JPH09213305A - Nonaqueous electrolyte secondary cell - Google Patents

Nonaqueous electrolyte secondary cell

Info

Publication number
JPH09213305A
JPH09213305A JP8014521A JP1452196A JPH09213305A JP H09213305 A JPH09213305 A JP H09213305A JP 8014521 A JP8014521 A JP 8014521A JP 1452196 A JP1452196 A JP 1452196A JP H09213305 A JPH09213305 A JP H09213305A
Authority
JP
Japan
Prior art keywords
positive electrode
electrolyte secondary
secondary battery
active material
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8014521A
Other languages
Japanese (ja)
Inventor
Naoyuki Sugano
直之 菅野
Katsumi Mori
勝美 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8014521A priority Critical patent/JPH09213305A/en
Publication of JPH09213305A publication Critical patent/JPH09213305A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To make improvement of a charge/discharge characteristic compatible with improvement of productivity, workability, in a nonaqueous electrolyte secondary cell. SOLUTION: A positive electrode 1 is formed in a constitution comprising an LiMn2 O4 particle (positive electrode active material) of 10 to 40μm grain size, 6 to 8wt.% graphite (conductive material) of grain size 1/5 to 1/10 the LiMn2 O4 particle and 3 to 5wt.% polyvinyliclene fluoride (binding agent). A positive electrode active material of relatively large grain size is thus used, so as to well hold productivity and workability, a conductive material of relatively small grain size is used on the other hand, so as to large ensure a contact area with the positive electrode active material. A negative electrode 2 may be any of a carbon material and metal Li, Li alloy, in the case of using the former one, an Li ion secondary cell is constituted, in the case of using the latter two, a metal Li secondary cell is constituted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、小型電子機器の電
源として使用される充放電可能な非水電解液二次電池に
関し、特に正極の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chargeable / dischargeable non-aqueous electrolyte secondary battery used as a power source for small electronic devices, and more particularly to an improvement of a positive electrode.

【0002】[0002]

【従来の技術】リチウム(Li)を負極活物質とし、電
解質を溶解した有機溶媒を電解液とする非水電解液二次
電池は、自己放電が少なく、作動電圧が高く、保存特性
(自己放電や保存による放電容量の低下に関する特性)
に優れるといった長所を有しており、時計,カメラ,ヘ
ッドホン・ステレオ,カメラ一体型ビデオ・テープレコ
ーダ等の高性能小型電子機器の動作電源あるいはメモリ
・バックアップ用電源として広く用いられている。近年
では、携帯電話やノート型パーソナル・コンピュータと
いった携帯型情報機器の普及が目覚ましく、これに伴っ
て非水電解液二次電池に対する性能要求もますます高度
化している。
2. Description of the Related Art A non-aqueous electrolyte secondary battery using lithium (Li) as a negative electrode active material and an organic solvent in which an electrolyte is dissolved as an electrolytic solution has low self-discharge, high operating voltage, and storage characteristics (self-discharge). (Characteristics regarding decrease in discharge capacity due to storage)
It has the advantage of being excellent, and is widely used as an operating power supply or a power supply for memory backup of high-performance small electronic devices such as watches, cameras, headphones / stereos, and video tape recorders with integrated cameras. In recent years, portable information devices such as mobile phones and notebook personal computers have been remarkably spread, and along with this, performance requirements for non-aqueous electrolyte secondary batteries have become more sophisticated.

【0003】上記の非水電解液二次電池には大別して、
負極に金属LiまたはLi合金を用いる金属Li二次電
池と、負極に層状の炭素または炭素系化合物を用いるL
iイオン二次電池とがある。前者の正極には、マンガン
酸リチウム(LiMn24)が広く用いられている。
一方、後者の正極としては、コバルト酸リチウム(Li
CoO2 )が用いられているが、高価なCoを使用する
ことが結果的に電池の高価格化を招いている。このた
め、結晶構造がLiCoO2 と同じで物性も類似したニ
ッケル酸リチウム(LiNiO2 )を用いることが検討
されている。ただし、LiNiO2 においては、調製時
の温度や雰囲気に依存してNiの組成比がLiよりも大
きくなり易く、充放電を繰り返すと放電容量が急速に低
下するという問題がある。かかる背景から、Liイオン
二次電池についても金属Li二次電池と同様に、正極活
物質としてLiMn24 を用いるための研究が進めら
れている。
The above non-aqueous electrolyte secondary batteries are roughly classified into
Metal Li secondary battery using metal Li or Li alloy for the negative electrode, and L using layered carbon or carbon-based compound for the negative electrode
There is an i-ion secondary battery. Lithium manganate (LiMn 2 O 4 ) is widely used for the former positive electrode.
On the other hand, as the latter positive electrode, lithium cobalt oxide (Li
CoO 2 ) is used, but the use of expensive Co results in higher cost of the battery. Therefore, it has been studied to use lithium nickelate (LiNiO 2 ) having the same crystal structure as LiCoO 2 and similar physical properties. However, LiNiO 2 has a problem that the composition ratio of Ni tends to be larger than that of Li depending on the temperature and atmosphere at the time of preparation, and the discharge capacity rapidly decreases when charging and discharging are repeated. Against this background, research on the use of LiMn 2 O 4 as a positive electrode active material is being conducted for Li-ion secondary batteries as well as for metallic Li secondary batteries.

【0004】ところで、LiMn24 を正極活物質と
して用いる非水電解液二次電池においては、性能向上を
図るために通常、 (a)粒径1〜5μm程度の微粒子状のLiMn24
を用いる (b)導電材を正極活物質に対して10重量%以上添加
する といった対策がとられている。
By the way, in a non-aqueous electrolyte secondary battery using LiMn 2 O 4 as a positive electrode active material, in order to improve the performance, (a) fine particle LiMn 2 O 4 having a particle size of about 1 to 5 μm is usually used.
(B) A conductive material is added to the positive electrode active material in an amount of 10% by weight or more.

【0005】上記(a)の対策は、イオン導電性がそれ
ほど大きくないLiMn24 の比表面積を増大させる
ことで電極反応を促進し、イオンの吸蔵/放出を円滑に
行わせることを目的としている。
The measure (a) is intended to promote the electrode reaction by increasing the specific surface area of LiMn 2 O 4 having a not so large ionic conductivity, and to smoothly store and release the ions. There is.

【0006】一方、(b)の対策は、入手の容易な一次
電池用の二酸化マンガンを用いて比較的粒径の大きい
(数十μm)LiMn24 を合成し、これを正極活物
質として用いる場合に採られるものであり、導電材との
接触面積を十分に大きく確保して大電流放電特性を改善
することを目的としている。通常用いられる導電材の粒
径は、正極活物質の粒径と同等である。導電材の混合比
率がこれより低いと、Liの出入りに伴って正極におけ
るLiMn24 と導電材との接触が急速に失われ、数
十回の充放電サイクルを経過しただけでも性能の低下を
来す。
On the other hand, the measure (b) is to synthesize LiMn 2 O 4 having a relatively large particle size (several tens of μm) using manganese dioxide for primary batteries, which is easily available, and uses this as a positive electrode active material. It is adopted when it is used, and its purpose is to secure a sufficiently large contact area with a conductive material and improve the large current discharge characteristics. The particle diameter of the conductive material that is usually used is the same as the particle diameter of the positive electrode active material. If the mixing ratio of the conductive material is lower than this, the contact between LiMn 2 O 4 and the conductive material in the positive electrode is rapidly lost due to the inflow and outflow of Li, and the performance deteriorates even after several tens of charge / discharge cycles. Come on.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
対策はそれぞれに問題を抱えている。
However, each of the above countermeasures has its own problems.

【0008】まず、(a)のごとく微粒子状のLiMn
24 を用いる対策では、柔軟性に優れる電極の製造が
困難である。すなわち上記の微粒子は、適当な溶媒に分
散させて導電性塗料とした状態で金属箔(集電体)上に
塗布しても、柔軟性のある正極を形成することができ
ず、また正極活物質が粉末としての性状を保つことか
ら、これを密に充填して高密度で高容量の正極を作製す
ることができない。特に、円筒型電池や角型電池用のシ
ート状正極は、セパレータやシート状負極と共にロール
状に巻く必要があるため、かかる柔軟性の不足は電池の
製造上、大きな障害となっている。そこで、塗布ではな
く、加圧成形により集電体上に直接的に正極活物質を付
着させることも提案されているが、集電体にアルミニウ
ム等の軽金属を用いる場合には集電体の機械的強度の不
足により、加圧成形の手法そのものが大量生産に適さな
くなる。したがってその生産性は、ボタン型電池やコイ
ン型電池の正極のような活物質合剤の成形加工品に比べ
て著しく劣るものとなる。
First, finely divided LiMn as shown in FIG.
With the measure using 2 O 4 , it is difficult to manufacture an electrode having excellent flexibility. That is, even if the above fine particles are applied to a metal foil (collector) in a state of being dispersed in an appropriate solvent to form a conductive coating material, a flexible positive electrode cannot be formed, and the positive electrode active material cannot be formed. Since the substance retains the property as a powder, it is not possible to densely fill the substance and produce a high-density and high-capacity positive electrode. In particular, a sheet-shaped positive electrode for a cylindrical battery or a prismatic battery needs to be wound in a roll shape together with a separator or a sheet-shaped negative electrode, and thus such lack of flexibility is a major obstacle in manufacturing the battery. Therefore, it has been proposed to directly attach the positive electrode active material onto the current collector by pressure molding instead of coating, but when a light metal such as aluminum is used as the current collector, The lack of sufficient mechanical strength makes the pressure molding method itself unsuitable for mass production. Therefore, the productivity thereof is significantly inferior to the molded product of the active material mixture such as the positive electrode of the button type battery or the coin type battery.

【0009】一方、(b)のごとく比較的大きい粒径の
LiMn24 に高い比率で導電材を添加する対策で
は、満足のゆく電池性能を得るために、材料同士の混合
に十分な時間をかけ、しかも混合効率の高い混練機を用
いる必要がある。しかし、導電材としてグラファイトや
アセチレンブラックを大量に添加した場合には、混練物
がペーストよりもむしろゾル・ゲルに近い性状を呈する
ため、塗布あるいは乾燥の過程で内部に残存する気泡を
除去することが難しい。また、混練物の自然落下による
均一な塗布も不可能であるため、正極の形成を機械加工
に頼らざるを得ず、均一性を確保することも困難であ
る。
On the other hand, as shown in (b), in the measure of adding the conductive material to LiMn 2 O 4 having a relatively large particle size at a high ratio, in order to obtain satisfactory battery performance, it is necessary to mix the materials with each other for a sufficient time. It is necessary to use a kneader with high mixing efficiency. However, when a large amount of graphite or acetylene black is added as a conductive material, the kneaded product has a property closer to that of a sol / gel rather than a paste.Therefore, it is necessary to remove bubbles remaining inside during the coating or drying process. Is difficult. Further, since it is not possible to apply the kneaded product uniformly by natural dropping, it is necessary to rely on machining for forming the positive electrode, and it is difficult to ensure the uniformity.

【0010】このように、従来の非水電解液二次電池に
おいては、充放電特性の向上と生産性や加工性の向上と
は相入れないものであった。そこで、本発明はこの問題
を解決し、充放電特性と生産性ならびに加工性を両立さ
せることが可能な非水電解液二次電池を供給することを
目的とする。
As described above, in the conventional non-aqueous electrolyte secondary battery, improvement in charge / discharge characteristics and improvement in productivity and workability were incompatible with each other. Then, this invention solves this problem and aims at supplying the non-aqueous electrolyte secondary battery which can make charge-discharge characteristics compatible with productivity and workability.

【0011】[0011]

【課題を解決するための手段】本発明の非水電解液二次
電池は、組成式LiMxOy(ただし、MはMn,V,
Ti,Feより選ばれるいずれか1種類の遷移金属元素
である。)で表されるリチウム−遷移金属複合酸化物を
活物質とする正極と、リチウムを活物質とする負極と、
該正極と該負極とを分離するセパレータと、非水電解液
とを有するものであり、前記正極として、粒径10〜4
0μmのLiMxOy粒子と、粒径が該LiMxOy粒
子の1/5〜1/10である導電材6〜8重量%と、結
着剤とを含むものを使用する。上記LiMxOy粒子の
粒径が上述の範囲よりも小さい場合には、従来技術の欄
で述べたような加工性,生産性の問題が生じ、上述の範
囲よりも大きい場合には、比表面積の不足による容量低
下を招く虞れが大きい。上記導電材の粒径が上述の範囲
よりも小さい場合には取り扱い上の困難を生じ、上述の
範囲よりも大きい場合には正極活物質との間で十分な接
触面積を確保することが困難となる。さらに、上記導電
材の含有量が上述の範囲よりも少ない場合には、正極活
物質と導電材との間の接触面積が不足して円滑なLiイ
オンの吸蔵/放出が妨げられ、上述の範囲よりも多い場
合には従来と同様に混練物の取扱い性が著しく低下す
る。
The non-aqueous electrolyte secondary battery of the present invention has a composition formula LiMxOy (where M is Mn, V,
It is any one kind of transition metal element selected from Ti and Fe. ) Represented by the lithium-transition metal composite oxide as a positive electrode having an active material, a negative electrode having a lithium active material,
It has a separator for separating the positive electrode and the negative electrode, and a non-aqueous electrolytic solution, and the positive electrode has a particle size of 10 to 4
One containing 0 μm LiMxOy particles, 6 to 8% by weight of a conductive material having a particle diameter of 1/5 to 1/10 of the LiMxOy particles, and a binder is used. If the particle size of the LiMxOy particles is smaller than the above range, the problems of workability and productivity as described in the section of the prior art occur, and if it is larger than the above range, the specific surface area is insufficient. There is a high possibility that the capacity may be reduced due to the above. When the particle diameter of the conductive material is smaller than the above range, handling difficulty occurs, and when it is larger than the above range, it is difficult to secure a sufficient contact area with the positive electrode active material. Become. Further, when the content of the conductive material is less than the above range, the contact area between the positive electrode active material and the conductive material is insufficient to prevent smooth absorption / release of Li ions, and If it is more than the above range, the handleability of the kneaded product is remarkably deteriorated as in the conventional case.

【0012】[0012]

【発明の実施の形態】本発明では基本的に、非水電解液
二次電池の正極の作製に支障を来すような微粉末状の活
物質粒子は用いず、比較的粒径の大きなリチウム−遷移
金属複合酸化物を用いることで生産性や加工性を良好に
保つ。これと同時に、正極活物質の性能をカバーする意
味で、導電材としては通常の非水電解液二次電池に用い
られるものよりも粒径の小さなものを用い、正極活物質
と導電材の接触面積を十分に大きく確保する。これら正
極活物質と導電材の粒径が上述のように最適化されてい
ることにより、導電材を従来のように大量に添加(10
重量%以上)する必要が無くなり、したがって加工も容
易となる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, basically, fine powdery active material particles that would interfere with the production of a positive electrode for a non-aqueous electrolyte secondary battery are not used, and lithium having a relatively large particle size is used. -Maintain good productivity and workability by using a transition metal composite oxide. At the same time, in order to cover the performance of the positive electrode active material, a conductive material having a smaller particle size than that used in a normal non-aqueous electrolyte secondary battery is used, and the contact between the positive electrode active material and the conductive material is used. Secure a large enough area. Since the particle sizes of the positive electrode active material and the conductive material are optimized as described above, a large amount of conductive material is added as in the conventional case (10
Therefore, the processing becomes easy.

【0013】上記LiMxOy粒子については、その粒
径分布も併せて考慮することが一層望ましく、50%累
積径が30〜40μmであるような粒子を用いることが
特に好適である。
With respect to the above LiMxOy particles, it is more desirable to consider the particle size distribution as well, and it is particularly preferable to use particles having a 50% cumulative diameter of 30 to 40 μm.

【0014】本発明の非水電解液二次電池は、Liイオ
ン二次電池,金属Li二次電池のいずれであっても良
い。前者のLiイオン二次電池については、負極として
Liイオンを吸蔵/放出可能な材料を用いるが、この材
料の具体例としてはコークス系もしくはグラファイト系
の層状カーボン材料がある。後者の金属Li二次電池に
ついては、負極として金属Li,Li合金のいずれかを
用いる。
The non-aqueous electrolyte secondary battery of the present invention may be either a Li-ion secondary battery or a metallic Li secondary battery. In the former Li-ion secondary battery, a material capable of occluding / releasing Li ions is used for the negative electrode, and a specific example of this material is a coke-based or graphite-based layered carbon material. Regarding the latter metal Li secondary battery, either metal Li or Li alloy is used as the negative electrode.

【0015】本発明ではまた、導電材についても粒径分
布を併せて考慮することが望ましく、炭素系材料を用い
る場合にはその50%累積径を1〜10μmの範囲に選
択することが特に好適である。
In the present invention, it is also desirable to consider the particle size distribution of the conductive material as well. When a carbonaceous material is used, it is particularly preferable to select the 50% cumulative diameter in the range of 1 to 10 μm. Is.

【0016】さらに電解液としては、LiPF6 ,Li
BF4 ,LiAsF6 ,LiClO4 ,LiCF3 SO
3 等のリチウム塩を有機溶媒に溶解させたものが用いら
れる。この有機溶媒としては、炭酸エチレン,炭酸プロ
ピレン,炭酸ブチレン等の環状カーボネート、あるいは
γ−ブチロラクトン,γ−バレロラクトン等の環状エス
テル化合物を用いることができ、さらにこれらに炭酸ジ
メチル,炭酸エチルメチル,炭酸ジエチル,炭酸ジプロ
ピル等の鎖状カーボネートを混合することもできる。
Further, as the electrolytic solution, LiPF 6 , Li
BF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO
A solution in which a lithium salt such as 3 is dissolved in an organic solvent is used. As the organic solvent, cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate, or cyclic ester compounds such as γ-butyrolactone and γ-valerolactone can be used, and further dimethyl carbonate, ethylmethyl carbonate, carbonate It is also possible to mix chain carbonates such as diethyl and dipropyl carbonate.

【0017】[0017]

【実施例】以下、本発明の具体的な実施例について説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described.

【0018】<実施例1〜実施例4> I.LiMn24の合成 水酸化リチウム(LiOH)および炭酸マンガン(Mn
CO3 )を、LiとMnの原子比が1:2となるように
混合して原料組成物とし、この原料組成物を大気雰囲気
下、温度約700〜900℃で焼成し、粉砕加圧処理お
よび分級を経て所定の粒径および粒度分布を有するリチ
ウム−マンガン複合酸化物を調製した。この複合酸化物
は、粉末X線回折法における回折ピークの位置をJCP
DSカードと照合することにより、LiMn24 と同
定された。実施例1〜実施例3では平均粒径(50%累
積径)30μmの標品、実施例4では同40μmの標品
を用いた。
<Examples 1 to 4> I. Synthesis of LiMn 2 O 4 Lithium hydroxide (LiOH) and manganese carbonate (Mn
CO 3 ) is mixed so that the atomic ratio of Li and Mn is 1: 2 to obtain a raw material composition, and the raw material composition is fired at a temperature of about 700 to 900 ° C. in an air atmosphere, and pulverized and pressure treated. After that, a lithium-manganese composite oxide having a predetermined particle size and particle size distribution was prepared through classification. This composite oxide shows the position of the diffraction peak in the powder X-ray diffraction method in JCP.
It was identified as LiMn 2 O 4 by checking with a DS card. In Examples 1 to 3, a sample having an average particle size (50% cumulative diameter) of 30 μm was used, and in Example 4, a sample having the same particle size of 40 μm was used.

【0019】II.正極合剤ペーストの調製 上述のように合成された正極活物質に、導電材として平
均粒径(50%累積径)6μmのグラファイト、結着剤
としてポリフッ化ビニリデン(PVDF)をそれぞれ後
述の表1に示す割合にて混合し、この混合物を分散溶媒
であるN−メチル−2−ピロリドンに分散させて正極合
剤ペーストを調製した。
II. Preparation of Positive Electrode Mixture Paste Graphite having an average particle size (50% cumulative diameter) of 6 μm was used as a conductive material, and polyvinylidene fluoride (PVDF) was used as a binder in the positive electrode active material synthesized as described above. The mixture was mixed at the ratio shown in (1), and this mixture was dispersed in N-methyl-2-pyrrolidone as a dispersion solvent to prepare a positive electrode mixture paste.

【0020】[0020]

【表1】 [Table 1]

【0021】III .コイン型金属Li二次電池の組み立
て まず、上記正極合剤ペーストを集電体となる厚さ20μ
mのAl箔上に塗布し、乾燥させて正極電極材を作製し
た。このペーストは流動性が高く、取扱い性に優れてい
るため、Al箔上への塗布は容易かつ均一に行うことが
できた。さらに、この正極電極材をローラープレス機を
用いて圧縮成形した後、直径15mmの円形に裁断して
厚さ約0.2mmの正極を作製した。
III. Assembly of coin-type metal Li secondary battery First, the positive electrode mixture paste was used as a current collector and had a thickness of 20 μm.
m Al foil was applied and dried to prepare a positive electrode material. Since this paste has high fluidity and excellent handleability, it was possible to easily and uniformly apply the paste onto the Al foil. Further, this positive electrode material was compression molded using a roller press and then cut into a circle having a diameter of 15 mm to produce a positive electrode having a thickness of about 0.2 mm.

【0022】本実施例で組み立てられるコイン型電池の
概略断面図を図1に示す。この電池の組み立て方法は、
以下のとおりである。まず、厚さ1.6mmの金属Li
板を直径17mmの円形に打ち抜いて負極2を作製し、
これを負極缶4の底面に圧着させる。次に、この負極缶
4に電解液を注入する。この電解液は、炭酸プロピレン
と炭酸エチレンと炭酸ジメチルの30:30:40(体
積%)混合溶媒に、電解質としてLiPF6 を1モル/
リットルの濃度に溶解させたものである。さらに、上記
負極2の上に、セパレータ3となる厚さ約0.05mm
の多孔質ポリプロピレン・フィルム、および前述の正極
1を順次載置し、封口用のガスケット6を介して正極缶
5をかぶせ、該正極缶5の縁部をかしめた。このように
して、高さ2.5mm,直径20mmのコイン型金属L
i二次電池を作製した。
FIG. 1 shows a schematic cross-sectional view of a coin-type battery assembled in this embodiment. How to assemble this battery
It is as follows. First, metal Li having a thickness of 1.6 mm
The plate is punched into a circle with a diameter of 17 mm to produce the negative electrode 2,
This is pressed onto the bottom surface of the negative electrode can 4. Next, the electrolytic solution is injected into the negative electrode can 4. This electrolytic solution was prepared by adding 1 mol / mol of LiPF 6 as an electrolyte in a mixed solvent of propylene carbonate, ethylene carbonate and dimethyl carbonate at 30:30:40 (volume%).
It was dissolved in a concentration of 1 liter. Furthermore, a thickness of about 0.05 mm, which will be the separator 3, is formed on the negative electrode 2.
The porous polypropylene film of 1) and the positive electrode 1 described above were sequentially placed, and the positive electrode can 5 was covered via the gasket 6 for sealing, and the edge portion of the positive electrode can 5 was caulked. In this way, a coin-shaped metal L having a height of 2.5 mm and a diameter of 20 mm
An i secondary battery was produced.

【0023】なお、上述の実施例に対する比較例とし
て、正極活物質の平均粒径,導電材の平均粒径,導電材
の添加量,正極活物質と導電材の粒径比の各項目の少な
くとも1つが本発明で規定される範囲から外れていた
り、あるいは正極活物質が本発明で規定される物質では
ない場合についても、実施例と同様にコイン型金属Li
二次電池を作製した。具体的な数値や正極活物質の種類
は前掲の表1にまとめたとおりであるが、ここで各比較
例について簡単に述べる。
As a comparative example to the above-mentioned embodiment, at least each item of the average particle size of the positive electrode active material, the average particle size of the conductive material, the added amount of the conductive material, and the particle size ratio of the positive electrode active material and the conductive material. Even when one is out of the range defined by the present invention or the positive electrode active material is not the substance defined by the present invention, the coin-shaped metal Li is similar to the examples.
A secondary battery was produced. Specific numerical values and types of positive electrode active materials are as summarized in Table 1 above, and each comparative example will be briefly described here.

【0024】<比較例1>導電材であるグラファイトの
添加量を、本発明で規定する範囲よりも少とした(4w
t%)。
<Comparative Example 1> The addition amount of graphite, which is a conductive material, was made smaller than the range specified in the present invention (4w).
t%).

【0025】<比較例2>導電材であるグラファイトの
平均粒径を、本発明で規定する範囲よりも大とした(1
5μm)。
<Comparative Example 2> The average particle size of graphite as a conductive material is set to be larger than the range specified in the present invention (1).
5 μm).

【0026】<比較例3>導電材であるグラファイトの
平均粒径と添加量を、共に本発明で規定する範囲よりも
大とした(15μm,10wt%)。
<Comparative Example 3> Both the average particle size and the addition amount of graphite as a conductive material were set to be larger than the range specified in the present invention (15 μm, 10 wt%).

【0027】<比較例4>正極活物質を、平均粒径(5
0%累積径)20μmのLiCoO2 とした。このLi
CoO2 の調製方法は、次のとおりである。まず、炭酸
リチウム(Li2CO3 )および炭酸コバルト(CoC
3 )を、LiとCoの原子比が1:1となるように混
合して原料組成物とし、この原料組成物を大気雰囲気
下、温度約900〜1000℃で焼成し、粉砕加圧処理
および分級を経て所定の粒径および粒度分布を有するリ
チウム−コバルト複合酸化物を得た。この複合酸化物
は、粉末X線回折法における回折ピークの位置をJCP
DSカードと照合することにより、LiCoO2 と同定
された。
<Comparative Example 4> A positive electrode active material having an average particle size (5
0% cumulative diameter) 20 μm LiCoO 2 . This Li
The method for preparing CoO 2 is as follows. First, lithium carbonate (Li 2 CO 3 ) and cobalt carbonate (CoC
O 3 ) is mixed so that the atomic ratio of Li and Co is 1: 1 to obtain a raw material composition, and the raw material composition is fired at a temperature of about 900 to 1000 ° C. in an air atmosphere, and pulverized and pressure treated. After that, through classification, a lithium-cobalt composite oxide having a predetermined particle size and particle size distribution was obtained. This composite oxide shows the position of the diffraction peak in the powder X-ray diffraction method in JCP.
It was identified as LiCoO 2 by matching with a DS card.

【0028】なお、本比較例におけるグラファイトの平
均粒径の絶対値は本発明の範囲内であるが、正極活物質
の粒径が小さいため、該正極活物質に対する粒径比は大
となっている。
The absolute value of the average particle size of graphite in this comparative example is within the range of the present invention, but since the particle size of the positive electrode active material is small, the particle size ratio with respect to the positive electrode active material becomes large. There is.

【0029】<比較例5>正極活物質として、平均粒径
が本発明で規定する範囲よりも遥かに小さい(1μm)
微粉状LiMn24 を用いた。この微粉状LiMn2
4 は、Mn源として平均粒径約1μmの微粉状MnC
3 を熱処理して得た酸化マンガン(MnO2 )を用
い、LiOHとこのMnO2 とをLiとMnの原子比が
1:2となるように混合して原料組成物とし、この原料
組成物を大気雰囲気下、温度約700〜900℃で焼成
して調製した。得られたリチウム−マンガン複合酸化物
は、粉末X線回折法における回折ピークの位置をJCP
DSカードと照合することにより、LiMn24 と同
定された。
Comparative Example 5 As the positive electrode active material, the average particle size is much smaller than the range specified by the present invention (1 μm).
Finely powdered LiMn 2 O 4 was used. This finely powdered LiMn 2
O 4 is a finely powdered MnC having an average particle size of about 1 μm as a Mn source.
Using manganese oxide (MnO 2 ) obtained by heat-treating O 3 , LiOH and this MnO 2 are mixed so that the atomic ratio of Li and Mn is 1: 2 to obtain a raw material composition. Was fired at a temperature of about 700 to 900 ° C. in the atmosphere. The position of the diffraction peak in the powder X-ray diffraction method of the obtained lithium-manganese composite oxide was determined by JCP.
It was identified as LiMn 2 O 4 by checking with a DS card.

【0030】なお、本比較例におけるグラファイトの平
均粒径の絶対値は本発明の範囲内であるが、正極活物質
の粒径が小さいため、該正極活物質に対する粒径比は大
となっている。
The absolute value of the average particle size of graphite in this comparative example is within the range of the present invention, but since the particle size of the positive electrode active material is small, the particle size ratio with respect to the positive electrode active material is large. There is.

【0031】また、グラファイトの添加量も、本発明の
範囲よりも大である。
The addition amount of graphite is also larger than the range of the present invention.

【0032】以上、4つの実施例と5つの比較例で作製
したコイン型金属Li二次電池について、放電負荷性能
試験、放電温度性能試験、および充放電サイクル試験を
行った。各試験方法と結果について説明する。
As described above, the discharge load performance test, the discharge temperature performance test, and the charge / discharge cycle test were performed on the coin-type metal Li secondary batteries produced in the four examples and the five comparative examples. Each test method and result will be described.

【0033】放電負荷性能試験 この試験は、10回の定電流充放電サイクルを経た後に
行った。これは、25℃の恒温室内で各電池を電流密度
0.5mA/cm2 ,上限電圧4.2V,充電時間3時
間の条件で充電した後、負荷抵抗を接続して電流密度
0.5mA/cm2 ,終止電圧2.5Vの条件で放電さ
せる過程を1サイクルとするものである。次に、各電池
を電流密度1mA/cm2 ,上限電圧4.2Vの条件で
充電し、続いて終止電圧を3.0Vに設定し、電流密度
を0.25〜5mA/cm2 の範囲で変化させながら放
電させた。このときの放電容量を、25℃の恒温室内で
測定した。
Discharge load performance test This test was conducted after 10 constant current charge / discharge cycles. This is because each battery was charged in a thermostatic chamber at 25 ° C under conditions of a current density of 0.5 mA / cm 2 , an upper limit voltage of 4.2 V, and a charging time of 3 hours, and then a load resistance was connected to the battery to obtain a current density of 0.5 mA / One cycle is a process of discharging under the condition of cm 2 and final voltage of 2.5V. Next, each battery was charged under the conditions of a current density of 1 mA / cm 2 and an upper limit voltage of 4.2 V, and then an end voltage was set to 3.0 V, and a current density was in the range of 0.25 to 5 mA / cm 2 . It was discharged while changing. The discharge capacity at this time was measured in a thermostatic chamber at 25 ° C.

【0034】結果を図2に示す。いずれの電池も大電流
放電時には放電容量が低下するが、本発明の電池は比較
例の電池に比べてその低下の割合が少ない。また、Li
Mn24 よりも導電性に優れるLiCoO2 を正極活
物質とする電池(比較例4)は、小電流放電時には高い
放電容量を示すものの、大電流放電時には著しい容量低
下を来す。したがって、広い電流密度範囲における総合
的な放電性能としては、本発明の電池の方が上記コバル
ト系電池よりも優れていると言える。
The results are shown in FIG. Although the discharge capacities of all the batteries are reduced at the time of discharging with a large current, the rate of the decrease is smaller in the battery of the present invention than in the battery of the comparative example. Also, Li
The battery using LiCoO 2 having a higher conductivity than Mn 2 O 4 as the positive electrode active material (Comparative Example 4) shows a high discharge capacity at a small current discharge, but shows a significant capacity decrease at a large current discharge. Therefore, it can be said that the battery of the present invention is superior to the above cobalt-based battery in terms of comprehensive discharge performance in a wide current density range.

【0035】放電温度性能試験 次に、前述の放電負荷性能試験を終了した各電池を25
℃の恒温室内で電流密度1mA/cm2 ,上限電圧4.
2V,充電時間3時間の条件にて充電し、続いて−20
℃,0℃,25℃の各恒温室内で終止電圧3.0V,電
流密度0.25mA/cm2 の条件にて定電流放電させ
た。このときの放電容量を、25℃の恒温室内で測定し
た。
Discharge temperature performance test Next, each battery after the above-mentioned discharge load performance test was completed with 25
3. Current density 1mA / cm 2 , upper limit voltage 4.
Charged under the condition of 2V, charging time 3 hours, then -20
A constant current discharge was performed in each of the constant temperature chambers of 0 ° C., 0 ° C. and 25 ° C. under the conditions of a final voltage of 3.0 V and a current density of 0.25 mA / cm 2 . The discharge capacity at this time was measured in a thermostatic chamber at 25 ° C.

【0036】結果を図3に示す。いずれの電池も低温領
域では放電容量が低下するが、本発明の電池は比較例の
電池に比べてその低下の割合が少なく、より広い温度域
で安定した性能を発揮することがわかった。
The results are shown in FIG. It was found that the discharge capacities of all the batteries decreased in the low temperature region, but the battery of the present invention showed a lower rate of decrease than the battery of the comparative example, and exhibited stable performance in a wider temperature range.

【0037】充放電サイクル試験 前述の2種類の試験を経ていない新品の各電池を用意
し、これらを100回の定電流充放電サイクルに供し
た。この場合の1サイクルとは、25℃の恒温室内,電
流密度1mA/cm2 ,上限電圧4.2V,充電時間3
時間の条件による充電と、電流密度0.5mA/cm
2 ,終止電圧3.0Vの条件による放電とを組み合わせ
たものである。このときの放電容量を、25℃の恒温室
内で測定した。結果を図4に示す。正極中の導電材含有
量が少ない電池(比較例1)ではサイクル数増加に伴い
大きな容量低下がみられるが、本発明の電池(実施例1
〜実施例4)における容量低下はいずれも小幅にとどま
った。従来、LiMn24 を正極活物質とする金属L
i二次電池は充放電サイクル特性に劣ると言われていた
が、本発明ではこの特性がLiCoO2 を正極活物質と
した場合(比較例4)とほぼ同等に改善されることがわ
かった。
Charge / Discharge Cycle Test Each of the new batteries that did not pass the above-mentioned two kinds of tests was prepared and subjected to 100 constant current charge / discharge cycles. In this case, one cycle means a constant temperature room of 25 ° C., a current density of 1 mA / cm 2 , an upper limit voltage of 4.2 V, and a charging time of 3
Charging under the condition of time, current density 0.5mA / cm
2. Combined with discharge under the condition of final voltage of 3.0V. The discharge capacity at this time was measured in a thermostatic chamber at 25 ° C. FIG. 4 shows the results. The battery having a small content of the conductive material in the positive electrode (Comparative Example 1) showed a large decrease in capacity with the increase in the number of cycles, but the battery of the present invention (Example 1)
The capacity decrease in Example 4) was small in all cases. Conventionally, metal L using LiMn 2 O 4 as a positive electrode active material
Although it was said that the i secondary battery was inferior in charge / discharge cycle characteristics, it was found that in the present invention, this characteristic is improved almost as compared with the case where LiCoO 2 is used as the positive electrode active material (Comparative Example 4).

【0038】以上、本発明の具体的な実施例について述
べたが、本発明はこれらの実施例に何ら限定されるもの
ではない。たとえば、金属Li板を打ち抜いて作製した
上述の負極に替えてコークス,グラファイト等の層状カ
ーボン材料を負極に用いれば、充放電特性に優れるLi
イオン二次電池を構成することができる。また、電池の
形状もコイン型に限られるものではなく、ボタン型,円
筒型,角型のいずれであっても良い。さらに、正極活物
質であるリチウム−遷移金属複合酸化物としては、上述
のLiMn24 の他、LiVxOy,LiTixO
y,LiFexOyを用いても良好な結果が得られる。
The specific embodiments of the present invention have been described above, but the present invention is not limited to these embodiments. For example, if a layered carbon material such as coke or graphite is used for the negative electrode instead of the above-mentioned negative electrode prepared by punching out a metal Li plate, Li having excellent charge / discharge characteristics is obtained.
An ion secondary battery can be constructed. Further, the shape of the battery is not limited to the coin type, and may be any of a button type, a cylindrical type and a square type. Further, as the lithium-transition metal composite oxide that is the positive electrode active material, in addition to LiMn 2 O 4 described above, LiVxOy, LiTixO
Good results are also obtained using y and LiFexOy.

【0039】[0039]

【発明の効果】以上の説明からも明らかなように、本発
明の非水電解液二次電池は充放電特性に優れると同時
に、その製造過程においては高い生産性や優れた加工性
を保障するものである。特に、本発明の構成を採用する
ことにより、正極に柔軟性が備わり、シート状正極の作
製も可能となるため、従来は困難であった円筒型や角型
の非水電解液二次電池における特性向上と生産性・加工
性の向上との両立も実現することができる。
As is apparent from the above description, the non-aqueous electrolyte secondary battery of the present invention is excellent in charge / discharge characteristics and, at the same time, ensures high productivity and excellent workability in the manufacturing process. It is a thing. In particular, by adopting the configuration of the present invention, the positive electrode is provided with flexibility, and it becomes possible to manufacture a sheet-shaped positive electrode. Therefore, in a cylindrical or prismatic non-aqueous electrolyte secondary battery, which has been difficult in the past, It is possible to achieve both improvement of characteristics and improvement of productivity and workability.

【図面の簡単な説明】[Brief description of drawings]

【図1】コイン型金属Li二次電池の構成を示す模式的
断面図である。
FIG. 1 is a schematic cross-sectional view showing the structure of a coin-type metal Li secondary battery.

【図2】本発明の実施例および比較例にかかるコイン型
金属Li二次電池の放電負荷性能試験の結果を示すグラ
フである。
FIG. 2 is a graph showing the results of discharge load performance tests of coin-type metal Li secondary batteries according to examples and comparative examples of the present invention.

【図3】本発明の実施例および比較例にかかるコイン型
金属Li二次電池の放電温度性能試験の結果を示すグラ
フである。
FIG. 3 is a graph showing the results of discharge temperature performance tests of coin-type metal Li secondary batteries according to examples and comparative examples of the present invention.

【図4】本発明の実施例および比較例にかかるコイン型
金属Li二次電池の充放電サイクル試験の結果を示すグ
ラフである。
FIG. 4 is a graph showing the results of charge / discharge cycle tests of coin-type metal Li secondary batteries according to examples and comparative examples of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 負極缶 5 正極缶 6 ガスケット 1 Positive electrode 2 Negative electrode 3 Separator 4 Negative electrode can 5 Positive electrode can 6 Gasket

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 組成式LiMxOy(ただし、MはM
n,V,Ti,Feより選ばれるいずれか1種類の遷移
金属元素である。)で表されるリチウム−遷移金属複合
酸化物を活物質とする正極と、リチウムを活物質とする
負極と、該正極と該負極とを分離するセパレータと、非
水電解液とを有する非水電解液二次電池であって、 前記正極が粒径10〜40μmのLiMxOy粒子と、
粒径が該LiMxOy粒子の1/5〜1/10である導
電材6〜8重量%と、結着剤とを含む非水電解液二次電
池。
1. A composition formula LiMxOy (where M is M
It is any one kind of transition metal element selected from n, V, Ti and Fe. ) A non-aqueous liquid having a positive electrode using a lithium-transition metal composite oxide as an active material, a negative electrode using lithium as an active material, a separator separating the positive electrode and the negative electrode, and a non-aqueous electrolyte. An electrolyte secondary battery, wherein the positive electrode is LiMxOy particles having a particle size of 10 to 40 μm,
A non-aqueous electrolyte secondary battery comprising 6 to 8% by weight of a conductive material having a particle diameter of 1/5 to 1/10 of the LiMxOy particles and a binder.
【請求項2】 前記正極中の前記結着剤の含有量が3〜
5重量%である請求項1記載の非水電解液二次電池。
2. The content of the binder in the positive electrode is 3 to.
The non-aqueous electrolyte secondary battery according to claim 1, which is 5% by weight.
【請求項3】 前記負極は、リチウム・イオンを吸蔵/
放出可能な材料,金属リチウム,リチウム合金のいずれ
かを用いて構成される請求項1記載の非水電解液二次電
池。
3. The negative electrode absorbs lithium ions /
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is composed of any one of a releasable material, metallic lithium, and a lithium alloy.
【請求項4】 前記LiMxOy粒子は、50%累積径
が30〜40μmのLiMn24 粒子である請求項1
記載の非水電解液二次電池。
4. The LiMxOy particles are LiMn 2 O 4 particles having a 50% cumulative diameter of 30 to 40 μm.
The non-aqueous electrolyte secondary battery according to the above.
【請求項5】 前記導電材が炭素系材料であり、その5
0%累積径が1〜10μmである請求項4記載の非水電
解液二次電池。
5. The conductive material is a carbon-based material, and
The non-aqueous electrolyte secondary battery according to claim 4, wherein the 0% cumulative diameter is 1 to 10 μm.
JP8014521A 1996-01-30 1996-01-30 Nonaqueous electrolyte secondary cell Withdrawn JPH09213305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8014521A JPH09213305A (en) 1996-01-30 1996-01-30 Nonaqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8014521A JPH09213305A (en) 1996-01-30 1996-01-30 Nonaqueous electrolyte secondary cell

Publications (1)

Publication Number Publication Date
JPH09213305A true JPH09213305A (en) 1997-08-15

Family

ID=11863414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8014521A Withdrawn JPH09213305A (en) 1996-01-30 1996-01-30 Nonaqueous electrolyte secondary cell

Country Status (1)

Country Link
JP (1) JPH09213305A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999040640A1 (en) * 1998-02-06 1999-08-12 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
WO1999067833A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067838A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067835A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
WO1999067836A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067840A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067842A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067834A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
WO1999067841A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067839A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
JP2002110251A (en) * 2000-09-27 2002-04-12 Mitsubishi Cable Ind Ltd Lithium ion secondary battery
JP2013084397A (en) * 2011-10-06 2013-05-09 Toyota Motor Corp Lithium secondary battery manufacturing method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999040640A1 (en) * 1998-02-06 1999-08-12 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
US6399252B1 (en) 1998-02-06 2002-06-04 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
EP1035606A1 (en) * 1998-06-25 2000-09-13 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
EP1100135A1 (en) * 1998-06-25 2001-05-16 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067836A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067840A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067842A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067834A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
WO1999067841A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067839A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067838A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067835A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
EP1100135A4 (en) * 1998-06-25 2006-06-14 Mitsubishi Electric Corp Cell and method of producing the same
WO1999067833A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
US6440608B1 (en) 1998-06-25 2002-08-27 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
US6579641B2 (en) 1998-06-25 2003-06-17 Mitsubishi Denki Kabushiki Kaisha Battery and process for preparing the same
US6623883B1 (en) 1998-06-25 2003-09-23 Mitsubishi Denki Kabushiki Kaisha Electrode having PTC function and battery comprising the electrode
US6670070B2 (en) 1998-06-25 2003-12-30 Mitsubishi Denki Kabushiki Kaisha Battery and process for preparing the same
US6677074B2 (en) 1998-06-25 2004-01-13 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
EP1035606A4 (en) * 1998-06-25 2006-06-14 Mitsubishi Electric Corp Cell and method of producing the same
JP2002110251A (en) * 2000-09-27 2002-04-12 Mitsubishi Cable Ind Ltd Lithium ion secondary battery
JP2013084397A (en) * 2011-10-06 2013-05-09 Toyota Motor Corp Lithium secondary battery manufacturing method

Similar Documents

Publication Publication Date Title
JP7191342B2 (en) Positive electrode active material for secondary battery, manufacturing method thereof, and lithium secondary battery including the same
US9324994B2 (en) Positive electrode active material with high capacity and lithium secondary battery including the same
JP4644895B2 (en) Lithium secondary battery
US9466829B2 (en) Lithium—manganese-type solid solution positive electrode material
JP4766840B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
US20120028105A1 (en) Battery Packs for Vehicles and High Capacity Pouch Secondary Batteries for Incorporation into Compact Battery Packs
US20030082453A1 (en) Secondary battery positive electrode and secondary battery using the same
EP3719883B1 (en) Negative electrode active material for lithium secondary battery, and negative electrode for lithium secondary battery, and lithium secondary battery including the same
KR101488043B1 (en) Method for activating high capacity lithium secondary battery
US11677065B2 (en) Cathode active material of lithium secondary battery
JP2004227790A (en) Positive electrode active material for nonaqueous electrolyte solution secondary battery
JPH0982361A (en) Square nonaqueous electrolyte secondary battery
JP2004134207A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP2001076727A (en) Positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery
CN112424976A (en) Positive electrode active material and secondary battery
JPH09213305A (en) Nonaqueous electrolyte secondary cell
JP3856015B2 (en) Positive electrode secondary active material for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPH0845498A (en) Nonaqueous electrolytic liquid secondary battery
JP2004175609A (en) Lithium cobaltate used for positive electrode of lithium ion battery, its manufacturing process and lithium ion battery
JPH09265984A (en) Nonaqueous electrolyte secondary battery
JP2004241242A (en) Positive electrode active material for nonaqueous electrolytic solution secondary battery
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
KR20190052184A (en) Precursor of positive electrode active material for secondary battery and positive electrode active material prepared by the same
JPH04289662A (en) Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401