JPH09129230A - Nonaqueous electrolytic battery and manufacture of positive active material - Google Patents

Nonaqueous electrolytic battery and manufacture of positive active material

Info

Publication number
JPH09129230A
JPH09129230A JP7282773A JP28277395A JPH09129230A JP H09129230 A JPH09129230 A JP H09129230A JP 7282773 A JP7282773 A JP 7282773A JP 28277395 A JP28277395 A JP 28277395A JP H09129230 A JPH09129230 A JP H09129230A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
nickel
particles
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7282773A
Other languages
Japanese (ja)
Other versions
JP3232984B2 (en
Inventor
Shoichiro Watanabe
庄一郎 渡邊
Junichi Yamaura
純一 山浦
Shigeo Kobayashi
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17656894&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09129230(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28277395A priority Critical patent/JP3232984B2/en
Publication of JPH09129230A publication Critical patent/JPH09129230A/en
Application granted granted Critical
Publication of JP3232984B2 publication Critical patent/JP3232984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery with high capacity, high cycle characteristic, and excellent high rate discharge characteristic by specifying particle size, particle shape, and filling method of a specific positive active material. SOLUTION: The figure shows a longitudinal cross section of a cylindrical nonaqueous electrolyte battery. An electrode plate group 4, a positive plate 5, and a negative plate 6 are spirally wound through a separator 7 plural times, then housed in a battery case 1 made of a stainless steel plate resistant to an organic electrolyte. A positive aluminum lead 5a drawn out from the positive plate 5 is connected to a sealing plate 2, and a negative nickel lead 6a drawn out from the negative plate 6 is connected to the bottom of the battery case 1. The negative plate 6 is formed with paste prepared by mixing heat treated coke with a mixed solution. A positive active material of the positive plate 5 is prepared in such a way that a sodium hydroxide solution is added to nickel sulfate and cobalt sulfate to form a nickel cobalt complex oxide having specified particle size and shape of fine crystal particles, then the composite oxide is mixed with sodium hydroxide, then crushed with a ball mill to primary particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池およびその正極活物質の製造法に関するものであり、
特にその電池特性改善に関するものである。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery and a method for producing a positive electrode active material thereof,
In particular, it relates to the improvement of battery characteristics.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急激に進んでいる。現在、これら電子機
器の駆動用電源としての役割を、ニッケルーカドミウム
電池あるいは密閉型小型鉛蓄電池が担っているが、ポー
タブル化、コードレス化が進展し、定着するにしたが
い、駆動用電源となる二次電池の高エネルギー密度化、
小型軽量化の要望が強くなっている。
2. Description of the Related Art In recent years, portable electronic devices have become more portable.
Cordless use is rapidly progressing. At present, nickel-cadmium batteries or sealed small lead-acid batteries play a role as driving power sources for these electronic devices, but as they become more portable and cordless, they become the driving power sources. Higher energy density of secondary battery,
The demand for smaller and lighter is increasing.

【0003】また、近年は携帯電話用の電源として注目
されており、急速な市場の拡大と共に、通話時間の長期
化、サイクル寿命の改善への要望は非常に大きいものと
なっている。
Further, in recent years, it has attracted attention as a power source for portable telephones, and along with the rapid expansion of the market, there is a great demand for extending the call duration and improving the cycle life.

【0004】このような状況から、高い充放電電圧を示
すリチウム複合遷移金属酸化物例えばLiCoO2(例
えば特開昭63−59507公報)や、さらに高容量を
目指したLiNiO2(例えば米国特許第430251
8号)、複数の金属元素とリチウムの複合酸化物(例え
ばLiyNixCo1-xO2 :特開昭63−299056号
公報、LixMyNzO2(但し、MはFe、Co、Niの
中から選ばれた少なくとも一種で、NはTi,V,C
r,Mnの中から選ばれた少なくとも一種):特開平4
3−267053号公報)を正極活物質に用い、リチウ
ムイオンの挿入、離脱を利用した非水電解液二次電池が
提案されている。
Under these circumstances, lithium composite transition metal oxides exhibiting a high charge / discharge voltage such as LiCoO 2 (for example, JP-A-63-59507) and LiNiO 2 aiming at higher capacity (for example, US Pat. No. 4,302,251).
At least one Japanese 63-299056 JP, LixMyNzO 2 (where, M is selected Fe, Co, from among Ni: 8 No.), a composite oxide of a plurality of metal elements lithium (e.g. LiyNixCo1-xO 2 And N is Ti, V, C
(At least one selected from r and Mn):
No. 3-267053) has been proposed as a positive electrode active material, and a non-aqueous electrolyte secondary battery utilizing insertion and removal of lithium ions has been proposed.

【0005】また、正極活物質の物性についても、例え
ば平均粒径(特開平1−304664号公報、特開平6
−243897号公報、特開平6−290783号公
報、特開平7−114942号公報)や形状(特開平6
−267539号公報、特開平7−37576号公報)
についての改善法が提案されている。
Regarding the physical properties of the positive electrode active material, for example, the average particle size (Japanese Patent Laid-Open No. 1-304664 and Japanese Laid-Open Patent Publication No. 6-264).
No. 243897, Japanese Patent Laid-Open No. 6-290783, Japanese Patent Laid-Open No. 7-114942)
(JP-A-267539, JP-A-7-37576)
An improved method for is proposed.

【0006】[0006]

【発明が解決しようとする課題】しかし、これまで報告
されているLiNiO2を正極活物質に用いた非水電解
液二次電池では、充放電サイクルを繰り返し行う事によ
り、その電池放電容量が徐々に減少するサイクル劣化の
問題が明かとなった。
However, in the non-aqueous electrolyte secondary battery using LiNiO 2 as the positive electrode active material, which has been reported so far, the battery discharge capacity is gradually increased by repeating the charge / discharge cycle. It became clear that the problem of cycle deterioration, which decreased to zero, was found.

【0007】本発明者らが、十分検討を重ねた結果、こ
のような特性劣化は以下のことが原因であることが解っ
た。
As a result of thorough investigations by the present inventors, it has been found that such characteristic deterioration is caused by the following.

【0008】サイクル劣化した電池を分解し、極板のX
線分析を行った結果、充放電サイクルを繰り返した正極
板では、正極活物質の結晶構造が著しく変化しているこ
とが判明した。
Disassemble the cycle-degraded battery,
As a result of the line analysis, it was found that the crystal structure of the positive electrode active material was remarkably changed in the positive electrode plate which was repeatedly charged and discharged.

【0009】LiNiO2は電池の充放電にともない、
その格子定数が変化する事が報告されており、(S.Yama
da, M.Fujiwara and M.Kanda, J. Power Source , 54,
209(1995))a軸、c軸共に膨張収縮が大きい事が知ら
れている。
LiNiO 2 is used as the battery is charged and discharged,
It has been reported that the lattice constant changes (S.Yama
da, M. Fujiwara and M. Kanda, J. Power Source, 54,
209 (1995)) It is known that expansion and contraction are large on both the a-axis and the c-axis.

【0010】このように充放電サイクルを繰り返す事に
よって活物質が膨張、収縮し、結晶構造のアモルファス
化や、粒子の微細化、活物質の極板からの脱落が生じ、
充放電に関与できる活物質量が減少した事が原因である
事が明かとなった。
By repeating the charge / discharge cycle in this manner, the active material expands and contracts, the crystal structure becomes amorphous, the particles become finer, and the active material falls off from the electrode plate.
It became clear that the cause was a decrease in the amount of active material that could be involved in charging and discharging.

【0011】このような課題に対し、Niの一部を他の
金属に置換したリチウム含有複合金属酸化物であれば、
結晶構造の変化が緩和され、良好なサイクル特性を示し
た。
In order to solve such problems, a lithium-containing composite metal oxide in which a part of Ni is replaced with another metal,
The change in crystal structure was relaxed, and good cycle characteristics were exhibited.

【0012】しかし、このようにNiの一部を他の金属
元素に置換した活物質は、サイクル特性が向上する一
方、放電容量が小さくなると共に、放電電圧が低くな
り、特に大電流を流す高率放電時に放電容量が著しく低
下する問題があった。
[0012] However, the active material obtained by substituting a part of Ni with another metal element as described above has improved cycle characteristics, while the discharge capacity becomes smaller, and the discharge voltage becomes lower, especially when a high current is passed. There was a problem that the discharge capacity was remarkably reduced during the rate discharge.

【0013】また、高率放電特性を向上させるために活
物質の微粒子化を検討したところ、電池極板への充填性
が著しく低下し、電池容量そのものが低下してしまう問
題があった。
Further, as a result of studying finer particles of the active material in order to improve the high rate discharge characteristics, there was a problem that the filling property into the battery electrode plate was remarkably reduced and the battery capacity itself was reduced.

【0014】本発明の目的は、上記した従来の正極に関
する問題点の解決を図るものであり、より良い正極活物
質を提供し、且つ、特定の正極活物質の粒径、粒子形
状、充填方法を用いる事によって、充放電特性の優れた
非水電解液二次電池を提供する事である。
An object of the present invention is to solve the above-mentioned problems relating to the conventional positive electrode, to provide a better positive electrode active material, and to determine the particle size, particle shape and filling method of a specific positive electrode active material. Is to provide a non-aqueous electrolyte secondary battery having excellent charge / discharge characteristics.

【0015】[0015]

【課題を解決するための手段】このような問題を解決す
るために、我々はLiNiO2のNiの一部を他の金属
元素で置換すると共に、正極活物質の粒子の大きさ、形
状、極板構成時の活物質の充填方法について更に鋭意検
討を行った。この結果、これらの因子を制御する事によ
り、高容量で、且つサイクル特性、高率放電特性の良好
な電池を実現するに至ったものである。
[Means for Solving the Problems] In order to solve such a problem, we have substituted a part of Ni of LiNiO 2 with another metal element and made the size, shape, and polarity of particles of the positive electrode active material. Further investigation was conducted on the method of filling the active material in the plate configuration. As a result, by controlling these factors, it has been possible to realize a battery having a high capacity and excellent cycle characteristics and high rate discharge characteristics.

【0016】具体的に本発明は、LiNix1ーx
2(MはCo、Mn、Cr、Fe、V、Alのいずれか
1種類以上、x:1>x≧0.5)を正極活物質とすると共
に、該正極活物質はSEM観察における定方向径(Feret
diameter)が0.1〜2μmの範囲にある微小な結晶粒
子と、微小結晶粒子が多数集合してなる定方向径(Feret
diameter)が2〜20μmの範囲にある二次粒子を混合
した物を正極活物質として用いる物である。
Specifically, the present invention relates to LiNi x M 1-x O
2 (M is one or more of Co, Mn, Cr, Fe, V, and Al, x: 1> x ≧ 0.5) is used as the positive electrode active material, and the positive electrode active material has a unidirectional diameter in SEM observation ( Feret
Fine crystal particles whose diameter is in the range of 0.1 to 2 μm and a large number of micro crystal particles
A mixture of secondary particles having a diameter of 2 to 20 μm is used as the positive electrode active material.

【0017】二次粒子は球状、もしくは楕円球状である
ことが望ましく、また、混合する微小結晶粒子の混合比
率は重量比で5〜50%の範囲であることが望ましい。
The secondary particles are preferably spherical or ellipsoidal, and the mixing ratio of the fine crystal particles to be mixed is preferably in the range of 5 to 50% by weight.

【0018】このような球状の活物質は、原料としてS
EM観察における定方向径(Feret diameter)が0.1〜
2μmの微小結晶粒が多数集合した定方向径が2〜20
μmの範囲にあるNix1ーx(OH)2(MはCo、M
n、Cr、Fe、V、Alのいずれか1種類以上、x:1
>x≧0.5)と、リチウム塩(炭酸リチウムもしくは水酸
化リチウムのいずれか)を混合し、この混合物を熱処理
する事によって得ることができる。
Such a spherical active material is S as a raw material.
The constant diameter (Feret diameter) in EM observation is 0.1 to
2 to 20 unidirectional diameter with a large number of 2 μm fine crystal grains
Ni x M 1-x (OH) 2 in the range of μm (M is Co, M
Any one or more of n, Cr, Fe, V, Al, x: 1
> X ≧ 0.5) and a lithium salt (either lithium carbonate or lithium hydroxide) are mixed and the mixture is heat treated.

【0019】また、混合する微小結晶粒子は、合成した
正極活物質LiNix1ーx2(MはCo、Mn、C
r、Fe、V、Alのいずれか1種類以上、x:1>x≧0.
5)を粉砕するか、もしくは予め粉砕した原料Nix
1ーx(OH)2(MはCo、Mn、Cr、Fe、V、Al
のいずれか1種類以上、x:1>x≧0.5)を二次粒子と混
合した後、リチウム塩(炭酸リチウムもしくは水酸化リ
チウムのいずれか)と混合し、この混合物を熱処理する
事によっても得ることができる。
Further, fine crystal grains to be mixed is synthesized positive electrode active material LiNi x M 1 over x O 2 (M is Co, Mn, C
Any one or more of r, Fe, V, and Al, x: 1> x ≧ 0.
Raw material Ni x M obtained by crushing 5) or crushing in advance
1-x (OH) 2 (M is Co, Mn, Cr, Fe, V, Al
It is also obtained by mixing at least one of the above, x: 1> x ≧ 0.5) with secondary particles, then mixing with a lithium salt (either lithium carbonate or lithium hydroxide), and subjecting this mixture to heat treatment. be able to.

【0020】なお、粒子径の測定法として、SEM観察
における定方向径(Feret diameter)を
採用しており、これはSEM写真において様々な方向を
向いた粒子の径をある一定方向から読みとり、平均した
物である。(参考文献:粉体工学の基礎 p.285
(日刊工業新聞社編))
As a method for measuring the particle diameter, a finite diameter (Ferret diameter) in SEM observation is adopted. This is the average diameter of particles in various directions in a SEM photograph read from a certain direction. It is a thing. (Reference: Basics of Powder Engineering p.285
(Edited by Nikkan Kogyo Shimbun))

【0021】[0021]

【発明の実施の形態】本発明による正極活物質を用いた
場合、SEM観察における定方向径が0.1〜2μmと
非常に小さい微小な結晶粒子が一次粒子である正極活物
質を用いることによって正極活物質粒子と電解液との接
触面積を大きくし、高率放電時の分極の増大の原因であ
ったLiイオンの界面濃度の減少を改善すると共に、二
次粒子と微小結晶粒子を混合することによって、二次粒
子間に生じる空間部分に微小結晶粒子が充填され、粒子
間の電気的電導性を向上させると共に、極板における活
物質の充填性を著しく向上することが可能となったもの
である。
BEST MODE FOR CARRYING OUT THE INVENTION When the positive electrode active material according to the present invention is used, by using the positive electrode active material in which fine crystal particles having a small unidirectional diameter of 0.1 to 2 μm in SEM observation are primary particles, Increasing the contact area between the positive electrode active material particles and the electrolytic solution to improve the decrease in the interfacial concentration of Li ions, which was the cause of the increase in polarization during high-rate discharge, and to mix the secondary particles and the microcrystalline particles. As a result, the space between the secondary particles is filled with microcrystalline particles, which makes it possible to improve the electrical conductivity between the particles and significantly improve the filling property of the active material in the electrode plate. Is.

【0022】本発明における正極活物質の概念図を図1
に示した。本発明の方法を用いれば、例えばレーザー粒
度分布計を用いて本発明の正極活物質を測定すると、粒
度分布は2つのピークを持つことがわかる。
FIG. 1 is a conceptual diagram of the positive electrode active material in the present invention.
It was shown to. When the method of the present invention is used to measure the positive electrode active material of the present invention using, for example, a laser particle size distribution meter, it can be seen that the particle size distribution has two peaks.

【0023】言うまでもなく、この2つのピークの粒径
の大きい側の粒子は、二次粒子の粒径であり、粒径の小
さい側のピークは添加された微細な結晶粒子の粒径であ
る。
Needless to say, the particle on the larger particle size side of these two peaks is the particle size of the secondary particle, and the peak on the smaller particle size side is the particle size of the added fine crystalline particles.

【0024】このような効果は、例えば特開平6-26
7539号公報や特開平1-304664号公報、特開
平6-243897号公報、特開平7−37576号公
報のように単に活物質の形状や、粒径を限定するだけで
は得られない。
Such an effect can be obtained by, for example, Japanese Patent Laid-Open No. 6-26.
It cannot be obtained simply by limiting the shape or particle size of the active material as in JP-A-7539, JP-A-1-304664, JP-A-6-243897 and JP-A-7-37576.

【0025】[0025]

【実施例1】以下、本発明の実施例を図面を参照にしな
がら説明する。
Embodiment 1 An embodiment of the present invention will be described below with reference to the drawings.

【0026】図2に本実施例1で用いた円筒系電池の縦
断面図を示す。図2において1は耐有機電解液性のステ
ンレス鋼板を加工した電池ケース、2は安全弁を設けた
封口板、3は絶縁パッキングを示す。4は極板群であ
り、正極板5および負極板6がセパレータ7を介して複
数回渦巻状に巻回されてケース内に収納されている。そ
して上記正極板5からは正極アルミリード5aが引き出
されて封口板2に接続され、負極板6からは負極ニッケ
ルリード6aが引き出されて電池ケース1の底部に接続
されている。8は絶縁リングで極板群4の上下部にそれ
ぞれ設けられている。
FIG. 2 shows a vertical sectional view of the cylindrical battery used in the first embodiment. In FIG. 2, reference numeral 1 is a battery case formed by processing an organic electrolytic solution resistant stainless steel plate, 2 is a sealing plate provided with a safety valve, and 3 is an insulating packing. Reference numeral 4 denotes an electrode plate group, in which the positive electrode plate 5 and the negative electrode plate 6 are spirally wound a plurality of times via the separator 7 and housed in the case. A positive electrode aluminum lead 5a is drawn out from the positive electrode plate 5 and connected to the sealing plate 2, and a negative electrode nickel lead 6a is drawn out from the negative electrode plate 6 and connected to the bottom of the battery case 1. Reference numeral 8 denotes an insulating ring provided on the upper and lower portions of the electrode plate group 4, respectively.

【0027】以下、負極板6、電解液等について詳しく
説明する。負極板6は、コークスを加熱処理した炭素粉
100重量部に、スチレンーブタジエンゴム系結着剤を
混合し、カルボキシメチルセルロース水溶液に懸濁させ
てペースト状にした。そしてこのペーストを厚さ0.0
15mmの銅箔の表面に塗着し、乾燥後厚み0.2m
m、幅37mm、長さ300mmの負極板を作成した。
The negative electrode plate 6, the electrolytic solution and the like will be described in detail below. The negative electrode plate 6 was made into a paste by mixing 100 parts by weight of carbon powder obtained by heat-treating coke with a styrene-butadiene rubber-based binder and suspending it in an aqueous carboxymethylcellulose solution. Then paste this paste to a thickness of 0.0
0.2m thickness after coating on the surface of 15mm copper foil and drying
A negative electrode plate having m, a width of 37 mm and a length of 300 mm was prepared.

【0028】以下、正極活物質の合成法について詳しく
説明する。硫酸ニッケル、硫酸コバルト、水酸化ナトリ
ウム溶液を用い、硫酸ニッケル溶液、硫酸コバルト溶液
を一定流量で容器内に導入し、十分攪拌しながら、水酸
化ナトリウム溶液を添加した。
The method of synthesizing the positive electrode active material will be described in detail below. Using a nickel sulfate, cobalt sulfate, and sodium hydroxide solution, the nickel sulfate solution and the cobalt sulfate solution were introduced into the container at a constant flow rate, and the sodium hydroxide solution was added with sufficient stirring.

【0029】水酸化ナトリウムの添加量を変化させるこ
とによって種々の粒径を持つニッケルーコバルト複合水
酸化物が得られた。
By varying the amount of sodium hydroxide added, nickel-cobalt composite hydroxides having various particle sizes were obtained.

【0030】生成した沈澱物を、水洗、乾燥し種々の粒
径を持つニッケルーコバルト複合水酸化物を得た。
The precipitate formed was washed with water and dried to obtain nickel-cobalt composite hydroxides having various particle sizes.

【0031】得られたニッケルーコバルト複合水酸化物
の化学組成は、すべてNi0.85Co0.15(OH)2であ
った。
The chemical compositions of the obtained nickel-cobalt composite hydroxides were all Ni 0.85 Co 0.15 (OH) 2 .

【0032】本実施例の方法で作成したニッケルーコバ
ルト複合水酸化物は、SEM写真より定方向径の測定を
行った結果、0.1〜2μmの範囲にある微小な結晶粒
子(一次粒子)が多数集合してなる球状の二次粒子であ
り、二次粒子の定方向径はそれぞれ0.5、2.0、
5.0、10、20、30μmであった。
The nickel-cobalt composite hydroxide prepared by the method of this example was measured for its directional diameter from SEM photographs, and as a result, fine crystal particles (primary particles) in the range of 0.1 to 2 μm were obtained. Are spherical secondary particles composed of a large number of particles, and the unidirectional diameters of the secondary particles are 0.5, 2.0,
It was 5.0, 10, 20, 30 μm.

【0033】得られたニッケルーコバルト複合水酸化物
を水酸化リチウムと混合し、酸化雰囲気下において70
0℃で10時間焼成してLiNi0.85Co0.152を合
成した。
The nickel-cobalt composite hydroxide thus obtained was mixed with lithium hydroxide, and the mixture was heated in an oxidizing atmosphere to 70%.
LiNi 0.85 Co 0.15 O 2 was synthesized by firing at 0 ° C. for 10 hours.

【0034】得られたリチウム複合ニッケルーコバルト
酸化物のSEM写真を図3に示す。合成されたリチウム
複合ニッケルーコバルト酸化物は、SEM観察における
定方向径が0.1〜2μmの範囲にある微小な結晶粒子
が多数集合してなる定方向径がそれぞれ0.51、2.
53、5.04、10.1、20.7、30.5μmの
球状の二次粒子として得られ、原料であるニッケルーコ
バルト複合水酸化物の形状をほぼ維持しており、合成時
にリチウムがニッケルーコバルト複合水酸化物の形状を
変える事なく内部に拡散し、反応が進行している事が確
認できた。
An SEM photograph of the obtained lithium composite nickel-cobalt oxide is shown in FIG. The synthesized lithium composite nickel-cobalt oxide has a unidirectional diameter of 0.51, 2 ,.
It was obtained as spherical secondary particles of 53, 5.04, 10.1, 20.7, 30.5 μm, and the shape of the nickel-cobalt composite hydroxide as the raw material was almost maintained, and lithium was It was confirmed that the nickel-cobalt composite hydroxide diffused inside without changing the shape and the reaction proceeded.

【0035】以上の合成方法によって得られたリチウム
複合ニッケルーコバルト酸化物それぞれを重量比率で
0、5、20、50、70、100%分だけ抽出し、そ
れぞれ一次粒子になるまでボールミルで粉砕した後、未
粉砕物と混合した。
Each of the lithium composite nickel-cobalt oxides obtained by the above synthesis method was extracted in a weight ratio of 0, 5, 20, 50, 70, and 100%, and pulverized by a ball mill until it became primary particles. Then, it was mixed with the unground material.

【0036】以上の方法により,合計36種類の正極活
物質を合成した。以後、正極板の製造法を説明する。
A total of 36 kinds of positive electrode active materials were synthesized by the above method. Hereinafter, a method for manufacturing the positive electrode plate will be described.

【0037】正極板は、まず正極活物質であるLiNi
0.85Co0.152の粉末100重量部に、アセチレンブ
ラック3重量部、フッ素樹脂系結着剤5重量部を混合
し、N−メチルピロリドン溶液に懸濁させてペースト状
にする。このペーストを厚さ0.020mmのアルミ箔
の両面に塗着し、乾燥後厚み0.130mm、幅35m
m、長さ270mmの正極板5を作成した。
The positive electrode plate is made of LiNi which is a positive electrode active material.
100 parts by weight of 0.85 Co 0.15 O 2 powder is mixed with 3 parts by weight of acetylene black and 5 parts by weight of a fluororesin-based binder and suspended in an N-methylpyrrolidone solution to form a paste. This paste is applied to both sides of an aluminum foil having a thickness of 0.020 mm, and after drying, the thickness is 0.130 mm and the width is 35 m.
A positive electrode plate 5 having a length of m and a length of 270 mm was prepared.

【0038】そして正極板と負極板を、セパレータを介
して渦巻き状に巻回し、直径13.8mm、高さ50m
mの電池ケース内に収納した。
Then, the positive electrode plate and the negative electrode plate are spirally wound with a separator interposed therebetween to have a diameter of 13.8 mm and a height of 50 m.
It was stored in the m battery case.

【0039】電解液には炭酸エチレンと炭酸エチルメチ
ルの等容積混合溶媒に、六フッ化リン酸リチウム1モル
/lの割合で溶解したものを用いて極板群4に注入した
後、電池を密封口し、試験電池とした。
An electrolytic solution prepared by dissolving a mixed solvent of ethylene carbonate and ethyl methyl carbonate in an equal volume at a ratio of 1 mol / l of lithium hexafluorophosphate was injected into the electrode plate group 4, and then the battery was charged. It was sealed and used as a test battery.

【0040】(表1)に本実施例1で試作した各正極活
物質に該当する試験電池番号を表記した。
In Table 1, the test battery numbers corresponding to the positive electrode active materials produced in Example 1 are shown.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【実施例2】第2実施例として、ニッケルーマンガン複
合水酸化物を製造する塩水溶液として硫酸ニッケルと硫
酸マンガン、水酸化ナトリウム溶液を用いて実施例1と
同様にニッケルーマンガン複合水酸化物を生成した。
Example 2 As a second example, a nickel-manganese composite hydroxide was prepared in the same manner as in Example 1 except that nickel sulfate, manganese sulfate and sodium hydroxide solution were used as an aqueous salt solution for producing the nickel-manganese composite hydroxide. Was generated.

【0043】得られたニッケルーマンガン複合水酸化物
は、SEM写真より定方向径の測定を行った結果、0.
1〜2μmの範囲にある微小な結晶粒子が多数集合して
なる球状の二次粒子であり、二次粒子の定方向径は5.
0μmであった。
The obtained nickel-manganese composite hydroxide was measured for its unidirectional diameter from an SEM photograph, and as a result,
It is a spherical secondary particle composed of a large number of fine crystal particles in the range of 1 to 2 μm, and the unidirectional diameter of the secondary particle is 5.
It was 0 μm.

【0044】得られたニッケルーマンガン複合水酸化物
を水酸化リチウムと混合し、酸化雰囲気下において70
0℃で10時間焼成してLiNi0.85Mn0.152を合
成した。
The obtained nickel-manganese composite hydroxide was mixed with lithium hydroxide and heated in an oxidizing atmosphere to 70%.
LiNi 0.85 Mn 0.15 O 2 was synthesized by firing at 0 ° C. for 10 hours.

【0045】合成されたリチウム複合ニッケルーマンガ
ン酸化物は、SEM観察における定方向径が0.1〜2
μmの範囲にある微小な結晶粒子が多数集合してなる定
方向径がそれぞれ5.2μmの球状の二次粒子が得られ
た。
The synthesized lithium composite nickel-manganese oxide has a unidirectional diameter of 0.1 to 2 in SEM observation.
Spherical secondary particles each having a fixed diameter of 5.2 μm were obtained by aggregating a large number of fine crystal particles in the range of μm.

【0046】以上の合成方法によって得られたリチウム
複合ニッケルーマンガン酸化物を重量比率で20%分だ
け抽出し、一次粒子になるまでボールミルで粉砕した
後、未粉砕物と混合し正極活物質とし、実施例1と同様
に電池を作成した。上記実施例2における電池を電池3
7とした。
20% by weight of the lithium composite nickel-manganese oxide obtained by the above synthesis method was extracted, crushed by a ball mill until it became primary particles, and then mixed with an uncrushed material to obtain a positive electrode active material. A battery was prepared in the same manner as in Example 1. The battery in Example 2 was replaced with battery 3.
7 was set.

【0047】[0047]

【実施例3】第3実施例として、ニッケルークロム複合
水酸化物を製造する塩水溶液として硫酸ニッケルと硫酸
クロム、水酸化ナトリウム溶液を用いて実施例1と同様
にニッケルークロム複合水酸化物を生成した。
Third Embodiment As a third embodiment, a nickel-chromium composite hydroxide is prepared in the same manner as in the first embodiment by using nickel sulfate, chromium sulfate and sodium hydroxide solution as an aqueous salt solution for producing the nickel-chromium composite hydroxide. Was generated.

【0048】得られたニッケルークロム複合水酸化物
は、SEM写真より定方向径の測定を行った結果、0.
1〜2μmの範囲にある微小な結晶粒子が多数集合して
なる球状の二次粒子であり、二次粒子の定方向径は5.
0μmであった。
The nickel-chromium composite hydroxide thus obtained was measured for its directional diameter from an SEM photograph, and as a result,
It is a spherical secondary particle composed of a large number of fine crystal particles in the range of 1 to 2 μm, and the unidirectional diameter of the secondary particle is 5.
It was 0 μm.

【0049】得られたニッケルークロム複合水酸化物を
水酸化リチウムと混合し、酸化雰囲気下において700
℃で10時間焼成してLiNi0.85Cr0.152を合成
した。
The nickel-chromium composite hydroxide thus obtained was mixed with lithium hydroxide, and the mixture was heated to 700 in an oxidizing atmosphere.
LiNi 0.85 Cr 0.15 O 2 was synthesized by firing at 10 ° C. for 10 hours.

【0050】合成されたリチウム複合ニッケルークロム
酸化物は、SEM観察における定方向径が0.1〜2μ
mの範囲にある微小な結晶粒子が多数集合してなる定方
向径がそれぞれ5.4μmの球状の二次粒子が得られ
た。
The synthesized lithium composite nickel-chromium oxide has a unidirectional diameter of 0.1 to 2 μm in SEM observation.
Spherical secondary particles each having a unidirectional diameter of 5.4 μm were obtained, in which a large number of fine crystal particles in the range of m were aggregated.

【0051】以上の合成方法によって得られたリチウム
複合ニッケルークロム酸化物を重量比率で20%分だけ
抽出し、一次粒子になるまでボールミルで粉砕した後、
未粉砕物と混合し正極活物質とし、実施例1と同様に電
池を作成した。上記実施例3における電池を電池38と
した。
The lithium composite nickel-chromium oxide obtained by the above synthesis method was extracted in a weight ratio of 20% and pulverized by a ball mill until it became primary particles.
A battery was prepared in the same manner as in Example 1 by mixing with an unpulverized product to obtain a positive electrode active material. The battery in Example 3 was referred to as Battery 38.

【0052】[0052]

【実施例4】第4実施例として、ニッケルー鉄複合水酸
化物を製造する塩水溶液として硫酸ニッケルと硫酸鉄、
水酸化ナトリウム溶液を用いて実施例1と同様にニッケ
ルー鉄複合水酸化物を生成した。
[Fourth Embodiment] As a fourth embodiment, nickel sulfate and iron sulfate as a salt aqueous solution for producing a nickel-iron composite hydroxide,
A nickel-iron composite hydroxide was produced in the same manner as in Example 1 using a sodium hydroxide solution.

【0053】得られたニッケルー鉄複合水酸化物は、S
EM写真より定方向径の測定を行った結果、0.1〜2
μmの範囲にある微小な結晶粒子が多数集合してなる球
状の二次粒子であり、二次粒子の定方向径は5.0μm
であった。
The obtained nickel-iron composite hydroxide is S
As a result of measuring the unidirectional diameter from the EM photograph, 0.1-2
It is a spherical secondary particle composed of a large number of fine crystal particles in the range of μm, and the unidirectional diameter of the secondary particle is 5.0 μm.
Met.

【0054】得られたニッケルー鉄複合水酸化物を水酸
化リチウムと混合し、酸化雰囲気下において700℃で
10時間焼成してLiNi0.85Fe0.152を合成し
た。
The obtained nickel-iron composite hydroxide was mixed with lithium hydroxide and calcined in an oxidizing atmosphere at 700 ° C. for 10 hours to synthesize LiNi 0.85 Fe 0.15 O 2 .

【0055】合成されたリチウム複合ニッケルー鉄酸化
物は、SEM観察における定方向径が0.1〜2μmの
範囲にある微小な結晶粒子が多数集合してなる定方向径
がそれぞれ4.9μmの球状の二次粒子が得られた。
The synthesized lithium composite nickel-iron oxide is a sphere having a unidirectional diameter of 4.9 μm, which is a collection of a large number of fine crystal particles having a directional diameter in the range of 0.1 to 2 μm in SEM observation. Secondary particles were obtained.

【0056】以上の合成方法によって得られたリチウム
複合ニッケルー鉄酸化物を重量比率で20%分だけ抽出
し、一次粒子になるまでボールミルで粉砕した後、未粉
砕物と混合し正極活物質とし、実施例1と同様に電池を
作成した。上記実施例4における電池を電池39とし
た。
20% by weight of the lithium composite nickel-iron oxide obtained by the above synthesis method was extracted, crushed by a ball mill until it became primary particles, and then mixed with an uncrushed material to obtain a positive electrode active material. A battery was prepared in the same manner as in Example 1. The battery in Example 4 was used as battery 39.

【0057】[0057]

【実施例5】第5実施例として、ニッケルーバナジウム
複合水酸化物を製造する塩水溶液として硫酸ニッケルと
硫酸バナジウム、水酸化ナトリウム溶液を用いて実施例
1と同様にニッケルーバナジウム複合水酸化物を生成し
た。
Fifth Embodiment As a fifth embodiment, a nickel-vanadium composite hydroxide is used in the same manner as in the first embodiment by using nickel sulfate, vanadium sulfate and sodium hydroxide solution as an aqueous salt solution for producing a nickel-vanadium composite hydroxide. Was generated.

【0058】得られたニッケルーバナジウム複合水酸化
物は、SEM写真より定方向径の測定を行った結果、
0.1〜2μmの範囲にある微小な結晶粒子が多数集合
してなる球状の二次粒子であり、二次粒子の定方向径は
4.8μmであった。
The nickel-vanadium composite hydroxide thus obtained was measured for its unidirectional diameter from an SEM photograph.
It was a spherical secondary particle composed of a large number of fine crystal particles in the range of 0.1 to 2 μm, and the unidirectional diameter of the secondary particle was 4.8 μm.

【0059】得られたニッケルーバナジウム複合水酸化
物を水酸化リチウムと混合し、酸化雰囲気下において7
00℃で10時間焼成してLiNi0.850.152を合
成した。
The nickel-vanadium composite hydroxide obtained was mixed with lithium hydroxide and the mixture was mixed in an oxidizing atmosphere to give 7
LiNi 0.85 V 0.15 O 2 was synthesized by firing at 00 ° C. for 10 hours.

【0060】合成されたリチウム複合ニッケルーバナジ
ウム酸化物は、SEM観察における定方向径が0.1〜
2μmの範囲にある微小な結晶粒子が多数集合してなる
定方向径がそれぞれ5.5μmの球状の二次粒子が得ら
れた。
The synthesized lithium composite nickel-vanadium oxide has a unidirectional diameter of 0.1 to 0.1 in SEM observation.
Spherical secondary particles each having a unidirectional diameter of 5.5 μm were obtained by aggregating a large number of fine crystal particles in the range of 2 μm.

【0061】以上の合成方法によって得られたリチウム
複合ニッケルーバナジウム酸化物を重量比率で20%分
だけ抽出し、一次粒子になるまでボールミルで粉砕した
後、未粉砕物と混合し正極活物質とし、実施例1と同様
に電池を作成した。上記実施例5における電池を電池4
0とした。
20% by weight of the lithium composite nickel-vanadium oxide obtained by the above synthesis method was extracted and crushed by a ball mill until it became primary particles, and then mixed with an uncrushed material to obtain a positive electrode active material. A battery was prepared in the same manner as in Example 1. The battery in Example 5 was replaced with battery 4.
It was set to 0.

【0062】[0062]

【実施例6】第6実施例として、ニッケルーアルミニウ
ム複合水酸化物を製造する塩水溶液として硫酸ニッケル
と硫酸アルミニウム、水酸化ナトリウム溶液を用いて実
施例1と同様にニッケルーアルミニウム複合水酸化物を
生成した。
[Sixth Embodiment] As a sixth embodiment, a nickel-aluminum composite hydroxide is prepared in the same manner as in the first embodiment by using nickel sulfate, aluminum sulfate and sodium hydroxide solution as an aqueous salt solution for producing a nickel-aluminum composite hydroxide. Was generated.

【0063】得られたニッケルーアルミニウム複合水酸
化物は、SEM写真より定方向径の測定を行った結果、
0.1〜2μmの範囲にある微小な結晶粒子が多数集合
してなる球状の二次粒子であり、二次粒子の定方向径は
4.3μmであった。
The nickel-aluminum composite hydroxide thus obtained was measured for its unidirectional diameter from a SEM photograph.
It was a spherical secondary particle formed by aggregating a large number of fine crystal particles in the range of 0.1 to 2 μm, and the unidirectional diameter of the secondary particle was 4.3 μm.

【0064】得られたニッケルーアルミニウム複合水酸
化物を水酸化リチウムと混合し、酸化雰囲気下において
700℃で10時間焼成してLiNi0.85Al0.152
を合成した。
The obtained nickel-aluminum composite hydroxide was mixed with lithium hydroxide and baked at 700 ° C. for 10 hours in an oxidizing atmosphere to obtain LiNi 0.85 Al 0.15 O 2
Was synthesized.

【0065】合成されたリチウム複合ニッケルーアルミ
ニウム酸化物は、SEM観察における定方向径が0.1
〜2μmの範囲にある微小な結晶粒子が多数集合してな
る定方向径がそれぞれ4.4μmの球状の二次粒子が得
られた。
The synthesized lithium composite nickel-aluminum oxide has a unidirectional diameter of 0.1 in SEM observation.
As a result, spherical secondary particles each having a unidirectional diameter of 4.4 μm and obtained by accumulating a large number of fine crystal particles in the range of up to 2 μm were obtained.

【0066】以上の合成方法によって得られたリチウム
複合ニッケルーアルミニム 酸化物を重量比率で20%
分だけ抽出し、一次粒子になるまでボールミルで粉砕し
た後、未粉砕物と混合し正極活物質とし、実施例1と同
様に電池を作成した。上記実施例6における電池を電池
41とした。
20% by weight of the lithium composite nickel-aluminum oxide obtained by the above synthesis method
A battery was prepared in the same manner as in Example 1 by extracting only the amount and pulverizing with a ball mill until it became primary particles, and then mixing with an unpulverized material to obtain a positive electrode active material. The battery in Example 6 was used as the battery 41.

【0067】[0067]

【実施例7】第7実施例として、ニッケルーコバルト−
マンガン複合水酸化物を製造する塩水溶液として硫酸ニ
ッケル、硫酸コバルト、硫酸マンガン、水酸化ナトリウ
ム溶液を用いて実施例1と同様にニッケルーコバルトー
マンガン複合水酸化物を生成した。
[Embodiment 7] As a seventh embodiment, nickel-cobalt-
A nickel-cobalt-manganese composite hydroxide was produced in the same manner as in Example 1 using nickel sulfate, cobalt sulfate, manganese sulfate and sodium hydroxide solution as an aqueous salt solution for producing the manganese composite hydroxide.

【0068】得られたニッケルーコバルトーマンガン複
合水酸化物は、SEM写真より定方向径の測定を行った
結果、0.1〜2μmの範囲にある微小な結晶粒子が多
数集合してなる球状の二次粒子であり、二次粒子の定方
向径は5.7μmであった。
The nickel-cobalt-manganese composite hydroxide thus obtained was measured for its unidirectional diameter from an SEM photograph, and as a result, it was found to be spherical with a large number of fine crystal particles in the range of 0.1 to 2 μm. The particles were secondary particles, and the unidirectional diameter of the secondary particles was 5.7 μm.

【0069】得られたニッケルーコバルトーマンガン複
合水酸化物を水酸化リチウムと混合し、酸化雰囲気下に
おいて700℃で10時間焼成してLiNi0.85Co
0.1Mn0.052を合成した。
The obtained nickel-cobalt-manganese composite hydroxide was mixed with lithium hydroxide and fired at 700 ° C. for 10 hours in an oxidizing atmosphere to obtain LiNi 0.85 Co.
0.1 Mn 0.05 O 2 was synthesized.

【0070】合成されたリチウム複合ニッケルーコバル
トーマンガン酸化物は、SEM観察における定方向径が
0.1〜2μmの範囲にある微小な結晶粒子が多数集合
してなる定方向径がそれぞれ6.3μmの球状の二次粒
子が得られた。
The synthesized lithium composite nickel-cobalt-manganese oxide has a directional diameter of 6.3 μm, each of which is a collection of many fine crystal particles having a directional diameter in the range of 0.1 to 2 μm in SEM observation. Spherical secondary particles of were obtained.

【0071】以上の合成方法によって得られたリチウム
複合ニッケルーコバルトーマンガン酸化物それぞれを重
量比率で0、5、20、50、70、100%分だけ抽
出し、それぞれ一次粒子になるまでボールミルで粉砕し
た後、未粉砕物と混合し正極活物質とし、実施例1と同
様に電池を作成した。上記実施例7における電池をそれ
ぞれ42,43,44,45,46,47とした。
Each of the lithium composite nickel-cobalt-manganese oxides obtained by the above synthesis method was extracted in a weight ratio of 0, 5, 20, 50, 70, 100%, and pulverized with a ball mill until each became primary particles. After that, a non-pulverized material was mixed to obtain a positive electrode active material, and a battery was prepared in the same manner as in Example 1. The batteries in Example 7 were 42, 43, 44, 45, 46 and 47, respectively.

【0072】[0072]

【実施例8】実施例1と同様の方法でSEM観察におけ
る定方向径が5.1μmのニッケルーコバルト複合水酸
化物を生成し、それぞれを重量比率で0、5、20、5
0、70、100%分だけ抽出し、それぞれ一次粒子に
なるまでボールミルで粉砕した後、未粉砕物と混合し
た。
[Embodiment 8] A nickel-cobalt composite hydroxide having a unidirectional diameter of 5.1 μm in SEM observation was produced in the same manner as in Embodiment 1, and the weight ratio of each nickel-cobalt composite hydroxide was 0, 5, 20, 5 respectively.
Only 0, 70 and 100% were extracted, crushed by a ball mill until each became primary particles, and then mixed with an uncrushed material.

【0073】得られたニッケルーコバルト複合水酸化物
を水酸化リチウムと混合し、酸化雰囲気下において70
0℃で10時間焼成してLiNi0.85Co0.152を合
成した。
The nickel-cobalt composite hydroxide thus obtained was mixed with lithium hydroxide, and the mixture was heated in an oxidizing atmosphere to 70%.
LiNi 0.85 Co 0.15 O 2 was synthesized by firing at 0 ° C. for 10 hours.

【0074】合成されたリチウム複合ニッケルーコバル
ト酸化物は、SEM観察における定方向径が0.1〜2
μmの範囲にある微小な結晶粒子が多数集合してなる定
方向径が6.04μmの球状の二次粒子と0.1〜2μm
の範囲にある微小な結晶粒子との混合物として得られ、
原料であるニッケルーコバルト複合水酸化物の形状をほ
ぼ維持しており、合成持にリチウムがニッケルーコバル
ト複合水酸化物の形状を変える事なく内部に拡散し、反
応が進行している事が確認できた。
The synthesized lithium composite nickel-cobalt oxide has a unidirectional diameter of 0.1 to 2 in SEM observation.
0.1-2 μm with spherical secondary particles with a unidirectional diameter of 6.04 μm formed by aggregating many fine crystal particles in the range of μm
Obtained as a mixture with minute crystal particles in the range of
The shape of the nickel-cobalt composite hydroxide, which is the raw material, is almost maintained, and lithium diffuses inside without changing the shape of the nickel-cobalt composite hydroxide during synthesis, and the reaction proceeds. It could be confirmed.

【0075】このようにして得られたリチウム複合ニッ
ケルーコバルト酸化物をそれぞれ正極活物質として用い
る他は実施例1と同様に電池を作成した。
A battery was prepared in the same manner as in Example 1 except that the lithium composite nickel-cobalt oxide thus obtained was used as the positive electrode active material.

【0076】上記実施例8における電池をそれぞれ4
8,49,50,51,52,53とした。
Four batteries were used in the above-mentioned Example 8.
8,49,50,51,52,53.

【0077】[0077]

【実施例9】実施例1と同様の方法でSEM観察におけ
る定方向径が5.1μmのニッケルーコバルト複合水酸
化物を生成し、水酸化リチウムと混合し、酸化雰囲気下
において700℃で10時間焼成してLiNi0.85Co
0.152を合成した。
Example 9 A nickel-cobalt composite hydroxide having a unidirectional diameter of 5.1 μm in SEM observation was produced in the same manner as in Example 1, mixed with lithium hydroxide, and heated at 700 ° C. in an oxidizing atmosphere at 10 ° C. LiNi 0.85 Co after firing for hours
0.15 O 2 was synthesized.

【0078】合成されたリチウム複合ニッケルーコバル
ト酸化物は、SEM観察における定方向径が0.1〜2
μmの範囲にある微小な結晶粒子が多数集合してなる定
方向径が6.04μmの球状の二次粒子が得られた。
The synthesized lithium composite nickel-cobalt oxide has a unidirectional diameter of 0.1 to 2 in SEM observation.
Spherical secondary particles having a unidirectional diameter of 6.04 μm were obtained, in which a large number of fine crystal particles in the range of μm were aggregated.

【0079】このようにして得られたリチウム複合ニッ
ケルーコバルト酸化物を正極活物質として実施例1と同
様にLiNi0.85Co0.152の粉末100重量部に、
アセチレンブラック3重量部、フッソ樹脂系結着剤5重
量部を混合し、N−メチルピロリドン溶液に懸濁させて
ペースト状にする。このペーストを厚さ0.020mm
のアルミ箔の両面に乾燥後の厚みが0.4mmになるよ
うに塗着し、乾燥後ローラープレスによって厚みが0.
130mmになるまで圧延を繰り返した。
The lithium composite nickel-cobalt oxide thus obtained was used as a positive electrode active material in the same manner as in Example 1 with 100 parts by weight of LiNi 0.85 Co 0.15 O 2 powder.
3 parts by weight of acetylene black and 5 parts by weight of a fluorine resin binder are mixed and suspended in an N-methylpyrrolidone solution to form a paste. This paste has a thickness of 0.020 mm
The aluminum foil was coated on both sides so that the thickness after drying was 0.4 mm, and after drying, the thickness was reduced to 0.
Rolling was repeated until it became 130 mm.

【0080】得られた極板の正極活物質はローラープレ
スによって二次粒子のほぼ10%が一次粒子に粉砕さ
れ、二次粒子間の空隙に充填されていることが確認され
た。
It was confirmed that about 10% of the secondary particles of the obtained positive electrode active material of the electrode plate were crushed into primary particles by a roller press and filled in the voids between the secondary particles.

【0081】得られた正極板を用いる他は実施例1と同
様に電池を作成した。上記実施例9における電池を電池
54とした。
A battery was prepared in the same manner as in Example 1 except that the obtained positive electrode plate was used. The battery in Example 9 was used as the battery 54.

【0082】[0082]

【比較例1】比較例1として、定方向径(Feret diamete
r)が5μmの微小な結晶粒子が多数集合してなる二次粒
子の定方向径が15μmのニッケルーコバルト複合水酸
化物を原材料として実施例1と同様にリチウム複合ニッ
ケルーコバルト酸化物を合成した。得られた化合物の化
学組成はLiNi0.85Co0.152であった。
[Comparative Example 1] As Comparative Example 1, a unidirectional diameter (Feret diamete
In the same manner as in Example 1, a lithium composite nickel-cobalt oxide was synthesized using as a raw material a nickel-cobalt composite hydroxide having a unidirectional diameter of 15 μm of secondary particles formed by aggregating a large number of fine crystal particles having r) of 5 μm. did. The chemical composition of the obtained compound was LiNi 0.85 Co 0.15 O 2 .

【0083】合成されたリチウム複合ニッケルーコバル
ト酸化物は、SEM観察における定方向径が5.2μm
の微小な結晶粒子が多数集合してなる定方向径がそれぞ
れ17μmの球状の二次粒子として得られた。
The synthesized lithium composite nickel-cobalt oxide had a unidirectional diameter of 5.2 μm in SEM observation.
Was obtained as spherical secondary particles each having a unidirectional diameter of 17 μm and formed by aggregating a large number of fine crystal particles.

【0084】以上の合成方法によって得られたリチウム
複合ニッケルーコバルト酸化物それぞれを重量比率で2
0%分だけ抽出し、それぞれ一次粒子になるまでボール
ミルで粉砕した後、未粉砕物と混合した。
Each of the lithium composite nickel-cobalt oxides obtained by the above-mentioned synthesis method was mixed in a weight ratio of 2
Only 0% was extracted, crushed by a ball mill until each became primary particles, and then mixed with an uncrushed material.

【0085】上記の方法で得られた活物質を用いる他は
実施例1と同様に電池を作成した。上記比較例1におけ
る電池を電池55とした。
A battery was prepared in the same manner as in Example 1 except that the active material obtained by the above method was used. The battery in Comparative Example 1 was designated as Battery 55.

【0086】[0086]

【比較例2】比較例2として、粒子の形状が塊状である
ニッケルーコバルト複合水酸化物を原材料として実施例
1と同様にリチウム複合ニッケルーコバルト酸化物を合
成した。得られたニッケルーコバルト複合水酸化物の化
学組成はLiNi0.85Co0. 152であった。
[Comparative Example 2] As Comparative Example 2, a lithium composite nickel-cobalt oxide was synthesized in the same manner as in Example 1 using a nickel-cobalt composite hydroxide having a lumpy particle shape as a raw material. Chemical composition of the obtained nickel-cobalt composite hydroxide was LiNi 0.85 Co 0. 15 O 2.

【0087】合成されたリチウム複合ニッケルーコバル
ト酸化物は、SEM観察における定方向径が16μmの
塊状の粒子として得られた。
The synthesized lithium composite nickel-cobalt oxide was obtained as agglomerated particles having a unidirectional diameter of 16 μm in SEM observation.

【0088】重量比率で20%分だけ抽出し、それぞれ
ボールミルで粉砕した後、未粉砕物と混合した。
20% by weight was extracted, and each was crushed by a ball mill and then mixed with an uncrushed material.

【0089】上記の方法で得られた以上の合成方法によ
って得られたリチウム複合ニッケルーコバルト酸化物を
正極活物質として用いる他は実施例1と同様に電池を作
成した。
A battery was prepared in the same manner as in Example 1 except that the lithium composite nickel-cobalt oxide obtained by the above-mentioned synthesis method obtained by the above method was used as the positive electrode active material.

【0090】上記比較例2における電池を電池56とし
た。
The battery of Comparative Example 2 was used as battery 56.

【0091】[0091]

【比較例3】比較例3として、定方向径(Feret diamete
r)が1μmの微小な結晶粒子が多数集合してなる二次粒
子の定方向径が15μmの球状水酸化ニッケルを原材料
として実施例1と同様にリチウム複合ニッケル酸化物を
合成した。得られたリチウム複合ニッケル酸化物の化学
組成はLiNiO2であった。
[Comparative Example 3] As Comparative Example 3, a unidirectional diameter (Feret diamete
A lithium composite nickel oxide was synthesized in the same manner as in Example 1 using spherical nickel hydroxide having a regular diameter of 15 μm of secondary particles formed by aggregating a large number of fine crystal particles having r) of 1 μm as the raw material. The chemical composition of the obtained lithium composite nickel oxide was LiNiO 2 .

【0092】合成されたリチウム複合ニッケル酸化物
は、SEM観察における定方向径が1.2μmの微小な
結晶粒子が多数集合してなる定方向径がそれぞれ16μ
mの球状の二次粒子として得られた。
The synthesized lithium composite nickel oxide has a unidirectional diameter of 16 μm, which is a collection of a large number of fine crystal particles having a unidirectional diameter of 1.2 μm in SEM observation.
Obtained as spherical secondary particles of m.

【0093】以上の合成方法によって得られたリチウム
複合ニッケル酸化物それぞれを重量比率で20%分だけ
抽出し、それぞれ一次粒子になるまでボールミルで粉砕
した後、未粉砕物と混合した。
20% by weight of each of the lithium composite nickel oxides obtained by the above synthesis method was extracted, pulverized with a ball mill to form primary particles, and then mixed with an unpulverized product.

【0094】上記の方法で得られた活物質を用いる他は
実施例1と同様に電池を作成した。上記比較例1におけ
る電池を電池57とした。
A battery was prepared in the same manner as in Example 1 except that the active material obtained by the above method was used. The battery in Comparative Example 1 was designated as Battery 57.

【0095】このようにして作成した電池1〜57を2
0℃、充電終止電圧4.2V、放電終止電圧2.5V、
500mAで充放電を繰り返し行い、サイクル充放電試
験を行った。
Two batteries 1 to 57 thus prepared are used.
0 ℃, charge end voltage 4.2V, discharge end voltage 2.5V,
The charging / discharging was repeated at 500 mA to perform a cycle charging / discharging test.

【0096】本発明の実施例および比較例の電池のサイ
クル試験結果を表2〜6に示す。尚、電池1〜57はそ
れぞれ30個組み立てて試験を行い、(表2)〜(表
6)には平均値を示した。
Tables 2 to 6 show the cycle test results of the batteries of Examples and Comparative Examples of the present invention. In addition, 30 batteries each were assembled and tested, and the average values are shown in (Table 2) to (Table 6).

【0097】[0097]

【表2】 [Table 2]

【0098】[0098]

【表3】 [Table 3]

【0099】[0099]

【表4】 [Table 4]

【0100】[0100]

【表5】 [Table 5]

【0101】[0101]

【表6】 [Table 6]

【0102】実施例1の試験結果(表2)より、二次粒
子径が2μmよりも小さい活物質を用いた場合(電池1
〜6)、粉砕によって得られた微小結晶粒子を添加する
ことで若干の放電容量の向上が認められるものの、放電
容量が全て500mAh以下と小さく好ましくない。
From the test results of Example 1 (Table 2), the case where the active material having the secondary particle diameter smaller than 2 μm was used (Battery 1
6), although the discharge capacity is slightly improved by adding the fine crystal particles obtained by pulverization, the discharge capacity is not more than 500 mAh or less, which is not preferable.

【0103】これは、二次粒子の粒径が2μm以下と小
さく、添加されている微小結晶粒子と差がないため粒子
間の空隙を充填する効果がほとんど得られなかった為で
ある。
This is because the particle size of the secondary particles was as small as 2 μm or less and there was no difference from the added fine crystal particles, so that the effect of filling voids between particles was hardly obtained.

【0104】これに対し、二次粒子径が2μm以上の電
池7〜30では粉砕によって得られた微小結晶粒子を添
加することによって、二次粒子間の空隙が活物質で充填
され、更に電子伝導経路も確保されるため、500mA
の高率放電においても550mAh以上の大きい放電容
量が得られた。
On the other hand, in the batteries 7 to 30 having the secondary particle diameter of 2 μm or more, by adding the fine crystalline particles obtained by pulverization, the voids between the secondary particles are filled with the active material, and the electron conduction is further increased. Since the route is secured, 500mA
A high discharge capacity of 550 mAh or more was obtained even in the high rate discharge of.

【0105】また、粒子間の空隙が少ないために、充放
電サイクルにともない活物質が微細化しても伝導経路が
ある程度保持されるため、良好なサイクル特性が得られ
た。
Further, since there are few voids between the particles, the conduction path is maintained to some extent even if the active material is miniaturized with the charge / discharge cycle, so that good cycle characteristics are obtained.

【0106】しかし、二次粒子径が30μmと大きい場
合(電池31〜36)、初期では大きな放電容量が確保
されるが、充放電サイクルにともない、二次粒子が破壊
され、活物質が電極から脱落し、放電容量は著しく減少
した。
However, when the secondary particle size is as large as 30 μm (Batteries 31 to 36), a large discharge capacity is secured in the initial stage, but the secondary particles are destroyed with charge / discharge cycles, and the active material is removed from the electrode. It dropped out, and the discharge capacity was significantly reduced.

【0107】このように、二次粒子の粒径はSEM観察
における定方向径20μm以下であることが望ましい。
As described above, the particle diameter of the secondary particles is preferably 20 μm or less in the unidirectional diameter in SEM observation.

【0108】実施例1で示された同様の効果がNiの一
部をMn、Cr、Fe、V、Alで置換した実施例2〜
6の場合(電池37〜41)でも得られ、高容量で良好
なサイクル特性が得られた。
The same effect as shown in Example 1 is obtained by replacing a part of Ni with Mn, Cr, Fe, V and Al.
In the case of No. 6 (Batteries 37 to 41), it was obtained, and a high capacity and good cycle characteristics were obtained.

【0109】Niの一部を1種類以上の金属(例えば実
施例7ではCo,Mn)で置換しても、本発明の範囲に
ある電池43,44,45では高容量で良好なサイクル
特性が実現できる。
Even if a part of Ni is replaced with one or more kinds of metals (for example, Co and Mn in Example 7), the batteries 43, 44 and 45 within the scope of the present invention have high capacity and good cycle characteristics. realizable.

【0110】本実施例では、CoとMnの組み合わせの
場合のみを示したが、Co,Mn,Cr,Fe,V,A
lの組み合わせであればどの組み合わせでも同様の特性
が得られることが確認された。また、3種類以上の金属
を組み合わせても同様の効果が得られた。
In this embodiment, only the combination of Co and Mn is shown, but Co, Mn, Cr, Fe, V, A
It was confirmed that the same characteristics could be obtained in any combination as long as the combination was 1. Further, the same effect was obtained by combining three or more kinds of metals.

【0111】また、実施例8の電池49,50,51で
示したように、本発明の効果はあらかじめ原料であるニ
ッケル水酸化物の一部を粉砕した後、未粉砕物と混合
し、その後リチウム塩と混合し、リチウム複合酸化物を
合成した場合においても全く同様の効果が得られる。
Further, as shown in the batteries 49, 50 and 51 of Example 8, the effect of the present invention is to crush a part of the nickel hydroxide which is the raw material in advance and then mix it with the uncrushed material, The same effect can be obtained when a lithium composite oxide is synthesized by mixing with a lithium salt.

【0112】本発明において二次粒子の粉砕方法として
ボールミルを用いたが、一般的に適用される粉砕機(例
えばペブルミル、振動ミル、ジェットミル等)を用いて
も同様の効果が得られることは言うまでもない。
In the present invention, the ball mill is used as the method for pulverizing the secondary particles. However, the same effect can be obtained by using a generally applied pulverizer (for example, a pebble mill, a vibration mill, a jet mill, etc.). Needless to say.

【0113】また、実施例9で示したようにあらかじめ
集電体上に活物質を構成した後に、ローラープレスで圧
延することによって二次粒子を粉砕しても電池54で示
したように同様の効果が得られた。
Also, as shown in Example 9, even after the active material was formed on the current collector in advance and the secondary particles were crushed by rolling with a roller press, the same result as shown in the battery 54 was obtained. The effect was obtained.

【0114】これに対し、比較例1で示した電池55の
ように、一次粒子径が5μmと大きいものは、二次粒子
と混合しても空隙を充填する効果がほとんど得られない
ため初期の放電容量が著しく低下する。
On the other hand, in the case of the battery 55 shown in Comparative Example 1 having a large primary particle diameter of 5 μm, the effect of filling voids is hardly obtained even when mixed with the secondary particles, and thus the initial value is small. The discharge capacity is significantly reduced.

【0115】このため、一次粒子径は2μm以下である
ことが望ましい。また、塊状の粒子を用いた場合、その
ままでは充填性が低く、またこの塊状粒子を更に粉砕し
た場合は比較例2の電池56のように極端に放電容量が
低下した。これは粉砕によって破壊された粒子界面の結
晶構造が破壊され、リチウムイオンの移動が阻害される
ことが原因として考えられた。
Therefore, the primary particle size is preferably 2 μm or less. Further, when the agglomerated particles were used, the filling property was low as they were, and when the agglomerated particles were further pulverized, the discharge capacity was extremely lowered like the battery 56 of Comparative Example 2. It was considered that this is because the crystal structure of the grain interface destroyed by pulverization was destroyed and the movement of lithium ions was hindered.

【0116】このように、正極活物質は微小な結晶粒子
が多数集合してなる定方向径(Feretdiameter)が2〜2
0μmの範囲にある二次粒子であり、球状もしくは楕円
球状であることが望ましい。
As described above, the positive electrode active material has a finite diameter (Feret diameter) of 2 to 2 formed by a large number of fine crystal particles.
The secondary particles are in the range of 0 μm, and are preferably spherical or ellipsoidal.

【0117】また、置換金属を用いないLiNiO2
相の場合、比較例3の電池57のように初期の容量は大
きいものの、極端なサイクル劣化が認められた。
Further, in the case of LiNiO 2 single phase not using a substitution metal, although the initial capacity was large like the battery 57 of Comparative Example 3, extreme cycle deterioration was observed.

【0118】これは充放電にともない結晶構造が変化
し、可逆性が失われた物と考えられる。
It is considered that this is because the reversibility was lost because the crystal structure changed with charge and discharge.

【0119】このように本発明で示した通り、LiNi
x1ーx2(MはCo、Mn、Cr、Fe、V、Alの
いずれか1種類以上、x:1>x≧0.5)を正極活物質と
し、該正極活物質はSEM観察における定方向径(Feret
diameter)が0.1〜2μmの範囲にある微小な結晶粒
子と、微小結晶粒子が多数集合してなる定方向径(Feret
diameter)が2〜20μmの範囲にある二次粒子の混合物
である場合にのみこのような高容量でサイクル特性の良
好な電池が実現できる。
Thus, as shown in the present invention, LiNi
x M 1-x O 2 (M is one or more of Co, Mn, Cr, Fe, V, and Al, x: 1> x ≧ 0.5) is used as a positive electrode active material, and the positive electrode active material is obtained by SEM observation. Direction diameter (Feret
Fine crystal particles whose diameter is in the range of 0.1 to 2 μm and a large number of micro crystal particles
A battery having such a high capacity and good cycle characteristics can be realized only when it is a mixture of secondary particles having a diameter of 2 to 20 μm.

【0120】本発明において置換金属を添加する塩とし
て硫酸塩を用いたが、他に硝酸塩や塩化物、酢酸塩等で
も同様の効果が得られる。
In the present invention, the sulfate is used as the salt for adding the substituted metal, but the same effect can be obtained by using nitrate, chloride, acetate or the like.

【0121】また、水酸化物を析出させるアルカリ源と
して水酸化ナトリウムを用いたが、水酸化リチウム、水
酸化カリウムを用いても同様の効果が得られる。
Although sodium hydroxide was used as the alkali source for precipitating hydroxide, similar effects can be obtained by using lithium hydroxide or potassium hydroxide.

【0122】上記実施例においては円筒型の電池を用い
て評価を行ったが、角型など電池形状が異なっても同様
の効果が得られる。
In the above examples, the evaluation was performed using a cylindrical battery, but the same effect can be obtained even if the battery shape is different, such as a prismatic battery.

【0123】更に、上記実施例において負極には炭素質
材料を用いたが、本発明における効果は正極板において
作用するため、リチウム金属や、リチウム合金、Fe2
3、WO2、WO3等の酸化物など、他の負極材料を用
いても同様の効果が得られる。
Further, although a carbonaceous material was used for the negative electrode in the above examples, since the effect of the present invention works on the positive electrode plate, lithium metal, lithium alloy, Fe 2
Similar effects can be obtained by using other negative electrode materials such as oxides of O 3 , WO 2 , WO 3 and the like.

【0124】また、上記実施例において電解質として六
フッ化リン酸リチウムを使用したが、他のリチウム含有
塩、例えば過塩素酸リチウム、四フッ化ホウ酸リチウ
ム、トリフルオロメタンスルホン酸リチウム、六フッ化
ヒ酸リチウムなどでも同様の効果が得られた。
Further, although lithium hexafluorophosphate was used as the electrolyte in the above examples, other lithium-containing salts such as lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, and hexafluoride were used. Similar effects were obtained with lithium arsenate and the like.

【0125】さらに、上記実施例では炭酸エチレンと炭
酸エチルメチルの混合溶媒を用いたが、他の非水溶媒例
えば、プロピレンカーボネートなどの環状エステル、テ
トラヒドロフランなどの環状エーテル、ジメトキシエタ
ンなどの鎖状エーテル、プロピオン酸メチルなどの鎖状
エステルなどの非水溶媒や、これらの多元系混合溶媒を
用いても同様の効果が得られた。
Further, although a mixed solvent of ethylene carbonate and ethyl methyl carbonate was used in the above-mentioned examples, other non-aqueous solvents such as cyclic ester such as propylene carbonate, cyclic ether such as tetrahydrofuran, chain ether such as dimethoxyethane, etc. Similar effects were also obtained by using a non-aqueous solvent such as a chain ester such as methyl propionate or a mixed solvent of these multi-components.

【0126】[0126]

【発明の効果】以上の説明から明らかなように、本発明
ではLiNix1ーx2(MはCo、Mn、Cr、F
e、V、Alのうちから選ばれる1種類以上であり、x:
1>x≧0.5)を正極活物質とし、この活物質の微小結晶
粒子とこれらが多数集合した二次粒子の粒径と粒子形状
を規定し、これらを混合状態で用いた正極板を用いるこ
とにより、高容量でサイクル特性が優れた非水電解液二
次電池を提供することが出来る。
As is apparent from the above description, in the present invention, LiNi x M 1 -x O 2 (M is Co, Mn, Cr, F
One or more selected from e, V, and Al, x:
1> x ≧ 0.5) as the positive electrode active material, specify the particle size and particle shape of the fine crystal particles of this active material and the secondary particles in which a large number of them are aggregated, and use a positive electrode plate in which these are mixed As a result, it is possible to provide a non-aqueous electrolyte secondary battery having a high capacity and excellent cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の概念図FIG. 1 is a conceptual diagram of the present invention.

【図2】円筒型電池の縦断面図FIG. 2 is a vertical sectional view of a cylindrical battery.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極板 5a正極リード 6 負極板 6a負極リード 7 セパレータ 8 絶縁リング 1 Battery Case 2 Sealing Plate 3 Insulating Packing 4 Electrode Plate Group 5 Positive Electrode Plate 5a Positive Electrode Lead 6 Negative Electrode Plate 6a Negative Lead 7 Separator 8 Insulating Ring

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 負極板と、LiNix1ーx2(MはC
o、Mn、Cr、Fe、V、Alのいずれか1種類以
上、x:1>x≧0.5)を正極活物質とする正極板と、前記
負極板と正極板との間にセパレータを介してなる非水電
解液電池において、前記正極活物質はSEM観察におけ
る定方向径(Feret diameter)が0.1〜2μmの範囲に
ある微小結晶粒子と、前記微小結晶粒子が多数集合して
定方向径(Feret diameter)が2〜20μmの範囲にある
二次粒子との混合物からなる非水電解液電池。
1. A negative electrode plate and LiNi x M 1 -x O 2 (M is C
o, Mn, Cr, Fe, V, Al, one or more kinds, x: 1> x ≧ 0.5) as a positive electrode active material, and a separator between the negative electrode plate and the positive electrode plate. In the nonaqueous electrolyte battery, A non-aqueous electrolyte battery comprising a mixture with secondary particles having a (Feret diameter) in the range of 2 to 20 μm.
【請求項2】 二次粒子は、形状が球状、もしくは楕円
球状である請求項1記載の非水電解液電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein the secondary particles have a spherical shape or an elliptic spherical shape.
【請求項3】 微小結晶粒子の二次粒子に対する混合比
率が重量比で5〜50%の範囲である請求項1記載の非
水電解液電池。
3. The non-aqueous electrolyte battery according to claim 1, wherein the mixing ratio of the fine crystal particles to the secondary particles is in the range of 5 to 50% by weight.
【請求項4】 微小結晶粒子は、二次粒子を粉砕したも
のである請求項1記載の非水電解液電池。
4. The non-aqueous electrolyte battery according to claim 1, wherein the fine crystal particles are pulverized secondary particles.
【請求項5】 正極活物質LiNix1ーx2(MはC
o、Mn、Cr、Fe、V、Alのうちから選ばれる1
種類以上であり、x:1>x≧0.5)の製造法であって、S
EM観察における定方向径(Feret diameter)が0.1〜
2μmの微小結晶粒子が多数集合した二次粒子であり、
この二次粒子の定方向径が2〜20μmの範囲にあるN
x1ーx(OH)2(MはCo、Mn、Cr、Fe、
V、Alのうちから選ばれる1種類以上であり、、x:1
>x≧0.5)を、炭酸リチウムあるいは水酸化リチウムと
混合し、この混合物を熱処理して正極活物質を得る非水
電解液電池用正極活物質の製造法。
5. The positive electrode active material LiNi x M 1 -x O 2 (M is C
1 selected from o, Mn, Cr, Fe, V and Al
More than one kind, x: 1> x ≧ 0.5), and S
The constant diameter (Feret diameter) in EM observation is 0.1 to
It is a secondary particle made up of a large number of 2 μm microcrystalline particles,
N in which the unidirectional diameter of the secondary particles is in the range of 2 to 20 μm
i x M 1-x (OH) 2 (M is Co, Mn, Cr, Fe,
At least one selected from V and Al, x: 1
> X ≧ 0.5) is mixed with lithium carbonate or lithium hydroxide, and the mixture is heat-treated to obtain a positive electrode active material, which is a method for producing a positive electrode active material for a non-aqueous electrolyte battery.
【請求項6】 二次粒子は、形状が球状、もしくは楕円
球状である請求項5記載の非水電解液電池用正極活物質
の製造法。
6. The method for producing a positive electrode active material for a non-aqueous electrolyte battery according to claim 5, wherein the secondary particles have a spherical shape or an elliptic spherical shape.
【請求項7】 正極活物質LiNix1ーx2(MはC
o、Mn、Cr、Fe、V、Alのうちから選ばれる1
種類以上であり、x:1>x≧0.5)の製造法であって、N
x1ーx(OH)2(MはCo、Mn、Cr、Fe、
V、Alのうちから選ばれる1種類以上であり、x:1>x
≧0.5)で表され、SEM観察における定方向径(Feret
diameter)が0.1〜2μmの微小結晶粒子が多数集合し
た定方向径が2〜20μmの範囲にある二次粒子の一部
を前記微小結晶粒子まで粉砕し、この粉砕物を未粉砕状
態の前記二次粒子と混合した後、炭酸リチウムあるいは
水酸化リチウムと混合し、これらの混合物を熱処理して
正極活物質を得る非水電解液電池用正極活物質の製造
法。
7. The positive electrode active material LiNi x M 1 -x O 2 (M is C
1 selected from o, Mn, Cr, Fe, V and Al
It is more than one kind, and x: 1> x ≧ 0.5), and N
i x M 1-x (OH) 2 (M is Co, Mn, Cr, Fe,
At least one selected from V and Al, x: 1> x
≧ 0.5), and the unidirectional diameter (Feret
a part of the secondary particles having a diameter of 0.1 to 2 μm and having a unidirectional diameter in the range of 2 to 20 μm. A method for producing a positive electrode active material for a non-aqueous electrolyte battery, which comprises mixing the secondary particles, then mixing with lithium carbonate or lithium hydroxide, and heat-treating the mixture to obtain a positive electrode active material.
【請求項8】 二次粒子の粉砕物の、二次粒子の未粉砕
物に対する混合比率が重量比で5〜50%の範囲である
請求項7記載の非水電解液電池用正極活物質の製造法。
8. The positive electrode active material for a non-aqueous electrolyte battery according to claim 7, wherein the mixing ratio of the pulverized secondary particles to the unpulverized secondary particles is in the range of 5 to 50% by weight. Manufacturing method.
JP28277395A 1995-10-31 1995-10-31 Method for producing nonaqueous electrolyte battery and positive electrode active material Expired - Fee Related JP3232984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28277395A JP3232984B2 (en) 1995-10-31 1995-10-31 Method for producing nonaqueous electrolyte battery and positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28277395A JP3232984B2 (en) 1995-10-31 1995-10-31 Method for producing nonaqueous electrolyte battery and positive electrode active material

Publications (2)

Publication Number Publication Date
JPH09129230A true JPH09129230A (en) 1997-05-16
JP3232984B2 JP3232984B2 (en) 2001-11-26

Family

ID=17656894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28277395A Expired - Fee Related JP3232984B2 (en) 1995-10-31 1995-10-31 Method for producing nonaqueous electrolyte battery and positive electrode active material

Country Status (1)

Country Link
JP (1) JP3232984B2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049528A1 (en) * 1998-03-23 1999-09-30 Sumitomo Metal Mining Co., Ltd. Active material of positive electrode for non-aqueous electrode secondary battery and method for preparing the same and non-aqueous electrode secondary battery using the same
JP2000113884A (en) * 1998-10-01 2000-04-21 Ngk Insulators Ltd Lithium secondary battery
JP2000223157A (en) * 1999-01-28 2000-08-11 Sanyo Electric Co Ltd Lithium secondary battery
JP2000223118A (en) * 1999-01-28 2000-08-11 Hitachi Metals Ltd Positive electrode material for lithium secondary battery and its manufacture
JP2002042813A (en) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery using the same
WO2002078105A1 (en) * 2001-03-22 2002-10-03 Matsushita Electric Industrial Co., Ltd. Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
WO2003003487A1 (en) * 2001-06-27 2003-01-09 Matsushita Electric Industrial Co., Ltd. Positive electrode active material and nonaqueous electrolytic secondary cell including the same
JP2005302507A (en) * 2004-04-12 2005-10-27 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2006216395A (en) * 2005-02-04 2006-08-17 Tdk Corp Lithium ion battery pack
WO2006118279A1 (en) * 2005-04-28 2006-11-09 Nissan Motor Co., Ltd. Positive electrode material for lithium ion battery with nonaqueous electrolyte, and battery using the same
WO2007011053A1 (en) * 2005-07-21 2007-01-25 Sumitomo Chemical Company, Limited Positive electrode active material for nonaqueous electrolyte secondary battery
JP2007053081A (en) * 2005-07-21 2007-03-01 Sumitomo Chemical Co Ltd Positive active material for nonaqueous electrolyte secondary battery
CN1312792C (en) * 2003-03-14 2007-04-25 清美化学股份有限公司 Positive electrode active material powder for lithium secondary battery
JP2008078146A (en) * 2001-03-22 2008-04-03 Matsushita Electric Ind Co Ltd Cathode active material and nonaqueous electrolyte secondary battery containing this
JP2008084871A (en) * 2001-03-22 2008-04-10 Matsushita Electric Ind Co Ltd Method for producing positive-electrode active material
JP2008195608A (en) * 2000-11-06 2008-08-28 Tanaka Chemical Corp High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP2008198620A (en) * 1996-11-28 2008-08-28 Sumitomo Chemical Co Ltd Lithium secondary battery
JP2009117261A (en) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp Positive-electrode active material for lithium secondary battery, and positive electrode and lithium secondary battery using positive electrode active material
US7541114B2 (en) 2002-03-01 2009-06-02 Panasonic Corporation Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP2009152214A (en) * 2000-09-25 2009-07-09 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and manufacturing method therefor
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7585435B2 (en) 2000-11-06 2009-09-08 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
US7722989B2 (en) 2003-11-07 2010-05-25 Panasonic Corporation Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles
US7816036B2 (en) 2001-09-13 2010-10-19 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
WO2012133436A1 (en) * 2011-03-31 2012-10-04 Jx日鉱日石金属株式会社 Positive electrode active substance for lithium ion cell, positive electrode for lithium ion cell, and lithium ion cell
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2013055000A (en) * 2011-09-06 2013-03-21 Mitsubishi Chemicals Corp Lithium transition metal-based compound powder for lithium secondary battery positive electrode material and method for producing the same, lithium secondary battery positive electrode including the same, and lithium secondary battery
WO2014061580A1 (en) * 2012-10-15 2014-04-24 日本碍子株式会社 Process for manufacturing positive electrode active material for lithium secondary battery, and active material precursor powder to be used therein
US8765305B2 (en) * 2003-11-26 2014-07-01 Industry-University Cooperation Foundation, Hanyang University Cathode active material for lithium secondary battery, process for preparing the same and reactor for use in the same process
TWI469934B (en) * 2011-03-31 2015-01-21 Jx Nippon Mining & Metals Corp A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
WO2017175697A1 (en) * 2016-04-04 2017-10-12 株式会社Gsユアサ Power storage element
CN109273713A (en) * 2018-08-22 2019-01-25 广东东岛新能源股份有限公司 A kind of power battery cathode shaping char particle and preparation method thereof
US10294120B2 (en) 2014-10-30 2019-05-21 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide and process for producing same
WO2019097951A1 (en) * 2017-11-17 2019-05-23 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2024010016A1 (en) * 2022-07-06 2024-01-11 株式会社Gsユアサ Non-aqueous electrolyte storage element, device, method for using non-aqueous electrolyte storage element, and method for manufacturing non-aqueous electrolyte storage element

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198620A (en) * 1996-11-28 2008-08-28 Sumitomo Chemical Co Ltd Lithium secondary battery
WO1999049528A1 (en) * 1998-03-23 1999-09-30 Sumitomo Metal Mining Co., Ltd. Active material of positive electrode for non-aqueous electrode secondary battery and method for preparing the same and non-aqueous electrode secondary battery using the same
JP2000113884A (en) * 1998-10-01 2000-04-21 Ngk Insulators Ltd Lithium secondary battery
JP2000223157A (en) * 1999-01-28 2000-08-11 Sanyo Electric Co Ltd Lithium secondary battery
JP2000223118A (en) * 1999-01-28 2000-08-11 Hitachi Metals Ltd Positive electrode material for lithium secondary battery and its manufacture
JP2007012629A (en) * 2000-07-27 2007-01-18 Matsushita Electric Ind Co Ltd Positive active material and nonaqueous electrolyte secondary battery containing this
JP2002042813A (en) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery using the same
US6551744B1 (en) 2000-07-27 2003-04-22 Matsushita Electric Industrial Co., Ltd. Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2009152214A (en) * 2000-09-25 2009-07-09 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and manufacturing method therefor
US7585432B2 (en) 2000-11-06 2009-09-08 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
US7585435B2 (en) 2000-11-06 2009-09-08 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP2008195608A (en) * 2000-11-06 2008-08-28 Tanaka Chemical Corp High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
WO2002078105A1 (en) * 2001-03-22 2002-10-03 Matsushita Electric Industrial Co., Ltd. Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7718318B2 (en) 2001-03-22 2010-05-18 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7682747B2 (en) 2001-03-22 2010-03-23 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
JP2008078146A (en) * 2001-03-22 2008-04-03 Matsushita Electric Ind Co Ltd Cathode active material and nonaqueous electrolyte secondary battery containing this
JP2008084871A (en) * 2001-03-22 2008-04-10 Matsushita Electric Ind Co Ltd Method for producing positive-electrode active material
JP4510331B2 (en) * 2001-06-27 2010-07-21 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
JP2003017052A (en) * 2001-06-27 2003-01-17 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
WO2003003487A1 (en) * 2001-06-27 2003-01-09 Matsushita Electric Industrial Co., Ltd. Positive electrode active material and nonaqueous electrolytic secondary cell including the same
US7816036B2 (en) 2001-09-13 2010-10-19 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7541114B2 (en) 2002-03-01 2009-06-02 Panasonic Corporation Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
CN1312792C (en) * 2003-03-14 2007-04-25 清美化学股份有限公司 Positive electrode active material powder for lithium secondary battery
US7722989B2 (en) 2003-11-07 2010-05-25 Panasonic Corporation Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles
US7939200B2 (en) 2003-11-07 2011-05-10 Panasonic Corporation Non-aqueous electrolyte secondary battery
US8765305B2 (en) * 2003-11-26 2014-07-01 Industry-University Cooperation Foundation, Hanyang University Cathode active material for lithium secondary battery, process for preparing the same and reactor for use in the same process
JP2005302507A (en) * 2004-04-12 2005-10-27 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2006216395A (en) * 2005-02-04 2006-08-17 Tdk Corp Lithium ion battery pack
JP4726896B2 (en) * 2005-04-28 2011-07-20 日産自動車株式会社 Cathode material for non-aqueous electrolyte lithium ion battery and battery using the same
WO2006118279A1 (en) * 2005-04-28 2006-11-09 Nissan Motor Co., Ltd. Positive electrode material for lithium ion battery with nonaqueous electrolyte, and battery using the same
US8728666B2 (en) 2005-04-28 2014-05-20 Nissan Motor Co., Ltd. Positive electrode material for lithium ion battery with nonaqueous electrolyte, and battery using the same
JPWO2006118279A1 (en) * 2005-04-28 2008-12-18 日産自動車株式会社 Cathode material for non-aqueous electrolyte lithium ion battery and battery using the same
JP2007053081A (en) * 2005-07-21 2007-03-01 Sumitomo Chemical Co Ltd Positive active material for nonaqueous electrolyte secondary battery
WO2007011053A1 (en) * 2005-07-21 2007-01-25 Sumitomo Chemical Company, Limited Positive electrode active material for nonaqueous electrolyte secondary battery
JP2009117261A (en) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp Positive-electrode active material for lithium secondary battery, and positive electrode and lithium secondary battery using positive electrode active material
WO2012133436A1 (en) * 2011-03-31 2012-10-04 Jx日鉱日石金属株式会社 Positive electrode active substance for lithium ion cell, positive electrode for lithium ion cell, and lithium ion cell
JPWO2012133436A1 (en) * 2011-03-31 2014-07-28 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TWI469934B (en) * 2011-03-31 2015-01-21 Jx Nippon Mining & Metals Corp A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP6030546B2 (en) * 2011-03-31 2016-11-24 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2013055000A (en) * 2011-09-06 2013-03-21 Mitsubishi Chemicals Corp Lithium transition metal-based compound powder for lithium secondary battery positive electrode material and method for producing the same, lithium secondary battery positive electrode including the same, and lithium secondary battery
WO2014061580A1 (en) * 2012-10-15 2014-04-24 日本碍子株式会社 Process for manufacturing positive electrode active material for lithium secondary battery, and active material precursor powder to be used therein
JPWO2014061580A1 (en) * 2012-10-15 2016-09-05 日本碍子株式会社 Method for producing positive electrode active material for lithium secondary battery and active material precursor powder used therefor
JP5830179B2 (en) * 2012-10-15 2015-12-09 日本碍子株式会社 Method for producing positive electrode active material for lithium secondary battery and active material precursor powder used therefor
US10294120B2 (en) 2014-10-30 2019-05-21 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide and process for producing same
CN109075310A (en) * 2016-04-04 2018-12-21 株式会社杰士汤浅国际 Charge storage element
JPWO2017175697A1 (en) * 2016-04-04 2019-02-14 株式会社Gsユアサ Electricity storage element
WO2017175697A1 (en) * 2016-04-04 2017-10-12 株式会社Gsユアサ Power storage element
US11217782B2 (en) 2016-04-04 2022-01-04 Gs Yuasa International Ltd. Energy storage device
WO2019097951A1 (en) * 2017-11-17 2019-05-23 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN111344886A (en) * 2017-11-17 2020-06-26 松下知识产权经营株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JPWO2019097951A1 (en) * 2017-11-17 2020-11-19 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
US20200373574A1 (en) * 2017-11-17 2020-11-26 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN111344886B (en) * 2017-11-17 2023-05-09 松下知识产权经营株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US11742480B2 (en) 2017-11-17 2023-08-29 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN109273713A (en) * 2018-08-22 2019-01-25 广东东岛新能源股份有限公司 A kind of power battery cathode shaping char particle and preparation method thereof
WO2024010016A1 (en) * 2022-07-06 2024-01-11 株式会社Gsユアサ Non-aqueous electrolyte storage element, device, method for using non-aqueous electrolyte storage element, and method for manufacturing non-aqueous electrolyte storage element

Also Published As

Publication number Publication date
JP3232984B2 (en) 2001-11-26

Similar Documents

Publication Publication Date Title
JP3232984B2 (en) Method for producing nonaqueous electrolyte battery and positive electrode active material
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP5228292B2 (en) A method for producing a lithium-nickel-manganese-cobalt composite oxide.
JP4644895B2 (en) Lithium secondary battery
JP4943145B2 (en) Positive electrode active material powder for lithium secondary battery
KR101886174B1 (en) Lithium-manganese-type solid solution positive electrode material
JP4276442B2 (en) Positive electrode active material powder for lithium secondary battery
JP3362564B2 (en) Non-aqueous electrolyte secondary battery, and its positive electrode active material and method for producing positive electrode plate
JPH11273678A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous electrolyte secondary battery using positive electrode active material
JPWO2004082046A1 (en) Positive electrode active material powder for lithium secondary battery
JP2004119218A (en) Positive active material for lithium secondary battery and its manufacturing method
JP3047693B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
KR20050084852A (en) Method for preparing positive electrode active material for lithium secondary cell
JPH11135119A (en) Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
JP4673287B2 (en) Spinel type lithium manganese oxide and method for producing the same
JP3394364B2 (en) Cobalt hydroxide and tricobalt tetroxide as raw materials for non-aqueous electrolyte battery active material LiCoO2 and method for producing the same
JP2004281253A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method and nonaqueous system lithium secondary battery using the material
JP4374930B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3229544B2 (en) Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material
JP2001243949A (en) Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it
JPH09251854A (en) Manufacture of positive active material for non-aqueous electrolyte secondary battery
JPH08339806A (en) Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JP2005327528A (en) Solid electrolyte-containing electrode for lithium secondary battery
JP4199506B2 (en) Method for producing positive electrode active material for lithium secondary battery
JPH07326356A (en) Lithium transition metal composite oxide powder and manufacture thereof, lithium secondary battery positive electrode and lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140921

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees