JPH09251854A - Manufacture of positive active material for non-aqueous electrolyte secondary battery - Google Patents

Manufacture of positive active material for non-aqueous electrolyte secondary battery

Info

Publication number
JPH09251854A
JPH09251854A JP8057764A JP5776496A JPH09251854A JP H09251854 A JPH09251854 A JP H09251854A JP 8057764 A JP8057764 A JP 8057764A JP 5776496 A JP5776496 A JP 5776496A JP H09251854 A JPH09251854 A JP H09251854A
Authority
JP
Japan
Prior art keywords
active material
firing
positive electrode
aqueous electrolyte
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8057764A
Other languages
Japanese (ja)
Inventor
Tomoko Kono
智子 河野
Takafumi Fujiwara
隆文 藤原
Shoichiro Watanabe
庄一郎 渡辺
Shigeo Kobayashi
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8057764A priority Critical patent/JPH09251854A/en
Publication of JPH09251854A publication Critical patent/JPH09251854A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive active material for a non-aqueous electrolyte secondary battery with its large capacity capable of easily milling to a particle size of its prescribed range. SOLUTION: Manufacture of a positive active material for a non-aqueous electrolyte secondary battery to obtain oxide expressed by formula LIx NI(1-y) COy O2 (0.95<=x<=1.2, 0<=y<=0.5) using a mixture of nickel hydroxide and lithium salt in which at least nickel hydroxide or Co forms a solid solution, as a raw material, comprises a baking process at a first step for sintering at a temperature ranging from 300 deg.C to 650 deg.C for 2 to 20 hours, a process of milling and mixing after cooling to 100 deg.C or less, and a baking process at a second step for sintering at a temperature ranging from 700 deg.C to 900 deg.C for 2 to 30 hours.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池、特にその正極活物質の製造方法の改良に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement in a method for producing a positive electrode active material thereof.

【0002】[0002]

【従来の技術】近年、電子機器のポータブル化、コード
レス化が急速に進み、これらの電源として主に小型、軽
量で高エネルギー密度を有する二次電池の要望が高い。
なかでも非水電解液二次電池、特にリチウム二次電池は
高電圧、高エネルギー密度を有する電池として注目され
ている。従来、リチウム二次電池の正極活物質としてL
iCoO2、LiNiO2、LiMnO2等が知られてい
る。LiCoO2を用いた電池はすでに商品化されてい
る。一方、LiNiO2、およびLiMnO2は、LiC
oO2に比べて低コスト、高容量であるため、研究開発
が盛んに行われている。
2. Description of the Related Art In recent years, portable electronic devices and cordless electronic devices have been rapidly developed, and there is a great demand for secondary batteries having small size, light weight and high energy density as their power sources.
Among them, non-aqueous electrolyte secondary batteries, especially lithium secondary batteries, are attracting attention as batteries having high voltage and high energy density. Conventionally, L has been used as a positive electrode active material for lithium secondary batteries.
iCoO 2 , LiNiO 2 , LiMnO 2 and the like are known. Batteries using LiCoO 2 have already been commercialized. On the other hand, LiNiO 2 and LiMnO 2 are LiC
Since it is lower in cost and higher in capacity than oO 2 , research and development has been actively conducted.

【0003】例えば、金属Mの塩とリチウム塩などから
なる原料を空気雰囲気中において600〜800℃の温
度で加熱することにより、LiMO2(MはCo、N
i、Fe、Mnのうちから選択される1種または2種以
上の元素)が得られるとし、好ましくは800℃で6時
間の処理を2回行うことが良好であるという提案がなさ
れている(特開平4−181660号公報)。また、L
yNi1-xMnx2(0≦x≦0.3、1.0≦y≦
1.3)の合成法として、その原料をあらかじめ150
℃で15時間乾燥した後、空気あるいは酸素雰囲気中に
おいて550〜750℃の温度で15〜20時間加熱
(一回目加熱)し、常温を経由して700〜900℃の
温度で20〜25時間加熱(二回目加熱)をする、ある
いは700〜900℃の温度で20〜25時間加熱(一
回目加熱)し、常温を経由して250〜350℃の温度
で10〜15時間加熱(二回目加熱)する方法が提案さ
れている(特開平6−096768号公報)。
For example, by heating a raw material composed of a salt of metal M and a lithium salt in an air atmosphere at a temperature of 600 to 800 ° C., LiMO 2 (M is Co, N
It has been proposed that one or more elements selected from i, Fe, and Mn) be obtained, and that it is preferable to perform the treatment twice preferably at 800 ° C. for 6 hours ( JP-A-4-181660). Also, L
i y Ni 1-x Mn x O 2 (0 ≦ x ≦ 0.3, 1.0 ≦ y ≦
As a synthetic method of 1.3), the raw material was previously prepared in 150
After drying at ℃ for 15 hours, heat in air or oxygen atmosphere at 550 to 750 ℃ for 15 to 20 hours (first heating), and heat at 700 to 900 ℃ for 20 to 25 hours via normal temperature. (Second heating) or heating at 700-900 ° C for 20-25 hours (first heating) and heating at 250-350 ° C for 10-15 hours via normal temperature (second heating) A method of doing so has been proposed (JP-A-6-096768).

【0004】また、Lixy1y2z(MはCoまたは
Ni、NはNi、V、Fe、Mn、Ti、Cuのうちの
いずれかの元素、M≠N、y1=0.6〜1.0、y2
=0〜0.4、y1+y2=1、x=0.8〜1.0、
z=1.5〜3.0)の合成法として、450〜800
℃の温度で3〜100時間加熱(一回目加熱)し、引き
続き一回目の温度より50〜600℃高い温度で0.5
〜50時間加熱(二回目加熱)し、0.1〜25℃/m
inの速度で冷却した後、平均粒径10〜80μmの粗
粉体に粉砕し、さらに平均粒径0.5〜9.0μmの微
粉体に粉砕する方法が提案されている(特開平7−11
4915号公報)。
Li x M y1 N y2 O z (M is Co or Ni, N is any element of Ni, V, Fe, Mn, Ti and Cu, M ≠ N, y1 = 0.6 ~ 1.0, y2
= 0 to 0.4, y1 + y2 = 1, x = 0.8 to 1.0,
z = 1.5-3.0), a synthetic method of 450-800
Heating at a temperature of ℃ for 3 to 100 hours (first heating), and then at a temperature 50 to 600 ℃ higher than the first temperature, 0.5.
~ 50 hours heating (second heating), 0.1 ~ 25 ℃ / m
After cooling at a rate of in, a method of pulverizing into coarse powder having an average particle size of 10 to 80 μm and further pulverizing into fine powder having an average particle size of 0.5 to 9.0 μm has been proposed (JP-A-7- 11
4915).

【0005】[0005]

【発明が解決しようとする課題】上記のように一段階の
焼成で正極活物質を合成するか、あるいは途中粉砕工程
のない二段階の焼成で正極活物質を合成すると、活物質
中にリチウム塩が偏析するため合成反応が十分に進ま
ず、活物質重量当たりの利用率が低下するという問題が
あった。また、活物質中に偏析したリチウム塩は、70
0℃程度以上の高温で焼成することにより、生成したコ
バルト固溶リチウム複合ニッケル酸化物と強固に焼結す
る。このため、合成完了後に活物質を粉砕する際、粒度
ばらつきが大きくなり、分級後の収率が低下するという
問題があった。正極活物質に粗粒子が多いと、例えば3
0μm以上の粒子が重量比で全体の20%以上である
と、正極活物質混合物を極板へ均一に塗布することが困
難になったり、充放電サイクルの進行に伴い活物質が極
板から脱落するなどの問題がある。また、正極活物質に
微粒子が多いと、例えば1μm以下の粒子が重量比で全
体の20%以上であると、活物質の比表面積が大きくな
るためペースト作成時に大量の溶媒が必要となり、ペー
スト塗工後の極板乾燥に時間がかかるという問題があ
る。従って、正極活物質は粉砕後、分級工程により粗粒
子と微粒子を除く必要がある。
When the positive electrode active material is synthesized by one-step firing as described above, or when the positive electrode active material is synthesized by two-step firing without an intermediate crushing step, lithium salt is contained in the active material. However, there is a problem in that the synthetic reaction does not proceed sufficiently due to segregation and the utilization rate per weight of the active material decreases. In addition, the lithium salt segregated in the active material is 70
By firing at a high temperature of about 0 ° C. or higher, it is strongly sintered with the produced cobalt solid solution lithium composite nickel oxide. Therefore, when the active material is pulverized after the synthesis is completed, there is a problem that the particle size variation becomes large and the yield after classification is reduced. If there are many coarse particles in the positive electrode active material, for example, 3
If the weight ratio of particles of 0 μm or more is 20% or more of the whole, it becomes difficult to uniformly apply the positive electrode active material mixture to the electrode plate, or the active material falls off from the electrode plate as the charge / discharge cycle progresses. There is a problem such as doing. Further, when the positive electrode active material has many fine particles, for example, when the weight ratio of particles of 1 μm or less is 20% or more of the whole, the specific surface area of the active material becomes large, and thus a large amount of solvent is required at the time of preparing the paste, so that the paste coating is performed. There is a problem that it takes time to dry the electrode plate after the work. Therefore, it is necessary to remove coarse particles and fine particles by a classification process after crushing the positive electrode active material.

【0006】また、途中に粉砕工程を入れた二段階の焼
成により正極活物質を合成しても、第一段階焼成後の粉
砕が不十分であると、例えば40μm以上の粒子が重量
比で全体の5%以上であると、活物質中に偏析したリチ
ウム塩が十分に粉砕、分散されず、合成反応が十分に進
まないことから、活物質重量当たりの利用率が低いとい
う問題がある。また、第一段階焼成後の粉砕が過粉砕に
なると、例えば1μm以下の粒子が重量比で全体の20
%以上であると、合成完了後の粉砕工程で微粒子が増加
し、活物質の比表面積が大きくなるためペースト作成時
に大量の溶媒が必要となり、ペースト塗工後の極板乾燥
に時間がかかるという問題がある。従って、正極活物質
は粉砕後、分級工程により粗粒子と微粒子を除く必要が
ある。
Further, even if the positive electrode active material is synthesized by two-step firing in which a crushing step is inserted in the middle, if the pulverization after the first-step firing is insufficient, for example, particles of 40 μm or more are entirely mixed in a weight ratio. 5% or more, the lithium salt segregated in the active material is not sufficiently crushed and dispersed, and the synthesis reaction does not proceed sufficiently, so that there is a problem that the utilization rate per weight of the active material is low. If the pulverization after the first-stage firing is excessively pulverized, particles having a particle size of, for example, 1 μm or less are contained in a total weight ratio of 20.
If it is more than 100%, the fine particles increase in the crushing step after the synthesis is completed, and the specific surface area of the active material increases, so a large amount of solvent is required when preparing the paste, and it takes time to dry the electrode plate after applying the paste. There's a problem. Therefore, it is necessary to remove coarse particles and fine particles by a classification process after crushing the positive electrode active material.

【0007】本発明は、この様な課題を解決するもの
で、容易に所定範囲の粒径に粉砕することができ、しか
も分級後の収率が高い非水電解液二次電池用正極活物質
を与える製造方法を提供することを目的とする。
The present invention solves such a problem, and can be easily pulverized to a particle size in a predetermined range and has a high yield after classification, which is a positive electrode active material for a non-aqueous electrolyte secondary battery. It is an object of the present invention to provide a manufacturing method for giving

【0008】[0008]

【課題を解決するための手段】本発明は、少なくとも水
酸化ニッケルまたはCoを固溶した水酸化ニッケルとリ
チウム塩との混合物を原料として、一般式LixNi
(1-y)Coy2(0.95≦x≦1.2、0≦y≦0.
5)で表される酸化物を得る非水電解液二次電池用正極
活物質の製造方法において、300℃〜650℃の温度
範囲で2〜20時間焼成する第一段階の焼成工程、つい
で100℃以下に冷却後粉砕混合する工程、および前記
の工程で得られた混合物を700℃〜900℃の温度範
囲で2〜30時間焼成する第二段階の焼成工程を有する
ことを特徴とする。
The present invention uses a mixture of at least nickel hydroxide or nickel in which Co is solid-solved with nickel hydroxide and a lithium salt as a raw material, and has the general formula Li x Ni.
(1-y) Co y O 2 (0.95 ≦ x ≦ 1.2, 0 ≦ y ≦ 0.
5) In the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which obtains an oxide represented by 5), a first-step firing step of firing at a temperature range of 300 ° C to 650 ° C for 2 to 20 hours, and then 100 The method is characterized by having a step of pulverizing and mixing after cooling to below ℃, and a second step of calcination of the mixture obtained in the above step in the temperature range of 700 ° C to 900 ° C for 2 to 30 hours.

【0009】前記の粉砕混合する工程においては、活物
質の平均粒子径が1〜20μmで、かつ粒径40μm以
上の粒子が重量比で活物質全体の5%以下とするのが好
ましい。また、第二段階の焼成後、活物質を粉砕してそ
の全重量の70%以上を粒子径1〜15μmとするのが
好ましい。水酸化ニッケルは、球状あるいは楕円体状の
二次粒子を形成しているものが好ましい。本発明は、ま
た上記の製造方法で合成された正極活物質と炭素系導電
剤をフッ素系化合物の結着剤を含有したN−メチルピロ
リドン溶液と共に混練し、ペースト状にしてアルミニウ
ム箔に塗布、乾燥し、圧延する非水電解液二次電池用正
極板の製造方法を提供する。
In the step of pulverizing and mixing, it is preferable that the active material has an average particle diameter of 1 to 20 μm and particles having a particle diameter of 40 μm or more account for 5% or less of the total weight of the active material. Further, it is preferable that after the second-step firing, the active material is pulverized so that 70% or more of the total weight thereof has a particle diameter of 1 to 15 μm. The nickel hydroxide preferably forms spherical or ellipsoidal secondary particles. The present invention also kneads the positive electrode active material synthesized by the above manufacturing method and a carbon-based conductive agent together with a N-methylpyrrolidone solution containing a binder of a fluorine-based compound, and coats the aluminum foil with a paste, Provided is a method for manufacturing a positive electrode plate for a non-aqueous electrolyte secondary battery which is dried and rolled.

【0010】[0010]

【発明の実施の形態】本発明の方法においては、上記の
ように第一段階では300℃〜650℃の温度範囲で2
〜20時間焼成し、第二段階では700℃〜900℃の
温度範囲で2〜30時間焼成するものとし、第一段階と
第二段階の焼成の間に粉砕混合する工程を有する。この
正極活物質の合成において、第一段階の焼成によりコバ
ルト固溶リチウム複合ニッケル酸化物の結晶の基本構造
が生成し、第二段階の焼成によりリチウム複合ニッケル
酸化物の結晶性が向上する。第一段階において、焼成温
度が300℃未満、あるいは焼成時間が2時間未満であ
ると、リチウム複合ニッケル酸化物の合成反応が十分に
進まない。また、焼成温度が650℃を越えるかあるい
は焼成時間が20時間を越えると、第二段階の焼成時に
コバルト固溶リチウム複合ニッケル酸化物のニッケル部
分にリチウムが、またリチウム部分にニッケルがそれぞ
れ入った構造になり、結晶構造が六方晶型から岩塩型構
造に変化する。このため、放電容量が減少する。
BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, as described above, in the first step, the temperature is within the range of 300 ° C to 650 ° C.
It is assumed that the firing is performed for 20 hours, the second step is performed in the temperature range of 700 ° C. to 900 ° C. for 2 hours for 30 hours, and the step of pulverizing and mixing is performed between the first step and the second step. In the synthesis of this positive electrode active material, the basic structure of the crystal of the cobalt solid solution lithium composite nickel oxide is generated by the first step firing, and the crystallinity of the lithium composite nickel oxide is improved by the second step firing. If the firing temperature is lower than 300 ° C. or the firing time is shorter than 2 hours in the first stage, the synthesis reaction of the lithium composite nickel oxide does not proceed sufficiently. When the firing temperature exceeds 650 ° C. or the firing time exceeds 20 hours, lithium is contained in the nickel portion of the cobalt solid solution lithium composite nickel oxide and nickel is contained in the lithium portion during the second stage firing. It becomes a structure, and the crystal structure changes from the hexagonal type to the rock salt type structure. Therefore, the discharge capacity is reduced.

【0011】第二段階の焼成において、焼成温度が70
0℃未満、あるいは焼成時間が2時間未満であると、コ
バルト固溶リチウム複合ニッケル酸化物の結晶の成長が
不十分である。また、焼成温度が900℃を越えるかあ
るいは焼成時間が30時間を越えると、リチウム複合ニ
ッケル酸化物のニッケル部分にリチウムが、またリチウ
ム部分にニッケルがそれぞれ入った構造になり、結晶構
造が六方晶型から岩塩型構造に変化する。このため、放
電容量が減少する。第一段階の焼成後粉砕混合すること
により、第一段階の焼成により生成したコバルト固溶リ
チウム複合ニッケル酸化物中の偏析したリチウム塩を粉
砕、分散できるので、第二段階の焼成によりこれらのリ
チウム塩が十分に反応し、活物質重量当たりの利用率が
増加する。また、コバルト固溶リチウム複合ニッケル酸
化物中の偏析したリチウム塩を粉砕、分散することで、
偏析したリチウム塩が700℃程度以上の高温で焼成し
た際コバルト固溶リチウム複合ニッケル酸化物と強固に
焼結することを防ぐことができる。従って、合成完了後
に粉砕した際、粒度ばらつきが小さくなり、分級効率が
向上する。
In the second stage firing, the firing temperature is 70
When the temperature is lower than 0 ° C. or the firing time is shorter than 2 hours, the crystal growth of the cobalt solid solution lithium composite nickel oxide is insufficient. Further, when the firing temperature exceeds 900 ° C. or the firing time exceeds 30 hours, the lithium composite nickel oxide has a structure in which lithium is contained in the nickel portion and nickel is contained in the lithium portion, and the crystal structure is hexagonal. Change from type to rock salt type structure. Therefore, the discharge capacity is reduced. By pulverizing and mixing after the first-step firing, the segregated lithium salt in the cobalt solid solution lithium composite nickel oxide produced by the first-step firing can be pulverized and dispersed. The salt reacts sufficiently and the utilization rate per active material weight increases. In addition, by pulverizing and dispersing the segregated lithium salt in the cobalt solid solution lithium composite nickel oxide,
It is possible to prevent the segregated lithium salt from being strongly sintered with the cobalt solid solution lithium composite nickel oxide when fired at a high temperature of about 700 ° C. or higher. Therefore, when the powder is pulverized after the synthesis is completed, the particle size variation is reduced, and the classification efficiency is improved.

【0012】正極活物質に粗粒子が多いと、例えば15
μm以上の粒子が重量比で全体の20%以上であると、
正極活物質の極板への塗布特性や電池のサイクル試験に
伴う極板の結着性が悪くなる。また、正極活物質に微粒
子が多いと、例えば1μm以下の粒子が重量比で全体の
20%以上であると、活物質の比表面積が大きくなるた
めペースト作成時に大量の溶媒が必要となり、ペースト
塗工後の極板乾燥に時間がかかる。従って、活物質の粉
砕後、分級工程により粗粒子と微粒子を除く必要があ
る。よりよい特性を得るために分級後の平均粒子径は1
〜15μmであることが望ましい。
If the positive electrode active material has a large amount of coarse particles, for example, 15
If the weight ratio of particles of μm or more is 20% or more of the whole,
The coating property of the positive electrode active material on the electrode plate and the binding property of the electrode plate due to the battery cycle test become poor. Further, when the positive electrode active material has many fine particles, for example, when the weight ratio of particles of 1 μm or less is 20% or more of the whole, the specific surface area of the active material becomes large, and thus a large amount of solvent is required at the time of preparing the paste, so that the paste coating is performed. It takes time to dry the electrode plate after processing. Therefore, it is necessary to remove coarse particles and fine particles by a classification step after crushing the active material. The average particle size after classification is 1 to obtain better properties
It is desirable that the thickness be 15 μm.

【0013】また、正極活物質の合成を途中粉砕工程を
持つ二段階の焼成により行っても、第一段階焼成後の粉
砕が不十分で、例えば40μm以上の粒子が重量比で全
体の5%以上であると、活物質中に偏析したリチウム塩
が十分に粉砕、分散されず、合成反応が十分に進まない
ことから、活物質重量当たりの利用率が低くなる。ある
いは、第一段階焼成後の粉砕が過粉砕で、例えば1μm
以下の粒子が重量比で全体の20%以上であると、合成
完了後の粉砕工程で微粒子が増加し、活物質の比表面積
が大きくなるためペースト作成時に大量の溶媒が必要と
なり、ペースト塗工後の極板乾燥に時間がかかるという
問題がある。よって、第一段階焼成後の粉砕は、活物質
の平均粒子径が1〜15μmの範囲であることが望まし
い。
Even if the synthesis of the positive electrode active material is carried out by two-stage firing having an intermediate pulverization step, the pulverization after the first-stage firing is insufficient, and for example, particles of 40 μm or more account for 5% by weight of the whole. When it is above, the lithium salt segregated in the active material is not sufficiently pulverized and dispersed, and the synthesis reaction does not proceed sufficiently, so that the utilization rate per weight of the active material becomes low. Alternatively, the pulverization after the first-stage firing is over-pulverization, for example, 1 μm
When the weight ratio of the following particles is 20% or more of the whole, the fine particles increase in the pulverizing step after the synthesis is completed, and the specific surface area of the active material increases, so that a large amount of solvent is required at the time of making the paste and the paste coating There is a problem that it takes time to dry the electrode plate later. Therefore, in the pulverization after the first-stage firing, it is desirable that the average particle diameter of the active material is in the range of 1 to 15 μm.

【0014】[0014]

【実施例】以下、本発明の実施例を説明する。 《実施例1》水酸化リチウムと水酸化ニッケルと水酸化
コバルトをリチウムとニッケルとコバルトの原子比が
1.0:0.8:0.2になるように混合し、酸素雰囲
気中において昇温速度5℃/minで500℃まで昇温
し、同温度で7時間焼成した(第一段階の焼成)。生成
物を100℃以下に冷却し、摩砕式粉砕器で粉砕した。
平均粒子径は15μmであり、粒径が40μm以上の粒
子は、重量比で0.07%であった。次に、酸素雰囲気
中において昇温速度5℃/minで800℃まで昇温
し、同温度で15時間焼成した(第二段階の焼成)。生
成物を100℃以下に冷却し、摩砕式粉砕器で粉砕し
た。粉砕後、ふるい振とう機で分級した。こうして得ら
れた活物質の全重量の88%が粒子径1〜15μmであ
った。粒径、及び重量は、レーザ回折式粒度分布測定装
置(島津製作所SALD−1000)で測定した。この
合成で得た化合物を活物質1とする。
Embodiments of the present invention will be described below. Example 1 Lithium hydroxide, nickel hydroxide and cobalt hydroxide were mixed so that the atomic ratio of lithium, nickel and cobalt was 1.0: 0.8: 0.2 and the temperature was raised in an oxygen atmosphere. The temperature was raised to 500 ° C. at a rate of 5 ° C./min, and firing was performed at the same temperature for 7 hours (first stage firing). The product was cooled to below 100 ° C. and ground in a grinding mill.
The average particle diameter was 15 μm, and the weight ratio of particles having a particle diameter of 40 μm or more was 0.07%. Next, in an oxygen atmosphere, the temperature was raised to 800 ° C. at a heating rate of 5 ° C./min, and firing was carried out at the same temperature for 15 hours (second stage firing). The product was cooled to below 100 ° C. and ground in a grinding mill. After crushing, it was classified with a sieve shaker. 88% of the total weight of the active material thus obtained had a particle size of 1 to 15 μm. The particle size and weight were measured with a laser diffraction type particle size distribution measuring device (Shimadzu SALD-1000). The compound obtained by this synthesis is referred to as active material 1.

【0015】次に、活物質1を用いて正極板を作製し、
図1に示す構造の円筒型電池を組み立てた。この電池の
構造を説明すると、ステンレス鋼製の電池ケース6内
に、正極板と負極板をセパレータを介して渦巻状に巻回
した極板群3が上下に絶縁板4、5を配して収納されて
いる。ケース6の開口部は、安全弁を有する組立封口板
7および絶縁パッキング8により封口されている。正極
板から引き出された正極リード1は封口板7に接続さ
れ、負極から引き出された負極リード2は電池ケース6
の底部に接続されている。正極板および負極板は、以下
のようにして作製した。正極活物質100重量部に対し
て、導電剤のアセチレンブラックを4重量部、および結
着剤のポリフッ化ビニリデン4重量部を溶解したN−メ
チルピロリドン溶液を加え、混練してペースト状にし
た。このペーストをアルミニウム箔の両面に塗工し、乾
燥後、圧延して、厚さ0.144mm、幅37mm、長
さ250mmの正極板とした。
Next, a positive electrode plate was prepared using the active material 1,
A cylindrical battery having the structure shown in FIG. 1 was assembled. The structure of this battery will be described. In a battery case 6 made of stainless steel, a positive electrode plate and a negative electrode plate are spirally wound with a separator between them, and an electrode plate group 3 has insulating plates 4 and 5 arranged vertically. It is stored. The opening of the case 6 is sealed by an assembly sealing plate 7 having a safety valve and an insulating packing 8. The positive electrode lead 1 pulled out from the positive electrode plate is connected to the sealing plate 7, and the negative electrode lead 2 pulled out from the negative electrode is the battery case 6.
Attached to the bottom of. The positive electrode plate and the negative electrode plate were produced as follows. An N-methylpyrrolidone solution in which 4 parts by weight of acetylene black as a conductive agent and 4 parts by weight of polyvinylidene fluoride as a binder were dissolved was added to 100 parts by weight of the positive electrode active material, and kneaded to form a paste. This paste was applied to both sides of an aluminum foil, dried, and then rolled to obtain a positive electrode plate having a thickness of 0.144 mm, a width of 37 mm, and a length of 250 mm.

【0016】一方、負極はメソフェーズ小球体を黒鉛化
したもの(以下メソフェーズ黒鉛と称す)を使用した。
このメソフェーズ黒鉛100重量部にスチレン/ブタジ
エンゴム3重量部を結着剤として混合し、カルボキシメ
チルセルロース水溶液を加えて混練し、ペースト状にし
た。そしてこのペーストを銅箔の両面に塗工し、乾燥
後、圧延して、厚さ0.21mm、幅39mm、長さ2
80mmの負極板とした。そして、正極板にはアルミニ
ウム製、負極板にはニッケル製のリードをそれぞれ取り
付け、厚さ0.025mm、幅45mm、長さ740m
mのポリエチレン製のセパレーターを介して渦巻状に巻
回し、直径14.0mm、高さ50mmの電池ケースに
収納した。電解液にはエチレンカーボネートとエチルメ
チルカーボネートとを20:80の体積比で混合した溶
媒に1モル/lの六フッ化リン酸リチウムを溶解したも
のを用いた。この電解液を注液後、封口した。この電池
を電池1とする。
On the other hand, the negative electrode used was a graphitized mesophase small sphere (hereinafter referred to as mesophase graphite).
100 parts by weight of this mesophase graphite was mixed with 3 parts by weight of styrene / butadiene rubber as a binder, and an aqueous carboxymethyl cellulose solution was added and kneaded to form a paste. Then, this paste is applied to both sides of a copper foil, dried and rolled to a thickness of 0.21 mm, a width of 39 mm, and a length of 2
It was a negative electrode plate of 80 mm. Aluminum lead is attached to the positive electrode plate, and nickel lead is attached to the negative electrode plate. The thickness is 0.025 mm, the width is 45 mm, and the length is 740 m.
It was spirally wound through a polyethylene separator having a diameter of m and stored in a battery case having a diameter of 14.0 mm and a height of 50 mm. The electrolyte used was a solvent prepared by mixing ethylene carbonate and ethyl methyl carbonate in a volume ratio of 20:80 and dissolving 1 mol / l of lithium hexafluorophosphate. After injecting this electrolytic solution, it was sealed. This battery is referred to as battery 1.

【0017】《実施例2〜9》第一段階および/または
第2段階の焼成温度を変えた他は実施例1と同様にして
活物質を合成した。得られた化合物を活物質2〜9とす
る。
<< Examples 2 to 9 >> Active materials were synthesized in the same manner as in Example 1 except that the firing temperature in the first step and / or the second step was changed. The obtained compounds are referred to as active materials 2 to 9.

【0018】《実施例10〜15》第一段階および/ま
たは第2段階の焼成時間を変えた他は実施例1と同様に
して活物質を合成した。得られた化合物を活物質10〜
15とする。
Examples 10 to 15 Active materials were synthesized in the same manner as in Example 1 except that the firing time in the first step and / or the second step was changed. The obtained compound is used as the active material 10 to
Set to 15.

【0019】《実施例16〜19》第一段階焼成後の生
成物を各種の粒径に粉砕した他は実施例1と同様にして
活物質を合成した。得られた化合物を活物質16〜19
とする。
<Examples 16 to 19> Active materials were synthesized in the same manner as in Example 1 except that the products after the first-stage baking were pulverized into various particle sizes. The obtained compound was used as the active material 16 to 19.
And

【0020】これらの活物質について同一条件で10回
ずつ合成した。また、それぞれの活物質を用いて円筒型
電池を作製した。活物質2〜19を用いて作製した電池
をそれぞれ電池2〜19とする。
These active materials were synthesized 10 times under the same conditions. In addition, a cylindrical battery was manufactured using each active material. Batteries manufactured using the active materials 2 to 19 are referred to as batteries 2 to 19, respectively.

【0021】《比較例1》水酸化リチウムと水酸化ニッ
ケルと水酸化コバルトをリチウムとニッケルとコバルト
の原子比が1.0:0.8:0.2になるように混合
し、酸素雰囲気中において昇温速度5℃/minで50
0℃まで昇温し、同温度で7時間焼成した(第一段階の
焼成)。次いで、粉砕工程をいれず、酸素雰囲気におい
て昇温速度5℃/minで800℃まで昇温し、同温度
で15時間焼成した(第二段階の焼成)。その後100
℃以下に冷却し摩砕式粉砕器で粉砕し、ふるい振とう機
で分級した。この合成で得た化合物を比較例1とする。
Comparative Example 1 Lithium hydroxide, nickel hydroxide and cobalt hydroxide were mixed so that the atomic ratio of lithium, nickel and cobalt was 1.0: 0.8: 0.2 and the mixture was placed in an oxygen atmosphere. At a heating rate of 5 ° C / min of 50
The temperature was raised to 0 ° C., and firing was performed at the same temperature for 7 hours (first stage firing). Next, without a pulverizing step, the temperature was raised to 800 ° C. at a temperature rising rate of 5 ° C./min in an oxygen atmosphere, and the mixture was baked at the same temperature for 15 hours (second-stage baking). Then 100
The mixture was cooled to below ℃, pulverized with a grinding mill, and classified with a sieve shaker. The compound obtained by this synthesis is referred to as Comparative Example 1.

【0022】《比較例2》比較例1と同様に第一段階お
よび第二段階の焼成をした後、摩砕式粉砕器で平均粒径
40μmになるまで粉砕し、さらに摩砕式粉砕器で平均
粒径5μmになるまで粉砕し、ふるい振とう機で分級し
た。この合成で得た化合物を比較例2とする。それぞれ
の比較例について同一条件で10回ずつ合成した。ま
た、それぞれの活物質を用いて円筒型電池を作製した。
比較例1〜2を用いて作製した電池をそれぞれ電池20
〜21とする。
Comparative Example 2 After the first and second steps of firing were carried out in the same manner as in Comparative Example 1, the particles were pulverized with an pulverizer to an average particle size of 40 μm, and further pulverized with an pulverizer. It was pulverized to an average particle size of 5 μm and classified by a sieve shaker. The compound obtained by this synthesis is referred to as Comparative Example 2. Each comparative example was synthesized 10 times under the same conditions. In addition, a cylindrical battery was manufactured using each active material.
The batteries produced by using Comparative Examples 1 and 2 are respectively referred to as Battery 20.
-21.

【0023】以上の各電池1〜21について以下の条件
で充放電試験を行った。充電は4.2Vで2時間の定電
圧充電を行い、電池電圧が4.2Vに達するまでは42
0mAの定電流充電となるように設定した。放電は61
0mAの定電流放電で行い、放電終止電圧を3.0Vと
した。このような充放電を20℃の環境下で行った。こ
れらの結果を表1に示す。表中、合格ロット数は、それ
ぞれの10回の合成ロットの内、活物質の全重量の70
%以上が粒子径1〜15μmの範囲に入っていたロット
数を表す。また、平均収率(%)は、活物質の全重量中
で粒子径1〜15μmの範囲にあるものが占める重量%
を10回の合成ロットについて平均した値で表す。電池
の放電容量(mAh)は、5回充放電を繰り返した後の
電池の放電容量を表す。
A charging / discharging test was conducted on each of the above batteries 1 to 21 under the following conditions. Charged at 4.2V for 2 hours with constant voltage charging, until the battery voltage reaches 4.2V, 42
It was set to be a constant current charge of 0 mA. 61 discharge
It was carried out by constant current discharge of 0 mA, and the discharge end voltage was set to 3.0V. Such charging / discharging was performed in an environment of 20 ° C. Table 1 shows the results. In the table, the number of accepted lots is 70 of the total weight of the active material in each of the 10 synthetic lots.
% Represents the number of lots having a particle diameter in the range of 1 to 15 μm. In addition, the average yield (%) is the weight% of particles having a particle diameter of 1 to 15 μm in the total weight of the active material.
Is represented by the average value of 10 synthetic lots. The discharge capacity (mAh) of the battery represents the discharge capacity of the battery after repeating charging and discharging 5 times.

【0024】[0024]

【表1】 [Table 1]

【0025】活物質1と比較例1、2より、第一段階の
焼成後に粉砕工程を入れることで合格ロット数、平均収
率、放電容量ともに著しく向上することがわかる。合格
ロット数、平均収率が高いのは、第一段階焼成後粉砕混
合することにより、第一段階の焼成により生成したコバ
ルト固溶リチウムニッケル酸化物中の偏析したリチウム
塩を分散できるので、第二段階焼成後の強固な焼結を防
ぐことができ、合成完了後の粉砕分級効率が向上したた
めである。また、放電容量が高いのは、偏析したリチウ
ム塩が第二段階の焼成により十分に反応し、活物質重量
当たりの利用率が増加するからである。
From the active material 1 and the comparative examples 1 and 2, it can be seen that the number of passing lots, the average yield, and the discharge capacity are remarkably improved by including the crushing step after the first-stage firing. The number of passing lots and the average yield are high because the segregated lithium salt in the cobalt solid solution lithium nickel oxide produced by the first-step firing can be dispersed by pulverizing and mixing after the first-step firing. This is because the strong sintering after the two-step firing can be prevented and the pulverization / classification efficiency after the completion of the synthesis is improved. In addition, the reason why the discharge capacity is high is that the segregated lithium salt reacts sufficiently by the second-stage firing, and the utilization rate per active material weight increases.

【0026】また、活物質1、10〜11より、焼成時
間を第一段階を2〜20時間の範囲で、第二段階を2〜
30時間の範囲で変化させて焼成しても、合格ロット
数、平均収率、放電容量がほぼ同じであることがわか
る。さらに、活物質1、16〜17より、第一段階焼成
後、平均粒子径1〜20μmの範囲に粉砕しても合格ロ
ット数、平均収率、放電容量がほぼ同じであることがわ
かる。
Further, according to the active materials 1 to 10 to 11, the firing time is in the range of 2 to 20 hours in the first step and 2 to in the second step.
It can be seen that the number of accepted lots, the average yield, and the discharge capacity are almost the same even if the firing is performed by changing the range within 30 hours. Further, from the active materials 1 and 16 to 17, it can be seen that the number of acceptable lots, the average yield, and the discharge capacity are almost the same even after the first step firing and pulverizing to an average particle size of 1 to 20 μm.

【0027】活物質1と活物質2〜4、12の比較よ
り、第一段階の焼成温度が低いか、あるいは焼成時間が
短い場合、合格ロット、平均収率共に著しく低下するこ
とがわかる。これは第一段階の焼成温度が300℃未満
であるかもしくは焼成時間が2時間未満であると、コバ
ルト固溶リチウムニッケル酸化物の合成反応が十分に進
まず、第二段階の焼成においても合成反応が進み、その
過程でリチウム塩が偏析し強固に焼結するので、合成完
了後の粉砕分級効率が低下するからである。また、放電
容量も低下するが、これは第二段階の焼成においてリチ
ウム塩が偏析するため合成反応が不十分となるからであ
る。
From comparison between active material 1 and active materials 2 to 4 and 12, it can be seen that when the firing temperature in the first step is low or the firing time is short, both the acceptable lot and the average yield are significantly reduced. This is because when the firing temperature in the first step is less than 300 ° C. or the firing time is less than 2 hours, the synthesis reaction of the cobalt solid solution lithium nickel oxide does not proceed sufficiently and the synthesis in the second step is also performed. This is because the reaction proceeds and the lithium salt segregates and strongly sinters in the process, so that the pulverization / classification efficiency after the completion of the synthesis decreases. Further, the discharge capacity also decreases, but this is because the lithium salt segregates during the second-stage firing, and the synthesis reaction becomes insufficient.

【0028】活物質1と活物質5、14の比較より、第
二段階の焼成温度が低いか、あるいは焼成時間が短い場
合、合格ロット数、平均収率はほぼ同じであるが、放電
容量が低下することがわかる。これは、第二段階の焼成
温度が700℃未満、あるいは焼成時間が2時間未満で
あると、コバルト固溶リチウムニッケル酸化物の結晶が
十分に成長しないためである。活物質1と活物質4、
6、9、15の比較より、第二段階の焼成温度が高い
か、あるいは焼成時間が長い場合、合格ロット数、平均
収率、放電容量が著しく低下することがわかる。合格ロ
ット数、平均収率が低下するのは、第二段階の焼成温度
が900℃を越えるか、あるいは焼成時間が30時間を
越えると、コバルト固溶リチウム複合ニッケル酸化物の
ニッケル部分にリチウムが、またリチウム部分にニッケ
ルがそれぞれ入った構造になり、強固に焼結するので合
成完了後の粉砕工程における粒度ばらつきが大きくなる
からである。放電容量が低下するのはコバルト固溶リチ
ウム複合ニッケル酸化物の結晶構造が六方晶型から岩塩
型構造に変化するからである。
From the comparison between the active material 1 and the active materials 5 and 14, when the firing temperature in the second stage is low or the firing time is short, the number of acceptable lots and the average yield are almost the same, but the discharge capacity is It can be seen that it will decrease. This is because if the firing temperature in the second stage is less than 700 ° C. or the firing time is less than 2 hours, the crystals of the cobalt solid solution lithium nickel oxide do not grow sufficiently. Active material 1 and active material 4,
From the comparison of Nos. 6, 9, and 15, it can be seen that the number of accepted lots, the average yield, and the discharge capacity are remarkably reduced when the firing temperature in the second stage is high or the firing time is long. The number of passed lots and the average yield are decreased because the lithium in the nickel portion of the cobalt solid solution lithium composite nickel oxide is increased when the firing temperature in the second step exceeds 900 ° C or the firing time exceeds 30 hours. In addition, nickel is contained in each lithium portion, and since it is strongly sintered, there is a large variation in particle size in the pulverizing step after completion of synthesis. The discharge capacity is lowered because the crystal structure of the cobalt solid solution lithium composite nickel oxide is changed from the hexagonal type to the rock salt type structure.

【0029】また、活物質1と活物質7の比較より、第
一段階の焼成温度が高く、第二段階の焼成温度が低い場
合、合格ロット数、平均収率はほぼ同じであるが、放電
容量が低下することがわかる。これは、第一段階の焼成
によりコバルト固溶リチウム複合ニッケル酸化物の生成
だけでなく、結晶化も進むが、第二段階の焼成温度が7
00℃未満であると、コバルト固溶リチウムニッケル酸
化物の結晶が十分に成長しないためである。また、活物
質1と活物質8、13の比較より、第一段階の焼成温度
が高いか、あるいは焼成時間が長い場合、合格ロット
数、平均収率、放電容量が著しく低下することがわか
る。合格ロット数、平均収率が低下するのは、第一段階
の焼成温度が650℃を越えるか、もしくは焼成時間が
20時間を越えると、第一段階の焼成でコバルト固溶リ
チウムニッケル酸化物の生成だけでなく、結晶化も進む
ため、第二段階の焼成により結晶が成長しすぎてコバル
ト固溶リチウム複合ニッケル酸化物のニッケル部分にリ
チウムが、またリチウム部分にニッケルがそれぞれ入っ
た構造になり、強固に焼結するので合成完了後の粉砕工
程における粒度ばらつきが大きくなるからである。放電
容量が低下するのは、コバルト固溶リチウム複合ニッケ
ル酸化物の結晶構造が六方晶型から岩塩型構造に変化す
るからである。
Further, comparing active material 1 and active material 7, when the firing temperature in the first stage is high and the firing temperature in the second stage is low, the number of accepted lots and the average yield are almost the same, but the discharge It can be seen that the capacity decreases. This is because not only the cobalt solid solution lithium composite nickel oxide is produced by the first-stage firing but also crystallization proceeds, but the second-stage firing temperature is 7%.
This is because if the temperature is less than 00 ° C., the crystals of the cobalt solid solution lithium nickel oxide do not grow sufficiently. In addition, comparing active material 1 with active materials 8 and 13, it can be seen that the number of accepted lots, the average yield, and the discharge capacity are significantly reduced when the firing temperature in the first stage is high or the firing time is long. The number of passing lots and the average yield are decreased because the solid solution of lithium nickel oxide containing cobalt is dissolved in the first stage when the first stage firing temperature exceeds 650 ° C or the firing time exceeds 20 hours. Since not only formation but also crystallization progresses, the crystal grows too much by the second-step firing, resulting in a structure in which lithium is contained in the nickel portion of the cobalt solid solution lithium composite nickel oxide and nickel is contained in the lithium portion. The reason is that since it is strongly sintered, the variation in particle size in the crushing step after the completion of synthesis becomes large. The discharge capacity is lowered because the crystal structure of the cobalt solid solution lithium composite nickel oxide is changed from the hexagonal type to the rock salt type structure.

【0030】活物質1と活物質18の比較より、第一段
階の焼成後の粉砕が細かい場合、放電容量はほぼ同じで
あるが、合格ロット数、平均収率共に著しく低下するこ
とがわかる。これは、第一段階の焼成粉砕後の平均粒径
が1μm以下であると、合成完了後の粉砕において微粒
子の割合が著しく増加するため、分級工程後の活物質全
重量中で粒子径1〜15μmの範囲に入るものが占める
重量%が減少するからである。正極活物質に1μm以下
の微粒子が多いと、比表面積が大きくなるため、活物質
を分級なしに用いるとペースト作成時に大量の溶媒が必
要となり、ペースト塗工後の極板乾燥に時間がかかると
いう問題が生じる。従って、正極活物質は粉砕後、分級
工程により微粒子を除く必要がある。活物質1と活物質
19の比較より、第一段階の焼成後の粉砕が粗い場合、
合格ロット数、平均収率共に低下することがわかる。こ
れは、第一段階の焼成後の粉砕が平均粒径20μmを越
えると、第一段階の焼成により生じた偏析したリチウム
塩が十分に粉砕されないため、第二段階の焼成後、部分
的に強固に焼結し、合成完了後の粉砕分級効率が低下す
るからである。また、放電容量も低下するが、これはリ
チウム塩が偏析し合成反応が不十分となるからである。
From the comparison between the active material 1 and the active material 18, it can be seen that when the pulverization after the first-stage firing is fine, the discharge capacity is almost the same, but both the number of passed lots and the average yield are significantly reduced. This is because if the average particle size after the calcination and pulverization in the first step is 1 μm or less, the proportion of fine particles in the pulverization after the completion of synthesis remarkably increases. This is because the weight% occupied by those falling within the range of 15 μm is reduced. If the positive electrode active material contains a large amount of fine particles of 1 μm or less, the specific surface area becomes large. Therefore, if the active material is used without classification, a large amount of solvent is required when preparing the paste, and it takes time to dry the electrode plate after applying the paste. The problem arises. Therefore, it is necessary to remove fine particles from the positive electrode active material by a classifying process after crushing. From the comparison between the active material 1 and the active material 19, when the pulverization after the first-stage firing is coarse,
It can be seen that both the number of passed lots and the average yield decrease. This is because the segregated lithium salt generated by the first-step firing is not sufficiently grounded when the average particle size after the first-step firing exceeds 20 μm. This is because the pulverization / classification efficiency after the completion of the synthesis is reduced. Further, the discharge capacity also decreases, but this is because the lithium salt segregates and the synthesis reaction becomes insufficient.

【0031】以上のことから本発明は、正極活物質の合
成において第一段階の焼成後に粉砕混合の工程を加える
ことにより、偏析したリチウム塩を粉砕、分散すること
で第二段階焼成後の強固な焼結を防ぎ、かつ第一段階の
焼成により偏析したリチウム塩を十分に反応させること
で、収率の高い正極活物質を提供することができる。
From the above, according to the present invention, the segregated lithium salt is pulverized and dispersed by adding the step of pulverization and mixing after the calcination of the first step in the synthesis of the positive electrode active material, so that the solidification after the calcination of the second step is strengthened. It is possible to provide a positive electrode active material having a high yield by preventing such sintering and by sufficiently reacting the lithium salt segregated by the first-step firing.

【0032】なお、上記実施例においては、LiNi
0.8Co0.22について説明したが、LixNi(1-y)
y2(0.95≦x≦1.2、0≦y≦0.5)で表
される化合物についても同様の効果が得られる。また、
上記実施例においては、LiNi0.8Co0.22の原料
として水酸化リチウム、水酸化ニッケル、および水酸化
コバルトを用いたが、硝酸リチウム、酸化リチウム、炭
酸リチウムなどのリチウム塩、CoO、Co23、Co
34で表される酸化コバルト、炭酸コバルトなどのコバ
ルト塩、およびCoを固溶した水酸化ニッケルを用いて
も同様の効果が得られる。さらに、上記実施例において
は、粉砕を摩砕式粉砕器で行ったが、他の粉砕機、例え
ば、乳鉢、ボールミル、振動ボールミル、衛星ボールミ
ル、チューブミル、ペブルミル、コニカルミル、ロッド
ミル、振動ミル、ピンミル、ジェットミル等を用いても
同様の効果が得られる。
In the above embodiment, LiNi
Although 0.8 Co 0.2 O 2 was explained, Li x Ni (1-y) C
The same effect can be obtained for the compound represented by o y O 2 (0.95 ≦ x ≦ 1.2, 0 ≦ y ≦ 0.5). Also,
Although lithium hydroxide, nickel hydroxide, and cobalt hydroxide were used as the raw materials of LiNi 0.8 Co 0.2 O 2 in the above-mentioned examples, lithium salts such as lithium nitrate, lithium oxide, and lithium carbonate, CoO, Co 2 O 2 , and the like. 3 , Co
The same effect can be obtained by using cobalt oxide represented by 3 O 4 , cobalt salts such as cobalt carbonate, and nickel hydroxide in which Co is dissolved. Further, in the above examples, the crushing was carried out by a grinding type crusher, but other crushers, for example, mortar, ball mill, vibrating ball mill, satellite ball mill, tube mill, pebble mill, conical mill, rod mill, vibrating mill, pin mill. The same effect can be obtained by using a jet mill or the like.

【0033】また、上記実施例においては、分級をふる
い振とう機で行ったが、他の分級機、例えば、音波ふる
い機、電磁ふるい機、円心ふるい機、慣性分級機、サイ
クロン、円心分級機等を用いても同様の効果が得られ
る。また、上記実施例においては、合成を全て酸素雰囲
気で行ったが、第一段階あるいは第二段階のいずれか、
もしくは両方を空気雰囲気で行っても、同様の効果が得
られた。なお、上記実施例においては、円筒型の電池を
用いて評価したが、角型など電池形状が異なっても、同
様の効果が得られることはいうまでもない。さらに、上
記実施例では、電解質の溶媒としてエチレンカーボネー
トとエチルメチルカーボネートの混合溶媒を用いたが、
ほかの非水溶媒、例えば、プロピレンカーボネート等の
環状エーテル、ジメトキシエタン等の鎖状エーテル、プ
ロピオン酸メチルなどの鎖状エステル等の非水溶媒や、
これらの多元系混合溶媒を用いても同様の効果が得られ
る。
Further, in the above embodiment, the classification was carried out by a sieving shaker, but other classifying machines such as a sonic sieving machine, an electromagnetic sieving machine, a circular center sieving machine, an inertia classifier, a cyclone, a circular center The same effect can be obtained by using a classifier or the like. Further, in the above-mentioned examples, the synthesis was carried out in an oxygen atmosphere, but either the first step or the second step,
Alternatively, the same effect was obtained by performing both in an air atmosphere. In the above examples, the evaluation was performed using a cylindrical battery, but it goes without saying that similar effects can be obtained even if the battery shape is different, such as a prismatic battery. Furthermore, in the above example, a mixed solvent of ethylene carbonate and ethyl methyl carbonate was used as a solvent for the electrolyte,
Other non-aqueous solvent, for example, cyclic ether such as propylene carbonate, chain ether such as dimethoxyethane, non-aqueous solvent such as chain ester such as methyl propionate,
The same effect can be obtained by using these multi-component mixed solvents.

【0034】[0034]

【発明の効果】以上のように本発明によれば、正極活物
質の合成において第一段階焼成後に粉砕混合の工程を加
えることにより、偏析したリチウム塩を粉砕、分散し、
それにより第二段階焼成時の強固な焼結を防ぎ、かつ第
一段階焼成の際生成した偏析リチウム塩を十分に反応さ
せることで、収率の高い正極活物質を提供することがで
きる。
As described above, according to the present invention, the segregated lithium salt is pulverized and dispersed by adding the step of pulverization and mixing after the first-step firing in the synthesis of the positive electrode active material,
As a result, it is possible to provide a positive electrode active material having a high yield by preventing strong sintering during the second-step firing and by sufficiently reacting the segregated lithium salt produced during the first-step firing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における円筒型電池の要部を断
面にした正面図である。
FIG. 1 is a front view showing a cross section of a main part of a cylindrical battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極リード 2 負極リード 3 極板群 4、5 絶縁板 6 電池ケース 7 封口板 8 絶縁パッキング 1 Positive electrode lead 2 Negative electrode lead 3 Electrode plate group 4, 5 Insulation plate 6 Battery case 7 Sealing plate 8 Insulation packing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 茂雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigeo Kobayashi 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも水酸化ニッケルまたはCoを
固溶した水酸化ニッケルとリチウム塩との混合物を原料
として、一般式LixNi(1-y)Coy2(0.95≦x
≦1.2、0≦y≦0.5)で表される酸化物を得る非
水電解液二次電池用正極活物質の製造方法であって、3
00℃〜650℃の温度範囲で2〜20時間焼成する第
一段階の焼成工程、ついで100℃以下に冷却後粉砕混
合する工程、および前記の工程で得られた混合物を70
0℃〜900℃の温度範囲で2〜30時間焼成する第二
段階の焼成工程を有する非水電解液二次電池用正極活物
質の製造方法。
1. A compound of the general formula Li x Ni (1-y) Co y O 2 (0.95 ≦ x
≦ 1.2, 0 ≦ y ≦ 0.5), which is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which comprises:
70% of the mixture obtained in the first stage baking step of baking in the temperature range of 00 ° C to 650 ° C for 2 to 20 hours, then cooling to 100 ° C or less and pulverizing and mixing, and the above step.
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a second-step firing step of firing in a temperature range of 0 ° C to 900 ° C for 2 to 30 hours.
【請求項2】 前記粉砕混合する工程において、活物質
の平均粒子径が1〜20μmで、かつ粒径40μm以上
の粒子が重量比で活物質全体の5%以下とする請求項1
記載の非水電解液二次電池用正極活物質の製造方法。
2. In the step of pulverizing and mixing, the active material has an average particle diameter of 1 to 20 μm, and particles having a particle diameter of 40 μm or more account for 5% or less of the total weight of the active material.
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery as described above.
【請求項3】 第二段階の焼成後、活物質を粉砕してそ
の全重量の70%以上を粒子径1〜15μmとする請求
項1記載の非水電解液二次電池用正極活物質の製造方
法。
3. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein after the second-step firing, the active material is pulverized so that 70% or more of the total weight thereof has a particle size of 1 to 15 μm. Production method.
【請求項4】 水酸化ニッケルが球状あるいは楕円体状
の二次粒子を形成している請求項1記載の非水電解液二
次電池用正極活物質の製造方法。
4. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the nickel hydroxide forms spherical or ellipsoidal secondary particles.
【請求項5】 請求項1〜4のいずれかに記載の製造方
法で合成された正極活物質と炭素系導電剤をフッ素系化
合物の結着剤を含有したN−メチルピロリドン溶液と共
に混練し、ペースト状にしてアルミニウム箔に塗布、乾
燥し、圧延する非水電解液二次電池用正極板の製造方
法。
5. The positive electrode active material synthesized by the method according to claim 1 and a carbon-based conductive agent are kneaded together with an N-methylpyrrolidone solution containing a binder of a fluorine-based compound, A method for producing a positive electrode plate for a non-aqueous electrolyte secondary battery, which comprises applying to an aluminum foil in the form of a paste, drying, and rolling.
JP8057764A 1996-03-14 1996-03-14 Manufacture of positive active material for non-aqueous electrolyte secondary battery Pending JPH09251854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8057764A JPH09251854A (en) 1996-03-14 1996-03-14 Manufacture of positive active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8057764A JPH09251854A (en) 1996-03-14 1996-03-14 Manufacture of positive active material for non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09251854A true JPH09251854A (en) 1997-09-22

Family

ID=13064955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8057764A Pending JPH09251854A (en) 1996-03-14 1996-03-14 Manufacture of positive active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09251854A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100263309B1 (en) * 1998-03-03 2000-08-01 김순택 A method of preparing a positive active material for a lithium based secondary cell
JP2000285918A (en) * 1999-03-31 2000-10-13 Kawatetsu Mining Co Ltd Material for positive electrode of lithium secondary battery
US6136476A (en) * 1999-01-29 2000-10-24 Hydro-Quebec Corporation Methods for making lithium vanadium oxide electrode materials
WO2001036334A1 (en) * 1999-11-15 2001-05-25 Mitsubishi Chemical Corporation Lithium-manganese composite oxide, positive electrode material for lithium secondary cell, positive electrode and lithium secondary cell, and method for preparing lithium-manganese composite oxide
JP2001243949A (en) * 2000-02-28 2001-09-07 Toyota Central Res & Dev Lab Inc Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it
JP2003017050A (en) * 2001-06-27 2003-01-17 Santoku Corp Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, non-aqueous electrolyte secondary battery and manufacturing method of positive electrode
JP2005026141A (en) * 2003-07-04 2005-01-27 Matsushita Electric Ind Co Ltd Anode active material for nonaqueous electrolytic solution secondary battery, and its manufacturing method
WO2007105818A1 (en) * 2006-03-15 2007-09-20 Sumitomo Chemical Company, Limited Positive electrode active material powder
JP2008234926A (en) * 2007-03-19 2008-10-02 Sumitomo Metal Mining Co Ltd Positive-electrode active material for nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2011155003A (en) * 2011-01-07 2011-08-11 Hitachi Metals Ltd Cathode active material for nonaqueous lithium secondary battery and producing method therefor
JP2012018827A (en) * 2010-07-08 2012-01-26 Sony Corp Positive electrode active material, nonaqueous electrolyte battery and manufacturing method of positive electrode active material
JP6030960B2 (en) * 2010-11-09 2016-11-24 株式会社村田製作所 Manufacturing method of all solid state battery
WO2024082063A1 (en) * 2022-10-21 2024-04-25 Zhongwei Chen Direct cathode regeneration method for lithium-ion battery recycling

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100263309B1 (en) * 1998-03-03 2000-08-01 김순택 A method of preparing a positive active material for a lithium based secondary cell
US6136476A (en) * 1999-01-29 2000-10-24 Hydro-Quebec Corporation Methods for making lithium vanadium oxide electrode materials
JP2000285918A (en) * 1999-03-31 2000-10-13 Kawatetsu Mining Co Ltd Material for positive electrode of lithium secondary battery
JP4519959B2 (en) * 1999-03-31 2010-08-04 Jfeミネラル株式会社 Positive electrode material for lithium secondary battery
US6692665B2 (en) 1999-11-15 2004-02-17 Mitsubishi Chemical Corporation Lithium managanese oxide, cathode material for lithium secondary battery, cathode, lithium secondary battery and process for manufacturing lithium manganese oxide
WO2001036334A1 (en) * 1999-11-15 2001-05-25 Mitsubishi Chemical Corporation Lithium-manganese composite oxide, positive electrode material for lithium secondary cell, positive electrode and lithium secondary cell, and method for preparing lithium-manganese composite oxide
JP4656349B2 (en) * 2000-02-28 2011-03-23 株式会社豊田中央研究所 Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery, its production method and lithium secondary battery using the same
JP2001243949A (en) * 2000-02-28 2001-09-07 Toyota Central Res & Dev Lab Inc Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it
JP2003017050A (en) * 2001-06-27 2003-01-17 Santoku Corp Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, non-aqueous electrolyte secondary battery and manufacturing method of positive electrode
JP2005026141A (en) * 2003-07-04 2005-01-27 Matsushita Electric Ind Co Ltd Anode active material for nonaqueous electrolytic solution secondary battery, and its manufacturing method
WO2007105818A1 (en) * 2006-03-15 2007-09-20 Sumitomo Chemical Company, Limited Positive electrode active material powder
US7811478B2 (en) 2006-03-15 2010-10-12 Sumitomo Chemical Company, Limited Positive-electrode active material powder
JP2008234926A (en) * 2007-03-19 2008-10-02 Sumitomo Metal Mining Co Ltd Positive-electrode active material for nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2012018827A (en) * 2010-07-08 2012-01-26 Sony Corp Positive electrode active material, nonaqueous electrolyte battery and manufacturing method of positive electrode active material
JP6030960B2 (en) * 2010-11-09 2016-11-24 株式会社村田製作所 Manufacturing method of all solid state battery
JP2011155003A (en) * 2011-01-07 2011-08-11 Hitachi Metals Ltd Cathode active material for nonaqueous lithium secondary battery and producing method therefor
WO2024082063A1 (en) * 2022-10-21 2024-04-25 Zhongwei Chen Direct cathode regeneration method for lithium-ion battery recycling

Similar Documents

Publication Publication Date Title
KR101964726B1 (en) Spherical or spherical-like lithium ion battery cathode material and preparation method and application thereof
US6929883B2 (en) Lithium-transition metal composite oxide
JP3232984B2 (en) Method for producing nonaqueous electrolyte battery and positive electrode active material
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
KR101052450B1 (en) Positive electrode active material powder for lithium secondary battery
JP4986098B2 (en) Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
KR101391367B1 (en) Lithium metal compound oxide having layered structure
JP4109847B2 (en) Lithium-containing transition metal composite oxide and method for producing the same
JP4276442B2 (en) Positive electrode active material powder for lithium secondary battery
JP4444117B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2004119218A (en) Positive active material for lithium secondary battery and its manufacturing method
JPH11273678A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous electrolyte secondary battery using positive electrode active material
JP4673287B2 (en) Spinel type lithium manganese oxide and method for producing the same
JPH0922693A (en) Nonaqueous electrolyte battery, positive active material thereof, and manufacture of positive plate
JPH11219706A (en) Positive electrode active material for lithium ion secondary battery, manufacture thereof and lithium ion secondary battery
JP2004281253A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method and nonaqueous system lithium secondary battery using the material
JPH09251854A (en) Manufacture of positive active material for non-aqueous electrolyte secondary battery
JP2003123748A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP3048352B1 (en) Method for producing lithium manganate
JP4374930B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2001243949A (en) Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell
JP6008578B2 (en) Method for producing positive electrode active material for secondary battery and secondary battery
JPH10194745A (en) Production of lithium manganese compound oxide and its use
JP2005346956A (en) Positive electrode active material for nonaqueous lithium secondary battery, manufacturing method thereof, and nonaqueous lithium secondary battery using the positive electrode active material