づ
つ20℃の環境下で、120mAで4.2Vまで充電し
た後、圧壊試験を行った。圧壊試験は、直径4mmの金
属製の円柱の丸棒を用いてこの電池の外寸が最も長くな
る方向に対して垂直な方向と平行になるように電池の中
央部に押し付けて、電池の厚みが半分になるまで圧壊し
た。この時の電池の最高到達温度の平均値と発煙の有無
を測定した。
Each of the batteries was charged at 120 mA to 4.2 V in an environment of 20 ° C., and a crush test was performed. In the crush test, a metal cylindrical rod having a diameter of 4 mm was pressed against the center of the battery so as to be parallel to a direction perpendicular to the direction in which the outer dimension of the battery was longest, and the thickness of the battery was measured. Crushed until it was halved. At this time, the average value of the maximum temperature of the battery and the presence or absence of smoke were measured.

【0056】表2に、電池A〜Gの120mA放電容
量、活物質利用率(活物質の比容量)、寿命末期サイク
ル、及び圧壊時の最高到達温度、発煙の有無を調べた結
果を示す。
Table 2 shows the results of examining the 120 mA discharge capacity, active material utilization (specific capacity of active material), end-of-life cycle, maximum temperature at the time of crushing, and the presence or absence of smoke of batteries A to G.

【0057】[0057]

【表2】 [Table 2]

【0058】表2から明らかなように、Coを置換して
いない電池Aや、置換量の少ない電池Bは寿命末期サイ
クルが低い。これは、充放電の際に上述したような結晶
相変化が観察され、このような結晶相変化が可逆性に乏
しく、充放電反応を繰り返すうちにLiを挿入、脱離で
きるサイトが徐々に失われてしまうことが原因でサイク
ル特性が劣化したからと考えられる。
As is clear from Table 2, the battery A in which Co is not replaced and the battery B having a small replacement amount have a low end-of-life cycle. This is because the above-described crystal phase change is observed during charge and discharge, and such a crystal phase change is poor in reversibility, and sites where Li can be inserted and desorbed gradually during repeated charge and discharge reactions gradually disappear. It is considered that the cycle characteristics were degraded due to the deterioration.

【0059】また、圧壊試験時の電池の最高到達温度が
高く、発煙した電池数も多い。これは、Coを置換して
いない、あるいは置換量が少ないために、充電状態の結
晶構造が不安定になり、熱安定性が低くなるからと考え
られる。
The maximum temperature of the battery during the crush test is high, and the number of smoked batteries is large. It is considered that this is because Co is not substituted or the substitution amount is small, so that the crystal structure in the charged state becomes unstable and the thermal stability becomes low.

【0060】これに対し、電池C〜Eの電池におけるリ
チウム複合ニッケル−コバルト酸化物の比容量(活物質
利用率)はどれも170mAh/g以上を示し、サイク
ル特性、熱安定性ともに良好な結果が得られた。これ
は、Niの一部をCoで置換することによって、結晶相
の変化が著しく緩和されたためである。
On the other hand, the specific capacities (active material utilization rates) of the lithium composite nickel-cobalt oxides in the batteries C to E were all 170 mAh / g or more, and both the cycle characteristics and the thermal stability were good. was gotten. This is because the change of the crystal phase was remarkably reduced by partially replacing Ni with Co.

【0061】しかし、Coの添加量(w値)が0.4で
ある電池Fでは寿命末期サイクルが276サイクルと逆
に劣化していることがわかる。これは、Co置換量(z
値)が0.4以上に大きくなると、ニッケル−コバルト
水酸化物の結晶成長が困難となり、多結晶のNiv Co
w (OH)2 が生成してしまう。このため、合成によっ
て得られるリチウム複合ニッケル−コバルト酸化物も多
結晶となり、充放電サイクルを重ねることにより結晶粒
界が成長し、活物質が微粉化し極板から脱落して容量低
下を招いたものと考えられる。
However, it can be seen that the end-of-life cycle of the battery F in which the addition amount (w value) of Co is 0.4 is deteriorated, which is opposite to 276 cycles. This is because the amount of Co substitution (z
Value) is 0.4 or more, the crystal growth of nickel-cobalt hydroxide becomes difficult, and polycrystalline Ni v Co
w (OH) 2 is generated. For this reason, the lithium composite nickel-cobalt oxide obtained by the synthesis also becomes polycrystalline, and the crystal grain boundaries grow by repeated charge / discharge cycles, and the active material is pulverized and drops from the electrode plate, resulting in a decrease in capacity. it is conceivable that.

【0062】また、Co添加量(w値)が0.4以上に
大きくなると、このような共沈法を用いても、ニッケル
とコバルトが均一に分散されておらず、部分的にLiN
iO2 とLiCoO2 の混合物になっているものと考え
られ、Coが十分置換されていない部分において上記結
晶相変化により結晶構造が破壊され、放電容量が低下し
たものと考えられる。
When the Co addition amount (w value) is increased to 0.4 or more, even if such a coprecipitation method is used, nickel and cobalt are not uniformly dispersed, and LiN
It is considered that it was a mixture of iO 2 and LiCoO 2 , and it is considered that the crystal structure was destroyed by the above-mentioned crystal phase change in the portion where Co was not sufficiently substituted, and the discharge capacity was reduced.

【0063】また、圧壊試験時に、発煙した電池が存在
した。これは、Coが十分置換されていない部分の充電
状態の結晶構造が不安定なため、熱安定性が低くなるか
らと考えられる。また、Co置換量が小さくとも、活物
質Gのように共沈法を用いない場合、コバルトが均一に
分散されておらず、同様の理由でサイクル特性、熱安定
性が劣化している。
At the time of the crush test, there was a smoked battery. This is probably because the crystal structure in the charged state of the portion where Co has not been sufficiently substituted is unstable, so that the thermal stability is lowered. Further, even when the Co substitution amount is small, when the coprecipitation method is not used unlike the active material G, cobalt is not uniformly dispersed, and the cycle characteristics and the thermal stability are deteriorated for the same reason.

【0064】以上の結果より、リチウム複合ニッケル−
コバルト酸化物の原料としてのニッケル−コバルト水酸
化物はNiv Cow (OH)2 (0.7≦v≦0.9、
v+w=1)で表されるニッケル−コバルト水酸化物で
ある場合に、放電容量、サイクル特性に優れた非水電解
液二次電池を供給できる。
From the above results, the lithium composite nickel-
Nickel as a raw material for cobalt oxide - cobalt hydroxide Ni v Co w (OH) 2 (0.7 ≦ v ≦ 0.9,
v + w = 1), a non-aqueous electrolyte secondary battery having excellent discharge capacity and cycle characteristics can be supplied.

【0065】(実施例2)次に、実施例2について説明
する。コバルト水酸化物を製造する析出槽としてタンク
を用い、ニッケル金属を溶解した硫酸ニッケル溶液に、
コバルトがモル比で20%になるようにコバルト金属を
添加、溶解した硫酸ニッケル−コバルト混合溶液と、カ
性アルカリ水溶液として25重量パーセントの水酸化ナ
トリウム溶液を用いた。このタンク内へニッケル−コバ
ルト混合塩溶液を一定流量で導入し、槽内温度を50℃
に保ち、十分攪拌しながら、水酸化ナトリウム溶液を導
入し、反応槽のPH値、塩濃度、流量を制御し、種々の
粒径を持つニッケル−コバルト水酸化物H〜Lを生成
し、水洗、乾燥した。
(Embodiment 2) Next, Embodiment 2 will be described. Using a tank as a precipitation tank to produce cobalt hydroxide, into a nickel sulfate solution with nickel metal dissolved,
A mixed solution of nickel sulfate and cobalt in which cobalt metal was added and dissolved so that cobalt became 20% in molar ratio, and a 25% by weight sodium hydroxide solution as a caustic aqueous solution were used. A nickel-cobalt mixed salt solution was introduced into the tank at a constant flow rate, and the temperature in the tank was reduced to 50 ° C.
The sodium hydroxide solution was introduced with sufficient stirring, and the pH value, salt concentration, and flow rate of the reaction tank were controlled to produce nickel-cobalt hydroxides HL having various particle sizes, and washed with water. And dried.

【0066】得られたニッケル−コバルト水酸化物H〜
Lは全てSEM写真観察において一次粒子が無数に凝集
した二次粒子を形成しており、その形状は球状もしくは
楕円球状であった。また、得られたリチウム複合ニッケ
ル−コバルト酸化物の平均粒径も原料であるニッケル−
コバルト水酸化物の粒径とほぼ一致していた。
The obtained nickel-cobalt hydroxide H〜
All of L formed secondary particles in which primary particles were innumerably aggregated in SEM photograph observation, and their shapes were spherical or elliptical spherical. In addition, the average particle size of the obtained lithium composite nickel-cobalt oxide is determined by the raw material nickel-cobalt oxide.
It almost coincided with the particle size of cobalt hydroxide.

【0067】作成したニッケル−コバルト水酸化物H〜
Lの物性を表3に示す。
The prepared nickel-cobalt hydroxide H〜
Table 3 shows the physical properties of L.

【0068】[0068]

【表3】 [Table 3]

【0069】次に、ニッケル−コバルト水酸化物H〜L
を原料としてリチウム複合ニッケル−コバルト酸化物を
合成する他は全て実施例1と同様に電池を作成し、電池
H〜Lとした。
Next, nickel-cobalt hydroxides H to L
Except that a lithium composite nickel-cobalt oxide was synthesized using as a raw material, batteries were prepared in the same manner as in Example 1, and batteries HL were obtained.

【0070】表4に、電池H〜Lの120mA放電容
量、活物質の比容量(活物質利用率)、寿命末期サイク
ル、及び圧壊時の最高到達温度と発煙の有無を調べた。
その結果を表4に示す。
Table 4 shows the discharge capacity of the batteries H to L at 120 mA, the specific capacity of the active material (active material utilization rate), the end-of-life cycle, the maximum temperature at the time of crushing, and the presence or absence of smoke.
Table 4 shows the results.

【0071】[0071]

【表4】 [Table 4]

【0072】ニッケル−コバルト水酸化物の粒径は、リ
チウム複合ニッケル−コバルト酸化物の粒径と相関関係
があるとともに、タップ密度や、BET比表面積とも相
関があり、電極への充填性に大きな影響を与えるため重
要である。活物質Hのように平均粒径が小さく、タップ
密度が小さい場合、リチウム複合ニッケル−コバルト酸
化物の電極への充填密度すなわち容量密度が低下し、実
質的な電池容量が低下する。
The particle size of the nickel-cobalt hydroxide has a correlation with the particle size of the lithium composite nickel-cobalt oxide, and also has a correlation with the tap density and the BET specific surface area. Important to influence. When the average particle diameter is small and the tap density is small as in the case of the active material H, the packing density of the lithium composite nickel-cobalt oxide into the electrode, that is, the capacity density is reduced, and the substantial battery capacity is reduced.

【0073】また、圧壊試験時の電池の最高到達温度が
高く、発煙した電池数も多い。これは、ニッケル−コバ
ルト水酸化物の粒径が小さくなると比表面積が大きくな
り、圧壊試験時の熱反応面積が大きくなることで熱安定
性が低くなるからと考えられる。
The maximum temperature of the battery during the crush test is high, and the number of smoked batteries is large. This is probably because the smaller the particle size of the nickel-cobalt hydroxide, the larger the specific surface area, and the larger the thermal reaction area during the crush test, the lower the thermal stability.

【0074】また、平均粒径が18μmよりも大きくな
ると充填性は十分であるものの、活物質の比容量が低下
していることがわかる。これは、ニッケル−コバルト水
酸化物の粒径が大きくなると比表面積が小さくなり、リ
チウム複合ニッケル−コバルト酸化物合成の際のリチウ
ムとの反応速度が小さくなり、合成が十分に進行しなか
ったことが考えられる。
When the average particle diameter is larger than 18 μm, the filling properties are sufficient, but the specific capacity of the active material is reduced. This is because the specific surface area decreases as the particle size of the nickel-cobalt hydroxide increases, the reaction rate with lithium during the synthesis of the lithium composite nickel-cobalt oxide decreases, and the synthesis does not proceed sufficiently. Can be considered.

【0075】このように、リチウム複合ニッケル−コバ
ルト酸化物を用いた非水電解液二次電池の電池特性が、
その原料であるニッケル−コバルト水酸化物の物性によ
って著しく左右されることがわかる。
As described above, the battery characteristics of the nonaqueous electrolyte secondary battery using the lithium composite nickel-cobalt oxide are as follows:
It can be seen that it is significantly affected by the physical properties of the nickel-cobalt hydroxide as the raw material.

【0076】従って、非水電解液二次電池用正極活物質
であるLix Niy Coz 2 (0.90≦x≦1.0
5、0.7≦y≦0.9、y+z=1)で表されるリチ
ウム複合ニッケル−コバルト酸化物の合成に原料として
用いるNiv Cow (OH)2 (0.7≦v≦0.9、
v+w=1)で表されるニッケル−コバルト水酸化物
は、平均粒子径が10〜18μm、窒素ガスの吸着によ
り測定されるBET比表面積が5〜25m2 /g、タッ
プ密度が1.6〜2.6g/cm3 、細孔の空間体積が
0.008〜0.10cm3 /g、細孔占有率が3〜4
0%の範囲であることが望ましい。
[0076] Thus, the positive electrode active material for a nonaqueous electrolyte secondary battery Li x Ni y Co z O 2 (0.90 ≦ x ≦ 1.0
5,0.7 ≦ y ≦ 0.9, y + z = 1 lithium nickel composite represented by) - Ni v Co w (OH ) 2 (0.7 ≦ v ≦ 0 used as a raw material for the synthesis of cobalt oxide. 9,
v + w = 1), the nickel-cobalt hydroxide has an average particle diameter of 10 to 18 μm, a BET specific surface area measured by nitrogen gas adsorption of 5 to 25 m 2 / g, and a tap density of 1.6 to 1.6. 2.6 g / cm 3, pore volume of the pores 0.008~0.10cm 3 / g, a pore occupancy 3-4
It is desirable to be in the range of 0%.

【0077】(比較例)次に、比較例について説明す
る。比較例として、粒子の形状が塊状であるニッケル−
コバルト複合水酸化物を原材料として実施例1と同様に
リチウム複合ニッケル−コバルト酸化物Mを合成した。
得られたリチウム複合ニッケル−コバルト酸化物の化学
組成はLiNi0.85Co0.152 であった。また、合成
されたリチウム複合ニッケル−コバルト酸化物は、平均
粒径が14μmの塊状の粒子として得られた。そして、
このリチウム複合ニッケル−コバルト酸化物Mを正極活
物質として用いる他は実施例1と同様に電池(電池M)
を作成した。
(Comparative Example) Next, a comparative example will be described. As a comparative example, nickel-
A lithium composite nickel-cobalt oxide M was synthesized in the same manner as in Example 1 using the cobalt composite hydroxide as a raw material.
The chemical composition of the obtained lithium composite nickel-cobalt oxide was LiNi 0.85 Co 0.15 O 2 . In addition, the synthesized lithium composite nickel-cobalt oxide was obtained as massive particles having an average particle size of 14 μm. And
A battery (battery M) was prepared in the same manner as in Example 1 except that this lithium composite nickel-cobalt oxide M was used as a positive electrode active material.
It was created.

【0078】この電池Mの120mA放電容量、活物質
の比容量(活物質利用率)、寿命末期サイクル、及び圧
壊時の最高到達温度と発煙の有無を調べた。その結果を
表5に示す。
The battery M was examined for 120 mA discharge capacity, specific capacity of active material (active material utilization rate), end-of-life cycle, maximum temperature at the time of crushing and generation of smoke. Table 5 shows the results.

【0079】[0079]

【表5】 [Table 5]

【0080】表5から明らかなように、原料のニッケル
−コバルト水酸化物が塊状である活物質Mを用いた電池
では、塊状粒子であるために、特に比表面積が小さく、
極板への充填性も小さくなる。また、充放電の際の分極
が大きいために活物質の比容量も小さくなっている。
As is evident from Table 5, in the battery using the active material M in which the raw material nickel-cobalt hydroxide is massive, the specific surface area is particularly small because of the massive particles.
The filling property of the electrode plate is also reduced. In addition, the specific capacity of the active material is also small due to large polarization at the time of charge and discharge.

【0081】以上の結果よりリチウム複合ニッケル−コ
バルト酸化物の原料となるニッケル−コバルト水酸化物
は球状もしくは楕円球状であることが望ましい。
From the above results, it is desirable that the nickel-cobalt hydroxide used as the raw material of the lithium composite nickel-cobalt oxide is spherical or elliptical spherical.

【0082】以上の実施例では、ニッケル−コバルト水
酸化物を製造する方法として、硫酸ニッケル−コバルト
混合溶液とカ性アルカリ水溶液を用いる例を示したが、
例えば金属イオンを安定化させるためにアンモニウムイ
オンなどの錯化剤等を添加しても得られたニッケル−コ
バルト水酸化物が同様の物性を持っておれば同様の効果
が得られる。
In the above embodiment, as an example of a method for producing a nickel-cobalt hydroxide, an example using a mixed solution of nickel sulfate-cobalt and a caustic alkali aqueous solution has been described.
For example, even if a complexing agent such as ammonium ion is added to stabilize metal ions, the same effect can be obtained if the obtained nickel-cobalt hydroxide has similar physical properties.

【0083】また、上記実施例では円筒型の電池を用い
て評価を行ったが、角型やコイン型など電池形状が異な
っても同様の効果が得られる。
In the above embodiment, the evaluation was performed using a cylindrical battery. However, the same effect can be obtained even when the battery shape is different, such as a square battery or a coin battery.

【0084】さらに、上記実施例において、負極には炭
素質材料を用いたが、本発明における効果は正極板にお
いて作用するため、リチウム金属や、リチウム合金、F
23 、WO2 、WO3 等の酸化物など、他の負極材
料を用いても同様の効果が得られる。
Further, in the above embodiment, a carbonaceous material was used for the negative electrode. However, since the effect of the present invention acts on the positive electrode plate, lithium metal, lithium alloy, F
Similar effects can be obtained by using other negative electrode materials such as oxides such as e 2 O 3 , WO 2 and WO 3 .

【0085】また、上記実施例において電解質として六
フッ化リン酸リチウムを使用したが、他のリチウム含有
塩、例えば過塩素酸リチウム、四フッ過ホウ酸リチウ
ム、トリフルオロメタンスルホン酸リチウム、六フッ過
ヒ酸リチウムなどでも同様の効果が得られる。
Although lithium hexafluorophosphate was used as the electrolyte in the above embodiment, other lithium-containing salts such as lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, and hexafluorophosphate were used. Similar effects can be obtained with lithium arsenate and the like.

【0086】さらに、上記実施例では炭酸エチレンと炭
酸ジエチルの混合溶媒を用いたが、他の非水溶媒、例え
ばプロピレンカーボネートなどの環状エステル、テトラ
ヒドロフランなどの環状エーテル、ジメトキシエタンな
どの鎖状エーテル、プロピオン酸メチルなどの鎖状エス
テルなどの非水溶媒や、これらの多元系混合溶媒を用い
ても同様の効果が得られる。
In the above examples, a mixed solvent of ethylene carbonate and diethyl carbonate was used. However, other non-aqueous solvents such as cyclic esters such as propylene carbonate, cyclic ethers such as tetrahydrofuran, chain ethers such as dimethoxyethane, etc. Similar effects can be obtained by using a non-aqueous solvent such as a chain ester such as methyl propionate, or a multi-component mixed solvent thereof.

【0087】[0087]

【発明の効果】本発明の非水電解液電池活物質用ニッケ
ル−コバルト水酸化物によれば、以上の説明から明らか
なように、粒子形状、粒径等の物性を制御したことによ
り、これを用いて合成したリチウム複合ニッケル−コバ
ルト酸化物を正極活物質として用いた電池のサイクル特
性、及び熱安定性を向上することができる。
According to the nickel-cobalt hydroxide for a non-aqueous electrolyte battery active material of the present invention, as is apparent from the above description, the physical properties such as the particle shape and the particle size are controlled. The cycle characteristics and thermal stability of a battery using a lithium composite nickel-cobalt oxide synthesized by using as a positive electrode active material can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のニッケル−コバルト水酸化物を用いて
合成した正極活物質が適用される非水電解液電池の縦断
面図である。
FIG. 1 is a longitudinal sectional view of a nonaqueous electrolyte battery to which a positive electrode active material synthesized using a nickel-cobalt hydroxide of the present invention is applied.

【符号の説明】[Explanation of symbols]

5 正極板 5 Positive electrode plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 茂雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 臼井 猛 福井県福井市白方町45字砂浜割5番10 株 式会社田中化学研究所内 (72)発明者 田中 孝明 福井県福井市白方町45字砂浜割5番10 株 式会社田中化学研究所内 (72)発明者 飯田 得代志 福井県福井市白方町45字砂浜割5番10 株 式会社田中化学研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigeo Kobayashi 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Inside Tanaka Chemical Research Laboratories (72) Inventor Takaaki Tanaka 45-10 Sunahama-cho, 45, Shirakatacho, Fukui City, Fukui Prefecture Inside Tanaka Chemical Laboratories Co., Ltd. 45 character sandy beach percent 5-10 Inside Tanaka Chemical Laboratory Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 化学式Lix Niy Coz 2 (0.9
0≦x≦1.05、0.7≦y≦0.9、y+z=1)
で表されるリチウム複合ニッケル−コバルト酸化物の合
成に原料として用いるニッケル−コバルト水酸化物であ
り、化学式Niv Cow (OH)2 (0.7≦v≦0.
9、v+w=1)で表され、SEM写真観察において一
次粒子が無数に凝集した二次粒子を形成しており、以下
の物性 1)二次粒子の平均粒子径が10〜18μm 2)二次粒子径が1μm以下の粒子が重量比で7%以下 3)窒素ガス吸着により測定されるBET比表面積が5
〜25m2 /g を備えていることを特徴とする非水電解液電池活物質用
ニッケル−コバルト水酸化物。
1. A chemical formula Li x Ni y Co z O 2 (0.9
0 ≦ x ≦ 1.05, 0.7 ≦ y ≦ 0.9, y + z = 1)
In the lithium nickel composite represented - nickel is used as a starting material for the synthesis of cobalt oxide - is cobalt hydroxide, formula Ni v Co w (OH) 2 (0.7 ≦ v ≦ 0.
9, v + w = 1), secondary particles formed by innumerable aggregation of primary particles in SEM photograph observation, and the following physical properties 1) Average particle diameter of secondary particles is 10 to 18 μm 2) Secondary particles 7% or less by weight of particles having a particle diameter of 1 μm or less 3) BET specific surface area measured by nitrogen gas adsorption of 5
Nonaqueous electrolyte battery active material for nickel, characterized in that it comprises a ~25m 2 / g - cobalt hydroxide.
【請求項2】 ニッケル−コバルト水酸化物は、球状又
は楕円球状である請求項1記載の非水電解液電池活物質
用ニッケル−コバルト水酸化物。
2. The nickel-cobalt hydroxide for a non-aqueous electrolyte battery active material according to claim 1, wherein the nickel-cobalt hydroxide is spherical or elliptical spherical.
【請求項3】 ニッケル−コバルト水酸化物のタップ密
度が1.6〜2.6g/cm3 である請求項1記載の非
水電解液電池活物質用ニッケル−コバルト水酸化物。
3. The nickel-cobalt hydroxide for a nonaqueous electrolyte battery active material according to claim 1, wherein the tap density of the nickel-cobalt hydroxide is 1.6 to 2.6 g / cm 3 .
【請求項4】 ニッケル−コバルト水酸化物の細孔の空
間体積が0.008〜0.10cm3 /gである請求項
1記載の非水電解液電池活物質用ニッケル−コバルト水
酸化物。
4. The nickel-cobalt hydroxide for a non-aqueous electrolyte battery active material according to claim 1, wherein the spatial volume of the pores of the nickel-cobalt hydroxide is 0.008 to 0.10 cm 3 / g.
【請求項5】 ニッケル−コバルト水酸化物は、細孔占
有率が3〜40%である請求項1記載の非水電解液電池
活物質用ニッケル−コバルト水酸化物。
5. The nickel-cobalt hydroxide for a non-aqueous electrolyte battery active material according to claim 1, wherein the nickel-cobalt hydroxide has a pore occupancy of 3 to 40%.
JP02344898A 1998-02-04 1998-02-04 Nickel-cobalt hydroxide for non-aqueous electrolyte battery active materials Expired - Fee Related JP3986148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02344898A JP3986148B2 (en) 1998-02-04 1998-02-04 Nickel-cobalt hydroxide for non-aqueous electrolyte battery active materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02344898A JP3986148B2 (en) 1998-02-04 1998-02-04 Nickel-cobalt hydroxide for non-aqueous electrolyte battery active materials

Publications (2)

Publication Number Publication Date
JPH11224668A true JPH11224668A (en) 1999-08-17
JP3986148B2 JP3986148B2 (en) 2007-10-03

Family

ID=12110795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02344898A Expired - Fee Related JP3986148B2 (en) 1998-02-04 1998-02-04 Nickel-cobalt hydroxide for non-aqueous electrolyte battery active materials

Country Status (1)

Country Link
JP (1) JP3986148B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302507A (en) * 2004-04-12 2005-10-27 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2005302338A (en) * 2004-04-07 2005-10-27 Shin Kobe Electric Mach Co Ltd Lithium secondary battery and positive electrode material for lithium secondary battery
JP2007257985A (en) * 2006-03-23 2007-10-04 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery and its manufacturing method and nonaqueous electrolyte secondary battery using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302338A (en) * 2004-04-07 2005-10-27 Shin Kobe Electric Mach Co Ltd Lithium secondary battery and positive electrode material for lithium secondary battery
JP4534559B2 (en) * 2004-04-07 2010-09-01 新神戸電機株式会社 Lithium secondary battery and positive electrode material for lithium secondary battery
JP2005302507A (en) * 2004-04-12 2005-10-27 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2007257985A (en) * 2006-03-23 2007-10-04 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery and its manufacturing method and nonaqueous electrolyte secondary battery using it

Also Published As

Publication number Publication date
JP3986148B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP5228292B2 (en) A method for producing a lithium-nickel-manganese-cobalt composite oxide.
JP5079951B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, its manufacturing method, non-aqueous electrolyte secondary battery, and positive electrode manufacturing method
JP3232984B2 (en) Method for producing nonaqueous electrolyte battery and positive electrode active material
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JPH11135119A (en) Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
JPH09231973A (en) Positive electrode active material for nonaqueous electrolyte battery, positive electrode, and nonaqueous electrolyte battery
KR20030008704A (en) An active material for a battery and a method of preparing the same
JP4997700B2 (en) Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2011105594A (en) Nickel-manganese-cobalt based complex oxide, laminar lithium-nickel-manganese-cobalt based complex oxide, positive electrode material for lithium secondary batteries, positive electrode using the material, and lithium secondary battery
JP4177574B2 (en) Lithium secondary battery
JP3394364B2 (en) Cobalt hydroxide and tricobalt tetroxide as raw materials for non-aqueous electrolyte battery active material LiCoO2 and method for producing the same
JP4454052B2 (en) Method for producing nickel electrode active material for alkaline storage battery, and method for producing nickel positive electrode
JP3446639B2 (en) Method for producing positive electrode active material for lithium secondary battery and lithium secondary battery
JP2005336004A (en) Nickel manganese cobalt based multiple oxide, lamellar lithium nickel manganese cobalt based multiple oxide, lithium secondary cell positive electrode material, positive electrode for lithium secondary cell and lithium secondary cell using the same
JP3229544B2 (en) Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material
Song et al. Effects of ball milling on the physical and electrochemical characteristics of nickel hydroxide powder
JP3653210B2 (en) Method for producing spinel manganese oxide for lithium secondary battery
JP2003288899A (en) Positive electrode active material for nonaqueous electrolyte secondary cell
JP3986148B2 (en) Nickel-cobalt hydroxide for non-aqueous electrolyte battery active materials
KR19990034749A (en) Lithium-ion secondary battery employing a lithium composite oxide, a method of manufacturing the same, and a positive electrode using the same
JP5626245B2 (en) Lithium-nickel-manganese-cobalt composite oxide, method for producing the same, and use thereof
JP5053489B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP3751133B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3954668B2 (en) Nickel-cobalt hydroxide for non-aqueous electrolyte battery active materials
JPH087894A (en) Positive active material for nonaqueous lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees