JP2005302507A - Cathode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery - Google Patents

Cathode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005302507A
JP2005302507A JP2004116590A JP2004116590A JP2005302507A JP 2005302507 A JP2005302507 A JP 2005302507A JP 2004116590 A JP2004116590 A JP 2004116590A JP 2004116590 A JP2004116590 A JP 2004116590A JP 2005302507 A JP2005302507 A JP 2005302507A
Authority
JP
Japan
Prior art keywords
powder
particles
less
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004116590A
Other languages
Japanese (ja)
Other versions
JP4766840B2 (en
Inventor
Shuhei Oda
周平 小田
Riyuuichi Kuzuo
竜一 葛尾
Kengo Maeda
健吾 前田
Satoru Suzuki
覚 鈴木
Manabu Yamada
学 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Denso Corp
Toyota Motor Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Denso Corp, Toyota Motor Corp filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004116590A priority Critical patent/JP4766840B2/en
Publication of JP2005302507A publication Critical patent/JP2005302507A/en
Application granted granted Critical
Publication of JP4766840B2 publication Critical patent/JP4766840B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cathode active material for a nonaqueous electrolyte secondary battery which can be manufactured stably and a nonaqueous electrolyte secondary battery using it as the cathode, and in which reduction of inner resistance of the battery and generation of high power become possible. <P>SOLUTION: This material is composed of a powdered lithium metal compound oxide expressed by LiNi<SB>1-X</SB>M<SB>X</SB>O<SB>2</SB>(provided, M expresses at least one kind or more of metal elements selected from a group consisting of Co, Al, Mg, Mn, Ti, Fe, Cu, Zn and Ga, and 0<x≤0.25 is satisfied), wherein the powder is constituted of primary particles of lithium metal compound oxide together with secondary particles formed by a plurality of the assembled primary particles, the shape of the secondary particles is spherical or ellipsoidal, the diameter of the powder is 40 μm or less, the powder contains 0.5 to 7.0 vol% of particles of particle diameter 1 μm or less, the surface area ratio of the powder is larger by 0.3m<SP>2</SP>/g at the maximum than that of the powder consisting excluding the particles of powder diameter 1 μm or less, while the tap density of the powder is smaller by 0.2 g/cm<SP>3</SP>at the maximum than that of the powder consisting of the particles excluding the powder having diameter 1 μm or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非水系電解質二次電池用正極活物質、および該正極活物質を正極に用いた非水系電解質二次電池に関し、より詳しくは、非水系電解質二次電池の内部抵抗の低減および高出力化の改良に関し、これらの改良が可能となる非水系電解質二次電池用正極活物質、および該正極活物質を正極に用いた非水系電解質二次電池に関する。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery using the positive electrode active material as a positive electrode. More specifically, the present invention relates to a reduction in internal resistance and a high non-aqueous electrolyte secondary battery. The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery that can be improved, and a non-aqueous electrolyte secondary battery using the positive electrode active material as a positive electrode.

携帯電話やノート型パソコンなどの携帯機器の普及にともない、高いエネルギー密度を有する小型、軽量な二次電池が必要とされている。このような二次電池として、リチウム金属やリチウム合金、金属酸化物、あるいはカーボンのような、Liを脱離挿入可能な物質を負極として用いるリチウムイオン二次電池があり、研究開発が盛んに行われている。   With the widespread use of portable devices such as mobile phones and laptop computers, small and lightweight secondary batteries with high energy density are required. As such a secondary battery, there is a lithium ion secondary battery that uses a substance capable of detaching and inserting Li, such as lithium metal, lithium alloy, metal oxide, or carbon, as a negative electrode. It has been broken.

また、自動車分野でも、資源、環境問題から電気自動車に対する要望が高まり、電気自動車用やハイブリット自動車用のモータ駆動用バッテリーとして、安価でかつ、容量が大きく、サイクル特性および出力特性が良好なリチウムイオン二次電池が求められている。   Also in the automobile field, demand for electric vehicles has increased due to resource and environmental problems, and lithium-ion batteries that are inexpensive, have a large capacity, and have good cycle characteristics and output characteristics as motor drive batteries for electric cars and hybrid cars. There is a need for secondary batteries.

非水系電解質二次電池であるリチウムイオン二次電池の正極活物質として、リチウム酸化物と他の金属の酸化物からなるリチウム金属複合酸化物、特に、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO2)を用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として期待され、その実用化が進んでいる。そして、上記リチウムコバルト複合酸化物を用いたリチウムイオン二次電池では、優れた初期容量特性やサイクル特性を得るための開発がこれまで数多く行われてきており、すでにさまざまな成果が得られている。 As a positive electrode active material of a lithium ion secondary battery which is a non-aqueous electrolyte secondary battery, a lithium metal composite oxide composed of a lithium oxide and another metal oxide, particularly a lithium cobalt composite oxide that is relatively easy to synthesize A lithium ion secondary battery using (LiCoO 2 ) is expected to be a battery having a high energy density because a high voltage of 4V class is obtained, and its practical application is progressing. In the lithium ion secondary battery using the lithium cobalt composite oxide, many developments have been made so far to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained. .

しかし、リチウムコバルト複合酸化物は、主原料に高価なコバルト化合物を用いるため、活物質さらには電池のコストアップの原因となり、活物質の改良が望まれている。このリチウムコバルト複合酸化物を用いる電池の容量あたりの単価は、二次電池としてすでに利用されているニッケル水素電池の約4倍と高いため、適用される用途がかなり限定されているのが実態である。   However, since the lithium cobalt composite oxide uses an expensive cobalt compound as a main raw material, the cost of the active material and the battery is increased, and improvement of the active material is desired. The unit price per capacity of a battery using this lithium cobalt composite oxide is about four times as high as that of a nickel-metal hydride battery already used as a secondary battery. is there.

したがって、活物質のコストを下げ、より安価なリチウムイオン二次電池の製造を可能とすることは、現在普及している携帯機器用の小型二次電池だけではなく、電力貯蔵用や電気自動車用などの大型二次電池へ用途を拡大することが可能となり、工業的に大きな意義を持つ。   Therefore, reducing the cost of active materials and making it possible to manufacture cheaper lithium ion secondary batteries is not only used for small secondary batteries for portable devices, but also for power storage and electric vehicles. It is possible to expand the application to large-sized secondary batteries such as, and this is industrially significant.

ここで、リチウムイオン二次電池用正極活物質の新たなる材料としては、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO)を挙げることができる。リチウムニッケル複合酸化物は、リチウムコバルト複合酸化物よりも高い容量が期待でき、リチウムコバルト複合酸化物を正極活物質に用いたリチウムイオン二次電池と同様に高い電池電圧を示すことから、開発が盛んに行なわれている。 Here, as a new material of the positive electrode active material for the lithium ion secondary battery, lithium nickel composite oxide (LiNiO 2 ) using nickel cheaper than cobalt can be given. Lithium nickel composite oxides can be expected to have higher capacity than lithium cobalt composite oxides, and because of the high battery voltage similar to lithium ion secondary batteries using lithium cobalt composite oxide as the positive electrode active material, It is actively performed.

ただし、このリチウムニッケル複合酸化物を正極活物質に用いたリチウムイオン二次電池には、以下のような欠点があった。すなわち、リチウムコバルト複合酸化物を正極活物質に用いたリチウムイオン二次電池と比較すると、サイクル特性が劣り、かつ、高温環境下で使用されたり保存されたりした場合に、電池性能が比較的損なわれやすいという欠点を有していた。   However, the lithium ion secondary battery using this lithium nickel composite oxide as the positive electrode active material has the following drawbacks. That is, when compared with a lithium ion secondary battery using a lithium cobalt composite oxide as a positive electrode active material, the cycle performance is inferior, and the battery performance is relatively impaired when used or stored in a high temperature environment. It had the disadvantage of being easy to get.

そこで、これら欠点を解決することを目的として、上記リチウム金属複合酸化物について種々の提案がなされている。   Therefore, various proposals have been made for the lithium metal composite oxide with the aim of solving these drawbacks.

例えば、特開平8−213015号公報では、リチウムイオン二次電池の自己放電特性やサイクル特性を向上させることを目的として、LiXNiaCobc2(ただし、0.8≦x≦1.2、0.01≦a≦0.99、0.01≦b≦0.99、0.01≦c≦0.3、0.8≦a+b+c≦1.2、MはAl、V、Mn、Fe、CuおよびZnから選ばれる少なくとも1種の元素)で表されるリチウム金属複合酸化物が提案されている。 For example, in Japanese Patent Application Laid-Open No. 8-213015, Li x Ni a Co b M c O 2 (provided that 0.8 ≦ x ≦ for the purpose of improving the self-discharge characteristics and cycle characteristics of a lithium ion secondary battery. 1.2, 0.01 ≦ a ≦ 0.99, 0.01 ≦ b ≦ 0.99, 0.01 ≦ c ≦ 0.3, 0.8 ≦ a + b + c ≦ 1.2, M is Al, V, Lithium metal composite oxides represented by at least one element selected from Mn, Fe, Cu and Zn have been proposed.

また、特開平8−45509号公報では、高温環境下での保存や使用に際して良好な電池性能を維持することのできる正極活物質として、LiwNixCoyz2(ただし、0.05≦w≦1.10、0.5≦x≦0.995、0.005≦z≦0.20、x+y+z=1)で表されるリチウム金属複合酸化物等が提案されている。 Japanese Patent Laid-Open No. 8-45509 discloses Li w Ni x Co y B z O 2 (however, in the case of 0. 5) as a positive electrode active material capable of maintaining good battery performance during storage and use in a high temperature environment. 05 ≦ w ≦ 1.10, 0.5 ≦ x ≦ 0.995, 0.005 ≦ z ≦ 0.20, x + y + z = 1) and the like are proposed.

そして、これらの公報で提案されているリチウム金属複合酸化物は、リチウムコバルト複合酸化物に比べて充電容量、放電容量がともに高く、かつリチウムニッケル複合酸化物に比べてサイクル特性も改善されている。   The lithium metal composite oxides proposed in these publications have both higher charge capacity and higher discharge capacity than the lithium cobalt composite oxide, and improved cycle characteristics compared to the lithium nickel composite oxide. .

しかしながら、これらのリチウム金属複合酸化物では、出力特性においては十分なものとはいえなかった。その原因は、主として正極活物質の導電性が低いことと、Liの拡散性が十分でないことにある。そのため、電池を構成する際、十分な導電性を確保するために正極活物質とともに混合する導電材の量を増やさざるを得ず、その結果、電池全体としての質量当たりおよび体積当たりの容量が小さくなるという問題があった。   However, these lithium metal composite oxides were not sufficient in output characteristics. This is mainly due to the low conductivity of the positive electrode active material and the insufficient diffusibility of Li. Therefore, when configuring the battery, the amount of the conductive material mixed with the positive electrode active material must be increased in order to ensure sufficient conductivity, and as a result, the capacity per unit mass and volume per unit of the battery is small. There was a problem of becoming.

また、特開2001−52704号公報には、一般式LiwvxCoy2(但し、AはGe、Y、Si、Zr、Tiから選ばれた少なくとも1種以上であり、QはNi、Mn、Fe、Alから選ばれた少なくとも1種以上であり、w、v、x、yは、それぞれ0≦w≦1.2、0.02≦v≦0.125、0.01≦x≦0.175、0.01x/y≦0.25の範囲)で示されるリチウム金属複合酸化物であって、該複合酸化物が主として、六方晶および/または単斜晶の結晶構造で、かつ、同じ結晶形でも異なる格子定数を持った2種類以上の相同士が粒界をはさんで接触した混相構造であることによって、高電力用容量の正極材料と二次電池が提供されることが記載されている。しかし、合成が複雑で合成時間に長時間を要し、また上記構造を維持して製造することが難しく性能が不安定であった。 Further, JP 2001-52704, the general formula Li w A v Q x Co y O 2 ( where, A is a Ge, Y, Si, Zr, at least one or more selected from Ti, Q Is at least one selected from Ni, Mn, Fe, and Al, and w, v, x, and y are 0 ≦ w ≦ 1.2, 0.02 ≦ v ≦ 0.125, 0.01, respectively. ≦ x ≦ 0.175, 0.01x / y ≦ 0.25), and the composite oxide mainly has a hexagonal and / or monoclinic crystal structure. Moreover, a high-power capacity positive electrode material and a secondary battery are provided by having a mixed phase structure in which two or more types of phases having the same crystal form but having different lattice constants are in contact with each other across grain boundaries. It is described. However, the synthesis is complicated and it takes a long time to synthesize, and it is difficult to produce while maintaining the above structure, resulting in unstable performance.

また、特開2000−82466号公報には、リチウム金属複合酸化物粒子の最適な充填密度を達成し、正極活物質としても最密充填した状態で使用し、単一粒度分布のリチウム金属複合酸化物粒子を用いた場合よりも、電池性能を向上させるために、一般式Lix1-yy2-z(式中、Mは、Co、NiまたはMnを表し、Nは、Mと異なる遷移金属元素または原子番号11以上の元素からなる群から選択される1種以上の元素を表し、xは、0.2≦x≦1.2の範囲内の数を表し、yは、0≦y≦0.5の範囲内の数を表し、zは、0≦z≦1.0の範囲内の数を表す)、または一般式LiaMn2-bb4-c(式中、Nは、前述と同意義であり、aは、0<a<2.0の範囲内の数を表し、bは、0≦b≦0.6の範囲内の数を表し、cは、0≦c≦2.0の範囲内の数を表す)で示されるリチウム金属複合酸化物の粒子から構成され、該リチウム複合酸化物の粒子の平均粒子径が0.1〜50μmの範囲内にあり、且つ該リチウム複合酸化物の粒子の粒度分布にピークが2個以上存在し、具体的には、粒径の大きい方のピークと、粒径の小さい方のピークの粒径比が1.4以上である正極活物質や、平均粒子径0.1〜50μmの範囲内の異なる2種類の平均粒子径を有するものからなり、且つ平均粒子径の大きい方のリチウム金属複合酸化物の粒子の配合割合が60〜80質量%であり、平均粒子径の小さい方のリチウム金属複合酸化物の粒子の配合割合が20〜40質量%である正極活物質が提案されている。 Japanese Patent Laid-Open No. 2000-82466 achieves an optimal packing density of lithium metal composite oxide particles and is used in a state of close packing as a positive electrode active material. In order to improve battery performance as compared with the case where physical particles are used, the general formula Li x M 1 -y N y O 2 -z (wherein M represents Co, Ni or Mn, and N is M Represents one or more elements selected from the group consisting of different transition metal elements or elements having an atomic number of 11 or more, x represents a number in the range of 0.2 ≦ x ≦ 1.2, and y is Represents a number in the range of 0 ≦ y ≦ 0.5, and z represents a number in the range of 0 ≦ z ≦ 1.0), or the general formula Li a Mn 2-b N b O 4-c ( In the formula, N is as defined above, a represents a number in the range of 0 <a <2.0, and b represents a number in the range of 0 ≦ b ≦ 0.6. C represents a number in the range of 0 ≦ c ≦ 2.0), and the average particle size of the lithium composite oxide particles is 0.1 to There are two or more peaks in the particle size distribution of the lithium composite oxide particles within the range of 50 μm, specifically, the particles having the larger particle size and the smaller particle size. A positive electrode active material having a diameter ratio of 1.4 or more, or a lithium metal composite having a larger average particle diameter and having two different average particle diameters in the range of an average particle diameter of 0.1 to 50 μm A positive electrode active material has been proposed in which the compounding ratio of the oxide particles is 60 to 80% by mass and the compounding ratio of the lithium metal composite oxide particles having the smaller average particle diameter is 20 to 40% by mass.

しかし、この正極活物質では、平均粒子径の小さなリチウム複合酸化物粒子を20〜40質量%と多量に混合することから、比表面積が大きくなりすぎ、タップ密度が小さくなりすぎ、結果として単位体積当たりの電池の充放電容量が減少してしまうという欠点を有していた。   However, in this positive electrode active material, lithium composite oxide particles having a small average particle size are mixed in a large amount of 20 to 40% by mass, so that the specific surface area becomes too large and the tap density becomes too small, resulting in a unit volume. There was a drawback that the charge / discharge capacity of the hit battery decreased.

特開平8−213015号公報Japanese Patent Laid-Open No. 8-213015

特開平8−45509号公報JP-A-8-45509

特開2001−52704号公報JP 2001-52704 A

特開2000−82466号公報JP 2000-82466 A

本発明の目的は、安定的に製造でき、電池の内部抵抗の低減および高出力化が可能となる非水系電解質二次電池用正極活物質およびそれを正極に用いた非水系電解質二次電池を提供することにある。   An object of the present invention is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery that can be stably manufactured, and can reduce the internal resistance and increase the output of the battery, and a non-aqueous electrolyte secondary battery using the positive electrode as a positive electrode It is to provide.

本発明に第1の発明は、LiNi1-XX2(但し、MはCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種以上の金属元素で、0<x≦0.25を満たす)で表されるリチウム金属複合酸化物の粉末からなり、該粉末はリチウム金属複合酸化物の一次粒子と、該一次粒子が複数集合して形成した二次粒子とから構成され、該二次粒子の形状は球状または楕円球状であり、該粉末の粒子径は40μm以下であって、該粉末は粒子径1μm以下の粒子を0.5〜7.0体積%含有しており、該粉末の比表面積は、該粉末から前記粒子径1μm以下の粒子を除いて構成される粉末の比表面積より最大で0.3m2/g大きく、該粉末のタップ密度は、該粉末から前記粒子径1μm以下の粒子を除いて構成される粉末のタップ密度より最大で0.2g/cm3小さいことを特徴とする非水系電解質二次電池用正極活物質を提供する。 In the present invention, the first invention is LiNi 1-X M X O 2 (where M is at least one selected from the group consisting of Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, Ga) The metal element is a lithium metal composite oxide powder represented by 0 <x ≦ 0.25), and the powder is composed of primary particles of a lithium metal composite oxide and a plurality of the primary particles. The secondary particles are spherical or elliptical spherical, and the powder has a particle size of 40 μm or less, and the powder has a particle size of 1 μm or less of 0.5 to 0.5 μm. 7.0% by volume, and the specific surface area of the powder is 0.3 m 2 / g larger than the specific surface area of the powder formed by removing particles having a particle diameter of 1 μm or less from the powder. The tap density is the same as that obtained by removing particles having a particle diameter of 1 μm or less from the powder. It is the most 0.2 g / cm 3 less than the tap density of the powder to provide a positive active material for non-aqueous electrolyte secondary battery, characterized.

本発明に第2の発明は、LiNi1-XX2(但し、MはCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種以上の金属元素で、0<x≦0.25を満たす)で表されるリチウム金属複合酸化物の粉末からなり、該粉末はリチウム金属複合酸化物の一次粒子と、該一次粒子が複数集合して形成した二次粒子とから構成され、該二次粒子の形状は球状または楕円球状であり、該粉末の粒子径は40μm以下であって、該粉末は粒子径1μm以下の粒子を0.5〜7.0体積%含有しており、該粉末の比表面積は、該粉末から前記粒子径1μm以下の粒子を除いて構成される粉末の比表面積より最大で0.3m2/g大きく、該粉末のタップ密度は、該粉末から前記粒子径1μm以下の粒子を除いて構成される粉末のタップ密度より最大で0.2g/cm3小さく、そして100kg/cm2の圧力下で測定したときの該粉末の比抵抗が250Ωcm以下であることを特徴とする非水系電解質二次電池用正極活物質を提供する。 In the present invention, the second invention is LiNi 1-X M X O 2 (where M is at least one selected from the group consisting of Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, Ga) The metal element is a lithium metal composite oxide powder represented by 0 <x ≦ 0.25), and the powder is composed of primary particles of a lithium metal composite oxide and a plurality of the primary particles. The secondary particles are spherical or elliptical spherical, and the powder has a particle size of 40 μm or less, and the powder has a particle size of 1 μm or less of 0.5 to 0.5 μm. 7.0% by volume, and the specific surface area of the powder is 0.3 m 2 / g larger than the specific surface area of the powder formed by removing particles having a particle diameter of 1 μm or less from the powder. The tap density is the same as that obtained by removing particles having a particle diameter of 1 μm or less from the powder. The non-aqueous electrolyte is characterized in that the powder has a specific resistance of 250 Ωcm or less when measured under a pressure of 100 kg / cm 2 at a maximum of 0.2 g / cm 3 smaller than the tap density of the formed powder. A positive electrode active material for a secondary battery is provided.

さらに、本発明は、前記非水系電解質二次電池用正極活物質を用いた正極を備える非水系電解質二次電池を提供する。   Furthermore, the present invention provides a non-aqueous electrolyte secondary battery comprising a positive electrode using the positive electrode active material for a non-aqueous electrolyte secondary battery.

本発明の非水系電解質二次電池用正極活物質でリチウムイオン二次電池(非水系電解質二次電池)の正極を構成し、該リチウムイオン二次電池の充電放電を行った際の、該リチウムイオン二次電池の容量を電圧で微分して得られる曲線において、得られる第1ピークの立ち上がりの電圧が3.56V以下で、第1ピーク位置の電圧が3.65V以下が得られる。   The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention constitutes a positive electrode of a lithium ion secondary battery (non-aqueous electrolyte secondary battery), and the lithium ion secondary battery is charged and discharged. In the curve obtained by differentiating the capacity of the ion secondary battery with respect to the voltage, the voltage at the rising edge of the obtained first peak is 3.56 V or less and the voltage at the first peak position is 3.65 V or less.

更に、本発明は、LiNi1-XX2(但し、MはCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種以上の金属元素で、0<x≦0.25を満たす)で表されるリチウム金属複合酸化物の粉末であって、該粉末を構成する粒子は、リチウム金属複合酸化物の一次粒子が複数集合して形成した二次粒子から実質的に構成され、該二次粒子の形状は球状または楕円球状であり、該粉末を構成する粒子の粒子径が実質的に1μm〜40μmの範囲内にある粉末を用意し、該粉末を粉砕することにより粒子径1μm以下の粒子を用意し、前記粉末に対し前記粒子径1μm以下の粒子を0.5〜7.0体積%の割合で混合し、これにより、該粉末の比表面積を、前記粒子径1μm以下の粒子の混合前の比表面積より最大で0.3m2/g大きく、該粉末のタップ密度を、前記粒子径1μm以下の粒子の混合前のタップ密度より最大で0.2g/cm3小さくすることを特徴とする非水系電解質二次電池用正極活物質の製法を提供する。 Furthermore, the present invention relates to LiNi 1-X M X O 2 (where M is at least one metal element selected from the group consisting of Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga). And satisfying 0 <x ≦ 0.25), and the particles constituting the powder were formed by aggregating a plurality of primary particles of the lithium metal composite oxide. Preparing a powder that is substantially composed of secondary particles, the shape of the secondary particles is spherical or oval, and the particle diameter of the particles constituting the powder is substantially within the range of 1 μm to 40 μm; By pulverizing the powder, particles having a particle diameter of 1 μm or less are prepared, and the particles having a particle diameter of 1 μm or less are mixed with the powder at a ratio of 0.5 to 7.0% by volume. Specific surface area before mixing of particles having a particle diameter of 1 μm or less Up to 0.3 m 2 / g greater than the product, a non-aqueous system, characterized in that the tap density of the powder, reduce 0.2 g / cm 3 at maximum than the tap density before mixing of the particle size 1μm or less of the particles A method for producing a positive electrode active material for an electrolyte secondary battery is provided.

本発明によって得られる非水系電解質二次電池用正極活物質は、一般式:LiNi1-XX2(但し、MはCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種以上の金属元素で、0<x≦0.25を満たす)で表されるリチウム金属複合酸化物の粉末からなり、該粉末は該複合酸化物の一次粒子と、該一次粒子が複数複合した二次粒子とからなり、該二次粒子の形状が球状または楕円球状である。また、該粉末は、1μm以下のリチウム複合酸化物の微粉を0.5体積%〜7.0体積%含有する。そして、非水系電解質二次電池用正極活物質を構成する前記粉末の比表面積が、粒子径1μm以下の粒子を含有していない時の粉末の比表面積から0.01 m2/g〜0.3m2/g増加しており、タップ密度が、粒子径1μm以下の粒子を含有していない時のタップ密度より多くとも0.2g/cm3小さくならない。これにより、非水系電解質二次電池用正極活物質を構成する前記粉末の全体を微粉化した時に粉塵発生等の製造上の不都合や、充填密度が低くなることによる容量低下が起こらず、また電解液と正極活物質の接触面積が増え、Liイオンが拡散する場所が増えることで、高出力化が可能な二次電池を提供することができるという効果を有している。 The positive electrode active material for a non-aqueous electrolyte secondary battery obtained by the present invention has a general formula: LiNi 1-X M X O 2 (where M is Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, Ga At least one metal element selected from the group consisting of: lithium metal composite oxide powder represented by 0 <x ≦ 0.25), wherein the powder is a primary particle of the composite oxide And secondary particles in which a plurality of the primary particles are combined, and the shape of the secondary particles is spherical or elliptical. Moreover, this powder contains 0.5 volume%-7.0 volume% of fine powder of a lithium complex oxide of 1 micrometer or less. And the specific surface area of the said powder which comprises the positive electrode active material for non-aqueous electrolyte secondary batteries is 0.01 m < 2 > /g-0.O from the specific surface area of the powder when the particle diameter is 1 micrometer or less. 3m 2 / g increased and tap density is not at most than the tap density 0.2 g / cm 3 less when not contained the following particle diameter 1 [mu] m. As a result, when the whole of the powder constituting the positive electrode active material for the non-aqueous electrolyte secondary battery is pulverized, there is no inconvenience in production such as generation of dust, and capacity reduction due to a decrease in packing density. By increasing the contact area between the liquid and the positive electrode active material and increasing the number of places where Li ions diffuse, it is possible to provide a secondary battery capable of increasing the output.

ハイブリット自動車用や電気自動車用の電源として非水系電解質二次電池を用いる場合、出力特性が特に重要となる。   When a nonaqueous electrolyte secondary battery is used as a power source for a hybrid vehicle or an electric vehicle, output characteristics are particularly important.

電池の充放電反応は、正極活物質内のLiイオンが可逆的に出入りすることで進行する。Liイオンの出入りは正極活物質の表面から電解液を介して行われるから、同じ電流量であれば正極活物質の比表面積が大きいほど活物質単位面積当たりの電流密度は小さくなり、Liの拡散にとって有利に働く。したがって、正極活物質の粒径はできるだけ小さく、比表面積の大きなものがLiの拡散性に優れ、電流密度を大きくした時の容量低下も小さくなり(負荷特性に優れる)、出力特性の向上が期待できる。しかし、単純に正極活物質の粒径を小さくし、微粉化することは、粉塵の発生等製造上の不都合が発生するうえ、電極にしたときの充填密度の低下を引き起こし、結局電池全体としての容量低下を招く。   The charge / discharge reaction of the battery proceeds by reversibly entering and exiting Li ions in the positive electrode active material. Since Li ions enter and exit from the surface of the positive electrode active material through the electrolytic solution, the current density per unit area of the active material decreases as the specific surface area of the positive electrode active material increases with the same amount of current, and the diffusion of Li Works for you. Therefore, the positive electrode active material has a particle size as small as possible, a material with a large specific surface area is excellent in Li diffusibility, and a decrease in capacity when current density is increased (excellent load characteristics) is expected to improve output characteristics. it can. However, simply reducing the particle size of the positive electrode active material and making it fine powder causes inconveniences in production such as generation of dust, and also causes a decrease in packing density when it is used as an electrode. The capacity is reduced.

本発明者等は、さまざまな方法で合成した正極活物質に対して検討を重ねた結果、以下のことを見いだした。   As a result of repeated studies on positive electrode active materials synthesized by various methods, the present inventors have found the following.

(1)LiNi1-XX2(但し、MはCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種以上の金属元素で、0<x≦0.25を満たす)で表されるリチウム金属複合酸化物の粉末を正極活物質として使用する場合、従来は、該粉末は、リチウム金属複合酸化物の一次粒子が複数集合して形成した二次粒子から主として構成され、該二次粒子の形状は球状または楕円球状であり、該粉末の粒子径は40μm以下であって、平均粒子径は5〜11μmで、粒子径1μm以下の粒子をほとんど含まない(図4の粒度分布を参照)。 (1) LiNi 1-X M X O 2 (where M is at least one metal element selected from the group consisting of Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, Ga, 0 <X ≦ 0.25 is satisfied), the powder is conventionally formed by aggregating a plurality of primary particles of the lithium metal composite oxide. Secondary particles, the shape of the secondary particles is spherical or elliptical, the particle diameter of the powder is 40 μm or less, the average particle diameter is 5 to 11 μm, and the particle diameter is 1 μm or less (See the particle size distribution in FIG. 4).

(2)前述のように正極活物質を主として構成する平均粒子径数μmの二次粒子からなる粉末に加えて、1μm以下の複合酸化物微粒子を0.5〜7.0体積%存在させることで、該粉末の比表面積が増大して出力特性を向上できると共に、取り扱い上の不便さが無く、充填密度も著しく低下することがない。1μm以下の複合酸化物微粒子は、たとえば、前記粉末を粉砕することで得られる。 (2) In addition to the powder composed of secondary particles having an average particle diameter of several μm that mainly constitute the positive electrode active material as described above, 0.5 to 7.0% by volume of complex oxide fine particles of 1 μm or less are allowed to exist. Thus, the specific surface area of the powder can be increased to improve the output characteristics, there is no inconvenience in handling, and the packing density is not significantly reduced. Composite oxide fine particles of 1 μm or less can be obtained, for example, by pulverizing the powder.

本発明者等は、さらに研究を進めた結果、1μm以下の複合酸化物微粒子の含有量最適量が、上記複合酸化物に100kg/cm以上の圧力をかけて測定した粉の比抵抗を測定することで、比較的簡単に見積もれることを見出した。 As a result of further research, the present inventors have measured the specific resistance of powder measured by applying a pressure of 100 kg / cm 2 or more to the composite oxide, in which the optimum amount of composite oxide fine particles of 1 μm or less is measured. I found that it was relatively easy to estimate.

すなわち、たとえば、粒子径が40μm以下であって、平均粒子径が5〜11μmで、粒子径の分布が正規分布で、粒子径1μm以下の粒子の量が実質的に無い前記リチウム金属複合酸化物の粉末に対して、1μm以下の前記リチウム金属複合酸化物の微粉を0.5〜7.0体積%混入し微粉を増加させると、該微粉が粒子間に充填されていき、単位体積当たりに存在する粒界の数が増大し、電気抵抗が増大することを見出した。このことを利用して、リチウム金属複合酸化物粉末の微粉含有量を評価し、最適な混入微粉量により、粉の充填率をほとんど下げずに電池の内部抵抗の低減および高出力化が可能となる非水系電解質二次電池用正極活物質が得られることを見出し、本発明に至った。   That is, for example, the lithium metal composite oxide having a particle size of 40 μm or less, an average particle size of 5 to 11 μm, a normal particle size distribution, and substantially no amount of particles having a particle size of 1 μm or less. When the fine powder of lithium metal composite oxide of 1 μm or less is mixed in an amount of 0.5 to 7.0% by volume to increase the fine powder, the fine powder is filled between the particles, and per unit volume. It has been found that the number of grain boundaries present increases and the electrical resistance increases. Utilizing this, the fine powder content of the lithium metal composite oxide powder can be evaluated, and the optimum amount of mixed fine powder can reduce the internal resistance of the battery and increase the output without substantially reducing the powder filling rate. It has been found that a positive electrode active material for a non-aqueous electrolyte secondary battery can be obtained, and the present invention has been achieved.

すなわち、本発明の第1の発明にかかわる非水系電解質二次電池用正極活物質は、LiNi1-XX2(但し、MはCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種以上の金属元素で、0<x≦0.25を満たす)で表されるリチウム金属複合酸化物の粉末からなり、該粉末はリチウム金属複合酸化物の一次粒子と、該一次粒子が複数集合して形成した二次粒子とから構成され、該二次粒子の形状は球状または楕円球状であり、該粉末の粒子径は40μm以下であって、該粉末は粒子径1μm以下の粒子を0.5〜7.0体積%含有しており、該粉末の比表面積は、該粉末から前記粒子径1μm以下の粒子を除いて構成される粉末の比表面積より最大で0.3m2/g大きく、該粉末のタップ密度は、該粉末から前記粒子径1μm以下の粒子を除いて構成される粉末のタップ密度より最大で0.2g/cm3小さいことを特徴とする。 That is, the positive electrode active material for a non-aqueous electrolyte secondary battery according to the first aspect of the present invention is LiNi 1-X M X O 2 (where M is Co, Al, Mg, Mn, Ti, Fe, Cu, At least one metal element selected from the group consisting of Zn and Ga, satisfying 0 <x ≦ 0.25), and the powder is lithium metal composite oxide A primary particle of the product and secondary particles formed by aggregating a plurality of the primary particles, the shape of the secondary particles is spherical or elliptical, and the particle diameter of the powder is 40 μm or less, The powder contains 0.5 to 7.0% by volume of particles having a particle size of 1 μm or less, and the specific surface area of the powder is the ratio of the powder constituted by excluding particles having a particle size of 1 μm or less from the powder. up to 0.3m 2 / g larger than the surface area, the powder of the tap Once again, characterized in maximum by 0.2 g / cm 3 less than the tap density of the formed powder except for the following particle the particle size 1μm from powder.

本発明に第2の発明にかかわる非水系電解質二次電池用正極活物質は、LiNi1-XX2(但し、MはCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種以上の金属元素で、0<x≦0.25を満たす)で表されるリチウム金属複合酸化物の粉末からなり、該粉末はリチウム金属複合酸化物の一次粒子と、該一次粒子が複数集合して形成した二次粒子とから構成され、該二次粒子の形状は球状または楕円球状であり、該粉末の粒子径は40μm以下であって、該粉末は粒子径1μm以下の粒子を0.5〜7.0体積%含有しており、該粉末の比表面積は、該粉末から前記粒子径1μm以下の粒子を除いて構成される粉末の比表面積より最大で0.3m2/g大きく、該粉末のタップ密度は、該粉末から前記粒子径1μm以下の粒子を除いて構成される粉末のタップ密度より最大で0.2g/cm3小さく、そして100kg/cm2の圧力下で測定したときの該粉末の比抵抗が250Ωcm以下であることを特徴とする。 The positive electrode active material for a non-aqueous electrolyte secondary battery according to the second invention of the present invention is LiNi 1-X M X O 2 (where M is Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, At least one metal element selected from the group consisting of Ga and satisfying 0 <x ≦ 0.25), and the powder is made of a lithium metal composite oxide. A primary particle and secondary particles formed by aggregating a plurality of the primary particles, the shape of the secondary particles is spherical or elliptical, and the particle diameter of the powder is 40 μm or less, and the powder Contains 0.5 to 7.0% by volume of particles having a particle diameter of 1 μm or less, and the specific surface area of the powder is less than the specific surface area of the powder constituted by removing the particles having a particle diameter of 1 μm or less from the powder. up to 0.3 m 2 / g greater, the tap density of the powder, said Up to 0.2 g / cm 3 less than the tap density of the powder made except for the following particle the particle size 1μm from end, and the powder specific resistance when measured under a pressure of 100kg / cm 2 250Ωcm It is characterized by the following.

さらに、本発明は、前記非水系電解質二次電池用正極活物質を用いた正極を備える非水系電解質二次電池を提供する。   Furthermore, the present invention provides a non-aqueous electrolyte secondary battery comprising a positive electrode using the positive electrode active material for a non-aqueous electrolyte secondary battery.

本発明の非水系電解質二次電池用正極活物質でリチウムイオン二次電池(非水系電解質二次電池)の正極を構成し、該リチウムイオン二次電池の充電放電を、正極に対する電流密度を0.5mA/cm2として行った際の、該リチウムイオン二次電池の容量を電圧で微分して得られる曲線において、得られる第1ピークの立ち上がりの電圧が3.56 V以下で、第1ピーク位置の電圧が3.65V以下が得られる。 The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention constitutes a positive electrode of a lithium ion secondary battery (non-aqueous electrolyte secondary battery), and the charge / discharge of the lithium ion secondary battery is reduced to a current density of 0 for the positive electrode. In the curve obtained by differentiating the capacity of the lithium ion secondary battery with respect to the voltage when it is set at 0.5 mA / cm 2 , the first peak rise voltage is 3.56 V or less, and the first peak A position voltage of 3.65 V or less is obtained.

更に、本発明の非水系電解質二次電池用正極活物質の製法は、LiNi1-XX2(但し、MはCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種以上の金属元素で、0<x≦0.25を満たす)で表されるリチウム金属複合酸化物の粉末であって、該粉末を構成する粒子は、リチウム金属複合酸化物の一次粒子が複数集合して形成した二次粒子から実質的に構成され、該二次粒子の形状は球状または楕円球状であり、該粉末を構成する粒子の粒子径が実質的に1μm〜40μmの範囲内にある粉末を用意し、該粉末を粉砕することにより粒子径1μm以下の粒子を用意し、前記粉末に対し前記粒子径1μm以下の粒子を0.5〜7.0体積%の割合で混合し、これにより、該粉末の比表面積を、前記粒子径1μm以下の粒子の混合前の比表面積より最大で0.3m2/g大きく、該粉末のタップ密度を、前記粒子径1μm以下の粒子の混合前のタップ密度より最大で0.2g/cm3小さくする。 Furthermore, the manufacturing method of the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is LiNi 1-X M X O 2 (where M is Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, Ga). And at least one metal element selected from the group consisting of lithium metal composite oxide powders satisfying 0 <x ≦ 0.25, wherein the particles constituting the powder are lithium metal It is substantially composed of secondary particles formed by aggregating a plurality of primary particles of the composite oxide, the shape of the secondary particles is spherical or elliptical, and the particle diameter of the particles constituting the powder is substantially A powder in the range of 1 μm to 40 μm is prepared, and the powder is pulverized to prepare particles having a particle diameter of 1 μm or less. The particles having a particle diameter of 1 μm or less are added to the powder in an amount of 0.5 to 7.0 volumes. %, And thereby the specific surface area of the powder is The specific surface area before mixing of the particles having a particle diameter of 1 μm or less is 0.3 m 2 / g at maximum, and the tap density of the powder is 0.2 g at most than the tap density before mixing of the particles having a particle diameter of 1 μm or less. Reduce / cm 3 .

本発明による非水系電解質二次電池すなわちリチウムイオン二次電池は、正極、負極、非水電解液等、一般のリチウムイオン二次電池と同様の構成要素から構成される。以下に、本発明のリチウムイオン二次電池の実施形態について、正極、負極、他の構成要素等、用途等の項目に分けてそれぞれ詳しく説明する。   The non-aqueous electrolyte secondary battery, that is, the lithium ion secondary battery according to the present invention is composed of the same components as those of a general lithium ion secondary battery, such as a positive electrode, a negative electrode, and a non-aqueous electrolyte. Hereinafter, embodiments of the lithium ion secondary battery of the present invention will be described in detail for each of the items such as the positive electrode, the negative electrode, and other components.

1.正極活物質
本発明にかかる非水系電解質二次電池用正極活物質は、LiNi1-XX2(但し、MはCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種以上の金属元素で、0<x≦0.25を満たす)で表されるリチウム金属複合酸化物の粉末からなり、該粉末を構成する粒子が、該複合酸化物の一次粒子が複数集合して二次粒子を形成し、該二次粒子の形状が球状または楕円球状であり、該粒子の粒子径が40μm以下であって、粒子径1μm以下の微粒子を0.5〜7.0体積%含有しており、粒子径1μm以下の微粒子を含有していない時の粉末の比表面積に対し、比表面積の増加が最大で0.3m2/gであり、粒子径1μm以下の微粒子を含有していない時のタップ密度に対し、タップ密度の減少値が最大で0.2g/cm3であることを特徴とする。
1. The positive electrode active material for a non-aqueous electrolyte secondary battery according to the cathode active material present invention, LiNi 1-X M X O 2 ( where, M is Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, Ga, And at least one metal element selected from the group consisting of a powder of a lithium metal composite oxide represented by 0 <x ≦ 0.25, and the particles constituting the powder are composed of the composite oxide A plurality of primary particles of the product are aggregated to form secondary particles. The shape of the secondary particles is spherical or elliptical, and the particle diameter of the particles is 40 μm or less, and fine particles having a particle diameter of 1 μm or less are reduced to 0. The specific surface area increases up to 0.3 m 2 / g with respect to the specific surface area of the powder when it is 5 to 7.0% by volume and does not contain fine particles having a particle diameter of 1 μm or less. For tap density when fine particles with a diameter of 1 μm or less are not contained, Wherein the reduction value of the density is 0.2 g / cm 3 at maximum.

本発明による正極活物質の粉末を構成する粒子は、一次粒子が複数集合して形成した二次粒子から主としてなり、かつ該粒子は1μm以下の微粒子を0.5体積%〜7.0体積%含むことで、電解液との接触面積が大きくなり、粉体と電解液との間での瞬間的なLiイオンの拡散がより速くなり、出力特性を向上させることが可能となる。   The particles constituting the powder of the positive electrode active material according to the present invention are mainly composed of secondary particles formed by aggregating a plurality of primary particles, and the particles are fine particles of 1 μm or less in an amount of 0.5 volume% to 7.0 volume%. By including, the contact area with the electrolytic solution increases, the instantaneous diffusion of Li ions between the powder and the electrolytic solution becomes faster, and the output characteristics can be improved.

上記範囲をはずれて微粒子の量が多くなると、比表面積が大きくなりすぎ、タップ密度が小さくなって単位体積当たりの電池の充放電容量も小さくなるので、好ましくない。尚、前記粒子径1μm以下の微粒子は、典型的には、前記正極活物質の粉末を粉砕することで得られる。   If the amount of fine particles is increased outside the above range, the specific surface area becomes too large, the tap density is decreased, and the charge / discharge capacity of the battery per unit volume is also not preferable. The fine particles having a particle diameter of 1 μm or less are typically obtained by pulverizing the positive electrode active material powder.

本発明の非水系電解質二次電池用正極活物質の粒度分布(図3参照)は、本質的に一山分布であり、小さい粒度のピークは存在しないか、あるいは存在するとしても、1μm付近以下に小さくある。1μmより大きな粒子径のところに小さい粒度部分のピークが無いので、比表面積やタップ密度に大きな影響を与えずに電池特性を向上できる。   The particle size distribution of the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention (see FIG. 3) is essentially a single distribution, and there is no small particle size peak, or even if it exists, it is around 1 μm or less. It is small. Since there is no peak of a small particle size portion at a particle diameter larger than 1 μm, battery characteristics can be improved without greatly affecting the specific surface area and tap density.

なお、比表面積は、比表面積計カンタソーブ(株式会社ユアサアイオニクス製)により測定し、タップ密度はJIS R 1628により測定する。   The specific surface area is measured by a specific surface area meter Kantasorb (manufactured by Yuasa Ionics Co., Ltd.), and the tap density is measured by JIS R 1628.

添加元素Mについて、x>0.25の場合は、層状岩塩構造のものだけでなく、スピネル構造等の第2の相が生成するからであり、良好なサイクル特性の電池を構成できない。   When the additive element M is x> 0.25, not only a layered rock salt structure but also a second phase such as a spinel structure is formed, and a battery having good cycle characteristics cannot be formed.

添加元素MはCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種以上の金属元素である。   The additive element M is at least one metal element selected from the group consisting of Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga.

Co、Mnは主にリチウムニッケル複合酸化物の結晶構造を安定化する役割を果たす。結晶構造安定化により、非水電解質二次電池のサイクル特性は良好に保たれ、特に高温下での充放電および高温下での貯蔵による電池容量の劣化が抑制される。特に、Coには元素置換による容量低下を抑えるとともに、得られる複合酸化物Li(Co,Ni)O2は全固溶型であり、結晶性の低下を最小限にとどめるという利点があり、添加するのが好ましい。 Co and Mn mainly serve to stabilize the crystal structure of the lithium nickel composite oxide. By stabilizing the crystal structure, the cycle characteristics of the non-aqueous electrolyte secondary battery are kept good, and the deterioration of the battery capacity due to charging / discharging at high temperature and storage at high temperature is suppressed. In particular, Co has the advantage that the reduction in capacity due to element substitution is suppressed, and the resulting composite oxide Li (Co, Ni) O 2 is completely solid solution type, so that the decrease in crystallinity is minimized. It is preferable to do this.

また、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaは主に、酸素放出に伴う活物質の分解反応を抑え、熱安定性を向上させるという役割を果たしている。この元素の中では、Alを用いることがより望ましい。Alには、熱安定性を向上させつつ、容量低下を最小限に抑えるという利点があるからである。   Further, Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga mainly play a role of suppressing thermal decomposition due to oxygen release and improving thermal stability. Among these elements, it is more desirable to use Al. This is because Al has the advantage of minimizing capacity reduction while improving thermal stability.

また、本発明の非水系電解質二次電池用正極活物質の粉末は、上記リチウム金属複合酸化物の粉末に、100kg/cm2の圧力をかけて測定した粉末の比抵抗が250Ωcm以下であることが好ましい。 The powder of the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention has a specific resistance of 250 Ωcm or less measured by applying a pressure of 100 kg / cm 2 to the lithium metal composite oxide powder. Is preferred.

本発明の非水系電解質二次電池用正極活物質である、LiNi1-XX2(但し、MはCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種以上の金属元素で、0<x≦0.25を満たす)で表されるリチウム金属複合酸化物を製造するには、リチウム化合物とニッケル化合物、添加物元素化合物をそれぞれ所定量混合し、酸素気流中で650℃〜850℃程度の温度で、20時間程度焼成することによって合成することができる。 LiNi 1-X M X O 2 (wherein M is a group consisting of Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, Ga), which is a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention In order to produce a lithium metal composite oxide represented by 0 <x ≦ 0.25 with at least one selected metal element, a lithium compound, a nickel compound, and an additive element compound are respectively provided. It is possible to synthesize by quantitative mixing and baking in an oxygen stream at a temperature of about 650 ° C. to 850 ° C. for about 20 hours.

650℃より低温であると、リチウム化合物との反応が十分に進まず、所望の層状構造をもったリチウムニッケル複合酸化物を合成することが難しくなる。また、850℃を越えるとLi層にNiが、Ni層にLiが混入して層状構造が乱れ、3aサイトのリチウム席占有率が低下してしまい好ましくない。   When the temperature is lower than 650 ° C., the reaction with the lithium compound does not proceed sufficiently, and it becomes difficult to synthesize a lithium nickel composite oxide having a desired layered structure. On the other hand, when the temperature exceeds 850 ° C., Ni is mixed into the Li layer and Li is mixed into the Ni layer, so that the layered structure is disturbed and the lithium seat occupation ratio at the 3a site is lowered.

従って、熱処理温度を650℃以上850℃以下とすることで結晶構造の乱れを低減でき、好ましくは700℃以上800℃以下とすることでより乱れの少ない結晶構造を実現できる。   Accordingly, the disorder of the crystal structure can be reduced by setting the heat treatment temperature to 650 ° C. or more and 850 ° C. or less, and preferably the crystal structure with less disorder can be realized by setting the heat treatment temperature to 700 ° C. or more and 800 ° C. or less.

リチウム化合物としては、水酸化リチウム、炭酸リチウム等が好ましい。ニッケル化合物としては、酸化ニッケル、炭酸ニッケル、硝酸ニッケル、水酸化ニッケル、オキシ水酸化ニッケル等が使用できる。添加物元素化合物としては、酸化物、炭酸化物等が使用される。   As the lithium compound, lithium hydroxide, lithium carbonate and the like are preferable. As the nickel compound, nickel oxide, nickel carbonate, nickel nitrate, nickel hydroxide, nickel oxyhydroxide and the like can be used. As the additive element compound, an oxide, a carbonate or the like is used.

本発明のリチウム金属複合酸化物の粉末は、該複合酸化物の一次粒子が複数集合して二次粒子を形成し、該二次粒子の形状が球状または楕円球状であることが好ましい。このような粒子形状を容易に得るためには、上記原料の中でも、水酸化ニッケルを用いることが望ましい。水酸化ニッケルを沈殿法で製造すると同時に添加物も沈殿として添加させる方法がある。この共沈法では、添加元素が均一に混合できるので好ましい。さらには得られる水酸化物は一次粒子が複数集合して二次粒子を形成し、該二次粒子の形状が球状かまたは楕円球状となっており、該水酸化物を原料として、リチウム金属複合酸化物を製造すれば、リチウム金属複合酸化物の粉末粒子は、該複合酸化物の一次粒子が複数集合して二次粒子を形成し、該二次粒子の形状が球状または楕円球状となる。   In the lithium metal composite oxide powder of the present invention, it is preferable that a plurality of primary particles of the composite oxide are aggregated to form secondary particles, and the shape of the secondary particles is spherical or elliptical. In order to easily obtain such a particle shape, it is desirable to use nickel hydroxide among the above raw materials. There is a method in which nickel hydroxide is produced by a precipitation method and at the same time an additive is added as a precipitate. This coprecipitation method is preferable because the additive elements can be mixed uniformly. Further, the obtained hydroxide has a plurality of primary particles aggregated to form secondary particles, and the shape of the secondary particles is spherical or elliptical, and the hydroxide is used as a raw material to form a lithium metal composite. If an oxide is produced, the powder particles of the lithium metal composite oxide are formed by aggregating a plurality of primary particles of the composite oxide to form secondary particles, and the shape of the secondary particles is spherical or elliptical.

正極は、正極活物質、導電材および結着剤を含んだ正極合材から形成される。詳しくは、粉末状の正極活物質、導電材を混合し、それに結着剤を加え、さらに必要に応じて粘度調整等の目的で溶剤を添加して正極合材ペーストを調整し、その正極合材ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布、乾燥、必要に応じ加圧することにより、シート状の正極を作製することができる。   The positive electrode is formed from a positive electrode mixture containing a positive electrode active material, a conductive material, and a binder. Specifically, a powdered positive electrode active material and a conductive material are mixed, a binder is added thereto, and if necessary, a solvent is added for the purpose of adjusting the viscosity to adjust the positive electrode mixture paste. By applying the material paste onto the surface of a current collector made of, for example, an aluminum foil, drying, and pressing as necessary, a sheet-like positive electrode can be produced.

導電材は、正極の電気伝導性を確保するためのものであり、例えば、カーボンブラック、アセチレンブラック、黒鉛等の炭素物質粉状体の1種又は2種以上を混合したものを用いることができる。   The conductive material is for securing the electrical conductivity of the positive electrode, and for example, a material obtained by mixing one or more carbon material powders such as carbon black, acetylene black, and graphite can be used. .

結着剤は、活物質粒子を繋ぎ止める役割を果たすもので、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂等を用いることができる。必要に応じ正極合材に添加する溶剤、つまり、活物質、導電材を分散させ、結着剤を溶解する溶剤としては、N−メチル−2−ピロリドン等の有機溶剤を用いることができる。   The binder plays a role of anchoring the active material particles. For example, a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, or fluororubber, or a thermoplastic resin such as polypropylene or polyethylene can be used. . An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent added to the positive electrode mixture as needed, that is, as a solvent for dispersing the active material and the conductive material and dissolving the binder.

上記活物質、導電材、結着剤とを混合し、必要に応じ上記活性炭、溶剤を添加し、これを混練して正極合材ペーストを調製する。正極合材中のそれぞれの混合比も、リチウム二次電池の性能を決定する重要な要素となる。正極合材の固形分の全体(溶剤を除く意味)を100質量%とした場合、一般のリチウム二次電池の正極と同様、それぞれ、活物質は60〜95質量%、導電材は1〜20質量%、結着剤は1〜20質量%とすることが望ましい。   The above active material, conductive material, and binder are mixed, and if necessary, the above activated carbon and solvent are added and kneaded to prepare a positive electrode mixture paste. The respective mixing ratios in the positive electrode mixture are also important factors that determine the performance of the lithium secondary battery. When the total solid content (meaning excluding solvent) of the positive electrode mixture is 100% by mass, the active material is 60 to 95% by mass and the conductive material is 1 to 20 as in the case of the positive electrode of a general lithium secondary battery. The mass% and the binder are desirably 1 to 20 mass%.

正極は、例えば、アルミニウム等の金属箔集電体の表面に、充分に混練した上記正極合材ペーストを塗布し、乾燥して溶剤を飛散させ、必要に応じ、その後に電極密度を高めるべくロールプレス等により圧縮することにより、シート状のものを形成することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断等し、電池の作製に供することができる。   The positive electrode is, for example, applied to the surface of a metal foil current collector made of aluminum or the like, the above-mentioned positive electrode mixture paste sufficiently kneaded, dried to disperse the solvent, and then, if necessary, a roll to increase the electrode density By compressing with a press or the like, a sheet-like material can be formed. The sheet-like positive electrode can be cut into an appropriate size according to the intended battery and used for battery production.

2.負極
負極には、金属リチウム、リチウム合金等、また、リチウムイオンを吸蔵・脱離できる負極活物質に結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。この時、負極活物質として、例えば、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、ポリフッ化ビニリデン等の含フッ素樹脂等を、これら活物質および結着剤を分散させる溶剤としてはN−メチル−2−ピロリドン等の有機溶剤を用いることができる。
2. Negative electrode For the negative electrode, metallic lithium, lithium alloy, etc. Also, a negative electrode mixture made by mixing a binder with a negative electrode active material capable of occluding and desorbing lithium ions, and adding a suitable solvent, is made of copper, etc. The metal foil current collector is coated, dried, and compressed as necessary to increase the electrode density. At this time, as the negative electrode active material, for example, a fired organic compound such as natural graphite, artificial graphite, or a phenol resin, or a powdery carbon material such as coke can be used. In this case, as the negative electrode binder, a fluorine-containing resin such as polyvinylidene fluoride is used as in the positive electrode, and an organic solvent such as N-methyl-2-pyrrolidone is used as a solvent for dispersing these active materials and the binder. be able to.

3.セパレータ
正極と負極の間にはセパレータを挟み装填する。セパレータは、正極と負極とを分離し電解質を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。
3. A separator is sandwiched and loaded between the positive electrode and the negative electrode of the separator. The separator separates the positive electrode and the negative electrode and retains the electrolyte, and a thin microporous film such as polyethylene or polypropylene can be used.

4.非水系電解質
非水電解質は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらに、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
4). Nonaqueous electrolyte The nonaqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate; chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate; and tetrahydrofuran, 2- 1 type selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, phosphorus compounds such as triethyl phosphate, triethyl phosphate and trioctyl phosphate alone or in combination of 2 or more types It can be used by mixing.

支持塩としては、LiPF6、LiBF4、LiClO4、LiAS6、LiN(CF3SO22等、およびそれらの複合塩を用いることができる。さらに、非水電解質は、ラジカル補足剤、界面活性剤や難燃剤などを含んでいてもよい。 As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiA S F 6 , LiN (CF 3 SO 2 ) 2 , or a composite salt thereof can be used. Further, the non-aqueous electrolyte may contain a radical scavenger, a surfactant, a flame retardant, and the like.

本発明のリチウム二次電池は以上のように構成されるが、その形状は円筒型、積層型等、種々のものとすることができる。いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続し、この電極体に上記非水電解質を含浸させ、電池ケースに密閉して電池を完成させることができる。   The lithium secondary battery of the present invention is configured as described above, and the shape thereof can be various, such as a cylindrical type and a laminated type. Even if any shape is adopted, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal, The battery can be completed by connecting with a current collecting lead or the like, impregnating the electrode body with the non-aqueous electrolyte, and sealing the battery case.

5.非水系電解質二次電池
上記方法で得られる非水系電解質二次電池においては、上記の非水系電解質二次電池用正極活物質を用いた正極を備えており、充電を行った際の充電曲線を電圧で微分した曲線(dQ/dV曲線)において、得られる第1ピークの立ち上がりの電圧が3.56V以下で、第1ピーク位置の電圧が3.65V以下とすることができる。
5). Non-aqueous electrolyte secondary battery The non-aqueous electrolyte secondary battery obtained by the above method includes a positive electrode using the positive electrode active material for the non-aqueous electrolyte secondary battery, and shows a charge curve when charging is performed. In the curve differentiated by voltage (dQ / dV curve), the voltage at the rising edge of the first peak obtained can be 3.56 V or less, and the voltage at the first peak position can be 3.65 V or less.

これは、微粉の効果により、すなわち粒子径は40μm以下であって、平均粒子径が5〜11μmの粉末(粒度分布は正規分布)に対して、1μm以下の微粉を0.5体積%〜7.0体積%とすることにより、電解液と正極活物質の接触面積が大きくなり、その結果過電圧が下がることを意味しており、Liの拡散障壁が大きくなると、過電圧が増加して出力が小さくなってしまう。   This is due to the effect of the fine powder, that is, the particle diameter is 40 μm or less, and the powder having an average particle diameter of 5 to 11 μm (particle size distribution is a normal distribution), the fine powder of 1 μm or less is 0.5% by volume to 7%. 0.0 vol% means that the contact area between the electrolyte and the positive electrode active material is increased, and as a result, the overvoltage is lowered. When the Li diffusion barrier is increased, the overvoltage is increased and the output is reduced. turn into.

なお、dQ/dV曲線は、測定した充放電曲線からパソコン等を用いて数値微分することによって得ることができるが、二次電池充放電試験機に付属の解析ソフト(例えば(株)ナガノ製BTS2000シリーズ)等を用いても計算することができる。   The dQ / dV curve can be obtained by numerically differentiating the measured charge / discharge curve using a personal computer or the like, but the analysis software attached to the secondary battery charge / discharge tester (for example, BTS2000 manufactured by Nagano Co., Ltd.). It can also be calculated using a series).

6.その他用途等
以上説明した実施形態は例示に過ぎず、本発明の非水系電解質二次電池は、上記実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。
6). The embodiments described above are merely examples, and the non-aqueous electrolyte secondary battery of the present invention is implemented in various modifications and improvements based on the knowledge of those skilled in the art including the above-described embodiments. can do.

また、本発明の非水系電解質二次電池は、その用途を特に限定するものではない。   Moreover, the use of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited.

出力特性が優れているという本発明の非水系電解質二次電池のメリットを活かせば、瞬時の大きなエネルギーが入力され、また、瞬時に大きなエネルギーを出力するようなデバイスの電源としての用途がふさわしい。言い換えれば、充電開始から大電流で充電され、また、放電開始から大電流で放電するような用途の電源として用いることが好ましい。電気自動車用の電源は、減速時等瞬時に大きなエネルギーを回生する必要があり、また、始動時、急発進時、急加速時等には大きなパワーを出力する必要があることを考慮すれば、本発明のリチウム二次電池は、電気自動車用電源として好適である。なお、電気自動車用電源とは、純粋に電気エネルギーで駆動する電気自動車のみならず、ガソリンエンジン、ディーゼルエンジン等の燃焼機関と併用するいわゆるハイブリッドカー用の電源として用いることをも含むことを意味する。   Utilizing the merit of the non-aqueous electrolyte secondary battery of the present invention, which has excellent output characteristics, makes it suitable for use as a power source for a device that receives a large amount of instantaneous energy and outputs a large amount of energy instantaneously. In other words, it is preferably used as a power source for applications that are charged with a large current from the start of charging and discharged with a large current from the start of discharging. Considering that a power source for an electric vehicle needs to regenerate a large amount of energy instantaneously, such as when decelerating, and that a large amount of power needs to be output at the time of start, sudden start, sudden acceleration, etc. The lithium secondary battery of the present invention is suitable as a power source for electric vehicles. The electric vehicle power source means not only an electric vehicle driven purely by electric energy but also a so-called hybrid car power source used in combination with a combustion engine such as a gasoline engine or a diesel engine. .

以下、本発明になる一実施の形態を好適な図面に基づいて詳述する。   Hereinafter, an embodiment according to the present invention will be described in detail with reference to the preferred drawings.

(実施例1)
Niの15原子%をCoに、3原子%をAlに置換したLiNi0.82Co0.15Al0.032を合成するために、1μm以下の一次粒子が複数集合して球状の二次粒子からなり、ニッケルとコバルトとアルミニウムのモル比が82:15:3で固溶してなる金属複合水酸化物を共沈法で作製し用意した。
(Example 1)
In order to synthesize LiNi 0.82 Co 0.15 Al 0.03 O 2 in which 15 atomic% of Ni is substituted with Co and 3 atomic% with Al, a plurality of primary particles of 1 μm or less are aggregated to form spherical secondary particles. A metal composite hydroxide formed by solid solution with a molar ratio of cobalt and aluminum of 82: 15: 3 was prepared by coprecipitation.

この金属複合水酸化物と、市販の水酸化リチウム一水和物(FMC社製)とを、リチウムと金属のモル比が1:1となるように秤量した後、混合機(不二パウダル社製スパルタンリューザー)を用いて十分混合し、酸素雰囲気中で350℃、2時間仮焼した後、続けて680℃で20時間焼成し、室温まで炉冷した。   After weighing this metal composite hydroxide and commercially available lithium hydroxide monohydrate (manufactured by FMC) so that the molar ratio of lithium to metal is 1: 1, a mixer (Fuji Powder Co., Ltd.) The mixture was sufficiently mixed using a Spartan Luther manufactured and calcined at 350 ° C. for 2 hours in an oxygen atmosphere, then baked at 680 ° C. for 20 hours, and cooled to room temperature.

得られた焼成物をX線回折で分析したところ、六方晶形層状構造を有した所望の正極活物質であることが確認できた。   When the obtained fired product was analyzed by X-ray diffraction, it was confirmed that it was a desired positive electrode active material having a hexagonal layered structure.

得られた焼成物の粒子径は1.0μm〜24.0μmであり、平均粒径は約10.0μmであった(A粉)。この粉末のBET比表面積は0.50m2/gであり、タップ密度は2.5g/cm3であった。 The obtained fired product had a particle size of 1.0 μm to 24.0 μm, and an average particle size of about 10.0 μm (A powder). This powder had a BET specific surface area of 0.50 m 2 / g and a tap density of 2.5 g / cm 3 .

この得られた正極活物質の一部を1μm以下までピンミル(槙野産業製 コロプレックス 160Z)で粉砕して得られた微粉(B粉)を、正極活物質中3.5体積%となるようにA粉と混合した。得られた混合粉のBET比表面積は0.61m2/gとなり、A粉に比べ0.10m2/g大きくなった。 Part of the obtained positive electrode active material was pulverized with a pin mill (Coroplex 160Z manufactured by Sagano Sangyo Co., Ltd.) to 1 μm or less so that the fine powder (B powder) was 3.5 vol% in the positive electrode active material. Mixed with A powder. The BET specific surface area of the obtained mixed powder was 0.61 m 2 / g, which was 0.10 m 2 / g larger than that of the A powder.

また、タップ密度は2.5g/cm3となった。さらに、得られた正極活物質の比抵抗を測定した。測定は、直径15mm高さ15mmの円柱が、直径50mm、厚さ3mmの板の中心に形成されている凸型の銅製冶具2つと直径15mmの穴のある円筒状のプラスチックを用いて行なった。片方の治具にプラスチックの筒をかぶせて、その中に正極活物質1gを入れて、上からもう一つの治具をかぶせ、治具で正極活物質を上下から挟んだ。この状態で、100kg/cm2の圧力をかけた時の正極活物質の抵抗を、上下の治具に端子をつないで測定を行った。さらに圧力をかけている時に、ノギスを用いて正極活物質の厚さを測定し、次式を用いて比抵抗を算出した。 The tap density was 2.5 g / cm 3 . Furthermore, the specific resistance of the obtained positive electrode active material was measured. The measurement was performed using a cylindrical plastic with two convex copper jigs formed in a center of a plate having a diameter of 15 mm and a height of 15 mm and a plate having a diameter of 50 mm and a thickness of 3 mm and a hole having a diameter of 15 mm. A plastic tube was placed on one jig, 1 g of the positive electrode active material was put therein, another jig was put on the top, and the positive electrode active material was sandwiched from above and below by the jig. In this state, the resistance of the positive electrode active material when a pressure of 100 kg / cm 2 was applied was measured by connecting terminals to the upper and lower jigs. Further, when pressure was applied, the thickness of the positive electrode active material was measured using calipers, and the specific resistance was calculated using the following formula.

式1Formula 1

Figure 2005302507
Figure 2005302507

ここで、Aは比抵抗(Ωcm)、Xは抵抗値(Ω)、Lは圧力をかけたときの粉の厚さ(cm)を表している。   Here, A represents the specific resistance (Ωcm), X represents the resistance value (Ω), and L represents the thickness (cm) of the powder when pressure is applied.

3回測定した結果の平均値を表1に示す。また同じ正極活物質試料の比表面積およびタップ密度についても測定した結果を表1に示す。   Table 1 shows the average value of the results of three measurements. Table 1 shows the results of measurement of the specific surface area and tap density of the same positive electrode active material sample.

次に、活物質による電池特性評価は以下のようにして行った。上記得られた活物質粉末90質量%にアセチレンブラック5質量%およびPVDF(ポリフッ化ビニリデン)5質量%を混合し、NMP(n−メチルピロリドン)を加えてペースト化した。20μm厚のアルミニウム箔に、このペーストを、乾燥後の活物質質量が0.05g/cm2になるように塗布し、120℃で真空乾燥を行い、直径1cmの円盤状に打ち抜いて正極とした。上記操作は真空乾燥以外を大気中で行なった。 Next, the battery characteristics evaluation by the active material was performed as follows. 90% by mass of the active material powder obtained above was mixed with 5% by mass of acetylene black and 5% by mass of PVDF (polyvinylidene fluoride), and NMP (n-methylpyrrolidone) was added to make a paste. This paste was applied to an aluminum foil having a thickness of 20 μm so that the mass of the active material after drying was 0.05 g / cm 2 , vacuum-dried at 120 ° C., and punched into a disk shape having a diameter of 1 cm to obtain a positive electrode. . The above operation was performed in the atmosphere except for vacuum drying.

負極としてLi金属を、電解液には1MのLiClO4を支持塩とするエチレンカーボネ−ト(EC)とジエチルカーボネート(DEC)の等量混合溶液を用いた。露点が−80℃に管理されたAr雰囲気のグローブボックスの中で、図1に示したような2032型のコイン電池を作製した。 A mixed solution of equal amounts of ethylene carbonate (EC) and diethyl carbonate (DEC) using Li metal as the negative electrode and 1M LiClO 4 as the supporting salt was used as the electrolyte. A 2032 type coin battery as shown in FIG. 1 was produced in an Ar atmosphere glove box whose dew point was controlled at −80 ° C.

作製した電池は24時間程度放置し、OCVが安定した後、正極に対する電流密度を0.5mA/cm2として、カットオフ電圧3.0〜4.3Vの範囲で充放電を行い、得られた充放電曲線を電位で微分してdQ/dV曲線を得た。得られたdQ/dV曲線を図2(a)に示す。 The produced battery was allowed to stand for about 24 hours, and after the OCV was stabilized, the current density with respect to the positive electrode was set to 0.5 mA / cm 2 and charge / discharge was performed in the range of a cutoff voltage of 3.0 to 4.3 V. The charge / discharge curve was differentiated by potential to obtain a dQ / dV curve. The obtained dQ / dV curve is shown in FIG.

(実施例2)
実施例1と同様にして、LiNi0.82Co0.15Al0.032を合成した。得られた焼成物は六方晶系の層状構造を有した所望の正極活物質であることが確認できた。焼成物の一部を1μm以下までの微粉になるよう粉砕し、1μm以下の粉の含有割合が0.5体積%となるように微粉を混ぜ実施例1と同様な方法で、比抵抗、比表面積、タップ密度を測定した結果を表1に、dQ/dV曲線を図2(a)に示す。
(Example 2)
In the same manner as in Example 1, LiNi 0.82 Co 0.15 Al 0.03 O 2 was synthesized. It was confirmed that the obtained fired product was a desired positive electrode active material having a hexagonal layered structure. A part of the fired product is pulverized to a fine powder of 1 μm or less, and the fine powder is mixed so that the content ratio of the powder of 1 μm or less is 0.5% by volume. The results of measuring the surface area and tap density are shown in Table 1, and the dQ / dV curve is shown in FIG.

(実施例3)
実施例1と同様にして、LiNi0.82Co0.15Al0.032を合成し、得られた焼成物は六方晶系の層状構造を有した所望の正極活物質であることが確認できた。1μm以下の粉の含有割合が7.0体積%となるように微粉を混ぜ実施例1と同様な方法で、比抵抗、比表面積、タップ密度を測定した結果を表1に、dQ/dV曲線を図2(a)に示す。
(Example 3)
In the same manner as in Example 1, LiNi 0.82 Co 0.15 Al 0.03 O 2 was synthesized, and the obtained fired product was confirmed to be a desired positive electrode active material having a hexagonal layered structure. The results of measuring the specific resistance, specific surface area, and tap density in the same manner as in Example 1 were mixed with fine powder so that the content of powder of 1 μm or less was 7.0% by volume, and the dQ / dV curve is shown in Table 1. Is shown in FIG.

(比較例1)
実施例1と同様にしてLiNi0.82Co0.15Al0.032を合成した。実施例1と同様に、得られた焼成物の粒子径は1.0μm〜24.0μmであり、平均粒径は約10.0μmであった。この粉末のBET比表面積は0.51m2/gであり、タップ密度は2.5g/cm3であった。実施例1と同様にして焼成し、得られた焼成物は六方晶系の層状構造を有した所望の正極活物質であることが確認できた。
(Comparative Example 1)
In the same manner as in Example 1, LiNi 0.82 Co 0.15 Al 0.03 O 2 was synthesized. As in Example 1, the obtained fired product had a particle size of 1.0 μm to 24.0 μm, and an average particle size of about 10.0 μm. This powder had a BET specific surface area of 0.51 m 2 / g and a tap density of 2.5 g / cm 3 . It was confirmed that the fired product obtained by firing in the same manner as in Example 1 was a desired positive electrode active material having a hexagonal layered structure.

得られた焼成物をそのまま、すなわち微粉量を0.0体積%として、実施例1と同様な方法で測定を行った比抵抗、比表面積、タップ密度の結果を表1に、dQ/dV曲線を図2(b)に示す。   The obtained fired product was used as it was, that is, the fine powder amount was 0.0% by volume, and the results of specific resistance, specific surface area and tap density measured by the same method as in Example 1 are shown in Table 1, dQ / dV curve Is shown in FIG.

(比較例2)
実施例1と同様にしてをLiNi0.82Co0.15Al0.032を合成した。得られた焼成物は六方晶系の層状構造を有した所望の正極活物質であることが確認できた。得られた焼成物に微粉を8.0体積%添加した状態で実施例1と同様な方法で測定を行った比抵抗、比表面積、タップ密度の結果を表1に、dQ/dV曲線を図2(b)に示す。
(Comparative Example 2)
LiNi 0.82 Co 0.15 Al 0.03 O 2 was synthesized in the same manner as in Example 1. It was confirmed that the obtained fired product was a desired positive electrode active material having a hexagonal layered structure. Table 1 shows the results of specific resistance, specific surface area, and tap density measured in the same manner as in Example 1 with the addition of 8.0% by volume of fine powder to the fired product, and the dQ / dV curve Shown in 2 (b).

(比較例3)
実施例1と同様にしてをLiNi0.82Co0.15Al0.032を合成した。得られた焼成物は六方晶系の層状構造を有した所望の正極活物質であることが確認できた。得られた焼成物に微粉を50体積%添加した状態で実施例1と同様な方法で測定を行った比抵抗、比表面積、タップ密度の結果を表1に、dQ/dV曲線を図2(b)に示す。
(Comparative Example 3)
LiNi 0.82 Co 0.15 Al 0.03 O 2 was synthesized in the same manner as in Example 1. It was confirmed that the obtained fired product was a desired positive electrode active material having a hexagonal layered structure. Table 1 shows the results of specific resistance, specific surface area, and tap density measured in the same manner as in Example 1 with 50% by volume of fine powder added to the fired product, and the dQ / dV curve is shown in FIG. Shown in b).

「評価」
表1から、微粉の量が増えるに従いにより比抵抗値が大きくなることが分かる。またこの比抵抗の上昇により粒子の充填密度を表すタップ密度はほとんど変わらず、充填密度が変わらないのに対して、比較例3の微粉を50体積%にした場合は、微粉により粒界が増え比抵抗値は上昇し、充填密度を示すタップ密度が1.5g/cm2とかなり小さくなってしまい、単位体積に詰め込める正極活物質の量が減り好ましくない。
"Evaluation"
From Table 1, it can be seen that the specific resistance value increases as the amount of fine powder increases. Further, the tap density representing the particle packing density is hardly changed by the increase in the specific resistance, and the packing density is not changed. On the other hand, when the fine powder of Comparative Example 3 is 50% by volume, the grain boundary increases due to the fine powder. The specific resistance value is increased, and the tap density indicating the packing density is considerably reduced to 1.5 g / cm 2, which is not preferable because the amount of the positive electrode active material packed in the unit volume is reduced.

比較例1では、微粉が無いため粒界が少なく比抵抗が小さくなる。しかしながら、図2(a)のdQ/dV曲線から明らかなように、実施例1〜3および図2(b)に示した比較例2〜3の正極活物質のdQ/dV曲線はその第1ピークの立ち上がりの電圧が3.55V以下で第1ピークの位置は3.65V以下であるのに対し、微粉が無い比較例1の正極活物質の場合は、第1ピークの立ち上がりの電圧が3.57Vと3.56V以上で、第1ピークの位置が3.7Vと3.65V以上にある。   In Comparative Example 1, since there is no fine powder, the grain boundary is small and the specific resistance is small. However, as apparent from the dQ / dV curve of FIG. 2A, the dQ / dV curves of the positive electrode active materials of Examples 1 to 3 and Comparative Examples 2 to 3 shown in FIG. Whereas the peak rising voltage is 3.55 V or less and the first peak position is 3.65 V or less, in the case of the positive electrode active material of Comparative Example 1 having no fine powder, the first peak rising voltage is 3 .57V and 3.56V or more, and the first peak position is 3.7V and 3.65V or more.

つまり、微粉の含有量が増えるにしたがって、電解液と粉の接触面積が増え第1ピークの立ち上がりの電圧と第1ピークの位置の電圧が小さくなる事がわかる。   That is, it can be seen that as the fine powder content increases, the contact area between the electrolyte and the powder increases, and the rising voltage of the first peak and the voltage at the first peak position decrease.

また、第1ピークの立ち上がりの電圧が3.55V以下で第1ピークの位置の電圧が3.65V以下であれば、実用上問題にない出力特性を得ることができることが分かっている。 以上のことから、微粉を0.5〜7.0体積%混ぜることで、充填密度を下げずに比表面積を上げ、かつ、電池の出力特性を上げることができ、上記特性を、簡易的に比抵抗値を用いることで評価できることがわかる。 Further, it has been found that when the rising voltage of the first peak is 3.55 V or less and the voltage at the position of the first peak is 3.65 V or less, output characteristics that are not practically problematic can be obtained. From the above, by mixing 0.5 to 7.0% by volume of fine powder, the specific surface area can be increased without lowering the packing density, and the output characteristics of the battery can be increased. It turns out that it can evaluate by using a specific resistance value.

Figure 2005302507
Figure 2005302507

電池評価にいたコイン電池の断面図である。It is sectional drawing of the coin battery which was in battery evaluation. (a)実施例のdQ/dV曲線と(b)比較例のdQ/dV曲線である。(A) dQ / dV curve of an Example and (b) dQ / dV curve of a comparative example. 本発明の一実施例による非水系電解質二次電池用正極活物質の粉末の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of the powder of the positive electrode active material for non-aqueous electrolyte secondary batteries by one Example of this invention. 従来の非水系電解質二次電池用正極活物質の粉末の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of the powder of the conventional positive electrode active material for non-aqueous electrolyte secondary batteries.

符号の説明Explanation of symbols

1 リチウム金属負極
2 セパレータ(電解液含浸)
3 正極(評価用電極)
4 ガスケット
5 負極缶
6 正極缶
7 集電体
1 Lithium metal negative electrode 2 Separator (electrolyte impregnation)
3 Positive electrode (Evaluation electrode)
4 Gasket 5 Negative electrode can 6 Positive electrode can 7 Current collector

Claims (6)

LiNi1-XX2(但し、MはCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種以上の金属元素で、0<x≦0.25を満たす)で表されるリチウム金属複合酸化物の粉末からなり、該粉末を構成する粒子は、リチウム金属複合酸化物の一次粒子が複数集合して形成した二次粒子から主として構成され、該二次粒子の形状は球状または楕円球状であり、該粉末を構成する粒子の粒子径は40μm以下であって、該粉末は粒子径1μm以下の粒子を0.5〜7.0体積%含有しており、該粉末の比表面積は、該粉末から前記粒子径1μm以下の粒子を除いて構成される粉末の比表面積より最大で0.3m2/g大きく、該粉末のタップ密度は、該粉末から前記粒子径1μm以下の粒子を除いて構成される粉末のタップ密度より最大で0.2g/cm3小さいことを特徴とする非水系電解質二次電池用正極活物質。 LiNi 1-X M X O 2 (where M is at least one metal element selected from the group consisting of Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, Ga, and 0 <x ≦ The particles constituting the powder are mainly composed of secondary particles formed by aggregating a plurality of primary particles of the lithium metal composite oxide. The shape of the secondary particles is spherical or oval, the particle diameter of the particles constituting the powder is 40 μm or less, and the powder is 0.5 to 7.0% by volume of particles having a particle diameter of 1 μm or less. And the specific surface area of the powder is 0.3 m 2 / g larger than the specific surface area of the powder formed by removing particles having a particle diameter of 1 μm or less from the powder, and the tap density of the powder is The particles having a particle diameter of 1 μm or less are removed from the powder. The positive electrode active material for a non-aqueous electrolyte secondary battery comprising up by 0.2 g / cm 3 less than the tap density of the powder is. LiNi1-XX2(但し、MはCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種以上の金属元素で、0<x≦0.25を満たす)で表されるリチウム金属複合酸化物の粉末からなり、該粉末を構成する粒子は、リチウム金属複合酸化物の一次粒子が複数集合して形成した二次粒子から主として構成され、該二次粒子の形状は球状または楕円球状であり、該粉末を構成する粒子の粒子径は40μm以下であって、該粉末は粒子径1μm以下の粒子を0.5〜7.0体積%含有しており、該粉末の比表面積は、該粉末から前記粒子径1μm以下の粒子を除いて構成される粉末の比表面積より最大で0.3m2/g大きく、該粉末のタップ密度は、該粉末から前記粒子径1μm以下の粒子を除いて構成される粉末のタップ密度より最大で0.2g/cm小さく、そして100kg/cmの圧力下で測定したときの該粉末の比抵抗が250Ωcm以下であることを特徴とする非水系電解質二次電池用正極活物質。 LiNi 1-X M X O 2 (where M is at least one metal element selected from the group consisting of Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, Ga, and 0 <x ≦ The particles constituting the powder are mainly composed of secondary particles formed by aggregating a plurality of primary particles of the lithium metal composite oxide. The shape of the secondary particles is spherical or oval, the particle diameter of the particles constituting the powder is 40 μm or less, and the powder is 0.5 to 7.0% by volume of particles having a particle diameter of 1 μm or less. And the specific surface area of the powder is 0.3 m 2 / g larger than the specific surface area of the powder formed by removing particles having a particle diameter of 1 μm or less from the powder, and the tap density of the powder is The particles having a particle diameter of 1 μm or less are removed from the powder. A maximum than the tap density of the powder 0.2 g / cm 3 less to be, and non-aqueous electrolyte secondary specific resistance of the powder is equal to or less than 250Ωcm when measured under a pressure of 100 kg / cm 2 Positive electrode active material for batteries. リチウムイオン二次電池の正極を構成し、該リチウムイオン二次電池の充電放電を、正極に対する電流密度を0.5mA/cm2として行った際の、該リチウムイオン二次電池の容量を電圧で微分して得られる曲線において、得られる第1ピークの立ち上がりの電圧が3.56 V以下で、第1ピーク位置の電圧が3.65V以下であることを特徴とする請求項1または2に記載の非水系電解質二次電池用正極活物質。 The positive electrode of a lithium ion secondary battery is configured, and the capacity of the lithium ion secondary battery is measured by voltage when charging and discharging the lithium ion secondary battery at a current density of 0.5 mA / cm 2 with respect to the positive electrode. 3. The curve obtained by differentiating, wherein the obtained first peak rising voltage is 3.56 V or less and the first peak position voltage is 3.65 V or less. The positive electrode active material for non-aqueous electrolyte secondary batteries. 請求項1および請求項2のいずれかに記載の非水系電解質二次電池用正極活物質を用いた正極を備える非水系電解質二次電池。 A non-aqueous electrolyte secondary battery comprising a positive electrode using the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1. 請求項1および請求項2のいずれかに記載の正極活物質を正極に用いた非水系電解質二次電池であって、充電放電を行った際の容量を電圧で微分して得られる曲線において、得られる第1ピークの立ち上がりの電圧が3.56 V以下で、第1ピーク位置の電圧が3.65V以下であることを特徴とする非水系電解質二次電池。 A non-aqueous electrolyte secondary battery using the positive electrode active material according to any one of claims 1 and 2 for a positive electrode, wherein a curve obtained by differentiating the capacity when performing charge and discharge with voltage, A nonaqueous electrolyte secondary battery, wherein the obtained first peak rising voltage is 3.56 V or less and the first peak position voltage is 3.65 V or less. LiNi1-XX2(但し、MはCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種以上の金属元素で、0<x≦0.25を満たす)で表されるリチウム金属複合酸化物の粉末であって、該粉末を構成する粒子は、リチウム金属複合酸化物の一次粒子が複数集合して形成した二次粒子から実質的に構成され、該二次粒子の形状は球状または楕円球状であり、該粉末を構成する粒子の粒子径が実質的に1μm〜40μmの範囲内にある粉末を用意し、該粉末を粉砕することにより粒子径1μm以下の粒子を用意し、前記粉末に対し前記粒子径1μm以下の粒子を0.5〜7.0体積%の割合で混合し、これにより、該粉末の比表面積を、前記粒子径1μm以下の粒子の混合前の比表面積より最大で0.3m2/g大きく、該粉末のタップ密度を、前記粒子径1μm以下の粒子の混合前のタップ密度より最大で0.2g/cm3小さくすることを特徴とする非水系電解質二次電池用正極活物質の製法。 LiNi 1-X M X O 2 (where M is at least one metal element selected from the group consisting of Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, Ga, and 0 <x ≦ 0.25 satisfying 0.25), and the particles constituting the powder are substantially composed of secondary particles formed by aggregating a plurality of primary particles of the lithium metal composite oxide. And preparing a powder in which the shape of the secondary particles is spherical or elliptical and the particle diameter of the particles constituting the powder is substantially within the range of 1 μm to 40 μm, and pulverizing the powder To prepare particles having a particle size of 1 μm or less, and mixing the particles having a particle size of 1 μm or less with respect to the powder in a proportion of 0.5 to 7.0% by volume. 0 maximum from the specific surface area before mixing of particles with a diameter of 1 μm or less 3m 2 / g greater, the tap density of the powder, a positive electrode for a nonaqueous electrolyte secondary battery, which comprises up to 0.2 g / cm 3 less than the tap density before mixing of the particle size 1μm or less of the particles The manufacturing method of the active material.
JP2004116590A 2004-04-12 2004-04-12 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery Expired - Lifetime JP4766840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004116590A JP4766840B2 (en) 2004-04-12 2004-04-12 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004116590A JP4766840B2 (en) 2004-04-12 2004-04-12 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005302507A true JP2005302507A (en) 2005-10-27
JP4766840B2 JP4766840B2 (en) 2011-09-07

Family

ID=35333744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004116590A Expired - Lifetime JP4766840B2 (en) 2004-04-12 2004-04-12 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4766840B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105818A1 (en) * 2006-03-15 2007-09-20 Sumitomo Chemical Company, Limited Positive electrode active material powder
JP2007294397A (en) * 2006-03-27 2007-11-08 Hitachi Maxell Ltd Nonaqueous secondary battery and its using method
JP2007294396A (en) * 2006-03-27 2007-11-08 Hitachi Maxell Ltd Nonaqueous secondary battery and its operation method
JP2008181839A (en) * 2007-01-26 2008-08-07 Sumitomo Metal Mining Co Ltd Positive active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it
JP2008234926A (en) * 2007-03-19 2008-10-02 Sumitomo Metal Mining Co Ltd Positive-electrode active material for nonaqueous electrolyte secondary battery and manufacturing method therefor
JPWO2007072759A1 (en) * 2005-12-20 2009-05-28 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2010073686A (en) * 2008-08-19 2010-04-02 Hitachi Maxell Ltd Electrode for electrochemical element and nonaqueous secondary battery
WO2011108720A1 (en) * 2010-03-05 2011-09-09 Jx日鉱日石金属株式会社 Positive-electrode active material for lithium ion battery, positive electrode for lithium battery, and lithium ion battery
JP2012084502A (en) * 2010-10-08 2012-04-26 Ngk Insulators Ltd Plate-like particle for positive electrode active material of lithium secondary battery
JP2013033764A (en) * 2012-11-15 2013-02-14 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
WO2013125703A1 (en) 2012-02-23 2013-08-29 住友金属鉱山株式会社 Nickel composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same, and nonaqueous electrolyte secondary battery
KR101370675B1 (en) 2006-03-20 2014-03-04 히다치 막셀 가부시키가이샤 Non-aqueous secondary battery and method of using the same
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
WO2017013718A1 (en) * 2015-07-17 2017-01-26 株式会社 東芝 Non-aqueous electrolyte battery and battery pack
JP6096985B1 (en) * 2015-09-14 2017-03-15 株式会社東芝 Nonaqueous electrolyte battery and battery pack
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US10141566B2 (en) 2014-08-15 2018-11-27 Samsung Electronics Co., Ltd. Lithium secondary battery including a coated cathode material and solid electrolyte, and method of preparing the same
CN109075333A (en) * 2016-03-14 2018-12-21 苹果公司 Active material of cathode for lithium ion battery
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6050403B2 (en) 2015-03-02 2016-12-21 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339806A (en) * 1995-06-09 1996-12-24 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JPH09129230A (en) * 1995-10-31 1997-05-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic battery and manufacture of positive active material
JPH1069910A (en) * 1995-11-24 1998-03-10 Fuji Chem Ind Co Ltd Lithium nickel composite oxide, manufacture thereof, and positive electrode active substance for secondary battery
JPH11224668A (en) * 1998-02-04 1999-08-17 Matsushita Electric Ind Co Ltd Nickel-cobalt hydroxide for active material of nonaqueous electrolyte battery
JPH11260368A (en) * 1998-03-13 1999-09-24 Mitsubishi Cable Ind Ltd Positive electrode active material for lithium secondary battery
JP2002124257A (en) * 2000-10-13 2002-04-26 Denso Corp Nonaqueous electrolyte secondary battery
JP2004241242A (en) * 2003-02-05 2004-08-26 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolytic solution secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339806A (en) * 1995-06-09 1996-12-24 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JPH09129230A (en) * 1995-10-31 1997-05-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic battery and manufacture of positive active material
JPH1069910A (en) * 1995-11-24 1998-03-10 Fuji Chem Ind Co Ltd Lithium nickel composite oxide, manufacture thereof, and positive electrode active substance for secondary battery
JPH11224668A (en) * 1998-02-04 1999-08-17 Matsushita Electric Ind Co Ltd Nickel-cobalt hydroxide for active material of nonaqueous electrolyte battery
JPH11260368A (en) * 1998-03-13 1999-09-24 Mitsubishi Cable Ind Ltd Positive electrode active material for lithium secondary battery
JP2002124257A (en) * 2000-10-13 2002-04-26 Denso Corp Nonaqueous electrolyte secondary battery
JP2004241242A (en) * 2003-02-05 2004-08-26 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolytic solution secondary battery

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5143568B2 (en) * 2005-12-20 2013-02-13 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JPWO2007072759A1 (en) * 2005-12-20 2009-05-28 パナソニック株式会社 Nonaqueous electrolyte secondary battery
WO2007105818A1 (en) * 2006-03-15 2007-09-20 Sumitomo Chemical Company, Limited Positive electrode active material powder
US7811478B2 (en) 2006-03-15 2010-10-12 Sumitomo Chemical Company, Limited Positive-electrode active material powder
KR101370675B1 (en) 2006-03-20 2014-03-04 히다치 막셀 가부시키가이샤 Non-aqueous secondary battery and method of using the same
US9077035B2 (en) 2006-03-20 2015-07-07 Hitachi Maxell, Ltd. Nonaqueous secondary battery and method of using the same
JP2007294397A (en) * 2006-03-27 2007-11-08 Hitachi Maxell Ltd Nonaqueous secondary battery and its using method
JP2007294396A (en) * 2006-03-27 2007-11-08 Hitachi Maxell Ltd Nonaqueous secondary battery and its operation method
JP2008181839A (en) * 2007-01-26 2008-08-07 Sumitomo Metal Mining Co Ltd Positive active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it
JP2008234926A (en) * 2007-03-19 2008-10-02 Sumitomo Metal Mining Co Ltd Positive-electrode active material for nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2010073686A (en) * 2008-08-19 2010-04-02 Hitachi Maxell Ltd Electrode for electrochemical element and nonaqueous secondary battery
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JPWO2011108720A1 (en) * 2010-03-05 2013-06-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US8623551B2 (en) * 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5467144B2 (en) * 2010-03-05 2014-04-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2011108720A1 (en) * 2010-03-05 2011-09-09 Jx日鉱日石金属株式会社 Positive-electrode active material for lithium ion battery, positive electrode for lithium battery, and lithium ion battery
JP2012084502A (en) * 2010-10-08 2012-04-26 Ngk Insulators Ltd Plate-like particle for positive electrode active material of lithium secondary battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
KR20140129244A (en) 2012-02-23 2014-11-06 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same, and nonaqueous electrolyte secondary battery
WO2013125703A1 (en) 2012-02-23 2013-08-29 住友金属鉱山株式会社 Nickel composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same, and nonaqueous electrolyte secondary battery
US9553312B2 (en) 2012-02-23 2017-01-24 Sumitomo Metal Mining Co., Ltd Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery
US9583764B2 (en) 2012-02-23 2017-02-28 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery
US9685656B2 (en) 2012-02-23 2017-06-20 Sumitomo Metal Mining Co., Ltd Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
JP2013033764A (en) * 2012-11-15 2013-02-14 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
US10141566B2 (en) 2014-08-15 2018-11-27 Samsung Electronics Co., Ltd. Lithium secondary battery including a coated cathode material and solid electrolyte, and method of preparing the same
JP6151431B1 (en) * 2015-07-17 2017-06-21 株式会社東芝 Nonaqueous electrolyte battery and battery pack
WO2017013718A1 (en) * 2015-07-17 2017-01-26 株式会社 東芝 Non-aqueous electrolyte battery and battery pack
CN107210438A (en) * 2015-09-14 2017-09-26 株式会社东芝 Nonaqueous electrolyte battery and battery bag
WO2017046858A1 (en) * 2015-09-14 2017-03-23 株式会社 東芝 Non-aqueous electrolyte cell and cell pack
JP6096985B1 (en) * 2015-09-14 2017-03-15 株式会社東芝 Nonaqueous electrolyte battery and battery pack
US10411250B2 (en) 2015-09-14 2019-09-10 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack, and vehicle
CN107210438B (en) * 2015-09-14 2020-12-08 株式会社东芝 Nonaqueous electrolyte battery and battery pack
CN109075333A (en) * 2016-03-14 2018-12-21 苹果公司 Active material of cathode for lithium ion battery
CN109075333B (en) * 2016-03-14 2022-11-18 苹果公司 Cathode active material for lithium ion battery
US11870069B2 (en) 2016-03-14 2024-01-09 Apple Inc. Cathode active materials for lithium-ion batteries
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries

Also Published As

Publication number Publication date
JP4766840B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP4766840B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5618116B2 (en) Non-aqueous electrolyte secondary battery using lithium nickel composite oxide and lithium nickel composite oxide as positive electrode active material
US7410511B2 (en) Production method of positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material
JP4524881B2 (en) Nonaqueous electrolyte secondary battery
JP5741908B2 (en) Positive electrode active material for lithium ion secondary battery
EP2264815A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2010064944A5 (en)
JP2013541161A (en) Lithium titanate battery with reduced gas generation
JP5534364B2 (en) Positive electrode active material for lithium secondary battery
CN103620836A (en) Nonaqueous electrolyte secondary cell and method for manufacturing same
WO2014097569A1 (en) Positive electrode material for lithium secondary batteries
JP2004253174A (en) Positive pole active material for nonaqueous electrolytic secondary battery
JP2004227790A (en) Positive electrode active material for nonaqueous electrolyte solution secondary battery
EP1132985A2 (en) Positive electrode material for nonaqueous electrolyte secondary battery and battery using the same
JP2004006094A (en) Nonaqueous electrolyte secondary battery
WO2015001957A1 (en) Lithium ion secondary battery positive electrode active material, lithium ion secondary battery positive electrode, lithium ion secondary battery, and method for manufacturing said active material, said positive electrode, and said battery
KR20120091590A (en) Positive-electrode active material with improved output and lithium secondary battery including them
JP2003203631A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP2011171012A (en) Positive electrode for lithium secondary battery
JP2008257992A (en) Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP4268442B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR20150084818A (en) Lithium-manganate-particle powder for use in non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JPH09213305A (en) Nonaqueous electrolyte secondary cell
WO2014068931A1 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110614

R150 Certificate of patent or registration of utility model

Ref document number: 4766840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250