JP4374930B2 - Method for producing positive electrode active material for non-aqueous electrolyte secondary battery - Google Patents

Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4374930B2
JP4374930B2 JP2003191974A JP2003191974A JP4374930B2 JP 4374930 B2 JP4374930 B2 JP 4374930B2 JP 2003191974 A JP2003191974 A JP 2003191974A JP 2003191974 A JP2003191974 A JP 2003191974A JP 4374930 B2 JP4374930 B2 JP 4374930B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
average particle
mixture
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003191974A
Other languages
Japanese (ja)
Other versions
JP2005026141A (en
Inventor
秀和 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003191974A priority Critical patent/JP4374930B2/en
Publication of JP2005026141A publication Critical patent/JP2005026141A/en
Application granted granted Critical
Publication of JP4374930B2 publication Critical patent/JP4374930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解二次電池における正極活物質の製造方法に関するものである。
【0002】
【従来の技術】
ポータブル電子機器の発達に伴い、小型かつ軽量の電源としてリチウムイオン二次電池に代表される非水電解質二次電池が注目されている。この電池に用いられる正極活物質としてはコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムなどの複合酸化物がよく知られている。中でもニッケル酸リチウムは比較的低コスト、高容量であることから研究開発が盛んである。
【0003】
しかしながらニッケル酸リチウムは、その合成方法によって容量や充放電特性が大きく変化することから、均質かつ高性能な活物質を大量生産するのは比較的難しい。そのため均質な活物質を製造する方法として、リチウム化合物とニッケル化合物とを混合、焼成して活物質を得る製造方法において1回目の焼成後、粉砕混合し、さらに結晶化を促進させるため2回目の焼成を行う方法が提案されている(特許文献1)。また、1回の焼成で良質な活物質を得る方法として、リチウム化合物とニッケル化合物との混合物を500℃以下の温度で30分以上保持し、溶融したリチウム化合物をニッケル化合物粉末中に浸透させてから焼成を行うことが提案されている(特許文献2)。一方、ニッケル酸リチウム中に様々な元素を導入することでその高性能化を図る試みもなされている(特許文献3)。
【0004】
【特許文献1】
特開平9−251854号公報
【0005】
【特許文献2】
特開平9−156931号公報
【0006】
【特許文献3】
特開平8−222220号公報
【0007】
【発明が解決しようとする課題】
先に述べた様々な提案によって、活物質の均質化や高性能化が図られてはいるものの、商業的な生産に際しては、その他に活物質粉末の粒径、粒度分布あるいは比表面積さらには結晶性についても均質化、適正化が求められている。また、非水電解質二次電池の用途の多様化にともない、高率放電特性などに対する市場からの要望も厳しくなりつつある。
0008
本発明はこのような観点から成されたものであって、結晶性、粒度分布、比表面積が均質で充放電サイクル特性および高率放電特性に優れるニッケル酸リチウムの製造方法を提供することを目的とする。
0009
【課題を解決するための手段】
上記課題を解決するために本発明は、ニッケル化合物粉末とリチウム化合物粉末とを混合、焼成して一般式Li1+xNi1-x-y-zCoyz2(0≦x≦0.2、0.1≦y≦0.33、0.001≦z≦0.33、MはAl、Ti、Mg、Cr、Mn、Fe、Yから選ばれる1種以上の金属元素)を得る非水電解質二次電池用正極活物質の製造方法において、
(1)ニッケル化合物粉末を平均粒径の異なるn個(nは2以上の整数)の集団に分割する第1の工程と、
(2)第1の工程で得られたそれぞれの集団をリチウム化合物と混合してn個の混合物集団とする第2の工程と、
(3)前記n個の混合物集団を互いに異なる焼成条件で焼成する第3の工程と、
(4)第3の工程で得られた焼成物集団を再び混合して1つの集団とする第4の工程とを含み、前記第3の工程において、n個の混合物集団のうち、ニッケル化合物の平均粒径が小さな集団ほど低い温度または短い時間で、ニッケル化合物の平均粒径が大きな集団ほど高い温度または長い時間で、それぞれ焼成し、前記非水電解質二次電池用正極活物質のBET比表面積を0.1〜0.7m 2 /gとし、且つ、CuKα線を使用し、25℃で測定した粉末X線回折図形において2θ=18〜20°の(003)面に対応する回折線の半価幅を0.05〜0.15°とすることを特徴とするものである。
0010
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
0011
まず、活物質合成の第1の原料であるニッケル化合物粉末を用意する。ここで、ニッケル化合物としては酸化ニッケル、水酸化ニッケル、炭酸ニッケル、硝酸ニッケル、硫酸ニッケルなどが考えられる。もちろん、これらのニッケル化合物に含まれる金属元素はニッケルだけに限られず、活物質に導入したい元素(例えば、Co、Al、Ti、Mg、Cr、Mn、Fe、Y)を含むものでも構わない。ニッケル以外の元素を含む形態としては、固溶状態が最も好ましいが例えば混晶など他の形態であってもよいし、例えば、ニッケル以外の元素を含むニッケル化合物とCo化合物との混合物のごとく、混合物であってもよい。いずれにしても目的の活物質に応じてその組成を定めるのである。また、これらニッケル化合物の合成方法は限定されることはなく、反応晶析によってもよいし、造粒によってもよい。
0012
次にこのニッケル化合物を複数(n)の集団に分割する(第1の工程)。ここでの分割とは単に任意に分けることではなく、その粒径によって分割することを意味する。例えば、平均粒径の大きい集団と小さい集団の2つ(n=2)に分割したり、平均粒径大、中、小の3つ(n=3)に分割したりするのである。4以上の集団に分割してもよい。分割の方法としては篩別法、沈降法、サイクロン法、渦流法などが考えられる。なおここでの本発明はニッケル化合物粉末に粒度分布が存在することを前提としている。
0013
次いでn個のニッケル化合物粉末それぞれを活物質合成の第2の原料であるリチウム化合物粉末と混合し、n個の混合物集団とする(第2の工程)。リチウム化合物としては水酸化リチウム、炭酸リチウム、硝酸リチウム、硫酸リチウム、酸化リチウムが挙げられるが、中でも水酸化リチウムが好ましい。なぜなら、活物質合成過程でNOxやSOxなどの環境汚染物質が発生しにくく、かつ、価格も比較的安価であるからである。
0014
また、リチウム化合物の物性は平均粒径0.1〜10μmのものが好適である。なぜなら、このような物性のものを使用すれば第3の工程において焼成する際に反応が円滑に進行し、未反応原料が残存しにくいからである。この第2の工程において、混合方法は任意であるが、乾式攪拌方式、溶解分散方式、噴霧乾燥方式などの方法が考えられる。また、ニッケル化合物粉末とリチウム化合物粉末の混合比率は一定であってもよいが、リチウム化合物粉末中のリチウムがニッケル化合物粉末中に含まれる金属元素よりもモル換算で1〜10%程度多くなるような比率で混合すればさらに好ましい。その理由は以下の通りである。
0015
NiはCoに比べ還元されやすいので、高温で焼成するとNi2+が生成し、本来Liが入るサイトへNiが侵入してしまう(いわゆるLi欠損しやすい)。そのため、低温で反応するリチウム化合物を用いたり、多少Liリッチで合成を行ったりするのである。
0016
その後、第2の工程で得られたn個の混合物集団をそれぞれ酸化雰囲気の焼成炉において異なる条件で焼成する(第3の工程)。ここで、異なる条件とは焼成温度、焼成時間、酸化雰囲気の少なくとも1つを意味するが、n個の混合物集団をそれぞれ異なる温度で焼成するのが最も好ましく、次いで異なる時間焼結するのが好ましい。焼成にあたって焼成炉の選択は任意であるが、バッチ炉、連続炉、ロータリーキルンなどが好適に使用できる。また、n個の混合物集団を異なる温度で焼成するにあたってニッケル化合物の平均粒径が小さな集団ほど低い温度で、ニッケル化合物の平均粒径が大きな集団ほど高い温度で、それぞれ焼成するのが好ましい。なお、n個の混合物集団を異なる時間焼成する場合にはニッケル化合物の平均粒径が小さな集団ほど短い時間、ニッケル化合物の平均粒径が大きな集団ほど長い時間、それぞれ焼成するのが好ましい。焼成にあたっては、焼成温度は700〜1000℃の範囲に設定するのが好適である。また、焼成時間は5〜50時間の範囲に設定するのが適切である。n個の混合物集団を焼成するにあたって、焼成温度、焼成時間の両方が異なる場合にはその少なくとも一方が(好ましくは両方が)、先に述べた条件を満たすのが望ましい。焼成時の雰囲気は空気、酸素、酸素と不活性ガスの混合ガスなどの雰囲気が好ましく、酸素分圧0.05MPa以上が好適である。なお、これらのガスを焼成炉中に流通(例えば流速100〜600L/分)させるのが望ましい。
0017
この第3の工程において、ニッケル化合物の平均粒径が小さな集団ほど低い温度で、ニッケル化合物の平均粒径が大きな集団ほど高い温度でそれぞれ焼成したり、ニッケル化合物の平均粒径が小さな集団ほど短い時間、ニッケル化合物の平均粒径が大きな集団ほど長い時間それぞれ焼成したりするのは、焼成によって得られる活物質粉末の物性(例えば、粒径)をできるだけ均質にするためである。焼成時においてニッケル化合物とリチウム化合物とが反応するときにリチウム化合物は融解している一方ニッケル化合物は固体であるため、これらの反応性や得られる活物質粉末の物性はニッケル化合物の粒径に大きく影響を受ける。このため、ニッケル化合物の粒径ごとに焼成条件を適切に選択するのが好ましいのである。
0018
すなわち、粒径の小さなニッケル化合物を含む混合物集団は比較的反応性に富み、粒径の大きなニッケル化合物を含む混合物集団は比較的反応が進行しにくい。そのため、粒径の大きなニッケル化合物を含む混合物集団に対しては比較的反応が進行しやすく未反応原料が残存しにくい条件を選択するのが好ましいのである。これにより得られる活物質粉末の物性、例えば結晶性、の均質化を図ることができる。言うまでもなく、ニッケル化合物の粒径によって焼成時の粒子成長性も異なるので、それも勘案した上で焼成条件を定めればよい。
0019
次に、このようにして得られたn個の焼成物集団を混合して1個の混合物とする(第4の工程)。ここでの混合方法は任意であるが、例えば、乾式攪拌方式、溶解分散方式、噴霧乾燥方式などが挙げられる。また、この第4の工程での混合前において焼成物を解砕してもよい。もちろん、混合と解砕とを同時に実施すればさらに好ましい。
0020
以上に述べた製造方法によって、一般式Li1+xNi1-x-y-zCoyz2(0≦x≦0.2、0.1≦y≦0.35、0.001≦z≦0.35、MはAl、Ti、Mg、Cr、Mn、Fe、Yから選ばれる1種以上の金属元素)で表される非水電解質二次電池用正極活物質を得ることができ、その活物質のBET比表面積を0.1〜0.7m2/gに制御することができる。また、CuKα線を使用し、25℃で測定した粉末X線回折図形において2θ=18〜20°の(003)面に対応する回折線の半価幅が0.05〜0.15°となるように制御することができる。もちろん、得られた活物質粉末の粒径も均質なものとすることが可能となる。
0021
このように、均質な活物質が得られるのは、活物質合成の原料であるニッケル化合物の粒径に応じて適切な焼成条件を選択するからであり、ニッケル化合物の平均粒径の異なる集団に対して異なる焼成条件で焼成を実施して、その後に全体を再混合するからである。これにより広い粒度分布を有するニッケル化合物を原料に使用する場合でも均質な活物質を得ることができる。その結果、この活物質を電池に使用した際の、例えば高率放電特性などを向上させることが可能となる。
0022
【実施例】
以下、実施例を示し、さらに詳細かつ具体的に本発明を説明する。
0023
(実施例1)
まず、活物質製造について工程ごとに説明する。
0024
最初に第1の工程について述べる。活物質合成の第1の原料である水酸化ニッケル粉末を用意した。この水酸化ニッケルは、コバルトを全金属元素に対して20mol%およびアルミニウムを同じく5mol%それぞれ固溶させたものであり、硫酸ニッケル水溶液、硫酸コバルト水溶液、硝酸アルミニウム水溶液を原料としてアンモニア存在下において水酸化ナトリウムと反応させることによる反応晶析法によって合成したものである。
0025
ここで用いた水酸化ニッケル粉末の平均粒径は約15.3μmであり、その粒度分布は図1に示すものであった。この水酸化ニッケル粉末を渦流分級機を用いて5つの異なる粒度分布を持つ集団に分割し、5個の水酸化ニッケル集団とした。これら5個の集団のそれぞれの平均粒径は約1.5μm、6.7μm、11.6μm、16.4μm、21.2μmであり、それらの粒度分布は図2に示すものであった。
0026
次に第2の工程について述べる。得られた5個の水酸化ニッケル粉末集団それぞれと水酸化リチウム一水和物粉末とを攪拌機を用いて混合し5個の混合物集団とした。いずれも混合比率は一定とし、水酸化ニッケル/水酸化リチウムのモル比を1/1.01となるようにした。ここで用いた水酸化リチウムは平均粒径約1.3μmであるものを用いた。なお、ここで得られた5個の混合物集団のうち、水酸化ニッケル粉末の平均粒径が最も小さいものを、以下、第1混合物と称する。同様に平均粒径が次に小さなものを第2混合物、平均粒径が中間のものを第3混合物、平均粒径が2番目に大きいものを第4混合物、平均粒径が最も大きいものを第5混合物と称する。
0027
次に第3の工程について述べる。第2の工程で得られた5個の混合物集団をそれぞれ焼成炉において異なる条件で焼成した。焼成炉としてはバッチ炉の一種であるマッフル炉を用い、酸素ガス流通下(流速100L/分)において、焼成した。焼成温度は第1/第2/第3/第4/第5混合物について725/750/775/800/825℃とし、10時間かけて先の設定温度まで昇温したのち各温度で20時間保持し、その後10時間かけて常温まで降温した。第1/第2/第3/第4/第5混合物を焼成することで得られた焼成物をそれぞれ第1/第2/第3/第4/第5焼成物と称する。これら第1/第2/第3/第4/第5焼成物の平均粒径はそれぞれ3.0/7.5/12.1/17.1/21.5μmであり、それぞれの粒度分布は図3に示すものであった。
0028
次に第4の工程について述べる。第3の工程において得られた5個の焼成物集団を解砕、混合して1個の混合物とした。ここでの混合方法は乾式攪拌方式を採用し、解砕、混合を同時に実施した。このようにして得られた第1/第2/第3/第4/第5焼成物の混合物を活物質Aと称する。
0029
引き続き、得られた活物質について説明する。平均粒径は堀場製作所製のレーザー回折/散乱式粒度分布計(型番LA−920)を使用して累計体積50%に相当する値とした。測定した活物質Aの平均粒径は16.5μmであり、その粒度分布は図4に示した通りであった。また、マウンテック製のBET式ガス吸着比表面積測定装置(型番HM−1201)を使用してHe−N2混合ガスにより測定した活物質AのBET比表面積は0.42m2/gであり、CuKα線を使用して25℃で測定した粉末X線回折図形における2θ=18〜20°の(003)面に対応した回折線の半価幅は0.09°であった。
0030
(実施例2)
固溶金属元素の種類およびその量を様々に変化させた水酸化ニッケル粉末を用いた以外は、実施例1と同様に第1〜4の工程を実施した。それぞれの条件は表1〜表7に示したとおりである。これらの表には得られた活物質の平均粒径、BET比表面積、(003)
面回折線の半価幅も併せて示した。
0031
【表1】

Figure 0004374930
0032
【表2】
Figure 0004374930
0033
【表3】
Figure 0004374930
0034
【表4】
Figure 0004374930
0035
【表5】
Figure 0004374930
0036
【表6】
Figure 0004374930
0037
【表7】
Figure 0004374930
0038
(実施例3)
第3の工程の焼成条件を様々に変化させた以外は、実施例1と同様にして活物質の製造を行った。それぞれの条件は表8に示したとおりである。表8には得られた活物質の平均粒径、BET比表面積、(003)面回折線の半価幅も併せて示した。
0039
【表8】
Figure 0004374930
0040
(実施例4)
水酸化ニッケルと水酸化リチウムの混合比率以外は、実施例1と同様にして活物質の製造を行った。それぞれの条件は表9に示したとおりである。表9には得られた活物質の平均粒径、BET比表面積、(003)面回折線半価幅も併せて示した。
0041
【表9】
Figure 0004374930
0042
(実施例5)
ニッケル化合物もしくはリチウム化合物として水酸化物以外のものを用いた以外は実施例1と同様にして活物質の製造を行った。それぞれの条件は表10に示したとおりである。表10には得られた活物質の平均粒径、BET比表面積、(003)面回折線の半価幅も併せて示した。
0043
【表10】
Figure 0004374930
0044
(比較例1)
比較のために従来の方法による活物質も作製した。
0045
原料には実施例1で用いたのと同じ水酸化ニッケル粉末および水酸化リチウム一水和物粉末を用いて活物質の製造を行った。水酸化ニッケル粉末と水酸化リチウム一水和物粉末とを攪拌機を用いて、水酸化ニッケル/水酸化リチウムのモル比を1/1.01となるように混合した。
0046
得られた混合物をそれぞれ焼成炉において異なる焼成温度条件で焼成した。焼成炉としては前記のマッフル炉を用い、酸素ガス流通下(流速100L/分)において焼成した。焼成温度は725および825℃とし、10時間かけてその設定温度まで昇温したのち各温度で20時間保持し、その後10時間かけて常温まで降温した。焼成温度を725℃として得られた活物質を比較活物質イ、焼成温度を825℃として得られた活物質を比較活物質ロとした。比較活物質イの平均粒径は15.7μm、BET比表面積は0.9m2/g、(003)面回折線の半価幅は0.17°であった。また、比較活物質ロの平均粒径は16.3μm、BET比表面積は0.1m2/g、(003)面回折線の半価幅は0.03°であった。図5に比較活物質イおよび比較活物質ロの粒度分布を示す。
0047
以上に述べた実施例および比較例により製造した活物質A〜OX、比較活物質イおよびロを使用してリチウムイオン二次電池を作製した。これらの電池をそれぞれ電池A〜OX、比較電池イおよびロと称す。
0048
図6に作製した17500サイズ(直径17mm、高さ50mm)の円筒型リチウム二次電池の縦断面図を示す。耐有機電解液性のステンレス鋼板を加工した電池ケース1の開口部は安全弁を設けた封口板2および絶縁パッキング3により封口されている。この電池ケース1内には正極板5および負極板6がセパレータ7を介して複数回渦巻状に巻回し構成された極板群4が収納されており、極板群4の上下部にそれぞれ絶縁リング8が設けられている。また、正極板5からはアルミニウム製の正極リード5aが引き出されて封口板2に電気的に接続され、負極板6からはニッケル製の負極リード6aが引き出されて電池ケース1の底部に電気的に接続されている。
0049
以下、この電池の作製方法をさらに詳述する。
0050
負極板6の作製方法は以下の通りである。炭素材料(本実施例においてはピッチ系球状黒鉛を用いた)にスチレン−ブタジエンゴムの水性ディスパージョンを重量比で100:3.5の割合で混合し、これをカルボキシメチルセルロースの水溶液に懸濁させてペースト状にしたものを銅箔の両面に塗着し、乾燥後、圧延し所定の大きさに切り出して負極板を作製した。なお、スチレン−ブタジエンゴムの水性ディスパージョンの混合比率はその固形分で計算している。
0051
正極板5の作製方法は以下の通りである。合成した正極活物質A〜OXにアセチレンブラックおよびポリ四フッ化エチレンの水性ディスパージョンを重量比で100:2.5:7.5の割合で混合し、これをカルボキシメチルセルロースの水溶液に懸濁させてペースト状にした。次いでこのペーストをアルミニウム箔の両面に塗着し、乾燥後、圧延し所定の大きさに切り出して正極板を作製した。ポリ四フッ化エチレンの水性ディスパージョンの混合比率はその固形分で計算している。
0052
電池の作製方法は以下の通りである。上記により作製した正、負極板にそれぞれリードを取付け、ポリエチレン製のセパレータを介して渦巻き状に巻回し、電池ケースに収納した。電解液にはエチレンカーボネートとエチルメチルカーボネートを体積比で1:3で混合した溶媒に溶質として6フッ化リン酸リチウム(LiPF6)を1.5mol/l溶解したものを用いた。この電解液の所定量を上記の電池ケースに減圧注液し、その後封口し、電池とした。なお本例においては、正極活物質の特性を評価するため、予め負極の容量を正極のそれよりも大きくしたものを用い、定格容量を600mAhとした。
0053
これら電池A〜OX、比較電池イおよびロを用いて下記の条件で充放電試験を行った。まず、雰囲気温度20℃で電池電圧4.2Vまで120mAの定電流で充電した後1時間休止を行い、その後120mAの定電流で電池電圧2.5Vまで放電した。この方法で充放電を3回繰り返し、3回目の放電容量を初期容量とした。次いで、雰囲気温度20℃で電池電圧4.2Vまで120mAの定電流で充電した後1時間休止を行い、その後600mAの定電流で電池電圧2.5Vまで放電した。このときの放電容量を初期高率放電容量とした。先に測定した初期容量を初期高率放電容量で除して得た値の百分率を初期高率放電容量比率とした。さらに、20℃で充放電電流を120mAとし、充電終止電圧4.2V、放電終止電圧2.5V、充電後および放電後の休止時間を1時間として、定電流充放電サイクル試験を行った。初期容量に対する500サイクル時点での放電容量を百分率で表したものを充放電サイクル容量維持率として算出した。これらの結果を表11〜表20にまとめて示す。
0054
【表11】
Figure 0004374930
0055
【表12】
Figure 0004374930
0056
【表13】
Figure 0004374930
0057
【表14】
Figure 0004374930
0058
【表15】
Figure 0004374930
0059
【表16】
Figure 0004374930
0060
【表17】
Figure 0004374930
0061
【表18】
Figure 0004374930
0062
【表19】
Figure 0004374930
0063
【表20】
Figure 0004374930
0064
これらの各表に示した結果から明らかなように、一般式Li1+xNi1-x-y-zCoyz2(0≦x≦0.2、0.1≦y≦0.35、0.05≦z≦0.25、MはAl、Ti、Cr、Mn、Fe、Yから選ばれる1種以上の金属元素)で表され、BET比表面積が0.1〜0.7m2/gである非水電解質二次電池用正極活物質は優れたサイクル寿命特性および優れた高率放電特性を示した。中でも、CuKα線を使用して25℃で測定した粉末X線回折図形において2θ=18〜20°の(003)面に対応する回折線の半価幅が0.05〜0.15°である非水電解質二次電池用正極活物質は特に優れた結果であった。
0065
これまで述べてきた実施例などにおいてはn=5の場合についてのみ説明したが、nの値は大きい方が均質性が確保できるため発明の効果は大きい。ただし、nの値が大きすぎると手間がかかるため製造コストが高くなる。これらを勘案すると、nの値は3〜10が性能とコストのバランスがよく、中でもn=5の場合が最も実用的である。
0066
【発明の効果】
以上、詳細に述べたように本発明によれば活物質粉末の粒径あるいは粒度分布、比表面積さらには結晶性についても均質化、適正化を図ることができ、これを用いた非水電解質二次電池の充放電サイクル特性および高率放電特性を高めることができる。
【図面の簡単な説明】
【図1】 水酸化ニッケルの粒度分布図
【図2】 分割した水酸化ニッケル集団の粒度分布図
【図3】 焼成物集団の粒度分布図
【図4】 活物質Aの粒度分布図
【図5】 比較活物質の粒度分布図
【図6】 円筒型リチウム二次電池の縦断面図
【符号の説明】
1 電池ケース
2 封口板
3 絶縁パッキング
4 極板群
5 正極板
5a 正極リード
6 負極板
6a 負極リード
7 セパレータ
8 絶縁リング[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method of the positive electrode active substance in the non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
With the development of portable electronic devices, nonaqueous electrolyte secondary batteries typified by lithium ion secondary batteries have attracted attention as small and lightweight power supplies. As the positive electrode active material used in this battery, composite oxides such as lithium cobaltate, lithium nickelate, and lithium manganate are well known. Among them, lithium nickelate is actively researched and developed because of its relatively low cost and high capacity.
[0003]
However, since lithium nickelate greatly changes its capacity and charge / discharge characteristics depending on its synthesis method, it is relatively difficult to mass-produce homogeneous and high-performance active materials. Therefore, as a method for producing a homogeneous active material, in the production method in which a lithium compound and a nickel compound are mixed and fired to obtain an active material, after the first firing, the mixture is pulverized and mixed to further promote crystallization. A method of firing is proposed (Patent Document 1). As a method of obtaining a good quality active material by one firing, a mixture of a lithium compound and a nickel compound is held at a temperature of 500 ° C. or lower for 30 minutes or more, and the molten lithium compound is infiltrated into the nickel compound powder. It has been proposed to perform firing from (Patent Document 2). On the other hand, attempts have been made to improve the performance by introducing various elements into lithium nickelate (Patent Document 3).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-251854
[Patent Document 2]
JP-A-9-156931 [0006]
[Patent Document 3]
Japanese Patent Application Laid-Open No. 8-222220
[Problems to be solved by the invention]
Although the various proposals described above have made the active material homogeneous and have higher performance, other than the active material powder particle size, particle size distribution or specific surface area, as well as crystals during commercial production. There is also a need for homogenization and optimization. In addition, with the diversification of applications of non-aqueous electrolyte secondary batteries, demands from the market for high rate discharge characteristics are becoming stricter.
[ 0008 ]
The present invention was made from this point of view, crystalline, particle size distribution, the specific surface area to provide a method for manufacturing a nickel acid lithium excellent in homogeneous charge-discharge cycle characteristics and high rate discharge property Objective.
[ 0009 ]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention mixes and burns nickel compound powder and lithium compound powder, and the general formula Li 1 + x Ni 1-xyz Co y M z O 2 (0 ≦ x ≦ 0.2, 0.1 ≦ y ≦ 0.33, 0.001 ≦ z ≦ 0.33, where M is one or more metal elements selected from Al, Ti, Mg, Cr, Mn, Fe, and Y) In the method for producing a positive electrode active material for a secondary battery,
(1) a first step of dividing the nickel compound powder into n groups (n is an integer of 2 or more) having different average particle diameters;
(2) a second step in which each group obtained in the first step is mixed with a lithium compound to form an n mixture group;
(3) a third step of firing the n mixture populations under different firing conditions;
(4) saw including a fourth step of the third fired product population again mixed to one population obtained in step, in the third step, among the n mixtures population, nickel compounds The BET ratio of the positive electrode active material for a non-aqueous electrolyte secondary battery is calcined at a lower temperature or a shorter time for a group having a smaller average particle size, and at a higher temperature or a longer time for a group having a larger average particle size of a nickel compound. In a powder X-ray diffraction pattern measured at 25 ° C. with a surface area of 0.1 to 0.7 m 2 / g and using CuKα rays, diffraction lines corresponding to (003) plane of 2θ = 18 to 20 ° The half width is 0.05 to 0.15 ° .
[ 0010 ]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[ 0011 ]
First, a nickel compound powder as a first raw material for active material synthesis is prepared. Here, nickel oxide, nickel hydroxide, nickel carbonate, nickel nitrate, nickel sulfate, etc. can be considered as the nickel compound. Of course, the metal element contained in these nickel compounds is not limited to nickel, but may contain an element (for example, Co, Al, Ti, Mg, Cr, Mn, Fe, Y) that is desired to be introduced into the active material. As a form containing an element other than nickel, a solid solution state is most preferable, but other forms such as a mixed crystal may be used.For example, like a mixture of a nickel compound and an Co compound containing an element other than nickel, It may be a mixture. In any case, the composition is determined according to the target active material. Moreover, the synthesis | combining method of these nickel compounds is not limited, Reaction crystallization may be sufficient and granulation may be sufficient.
[ 0012 ]
Next, this nickel compound is divided into a plurality (n) of groups (first step). The division here does not simply divide arbitrarily, but means division according to the particle size. For example, it is divided into two groups (n = 2), a group having a large average particle diameter and a small group, or three groups (n = 3) having a large average particle diameter, medium, and small. You may divide into four or more groups. Examples of the division method include a sieving method, a sedimentation method, a cyclone method, and a vortex method. The present invention is based on the premise that a particle size distribution exists in the nickel compound powder.
[ 0013 ]
Next, each of the n nickel compound powders is mixed with a lithium compound powder, which is a second raw material for active material synthesis, to form an n mixture group (second step). Examples of the lithium compound include lithium hydroxide, lithium carbonate, lithium nitrate, lithium sulfate, and lithium oxide. Among these, lithium hydroxide is preferable. This is because environmental pollutants such as NO x and SO x are not easily generated in the active material synthesis process, and the price is relatively low.
[ 0014 ]
Moreover, the thing with an average particle diameter of 0.1-10 micrometers is suitable for the physical property of a lithium compound. This is because if such physical properties are used, the reaction proceeds smoothly when firing in the third step, and unreacted raw materials are unlikely to remain. In this second step, the mixing method is arbitrary, but methods such as a dry stirring method, a solution dispersion method, and a spray drying method are conceivable. Further, the mixing ratio of the nickel compound powder and the lithium compound powder may be constant, but the lithium in the lithium compound powder is about 1 to 10% more in terms of mole than the metal element contained in the nickel compound powder. It is more preferable to mix at a proper ratio. The reason is as follows.
[ 0015 ]
Since Ni is more easily reduced than Co, Ni 2+ is generated when baked at a high temperature, and Ni enters the site where Li originally enters (so-called Li deficiency tends to occur). Therefore, a lithium compound that reacts at a low temperature is used, or synthesis is performed in a somewhat Li-rich manner.
[ 0016 ]
Thereafter, the n mixture groups obtained in the second step are fired under different conditions in a firing furnace in an oxidizing atmosphere (third step). Here, the different conditions mean at least one of a firing temperature, a firing time, and an oxidizing atmosphere, but it is most preferable to fire the n mixture groups at different temperatures, and then to sinter for different times. . Although the selection of a baking furnace is arbitrary in baking, a batch furnace, a continuous furnace, a rotary kiln etc. can be used conveniently. Further, when firing the n mixture groups at different temperatures, it is preferable that the group having a smaller average particle diameter of the nickel compound is fired at a lower temperature, and the group having a larger average particle diameter of the nickel compound is fired at a higher temperature. In the case where the n mixture groups are fired for different times, it is preferable that the group having a smaller average particle diameter of the nickel compound is fired for a shorter time, and the group having a larger average particle diameter of the nickel compound is fired for a longer time. In firing, the firing temperature is preferably set in the range of 700 to 1000 ° C. Moreover, it is appropriate to set the firing time in the range of 5 to 50 hours. When firing the n mixture population, if both firing temperature and firing time are different, it is desirable that at least one (preferably both) satisfy the conditions described above. The atmosphere at the time of firing is preferably an atmosphere of air, oxygen, a mixed gas of oxygen and inert gas, and an oxygen partial pressure of 0.05 MPa or more is suitable. In addition, it is desirable to distribute | circulate these gases in a kiln (for example, flow rate 100-600L / min).
[ 0017 ]
In this third step, the group having a smaller average particle diameter of the nickel compound is fired at a lower temperature, the group having a larger average particle diameter of the nickel compound is fired at a higher temperature, or the group having a smaller average particle diameter of the nickel compound is shorter. The reason why the groups having a larger average particle diameter of the nickel compound are fired for a longer time is to make the physical properties (for example, the particle diameter) of the active material powder obtained by firing as uniform as possible. Since the lithium compound melts when the nickel compound reacts with the lithium compound at the time of firing, the nickel compound is solid, so the reactivity and the physical properties of the resulting active material powder are large in the particle size of the nickel compound. to be influenced. For this reason, it is preferable to appropriately select firing conditions for each particle size of the nickel compound.
[ 0018 ]
That is, a mixture group containing a nickel compound having a small particle size is relatively reactive, and a mixture group containing a nickel compound having a large particle size is relatively difficult to proceed. For this reason, it is preferable to select a condition in which the reaction tends to proceed relatively with respect to a mixture group containing a nickel compound having a large particle size and the unreacted raw material hardly remains. Thereby, the physical properties of the active material powder obtained, for example, the crystallinity can be homogenized. Needless to say, since the particle growth property at the time of firing differs depending on the particle size of the nickel compound, the firing conditions may be determined in consideration thereof.
[ 0019 ]
Next, the n fired product groups obtained in this manner are mixed to form one mixture (fourth step). The mixing method here is arbitrary, and examples thereof include a dry stirring method, a solution dispersion method, and a spray drying method. Further, the fired product may be crushed before mixing in the fourth step. Of course, it is more preferable to carry out mixing and crushing at the same time.
[ 0020 ]
By the manufacturing method described above, the general formula Li 1 + x Ni 1-xyz Co y M z O 2 (0 ≦ x ≦ 0.2, 0.1 ≦ y ≦ 0.35, 0.001 ≦ z ≦ 0) .35, M is a positive electrode active material for a non-aqueous electrolyte secondary battery represented by 1 or more metal elements selected from Al, Ti, Mg, Cr, Mn, Fe, and Y. The BET specific surface area of the substance can be controlled to 0.1 to 0.7 m 2 / g. Further, in the powder X-ray diffraction pattern measured at 25 ° C. using CuKα rays, the half width of the diffraction line corresponding to the (003) plane of 2θ = 18 to 20 ° is 0.05 to 0.15 °. Can be controlled. Of course, the particle diameter of the obtained active material powder can be made uniform.
[ 0021 ]
In this way, a homogeneous active material is obtained because appropriate firing conditions are selected according to the particle size of the nickel compound that is the raw material for the synthesis of the active material. This is because firing is performed under different firing conditions, and then the whole is remixed. Thereby, even when a nickel compound having a wide particle size distribution is used as a raw material, a homogeneous active material can be obtained. As a result, it is possible to improve, for example, high rate discharge characteristics when this active material is used in a battery.
[ 0022 ]
【Example】
Hereinafter, the present invention will be described in more detail and specifically with reference to examples.
[ 0023 ]
Example 1
First, active material production will be described step by step.
[ 0024 ]
First, the first step will be described. Nickel hydroxide powder as a first raw material for active material synthesis was prepared. This nickel hydroxide is obtained by dissolving 20 mol% of cobalt with respect to all metal elements and 5 mol% of aluminum in the same manner. The nickel hydroxide aqueous solution, cobalt sulfate aqueous solution, and aluminum nitrate aqueous solution are used as raw materials in the presence of ammonia. It was synthesized by a reaction crystallization method by reacting with sodium oxide.
[ 0025 ]
The average particle size of the nickel hydroxide powder used here was about 15.3 μm, and the particle size distribution was as shown in FIG. This nickel hydroxide powder was divided into groups having five different particle size distributions using a vortex classifier to obtain five nickel hydroxide groups. The average particle size of each of these five populations was about 1.5 μm, 6.7 μm, 11.6 μm, 16.4 μm, 21.2 μm, and the particle size distribution thereof is shown in FIG.
[ 0026 ]
Next, the second step will be described. Each of the obtained 5 nickel hydroxide powder populations and lithium hydroxide monohydrate powder were mixed using a stirrer to obtain 5 mixture populations. In both cases, the mixing ratio was constant, and the molar ratio of nickel hydroxide / lithium hydroxide was set to 1 / 1.01. The lithium hydroxide used here had an average particle size of about 1.3 μm. In addition, among the five mixture groups obtained here, the one having the smallest average particle diameter of the nickel hydroxide powder is hereinafter referred to as a first mixture. Similarly, the second mixture with the next smallest average particle size is the second mixture, the third mixture with the average particle size is the third mixture, the second mixture with the second largest average particle size is the fourth mixture, and the one with the largest average particle size is the second mixture. Called 5 mixture.
[ 0027 ]
Next, the third step will be described. The five mixture groups obtained in the second step were fired under different conditions in a firing furnace. A muffle furnace, which is a kind of batch furnace, was used as the firing furnace, and firing was performed under an oxygen gas flow (flow rate 100 L / min). The firing temperature is set to 725/750/775/800/825 ° C. for the first / second / third / fourth / fifth mixture, and the temperature is raised to the preset temperature over 10 hours and then held at each temperature for 20 hours. Then, the temperature was lowered to room temperature over 10 hours. The fired products obtained by firing the first / second / third / fourth / fifth mixture are referred to as first / second / third / fourth / fifth fired products, respectively. The average particle diameters of these first / second / third / fourth / fifth baked products are 3.0 / 7.5 / 12.1 / 17.1.1 / 21.5 μm, respectively. It was what was shown in FIG.
[ 0028 ]
Next, the fourth step will be described. The five fired product groups obtained in the third step were crushed and mixed to form one mixture. The mixing method here employed a dry stirring method, and pulverization and mixing were performed simultaneously. The first / second / third / fourth / fifth fired mixture obtained in this manner is referred to as an active material A.
[ 0029 ]
Next, the obtained active material will be described. The average particle size was a value corresponding to a cumulative volume of 50% using a laser diffraction / scattering particle size distribution meter (model number LA-920) manufactured by Horiba. The average particle diameter of the measured active material A was 16.5 μm, and the particle size distribution was as shown in FIG. Further, BET specific surface area of the active material A was measured by the He-N 2 mixed gas was used MOUNTECH steel BET type gas adsorption specific surface area measuring apparatus (Model HM-1201) is 0.42m 2 / g, CuKα The half width of the diffraction line corresponding to the (003) plane of 2θ = 18 to 20 ° in the powder X-ray diffraction pattern measured at 25 ° C. using a line was 0.09 °.
[ 0030 ]
(Example 2)
The first to fourth steps were carried out in the same manner as in Example 1 except that nickel hydroxide powder in which the kind of solid solution metal element and the amount thereof were variously changed was used. Each condition is as shown in Tables 1-7. These tables show the average particle diameter, BET specific surface area of the obtained active material, (003)
The half width of the surface diffraction line is also shown.
[ 0031 ]
[Table 1]
Figure 0004374930
[ 0032 ]
[Table 2]
Figure 0004374930
[ 0033 ]
[Table 3]
Figure 0004374930
[ 0034 ]
[Table 4]
Figure 0004374930
[ 0035 ]
[Table 5]
Figure 0004374930
[ 0036 ]
[Table 6]
Figure 0004374930
[ 0037 ]
[Table 7]
Figure 0004374930
[ 0038 ]
(Example 3)
An active material was produced in the same manner as in Example 1 except that the firing conditions in the third step were variously changed. Each condition is as shown in Table 8. Table 8 also shows the average particle diameter, BET specific surface area, and half width of the (003) plane diffraction line of the obtained active material.
[ 0039 ]
[Table 8]
Figure 0004374930
[ 0040 ]
(Example 4)
An active material was produced in the same manner as in Example 1 except for the mixing ratio of nickel hydroxide and lithium hydroxide. Each condition is as shown in Table 9. Table 9 also shows the average particle diameter, BET specific surface area, and (003) plane diffraction line half width of the active material obtained.
[ 0041 ]
[Table 9]
Figure 0004374930
[ 0042 ]
(Example 5)
An active material was produced in the same manner as in Example 1 except that a nickel compound or lithium compound other than hydroxide was used. Each condition is as shown in Table 10. Table 10 also shows the average particle size, the BET specific surface area, and the half-value width of the (003) plane diffraction line of the active material obtained.
[ 0043 ]
[Table 10]
Figure 0004374930
[ 0044 ]
(Comparative Example 1)
For comparison, an active material by a conventional method was also prepared.
[ 0045 ]
An active material was produced using the same nickel hydroxide powder and lithium hydroxide monohydrate powder as used in Example 1 as raw materials. Nickel hydroxide powder and lithium hydroxide monohydrate powder were mixed using a stirrer so that the molar ratio of nickel hydroxide / lithium hydroxide was 1 / 1.01.
[ 0046 ]
Each of the obtained mixtures was fired at different firing temperature conditions in a firing furnace. As the firing furnace, the above-mentioned muffle furnace was used, and firing was performed under an oxygen gas flow (flow rate 100 L / min). The firing temperature was 725 and 825 ° C., the temperature was raised to the set temperature over 10 hours, held at each temperature for 20 hours, and then lowered to room temperature over 10 hours. The active material obtained at a firing temperature of 725 ° C. was designated as a comparative active material a, and the active material obtained at a firing temperature of 825 ° C. was designated as a comparative active material. The average particle diameter of the comparative active material A was 15.7 μm, the BET specific surface area was 0.9 m 2 / g, and the half width of the (003) plane diffraction line was 0.17 °. The average particle diameter of the comparative active material was 16.3 μm, the BET specific surface area was 0.1 m 2 / g, and the half width of the (003) plane diffraction line was 0.03 °. FIG. 5 shows the particle size distributions of the comparative active material A and the comparative active material B.
[ 0047 ]
A lithium ion secondary battery was fabricated using the active materials A to OX and the comparative active materials A and B produced by the examples and comparative examples described above. These batteries are referred to as batteries A to OX, comparative batteries A and B, respectively.
[ 0048 ]
FIG. 6 shows a longitudinal sectional view of a 17500 size (diameter 17 mm, height 50 mm) cylindrical lithium secondary battery produced. The opening of the battery case 1 processed from an organic electrolyte resistant stainless steel plate is sealed by a sealing plate 2 provided with a safety valve and an insulating packing 3. In this battery case 1 are accommodated a group of electrode plates 4 in which a positive electrode plate 5 and a negative electrode plate 6 are wound around a separator 7 a plurality of times in a spiral shape. A ring 8 is provided. Also, an aluminum positive electrode lead 5 a is drawn from the positive electrode plate 5 and is electrically connected to the sealing plate 2, and a nickel negative electrode lead 6 a is drawn from the negative electrode plate 6 and is electrically connected to the bottom of the battery case 1. It is connected to the.
[ 0049 ]
Hereinafter, a method for producing this battery will be described in detail.
[ 0050 ]
The manufacturing method of the negative electrode plate 6 is as follows. An aqueous dispersion of styrene-butadiene rubber is mixed at a weight ratio of 100: 3.5 to a carbon material (pitch-based spherical graphite is used in this example), and this is suspended in an aqueous solution of carboxymethyl cellulose. The paste was applied to both sides of the copper foil, dried, rolled and cut into a predetermined size to produce a negative electrode plate. In addition, the mixing ratio of the aqueous dispersion of styrene-butadiene rubber is calculated by the solid content.
[ 0051 ]
The manufacturing method of the positive electrode plate 5 is as follows. An aqueous dispersion of acetylene black and polytetrafluoroethylene is mixed with the synthesized positive electrode active materials A to OX at a weight ratio of 100: 2.5: 7.5, and this is suspended in an aqueous solution of carboxymethyl cellulose. To make a paste. Next, this paste was applied to both sides of an aluminum foil, dried, rolled and cut into a predetermined size to produce a positive electrode plate. The mixing ratio of the aqueous dispersion of polytetrafluoroethylene is calculated as its solid content.
[ 0052 ]
The battery manufacturing method is as follows. Leads were respectively attached to the positive and negative electrode plates produced as described above, wound spirally through a polyethylene separator, and stored in a battery case. The electrolyte used was a solution in which 1.5 mol / l of lithium hexafluorophosphate (LiPF 6 ) was dissolved as a solute in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 3. The predetermined amount of the electrolyte solution under reduced pressure pouring into the battery case of the above Symbol, and then sealed to obtain a battery. In this example, in order to evaluate the characteristics of the positive electrode active material, a negative electrode having a capacity larger than that of the positive electrode was used in advance, and the rated capacity was 600 mAh.
[ 0053 ]
Using these batteries A to OX, comparative batteries A and B, charge / discharge tests were conducted under the following conditions. First, the battery was charged at a constant current of 120 mA up to a battery voltage of 4.2 V at an ambient temperature of 20 ° C., then rested for 1 hour, and then discharged to a battery voltage of 2.5 V at a constant current of 120 mA. The charging / discharging was repeated 3 times by this method, and the third discharge capacity was set as the initial capacity. Next, the battery was charged at a constant current of 120 mA up to a battery voltage of 4.2 V at an ambient temperature of 20 ° C., then rested for 1 hour, and then discharged to a battery voltage of 2.5 V at a constant current of 600 mA. The discharge capacity at this time was defined as the initial high rate discharge capacity. The percentage of the value obtained by dividing the initial capacity measured earlier by the initial high rate discharge capacity was defined as the initial high rate discharge capacity ratio. Further, a constant current charge / discharge cycle test was performed at 20 ° C. with a charge / discharge current of 120 mA, a charge end voltage of 4.2 V, a discharge end voltage of 2.5 V, and a rest time after charge and discharge of 1 hour. The discharge capacity at the time of 500 cycles with respect to the initial capacity was expressed as a percentage, and the charge / discharge cycle capacity maintenance rate was calculated. These results are summarized in Tables 11 to 20.
[ 0054 ]
[Table 11]
Figure 0004374930
[ 0055 ]
[Table 12]
Figure 0004374930
[ 0056 ]
[Table 13]
Figure 0004374930
[ 0057 ]
[Table 14]
Figure 0004374930
[ 0058 ]
[Table 15]
Figure 0004374930
[ 0059 ]
[Table 16]
Figure 0004374930
[ 0060 ]
[Table 17]
Figure 0004374930
[ 0061 ]
[Table 18]
Figure 0004374930
[ 0062 ]
[Table 19]
Figure 0004374930
[ 0063 ]
[Table 20]
Figure 0004374930
[ 0064 ]
As is apparent from the results shown in these tables, the general formula Li 1 + x Ni 1-xyz Co y M z O 2 (0 ≦ x ≦ 0.2,0.1 ≦ y ≦ 0.35,0 0.05 ≦ z ≦ 0.25, where M is one or more metal elements selected from Al, Ti, Cr, Mn, Fe, and Y), and the BET specific surface area is 0.1 to 0.7 m 2 / g. The positive electrode active material for a non-aqueous electrolyte secondary battery showed excellent cycle life characteristics and excellent high rate discharge characteristics. Among them, the half width of the diffraction line corresponding to the (003) plane of 2θ = 18 to 20 ° in the powder X-ray diffraction pattern measured at 25 ° C. using CuKα ray is 0.05 to 0.15 °. The positive electrode active material for a non-aqueous electrolyte secondary battery was a particularly excellent result.
[ 0065 ]
In the embodiments and the like described so far, only the case of n = 5 has been described. However, the larger the value of n, the greater the effect of the invention because the homogeneity can be ensured. However, if the value of n is too large, it takes time and manufacturing cost increases. Taking these into consideration, the value of n is 3 to 10 with a good balance between performance and cost, and the case where n = 5 is most practical.
[ 0066 ]
【The invention's effect】
As described above in detail, according to the present invention, the particle size or particle size distribution, specific surface area, and crystallinity of the active material powder can be homogenized and optimized. The charge / discharge cycle characteristics and high rate discharge characteristics of the secondary battery can be enhanced.
[Brief description of the drawings]
[Fig. 1] Particle size distribution diagram of nickel hydroxide [Fig. 2] Particle size distribution diagram of divided nickel hydroxide population [Fig. 3] Particle size distribution diagram of calcined product population [Fig. 4] Particle size distribution diagram of active material A [Fig. ] Particle size distribution diagram of comparative active material [Fig. 6] Vertical section of cylindrical lithium secondary battery [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode plate group 5 Positive electrode plate 5a Positive electrode lead 6 Negative electrode plate 6a Negative electrode lead 7 Separator 8 Insulation ring

Claims (1)

ニッケル化合物粉末とリチウム化合物粉末とを混合、焼成して一般式Li1+xNi1-x-y-zCoyz2(0≦x≦0.2、0.1≦y≦0.33、0.001≦z≦0.33、MはAl、Ti、Mg、Cr、Mn、Fe、Yから選ばれる1種以上の金属元素)を得る非水電解質二次電池用正極活物質の製造方法であって、
(1)ニッケル化合物粉末を平均粒径の異なるn個(nは2以上の整数)の集団に分割する第1の工程と、
(2)第1の工程で得られたそれぞれの集団をリチウム化合物と混合してn個の混合物集団とする第2の工程と、
(3)前記n個の混合物集団を互いに異なる焼成条件で焼成する第3の工程と、
(4)第3の工程で得られた焼成物集団を再び混合して1つの集団とする第4の工程とを含み、
前記第3の工程において、n個の混合物集団のうち、ニッケル化合物の平均粒径が小さな集団ほど低い温度または短い時間で、ニッケル化合物の平均粒径が大きな集団ほど高い温度または長い時間で、それぞれ焼成し、
前記非水電解質二次電池用正極活物質のBET比表面積を0.1〜0.7m 2 /gとし、且つ、CuKα線を使用し、25℃で測定した粉末X線回折図形において2θ=18〜20°の(003)面に対応する回折線の半価幅を0.05〜0.15°とする非水電解質二次電池用正極活物質の製造方法。
Nickel compound powder and lithium compound powder are mixed and fired to obtain a general formula Li 1 + x Ni 1-xyz Co y Mz O 2 (0 ≦ x ≦ 0.2, 0.1 ≦ y ≦ 0.33, 0 .001 ≦ z ≦ 0.33, where M is one or more metal elements selected from Al, Ti, Mg, Cr, Mn, Fe, and Y), and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery. There,
(1) a first step of dividing the nickel compound powder into n groups (n is an integer of 2 or more) having different average particle diameters;
(2) a second step in which each group obtained in the first step is mixed with a lithium compound to form an n mixture group;
(3) a third step of firing the n mixture populations under different firing conditions;
(4) saw including a fourth step of the third fired product population again mixed to one population obtained in step,
In the third step, among the n mixture groups, a group having a smaller average particle diameter of nickel compound has a lower temperature or a shorter time, and a group having a larger average particle diameter of nickel compound has a higher temperature or a longer time, respectively. Fired,
In the powder X-ray diffraction pattern measured at 25 ° C. using a BET specific surface area of the positive electrode active material for a nonaqueous electrolyte secondary battery of 0.1 to 0.7 m 2 / g and using CuKα rays, 2θ = 18 The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries which makes the half width of the diffraction line corresponding to (003) plane of -20 degree 0.05-0.15 degree .
JP2003191974A 2003-07-04 2003-07-04 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Expired - Lifetime JP4374930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003191974A JP4374930B2 (en) 2003-07-04 2003-07-04 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003191974A JP4374930B2 (en) 2003-07-04 2003-07-04 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005026141A JP2005026141A (en) 2005-01-27
JP4374930B2 true JP4374930B2 (en) 2009-12-02

Family

ID=34189396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003191974A Expired - Lifetime JP4374930B2 (en) 2003-07-04 2003-07-04 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4374930B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100670507B1 (en) * 2005-04-28 2007-01-16 삼성에스디아이 주식회사 Lithium secondary battery
JP4626568B2 (en) * 2005-07-29 2011-02-09 ソニー株式会社 Lithium ion secondary battery
JP5110556B2 (en) 2006-03-27 2012-12-26 日立マクセルエナジー株式会社 Non-aqueous secondary battery and method of using the same
KR101117623B1 (en) * 2009-06-05 2012-02-29 에스비리모티브 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery including the positive electrode
US8871113B2 (en) * 2010-03-31 2014-10-28 Samsung Sdi Co., Ltd. Positive active material, and positive electrode and lithium battery including positive active material
WO2015189740A1 (en) 2014-06-10 2015-12-17 Umicore Positive electrode materials having a superior hardness strength
JP6210329B2 (en) * 2014-12-23 2017-10-11 トヨタ自動車株式会社 Method for producing lithium ion secondary battery
CN107293691A (en) * 2017-07-03 2017-10-24 河南比得力高新能源科技有限公司 A kind of positive plate and preparation method and the lithium ion battery including the positive plate
CN107492654A (en) * 2017-07-03 2017-12-19 河南比得力高新能源科技有限公司 A kind of column lithium ion battery and its preparation technology
CN107302090A (en) * 2017-07-03 2017-10-27 河南比得力高新能源科技有限公司 A kind of positive electrode and the positive plate including the positive electrode
KR20200128626A (en) 2018-03-07 2020-11-16 히타치 긴조쿠 가부시키가이샤 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
US11837729B2 (en) * 2020-03-19 2023-12-05 Global Graphene Group, Inc. Conducting polymer network-protected cathode active materials for lithium secondary batteries

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3232943B2 (en) * 1994-12-16 2001-11-26 松下電器産業株式会社 Manufacturing method of positive electrode active material for lithium secondary battery
JPH09156931A (en) * 1995-12-06 1997-06-17 Nikki Kagaku Kk Production of lithium nickelate
JPH09251854A (en) * 1996-03-14 1997-09-22 Matsushita Electric Ind Co Ltd Manufacture of positive active material for non-aqueous electrolyte secondary battery
JP3355126B2 (en) * 1998-01-30 2002-12-09 同和鉱業株式会社 Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP3468098B2 (en) * 1998-05-29 2003-11-17 松下電器産業株式会社 Method for producing positive electrode active material for lithium secondary battery
JP4055269B2 (en) * 1998-10-27 2008-03-05 戸田工業株式会社 Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JP4260302B2 (en) * 1999-09-07 2009-04-30 日本化学工業株式会社 Aggregated granular lithium composite oxide, method for producing the same, and lithium secondary battery
JP5026629B2 (en) * 2000-03-15 2012-09-12 ソニー株式会社 Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP3640164B2 (en) * 2000-10-13 2005-04-20 株式会社デンソー Nonaqueous electrolyte secondary battery
JP4175026B2 (en) * 2001-05-31 2008-11-05 三菱化学株式会社 Method for producing lithium transition metal composite oxide and positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Also Published As

Publication number Publication date
JP2005026141A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP4894969B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP4915488B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP5708277B2 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
EP2492243B1 (en) Nickel-cobalt-manganese compound particle powder and method for producing same, lithium composite oxide particle powder and method for producing same, and nonaqueous electrolyte secondary battery
JP5199522B2 (en) Spinel-type lithium / manganese composite oxide, its production method and use
WO2012165654A1 (en) Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
WO2014034430A1 (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
JP5294225B2 (en) Single crystal particles of oxide for lithium secondary battery electrode, method for producing the same, and lithium secondary battery using the same
JPH09129230A (en) Nonaqueous electrolytic battery and manufacture of positive active material
JP3974420B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP3539223B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
KR20170102293A (en) Multicomponent materials having a classification structure for lithium ion batteries, a method for manufacturing the same, an anode of a lithium ion battery and a lithium ion battery
KR20140060482A (en) Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
JP2004119218A (en) Positive active material for lithium secondary battery and its manufacturing method
JP4984593B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JPH0922693A (en) Nonaqueous electrolyte battery, positive active material thereof, and manufacture of positive plate
WO2015076323A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
KR20090012162A (en) A process for preparing lithium iron phosphorus based composite oxide carbon complex and a process for preparing coprecipitate comprising lithium, iron and phosphorus
JP4374930B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
CN103098269A (en) Continuous manufacturing method for electrode material
JP7159639B2 (en) Method for producing particles of transition metal composite hydroxide, and method for producing positive electrode active material for lithium ion secondary battery
JP2011249293A (en) Lithium transition metal compound and its manufacturing method, and lithium ion battery
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
KR20190107555A (en) Oxide based cathode active material for lithium ion battery, method for manufacturing oxide based cathode active material precursor for lithium ion battery, method for manufacturing oxide based cathode active material for lithium ion battery, and lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060605

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

R151 Written notification of patent or utility model registration

Ref document number: 4374930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140918

Year of fee payment: 5

EXPY Cancellation because of completion of term