JP6030960B2 - Manufacturing method of all solid state battery - Google Patents

Manufacturing method of all solid state battery Download PDF

Info

Publication number
JP6030960B2
JP6030960B2 JP2012542961A JP2012542961A JP6030960B2 JP 6030960 B2 JP6030960 B2 JP 6030960B2 JP 2012542961 A JP2012542961 A JP 2012542961A JP 2012542961 A JP2012542961 A JP 2012542961A JP 6030960 B2 JP6030960 B2 JP 6030960B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
powder
solid electrolyte
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012542961A
Other languages
Japanese (ja)
Other versions
JPWO2012063874A1 (en
Inventor
充 吉岡
充 吉岡
倍太 尾内
倍太 尾内
邦雄 西田
邦雄 西田
剛司 林
剛司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2012063874A1 publication Critical patent/JPWO2012063874A1/en
Application granted granted Critical
Publication of JP6030960B2 publication Critical patent/JP6030960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、全固体電池用電極活物質およびそれを用いた全固体電池に関する。特にナシコン構造を有するリチウム含有化合物を含む電極活物質に関するものである。   The present invention relates to an electrode active material for an all-solid battery and an all-solid battery using the same. In particular, the present invention relates to an electrode active material containing a lithium-containing compound having a NASICON structure.

近年、携帯電話や携帯用パーソナルコンピュータ等の携帯用電子機器の主電源、バックアップ用電源、ハイブリッド自動車(HEV)用電源等として電池、特に二次電池が用いられている。二次電池の中でも、エネルギー密度が高く、充放電可能なリチウムイオン二次電池が用いられている。   In recent years, batteries, particularly secondary batteries, have been used as main power sources, backup power sources, and hybrid vehicle (HEV) power sources for portable electronic devices such as cellular phones and portable personal computers. Among secondary batteries, a lithium ion secondary battery having a high energy density and capable of being charged and discharged is used.

このようなリチウムイオン二次電池においては、イオンを移動させるための媒体として炭酸エステルやエーテル系の有機溶媒等にリチウム塩を溶解した有機電解質(電解液)が従来から使用されている。   In such a lithium ion secondary battery, an organic electrolyte (electrolytic solution) in which a lithium salt is dissolved in a carbonate ester or an ether organic solvent is conventionally used as a medium for transferring ions.

しかし、前記の構成のリチウムイオン二次電池では、電解液が漏出するという危険性がある。また、電解液に用いられる有機溶媒等は可燃性物質である。このため、電池の安全性をさらに高めることが求められている。   However, in the lithium ion secondary battery having the above configuration, there is a risk that the electrolyte solution leaks. Moreover, the organic solvent etc. which are used for electrolyte solution are combustible substances. For this reason, it is required to further increase the safety of the battery.

そこで、リチウムイオン二次電池の安全性を高めるために、電解質として、有機溶媒系電解液に代えて、固体電解質を用いることが提案されている。特にナシコン(NASICON)構造を有する化合物は、リチウムイオンを高速で伝導することができるイオン伝導体であるので、このような化合物を固体電解質に用いた全固体電池の開発が進められている。   Therefore, in order to enhance the safety of the lithium ion secondary battery, it has been proposed to use a solid electrolyte as the electrolyte instead of the organic solvent electrolyte. In particular, since a compound having a NASICON structure is an ionic conductor capable of conducting lithium ions at a high speed, development of an all-solid battery using such a compound as a solid electrolyte has been underway.

例えば、特開2007−258148号公報(以下、特許文献1という)では、電極層(正極、負極)、および固体電解質層を有する内部電極体を備えた全固体電池が提案されている。この全固体電池は、正極、負極および固体電解質がいずれもリン酸化合物であり、内部電極体が正極、負極および固体電解質層が焼成されることで一体化されたものが開示されている。この全固体電池の実施例として、固体電解質として、Li1.5Al0.5Ge1.5(PO43(以下、LAGPという)をあらかじめ焼結して焼結体を作製し、この焼結体の両面に電極活物質としてLi32(PO43(以下、LVPという)を含有する電極ペーストを印刷し焼き付けることで、電極層および固体電解質層が一体化された内部電極体を作製している。For example, Japanese Patent Application Laid-Open No. 2007-258148 (hereinafter referred to as Patent Document 1) proposes an all-solid battery including an electrode layer (positive electrode, negative electrode) and an internal electrode body having a solid electrolyte layer. In this all-solid-state battery, a positive electrode, a negative electrode, and a solid electrolyte are all phosphoric acid compounds, and an internal electrode body is integrated by firing a positive electrode, a negative electrode, and a solid electrolyte layer. As an example of this all solid state battery, Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 (hereinafter referred to as LAGP) is preliminarily sintered as a solid electrolyte to produce a sintered body, and both sides of this sintered body are prepared. By printing and baking an electrode paste containing Li 3 V 2 (PO 4 ) 3 (hereinafter referred to as LVP) as an electrode active material, an internal electrode body in which the electrode layer and the solid electrolyte layer are integrated is produced. .

特開2007−258148号公報JP 2007-258148 A

特許文献1では、電極層、固体電解質層が一体化された全固体電池が得られているものの、電池特性は十分といえるものではない。   In Patent Document 1, although an all-solid battery in which an electrode layer and a solid electrolyte layer are integrated is obtained, battery characteristics are not sufficient.

発明者らは、ナシコン構造を有するリチウム含有化合物を全固体電池の電極活物質として使用する場合、電極活物質の粒子径によって、電極層に充填されている電極活物質が完全に利用されたときに得られる電気量を100%とした時、実際の放電で取り出すことができる電気量の比率である電極活物質利用率が大きく変化することを見出した。すなわち、使用する電極活物質の粒子径によって電池特性が向上することを見出した。   When the inventors use a lithium-containing compound having a NASICON structure as an electrode active material of an all-solid battery, the electrode active material filled in the electrode layer is completely used depending on the particle size of the electrode active material. It has been found that when the amount of electricity obtained is 100%, the utilization ratio of the electrode active material, which is the ratio of the amount of electricity that can be taken out by actual discharge, varies greatly. That is, it has been found that the battery characteristics are improved by the particle diameter of the electrode active material used.

そこで、本発明の目的は、電極活物質利用率が大きい電極活物質を使用した全固体電池の製造方法を提供することである。 Accordingly, an object of the present invention is to provide a method for producing an all-solid battery using an electrode active material having a high electrode active material utilization rate.

本発明の全固体電池の製造方法は、ナシコン構造を有するリチウム含有化合物を含む電極活物質を含み、かつ無機材料からなる電極層と、固体電解質層とを備えた全固体電池の製造方法であって、レーザー回折散乱型粒度分布測定装置を用いて測定した粒度分布において、D50が1.1μm以上20μm以下であり、かつD90が40μm以下であるナシコン構造を有するリチウム含有化合物を形成し、このナシコン構造を有するリチウム含有化合物を炭素粉末と混合し、焼成することによって得られた電極活物質粉末を含む電極スラリーを成形して前記電極層のグリーンシートを作製し、固体電解質スラリーを成形して前記固体電解質層のグリーンシートを作製し、前記電極層のグリーンシートと固体電解質層のグリーンシートとを積層して積層体を形成し、前記積層体を焼成することにより、前記電極層と前記固体電解質層とを一体的に焼結接合することを特徴としている。
The method for producing an all-solid battery of the present invention is a method for producing an all-solid battery comprising an electrode active material containing a lithium-containing compound having a NASICON structure and comprising an electrode layer made of an inorganic material and a solid electrolyte layer. Forming a lithium-containing compound having a NASICON structure in which the D 50 is 1.1 μm or more and 20 μm or less and the D 90 is 40 μm or less in the particle size distribution measured using a laser diffraction / scattering type particle size distribution analyzer , A green sheet of the electrode layer is prepared by forming an electrode slurry containing an electrode active material powder obtained by mixing and baking this lithium-containing compound having a NASICON structure with carbon powder, and forming a solid electrolyte slurry. The green sheet of the solid electrolyte layer is prepared, and the green sheet of the electrode layer and the green sheet of the solid electrolyte layer are stacked and stacked. Body is formed by firing the laminate, it is characterized by integrally sintering bonding the solid electrolyte layer and the electrode layer.

この場合、平均粒子径を小さくし、さらに粒子径の大きい粗粒を省くことによって、ナシコン構造を有するリチウム含有化合物の電極活物質利用率を高めることができる。   In this case, the utilization rate of the electrode active material of the lithium-containing compound having a NASICON structure can be increased by reducing the average particle size and omitting coarse particles having a large particle size.

本発明によれば、電極活物質利用率が高く、電池特性の良好な全固体電池を製造することが可能である。

According to the present invention, it is possible to manufacture an all-solid battery having a high utilization rate of an electrode active material and good battery characteristics.

本発明の実施形態に係る電池積層体の模式的な断面図である。It is typical sectional drawing of the battery laminated body which concerns on embodiment of this invention.

以下において、本発明を実施するための形態について説明する。ここで述べる発明の実施形態は本発明を実施するための一例であり、ここに記述されている方法、形態に何ら限定されるものではない。   Hereinafter, modes for carrying out the present invention will be described. The embodiment of the invention described here is an example for carrying out the present invention, and is not limited to the method and form described here.

本発明の全固体電池用電極活物質は、ナシコン構造を有するリチウム含有化合物を含有し、リチウム含有化合物のD50が20μm以下であり、かつD90が40μm以下であることを特徴としている。ナシコン構造を有するリチウム含有化合物は特に限定されないが、Lixy(PO43(x=1〜2、y=1〜2)を含有することが好ましい。なお、Mは金属であればよく、特に、Al,Ti,V,Cr,Fe,Co,Ni,Zr,Nbの少なくとも1種を含むことが好ましい。具体的には、Li32(PO43やLi3Fe2(PO43等のリチウム含有リン酸化合物が挙げられる。なお、本発明の電極活物質は正極または負極の少なくともいずれか一方に含まれていればよい。The electrode active material for an all-solid-state battery of the present invention is characterized in that it contains a lithium-containing compound having a NASICON structure, the D 50 of the lithium-containing compound is 20 μm or less, and D 90 is 40 μm or less. Lithium-containing compound having a NASICON structure is not particularly limited, it preferably contains Li x M y (PO 4) 3 (x = 1~2, y = 1~2). Note that M may be a metal, and particularly preferably contains at least one of Al, Ti, V, Cr, Fe, Co, Ni, Zr, and Nb. Specific examples include lithium-containing phosphate compounds such as Li 3 V 2 (PO 4 ) 3 and Li 3 Fe 2 (PO 4 ) 3 . In addition, the electrode active material of this invention should just be contained in at least any one of a positive electrode or a negative electrode.

ここで、D50は、粒度分布の積算50%粒子径であり、D90は、粒度分布の積算90%粒子径である。電極活物質の粒子径測定は、レーザー回折散乱型粒度分布測定装置で測定できる。Here, D 50 is an integrated 50% particle size of the particle size distribution, and D 90 is an integrated 90% particle size of the particle size distribution. The particle diameter of the electrode active material can be measured with a laser diffraction / scattering particle size distribution analyzer.

本発明の実施形態に係る電池積層体の模式的な断面図を図1に示す。電池積層体10は、固体電解質を含む固体電解質層12と、負極層11と、正極層13と、を備えている。なお、負極層11と正極層13の少なくともどちらか一方が本発明の電極活物質を含む。負極層11と正極層13は、固体電解質層12を介して互いに対向する位置に設けられている。そして、負極層11または正極層13の少なくとも一方と固体電解質層12とが焼成によって接合されている。なお、図示していないが、固体電解質層12に接しない正極層13の面に集電体層が配置されていても良く、固体電解質層12に接しない負極層11の面に集電体層が配置されていてもよい。   FIG. 1 shows a schematic cross-sectional view of a battery stack according to an embodiment of the present invention. The battery stack 10 includes a solid electrolyte layer 12 including a solid electrolyte, a negative electrode layer 11, and a positive electrode layer 13. Note that at least one of the negative electrode layer 11 and the positive electrode layer 13 contains the electrode active material of the present invention. The negative electrode layer 11 and the positive electrode layer 13 are provided at positions facing each other with the solid electrolyte layer 12 interposed therebetween. And at least one of the negative electrode layer 11 or the positive electrode layer 13 and the solid electrolyte layer 12 are joined by baking. Although not shown, a current collector layer may be disposed on the surface of the positive electrode layer 13 not in contact with the solid electrolyte layer 12, and the current collector layer on the surface of the negative electrode layer 11 not in contact with the solid electrolyte layer 12. May be arranged.

前記固体電解質には、例えば、イオン伝導性を有し、電子伝導性が無視できるほど小さい材料を用いる。固体電解質の例としては、ハロゲン化リチウム、窒化リチウム、リチウム酸素酸塩、及びこれらの誘導体が挙げられる。また、リン酸リチウム(Li3PO4)等のLi−P−O系化合物、リン酸リチウムに窒素を混ぜたLIPON(LiPO4-xx)、Li4SiO4等のLi−Si−O系化合物、Li−P−Si−O系化合物、Li−V−Si−O系化合物、ペロブスカイト構造を有するLa0.51Li0.35TiO2.94、La0.55Li0.35TiO3、Li3xLa2/3-xTiO3等のペロブスカイト系化合物、Li、La、Zrを有するガーネット構造を有する化合物が挙げられるが、特に、ナシコン構造を有する化合物を含んでいることが好ましい。ナシコン構造を有する化合物の組成はLixy(PO43(x=1〜2、y=1〜2、M=Ti、Ge、Al、Ga、Zrの少なくとも1つを含む)で表され、Pの一部がB、Si等で置換されていてもよい。ナシコン構造を有する化合物の例としては、例えばLi1.5Al0.5Ge1.5(PO43やLi1.2Al0.2Ti1.8(PO43が挙げられる。For the solid electrolyte, for example, a material having ionic conductivity and small electronic conductivity can be used. Examples of the solid electrolyte include lithium halide, lithium nitride, lithium oxyacid salt, and derivatives thereof. Further, Li-PO compounds such as lithium phosphate (Li 3 PO 4), LIPON mixed with nitrogen lithium phosphate (LiPO 4-x N x) , Li-SiO , such as Li 4 SiO 4 Compounds, Li-P-Si-O compounds, Li-V-Si-O compounds, La 0.51 Li 0.35 TiO 2.94 having a perovskite structure, La 0.55 Li 0.35 TiO 3 , Li 3x La 2 / 3-x TiO 3 and the like, and compounds having a garnet structure having Li, La, and Zr are mentioned, but it is particularly preferable that a compound having a NASICON structure is included. Table In composition Li x M y of the compound (PO 4) 3 (x = 1~2, y = 1~2, including M = Ti, Ge, Al, Ga, at least one of Zr) having the NASICON structure In addition, a part of P may be substituted with B, Si or the like. Examples of the compound having a NASICON structure include Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 .

負極層11に含まれる負極活物質としては、本発明の電極活物質以外に黒鉛−リチウム化合物、Li−Al等のリチウム合金、Li4Ti512、Ti、Nb、W、Si、Sn、Cr、Fe、Moからなる群より選ばれる少なくとも一種の元素の酸化物等を用いてもよい。具体的には、酸化チタン、酸化シリコン、酸化ニオブ、酸化錫、酸化クロム、酸化鉄、酸化モリブデンからなる群より選ばれる少なくとも一種の酸化物を含んでいることが好ましい。かかる酸化物は、重量当たりの容量が大きく、Liに対する電位が低い。そのため、容量密度が大きく、電池電圧が高くなり、エネルギー密度の高い全固体電池を得ることができる。As the negative electrode active material contained in the negative electrode layer 11, in addition to the electrode active material of the present invention, graphite-lithium compounds, lithium alloys such as Li—Al, Li 4 Ti 5 O 12 , Ti, Nb, W, Si, Sn, An oxide of at least one element selected from the group consisting of Cr, Fe, and Mo may be used. Specifically, it preferably contains at least one oxide selected from the group consisting of titanium oxide, silicon oxide, niobium oxide, tin oxide, chromium oxide, iron oxide, and molybdenum oxide. Such an oxide has a large capacity per weight and a low potential with respect to Li. Therefore, an all-solid battery having a large capacity density, a high battery voltage, and a high energy density can be obtained.

正極層13に含まれる正極活物質としては、本発明の電極活物質以外にLiCoO2、LiCo1/3Ni1/3Mn1/32等の層状化合物、LiMn24、LiNi0.5Mn1.54等のスピネル材料、LiFePO4、LiMnPO4等のリン含有化合物を用いてもよい。正極活物質および負極活物質の少なくとも一方に本発明の電極活物質が含まれていれば、本発明の効果を奏する。The positive electrode active material contained in the positive electrode layer 13 includes, in addition to the electrode active material of the present invention, a layered compound such as LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiMn 2 O 4 , LiNi 0.5 Mn Spinel materials such as 1.5 O 4 and phosphorus-containing compounds such as LiFePO 4 and LiMnPO 4 may be used. If the electrode active material of the present invention is contained in at least one of the positive electrode active material and the negative electrode active material, the effects of the present invention are exhibited.

また、負極層11および正極層13はナシコン構造の固体電解質を含んでいることが好ましい。固体電解質層12にナシコン構造の固体電解質を含んでいる場合、負極層11および正極層13と固体電解質層12とが焼成によって接合されやすくなるためである。   The negative electrode layer 11 and the positive electrode layer 13 preferably include a solid electrolyte having a NASICON structure. This is because when the solid electrolyte layer 12 includes a solid electrolyte having a NASICON structure, the negative electrode layer 11, the positive electrode layer 13, and the solid electrolyte layer 12 are easily joined by firing.

負極層11または正極層13の少なくとも一方と固体電解質層12とは、複数のグリーンシートを積層して積層体を形成し、積層体を焼成することにより接合されていることが好ましい。この場合、負極層11または正極層13の少なくとも一方と固体電解質層12とを一体的に焼成して接合することができるため、より安価に全固体電池を作製することが可能であるためである。   At least one of the negative electrode layer 11 or the positive electrode layer 13 and the solid electrolyte layer 12 are preferably joined by laminating a plurality of green sheets to form a laminate, and firing the laminate. In this case, since at least one of the negative electrode layer 11 or the positive electrode layer 13 and the solid electrolyte layer 12 can be integrally fired and bonded, it is possible to manufacture an all-solid battery at a lower cost. .

本発明に係る全固体電池は、一例として、以下のように製造される。   The all solid state battery according to the present invention is manufactured as follows as an example.

まず、無機材料として、電極活物質と固体電解質を用意する。この時、電極活物質が二種以上の元素の酸化物を含む場合には、各々の元素の酸化物を混合した混合材料を用意すればよい。また、固体電解質がナシコン構造の固体電解質を含んでいる場合には、ナシコン構造の固体電解質を用意する。例えばLi1.5Al0.5Ge1.5(PO43とLi1.2Al0.2Ti1.8(PO43等、異なる組成のナシコン構造の固体電解質を混合した混合材料を用いてもよい。また、ナシコン型固体電解質には、ナシコン構造の固体電解質の結晶相を含む材料や、ナシコン型固体電解質の結晶相を析出するガラスを用いてもよい。First, an electrode active material and a solid electrolyte are prepared as inorganic materials. At this time, when the electrode active material includes oxides of two or more elements, a mixed material in which oxides of the respective elements are mixed may be prepared. When the solid electrolyte includes a NASICON-structured solid electrolyte, a NASICON-structured solid electrolyte is prepared. For example, a mixed material in which solid electrolytes having different composition of NASICON such as Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 may be used. Further, as the NASICON solid electrolyte, a material including a crystal phase of a solid electrolyte having a NASICON structure or glass precipitating a crystal phase of a NASICON solid electrolyte may be used.

次に、電極スラリーおよび固体電解質スラリーを作製する。本発明の電極スラリーの作製方法としては、あらかじめ、粒子径をD50が20μm以下、D90が40μm以下となるように粒子径を調整したナシコン構造を有するリチウム含有化合物を用意する。粒子径を調整する方法としては特に限定されないが、D50が20μm以下、D90が40μm以下であるリチウム含有化合物を合成したり、粗粒を含有するリチウム含有化合物をふるいにかけ分級したり、リチウム含有化合物を粉砕したりして調整してもよい。用意したリチウム含有化合物の他、固体電解質、導電剤などを混合し混合物を作製し、混合物に有機材料と溶剤とを混合して作製した有機ビヒクルを加え混合することにより電極スラリーを作製する。Next, an electrode slurry and a solid electrolyte slurry are prepared. As a method for preparing the electrode slurry of the present invention, a lithium-containing compound having a NASICON structure in which the particle size is adjusted so that the D 50 is 20 μm or less and the D 90 is 40 μm or less is prepared in advance. The method for adjusting the particle diameter is not particularly limited, but a lithium-containing compound having a D 50 of 20 μm or less and a D 90 of 40 μm or less is synthesized, or a lithium-containing compound containing coarse particles is sieved and classified. The contained compound may be adjusted by grinding. In addition to the prepared lithium-containing compound, a solid electrolyte, a conductive agent and the like are mixed to prepare a mixture, and an organic vehicle prepared by mixing an organic material and a solvent is added to the mixture and mixed to prepare an electrode slurry.

前記溶媒としては、 水、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレンなどの芳香族炭化水素類;エチルメチルケトン、シクロヘキサノンなどのケトン類;酢酸エチル、酢酸ブチル、γ−ブチロラクトン、ε−カプロラクトンなどのエステル類;アセトニトリル、プロピオニトリルなどのアシロニトリル類:テトラヒドロフラン、エチレングリコールジエチルエーテルなどのエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテルなどのアルコール類;N−メチルピロリドン、N,N−ジメチルホルムアミドなどのアミド類があげられる。これらの溶媒は、単独または2種以上を混合して、乾燥速度や環境上の観点から適宜選択して用いることができる。なお、前記有機ビヒクルを作製する際に使用する溶媒と、前記混合物を作製する際にしようする溶媒とは異なっていても良いが、同じ溶媒を用いることが好ましい。   Examples of the solvent include water, cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as ethyl methyl ketone and cyclohexanone; ethyl acetate, butyl acetate, and γ-butyrolactone. Esters such as ε-caprolactone; Acylonitriles such as acetonitrile and propionitrile: Ethers such as tetrahydrofuran and ethylene glycol diethyl ether: Alcohols such as methanol, ethanol, isopropanol, ethylene glycol, and ethylene glycol monomethyl ether; N -Amides such as methylpyrrolidone and N, N-dimethylformamide. These solvents may be used alone or in admixture of two or more and appropriately selected from the viewpoint of drying speed and environment. In addition, although the solvent used when manufacturing the said organic vehicle may differ from the solvent used when manufacturing the said mixture, it is preferable to use the same solvent.

次に、固体電解質層、電極層の各々のスラリーを成形してグリーンシートを作製する。成形方法は特に限定されないが、例えばダイコーター、コンマコーター等の公知の塗工機を用いた方法や、スクリーン印刷法等が挙げられる。   Next, each of the solid electrolyte layer and the electrode layer slurry is molded to produce a green sheet. Although a shaping | molding method is not specifically limited, For example, the method using well-known coating machines, such as a die coater and a comma coater, a screen printing method, etc. are mentioned.

次に、固体電解質層、電極層のグリーンシートを積層して積層体を形成する。積層方法は特に限定されないが、例えば熱間等方圧プレス(HIP)法、冷間等方圧プレス(CIP)法、静水圧プレス(WIP)法が挙げられる。   Next, a green sheet of a solid electrolyte layer and an electrode layer is laminated to form a laminate. The lamination method is not particularly limited, and examples thereof include a hot isostatic press (HIP) method, a cold isostatic press (CIP) method, and a hydrostatic press (WIP) method.

次に、積層体を焼成する。焼成により、電極層と固体電解質層とが接合される。   Next, the laminate is fired. The electrode layer and the solid electrolyte layer are joined by firing.

最後に、焼成した積層体を例えばコインセル内に封止する。封止方法は特に限定されない。例えば、焼成後の積層体を樹脂で封止してもよい。また、Al23等の絶縁性を有する絶縁体ペーストを積層体の周囲に塗布あるいはディップして、これを熱処理することにより封止してもよい。Finally, the fired laminate is sealed in, for example, a coin cell. The sealing method is not particularly limited. For example, you may seal the laminated body after baking with resin. Alternatively, an insulating paste having an insulating property such as Al 2 O 3 may be applied or dipped around the laminated body and sealed by heat treatment.

なお、電極層から効率的に電流を引き出すため、集電体層として電極層の上に金属層等の導電層を形成してもよい。導電層の形成方法は、例えばスパッタリング法が挙げられる。また、金属ペーストを塗布あるいはディップして、これを熱処理してもよい。   In order to efficiently draw current from the electrode layer, a conductive layer such as a metal layer may be formed on the electrode layer as the current collector layer. Examples of the method for forming the conductive layer include a sputtering method. Alternatively, a metal paste may be applied or dipped and heat treated.

以下、本発明の全固体電池の実施例と比較例について説明する。以下、全固体電池用電極活物質として、リチウム含有バナジウムリン酸化合物LVPを用いた。
<電極活物質の作製>
(実施例1)
出発原料として炭酸リチウム(Li2CO3)、五酸化バナジウム(V25)、リン酸水素二アンモニウム((NH42HPO4)を用いた。これらの原料をモル比で27.3%−LiCO3、18.2%−V25、54.5%−(NH42HPO4となるように秤量し、500mLのポリエチレン製ポットに封入してポット架上で150rpmの回転数で、6時間回転することにより、原料の混合粉末を得た。前記で得られた原料の混合粉末を、空気雰囲気下、600℃の温度で8時間焼成することにより、焼成粉末Aを得た。
Hereinafter, examples and comparative examples of the all solid state battery of the present invention will be described. Hereinafter, the lithium-containing vanadium phosphate compound LVP was used as the electrode active material for an all-solid battery.
<Preparation of electrode active material>
Example 1
Lithium carbonate (Li 2 CO 3 ), vanadium pentoxide (V 2 O 5 ), and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) were used as starting materials. These raw materials are weighed so as to be 27.3% -LiCO 3 , 18.2% -V 2 O 5 , 54.5%-(NH 4 ) 2 HPO 4 in a molar ratio, and put in a 500 mL polyethylene pot. The mixed powder of the raw material was obtained by enclosing and rotating for 6 hours at 150 rpm on the pot rack. The mixed powder of the raw material obtained above was baked for 8 hours at a temperature of 600 ° C. in an air atmosphere to obtain a baked powder A.

焼成粉末Aに水を加え、直径5mmの玉石とともに500mLのポリエチレン製ポットに封入してポット架上で150rpmの回転数で、24時間回転することにより、焼成粉末Aを粉砕した。その後、粉砕した焼成粉末Aを、120℃の温度に熱せられたホットプレート上で乾燥して、粉砕粉末Aを得た。   Water was added to the calcined powder A, enclosed in a 500 mL polyethylene pot together with a cobblestone having a diameter of 5 mm, and the calcined powder A was pulverized by rotating at a rotation speed of 150 rpm on the pot rack for 24 hours. Thereafter, the pulverized fired powder A was dried on a hot plate heated to a temperature of 120 ° C. to obtain pulverized powder A.

粉砕粉末Aに炭素粉末としてケッチェンブラックを重量比で90:10となるように混合し、500mLのポリエチレン製ポットに封入してポット架上で150rpmの回転数で、6時間回転することにより、炭素混合粉末Aを得た。次に、炭素混合粉末Aを窒素雰囲気下、900℃の温度で20時間焼成することにより、電極活物質粉末Aを得た。   By mixing ketjen black as a carbon powder with the pulverized powder A at a weight ratio of 90:10, enclosing it in a 500 mL polyethylene pot and rotating on the pot rack at 150 rpm for 6 hours, Carbon mixed powder A was obtained. Next, an electrode active material powder A was obtained by firing the carbon mixed powder A at a temperature of 900 ° C. for 20 hours in a nitrogen atmosphere.

(比較例1)
比較のため、電極活物質粉末Bを以下の通り作製した。前記焼成粉末Aと水を混合し、φ5mmの玉石とともに500mlのポリエチレン製ポットに封入した後、150rpm、1時間回転して焼成粉末Aを粉砕した。その後、120℃の温度に熱せられたホットプレート上で乾燥して、粉砕粉末Bを得た。
(Comparative Example 1)
For comparison, an electrode active material powder B was prepared as follows. The calcined powder A and water were mixed and sealed in a 500 ml polyethylene pot together with a 5 mm cobblestone, and then spun at 150 rpm for 1 hour to crush the calcined powder A. Then, it dried on the hotplate heated at the temperature of 120 degreeC, and the pulverized powder B was obtained.

粉砕粉末Bに炭素粉末としてケッチェンブラックを重量比で90:10となるように混合し、500mLのポリエチレン製ポットに封入してポット架上で150rpmの回転数で、6時間回転することにより、炭素混合粉末Bを得た。次に、炭素混合粉末Bを窒素雰囲気下、900℃の温度で20時間焼成することにより、電極活物質粉末Bを得た。   By mixing Ketjen black as a carbon powder with the pulverized powder B at a weight ratio of 90:10, enclosing it in a 500 mL polyethylene pot and rotating on the pot rack at 150 rpm for 6 hours, Carbon mixed powder B was obtained. Next, an electrode active material powder B was obtained by firing the carbon mixed powder B at a temperature of 900 ° C. for 20 hours in a nitrogen atmosphere.

<評価>
電極活物質粉末Aおよび電極活物質粉末Bを、1.0°/分のスキャン速度、測角範囲10°〜60°でXRD(X線回折装置)により測定した。Li3Fe2(PO4)3のJCPDS(Joint Committee on Powder Diffraction Standards)カード(カード番号78−1106)のパターンとほぼ一致し、電極活物質粉末Aおよび電極活物質粉末Bがナシコン構造を有するリチウム含有化合物であることを確認した。
<Evaluation>
The electrode active material powder A and the electrode active material powder B were measured by XRD (X-ray diffractometer) at a scan rate of 1.0 ° / min and an angle measurement range of 10 ° to 60 °. Li 3 Fe 2 (PO 4) substantially coincides with the pattern of the third JCPDS (Joint Committee on Powder Diffraction Standards ) card (card number 78-1106), the electrode active material powder A and the electrode active material powder B has a NASICON structure It was confirmed to be a lithium-containing compound.

次に、粒子径を調査するため、粉砕工程で得た粉砕粉末A、粉砕粉末B、焼成工程で得た電極活物質粉末A、電極活物質粉末Bをそれぞれ水溶媒に分散させ、レーザー回折散乱型粒度分布測定装置を用いて粒度分布測定を行った。測定の結果、それぞれのD50およびD90は、粉砕粉末Aがそれぞれ1.1μm、2.0μm、電極活物質粉末Aがそれぞれ1.4μm、4.1μmであり、D50が20μm以下、D90が40μm以下であることが判った。一方、粉砕粉末Bはそれぞれ14.5μm、43.8μm、電極活物質粉末Bがそれぞれ15.6μm、46.3μmであり、D50は20μm以下であるが、D90が40μm以上であることがわかった。
<全固体電池の作製>
電極活物質粉末A、電極活物質粉末Bの電極特性の評価を行うため、全固体電池を作製した。各電極活物質粉末、炭素粉末、PTFEとを混合したものを正極として、負極にLi金属箔、電解質に有機電解液を用いたコインセルを作製した。充放電装置を用いた3.0−4.5Vでのサイクリックボルタンメトリー試験の結果、電極活物質粉末Aを用いたコインセルはLi32(PO43の二電子反応分の理論容量(120mAh/g)に対し、ほぼ100%の電極活物質利用率が得られたが、電極活物質粉末Bを用いたコインセルの電極活物質利用率は約61%であった。さらに、電極活物質粉末Aを用いたコインセルに比べて電極活物質粉末Bを用いたコインセルの充放電反応のピークはブロードであり、電極活性が低いことがわかった。
Next, in order to investigate the particle size, the pulverized powder A and the pulverized powder B obtained in the pulverization step, the electrode active material powder A and the electrode active material powder B obtained in the firing step are dispersed in an aqueous solvent, respectively, and laser diffraction scattering is performed. The particle size distribution was measured using a mold particle size distribution measuring apparatus. As a result of the measurement, each of D 50 and D 90 is 1.1 μm and 2.0 μm for the pulverized powder A, 1.4 μm and 4.1 μm for the electrode active material powder A, respectively, D 50 is 20 μm or less, D 90 was found to be 40 μm or less. On the other hand, the pulverized powder B is 14.5 μm and 43.8 μm, respectively, and the electrode active material powder B is 15.6 μm and 46.3 μm, respectively, D 50 is 20 μm or less, and D 90 is 40 μm or more. all right.
<Preparation of all-solid battery>
In order to evaluate the electrode characteristics of the electrode active material powder A and the electrode active material powder B, an all-solid battery was produced. A coin cell using a mixture of each electrode active material powder, carbon powder, and PTFE as a positive electrode, a Li metal foil as a negative electrode, and an organic electrolyte as an electrolyte was produced. As a result of the cyclic voltammetry test at 3.0-4.5 V using a charge / discharge device, the coin cell using the electrode active material powder A has a theoretical capacity of two-electron reaction of Li 3 V 2 (PO 4 ) 3 ( The electrode active material utilization rate of about 100% was obtained for 120 mAh / g), but the electrode active material utilization rate of the coin cell using the electrode active material powder B was about 61%. Furthermore, the peak of the charge / discharge reaction of the coin cell using the electrode active material powder B was broader than that of the coin cell using the electrode active material powder A, indicating that the electrode activity was low.

以上の結果から、D50が20μm以下かつD90が40μm以下であり、D90が40μm以上の粗粒を含まないことで、ナシコン構造を有するリチウム含有化合物の電極活物質利用率を高めることができることが確認された。
(実施例2)
<電極活物質の作製>
原料として炭酸リチウム(Li2CO3)、五酸化バナジウム(V23)、リン酸水素二アンモニウム((NH42HPO4)を用い、これらをモル比で27.3%−LiCO3,18.2%−V23,54.5%−(NH42HPO4となるように秤量し、500mlのポリエチレン製ポットに封入してポット架上で150rpm、6時間回転し、原料の混合粉末を得た。原料の混合粉末を、空気雰囲気下、400℃で8時間焼成し、揮発成分を除去した焼成粉末Cを得た。
From the above results, D 50 is 20 μm or less, D 90 is 40 μm or less, and D 90 does not contain coarse particles of 40 μm or more, thereby increasing the electrode active material utilization rate of the lithium-containing compound having a NASICON structure. It was confirmed that it was possible.
(Example 2)
<Preparation of electrode active material>
Lithium carbonate (Li 2 CO 3 ), vanadium pentoxide (V 2 O 3 ), diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) were used as raw materials, and these were in a molar ratio of 27.3% -LiCO 3. , 18.2% -V 2 O 3 , 54.5%-(NH 4 ) 2 HPO 4 , weighed in a 500 ml polyethylene pot, rotated on the pot rack at 150 rpm for 6 hours, A mixed powder of raw materials was obtained. The mixed powder of raw materials was fired at 400 ° C. for 8 hours in an air atmosphere to obtain a fired powder C from which volatile components were removed.

焼成粉末Cに水を加え、φ5mmの玉石とともに500mlのポリエチレン製ポットに封入してポット架上で150rpm、24時間回転して、焼成粉末Cを粉砕した。その後、120℃のホットプレート上で乾燥して、粉砕粉末Cを得た。   Water was added to the calcined powder C, sealed in a 500 ml polyethylene pot together with a 5 mm cobblestone, and rotated on a pot rack at 150 rpm for 24 hours to pulverize the calcined powder C. Then, it dried on a 120 degreeC hotplate and the pulverized powder C was obtained.

粉砕粉末Cに炭素粉末としてケッチェンブラックを重量比で90:10となるように添加して、500mlのポリエチレン製ポットに封入してポット架上で150rpm、6時間回転し、炭素混合粉末Cを得た。炭素混合粉末Cを、窒素雰囲気下、900℃で20時間焼成し、電極活物質粉末Cを得た。
(比較例2)
粉砕粉末Cを開口径32μmのふるいにかけて分級し、粗粒を取り除いた粉末と、ふるい上に残った粗粒が多い粉末を得た。分級し粗粒が取り除かれた粉末の半分と粗粒の多い粉末を混合し、粉砕粉末Dを得た。
Add ketjen black as a carbon powder to the pulverized powder C in a weight ratio of 90:10, enclose it in a 500 ml polyethylene pot, rotate on the pot rack at 150 rpm for 6 hours, and mix the carbon mixed powder C. Obtained. The carbon mixed powder C was fired at 900 ° C. for 20 hours in a nitrogen atmosphere to obtain an electrode active material powder C.
(Comparative Example 2)
The pulverized powder C was classified through a sieve having an opening diameter of 32 μm to obtain a powder from which coarse particles had been removed and a powder having many coarse particles remaining on the sieve. Half of the powder from which coarse particles were classified and powder with many coarse particles were mixed, and pulverized powder D was obtained.

粉砕粉末Dに炭素粉末としてケッチェンブラックを重量比で90:10となるように添加して、500mlのポリエチレン製ポットに封入してポット架上で150rpm、6時間回転し、炭素混合粉末Dを得た。炭素混合粉末Dを、窒素雰囲気下、900℃で20時間焼成し、電極活物質粉末Dを得た。
<評価>
実施例1と同様にして電極活物質粉末CおよびDがナシコン構造を有するリチウム含有化合物であることを確認した。
Add ketjen black as a carbon powder to the pulverized powder D in a weight ratio of 90:10, enclose it in a 500 ml polyethylene pot, rotate on the pot rack for 6 hours, and rotate the carbon mixed powder D Obtained. The carbon mixed powder D was fired at 900 ° C. for 20 hours in a nitrogen atmosphere to obtain an electrode active material powder D.
<Evaluation>
In the same manner as in Example 1, it was confirmed that the electrode active material powders C and D were lithium-containing compounds having a NASICON structure.

次に、実施例1と同様にして電極活物質粉末CおよびDの粒度分布測定を行った。測定の結果、粉砕粉末CのD50、D90はそれぞれ7.0μm、23.9μm、電極活物質粉末Cはそれぞれ4.7μm、21.7μmであり、D50が20μm以下、D90が40μm以下であることが判った。一方、粉砕粉末Dはそれぞれ21.2μm、37.8μm、電極活物質粉末Dがそれぞれ23.5μm、39.1μmであり、D90は40μm以下であるが、D50が20μm以上であることがわかった。Next, the particle size distribution measurement of the electrode active material powders C and D was performed in the same manner as in Example 1. As a result of the measurement, D 50 and D 90 of the pulverized powder C are 7.0 μm and 23.9 μm, respectively, and the electrode active material powder C is 4.7 μm and 21.7 μm, respectively, D 50 is 20 μm or less, and D 90 is 40 μm. It turns out that it is the following. On the other hand, the pulverized powder D is 21.2 μm and 37.8 μm, the electrode active material powder D is 23.5 μm and 39.1 μm, respectively, D 90 is 40 μm or less, and D 50 is 20 μm or more. all right.

電極活物質粉末CおよびDの電極特性の評価を行うため上述のようにして全固体電池を作製し、電極活物質利用率を測定した。   In order to evaluate the electrode characteristics of the electrode active material powders C and D, an all-solid battery was prepared as described above, and the electrode active material utilization rate was measured.

電極活物質粉末Cを用いたコインセルはLi32(PO43の二電子反応分の理論容量(120mAh/g)に対し、約85%の電極活物質利用率が得られたが、電極活物質粉末Dを用いたコインセルの電極活物質利用率は約59%であった。さらに、電極活物質粉末Cを用いたコインセルに比べて電極活物質粉末Dを用いたコインセルの充放電反応のピークはブロードであり、電極活性が低いことがわかった。
(実施例3)
原料として炭酸リチウム(Li2CO3)、五酸化バナジウム(V23)、リン酸水素二アンモニウム((NH42HPO4)を用い、これらをモル比で27.3%−Li2CO3,18.2%−V23,54.5%−(NH42HPO4となるように秤量し、500mlのポリエチレン製ポットに封入してポット架上で150rpm、6時間回転し、原料の混合粉末を得た。原料の混合粉末を、空気雰囲気下、400℃で8時間焼成し、揮発成分を除去した焼成粉末Eを得た。
The coin cell using the electrode active material powder C has an electrode active material utilization rate of about 85% with respect to the theoretical capacity (120 mAh / g) of the two-electron reaction of Li 3 V 2 (PO 4 ) 3 . The utilization rate of the electrode active material of the coin cell using the electrode active material powder D was about 59%. Furthermore, the peak of the charge / discharge reaction of the coin cell using the electrode active material powder D was broader than that of the coin cell using the electrode active material powder C, indicating that the electrode activity was low.
Example 3
Lithium carbonate (Li 2 CO 3 ), vanadium pentoxide (V 2 O 3 ), and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) were used as raw materials, and these were in a molar ratio of 27.3% -Li 2. CO 3 , 18.2%-V 2 O 3 , 54.5%-(NH 4 ) 2 HPO 4 was weighed, sealed in a 500 ml polyethylene pot, and rotated on a pot rack at 150 rpm for 6 hours. Thus, a raw material mixed powder was obtained. The mixed powder of raw materials was fired at 400 ° C. for 8 hours in an air atmosphere to obtain a fired powder E from which volatile components were removed.

焼成粉末Eに水を加え、φ5mmの玉石とともに500mlのポリエチレン製ポットに封入してポット架上で150rpm、24時間回転して、焼成粉末Eを粉砕した。その後、120℃のホットプレート上で乾燥して、粉砕粉末Eを得た。   Water was added to the calcined powder E, sealed in a 500 ml polyethylene pot together with a 5 mm cobblestone, and rotated on a pot rack at 150 rpm for 24 hours to pulverize the calcined powder E. Then, it dried on a 120 degreeC hotplate and the pulverized powder E was obtained.

粉砕粉末Eを、窒素雰囲気下、900℃で20時間焼成し、電極活物質粉末Eを得た。
(比較例3)
粉砕粉末Eを開口径32μmのふるいにかけて分級し、粗粒を取り除いた粉末と、ふるい上に残った粗粒が多い粉末を得た。分級し粗粒が取り除かれた粉末の半分と粗粒の多い粉末を混合し、粉砕粉末Fを得た。粉砕粉末Fを、窒素雰囲気下、900℃で20時間焼成し、電極活物質粉末Fを得た。
<評価>
実施例1と同様にして電極活物質粉末EおよびFがナシコン構造を有するリチウム含有化合物であることを確認した。次に、実施例1と同様にして電極活物質粉末EおよびFの粒度分布測定を行った。粒度分布測定の結果、粉砕粉末E のD50、D90は、それぞれ9.1μm、16.1μm、電極活物質粉末Eはそれぞれ11.5μm、18.4μmであり、D50、D90が大きく変化していないことがわかった。一方、粉砕粉末FのD50、D90は、それぞれ9.1μm、37.8μm、電極活物質粉末Fがそれぞれ25.4μm、39.1μmであり、D50が2.5倍以上変化していることがわかった。
The pulverized powder E was fired at 900 ° C. for 20 hours in a nitrogen atmosphere to obtain an electrode active material powder E.
(Comparative Example 3)
The pulverized powder E was classified through a sieve having an opening diameter of 32 μm to obtain a powder from which coarse particles had been removed and a powder having many coarse particles remaining on the sieve. Half of the powder that had been classified and from which coarse particles had been removed was mixed with powder having a large amount of coarse particles to obtain pulverized powder F. The pulverized powder F was fired at 900 ° C. for 20 hours in a nitrogen atmosphere to obtain an electrode active material powder F.
<Evaluation>
In the same manner as in Example 1, it was confirmed that the electrode active material powders E and F were lithium-containing compounds having a NASICON structure. Next, the particle size distribution measurement of the electrode active material powders E and F was performed in the same manner as in Example 1. As a result of the particle size distribution measurement, D 50 and D 90 of the pulverized powder E 1 are 9.1 μm and 16.1 μm, respectively, and the electrode active material powder E is 11.5 μm and 18.4 μm, respectively, and D 50 and D 90 are large. It turns out that it has not changed. On the other hand, D 50 and D 90 of the pulverized powder F are 9.1 μm and 37.8 μm, respectively, the electrode active material powder F is 25.4 μm and 39.1 μm, respectively, and D 50 changes by 2.5 times or more. I found out.

以上の結果から、合成過程において炭素粉末を混合することで、調整後の粒子径が大きく変化しないように焼成できることが確認された。   From the above results, it was confirmed that by mixing the carbon powder in the synthesis process, firing can be performed so that the adjusted particle diameter does not change significantly.

電極活物質粉末EおよびFの電極特性の評価を行うため上述のようにして全固体電池を作製し、電極活物質利用率を測定した。   In order to evaluate the electrode characteristics of the electrode active material powders E and F, an all-solid battery was prepared as described above, and the electrode active material utilization rate was measured.

電極活物質粉末Eを用いたコインセルはLi32(PO43の二電子反応分の理論容量(120mAh/g)に対し、約91%の電極活物質利用率が得られたが、電極活物質粉末Fを用いたコインセルの電極活物質利用率は約29%であった。さらに、電極活物質粉末Fを用いたコインセルの充放電反応ピークは不明瞭であり、電極活性が極めて低いことがわかった。In the coin cell using the electrode active material powder E, the electrode active material utilization rate of about 91% was obtained with respect to the theoretical capacity (120 mAh / g) of the two-electron reaction of Li 3 V 2 (PO 4 ) 3 . The utilization rate of the electrode active material of the coin cell using the electrode active material powder F was about 29%. Furthermore, the charge / discharge reaction peak of the coin cell using the electrode active material powder F was unclear, and it was found that the electrode activity was extremely low.

本発明の全固体電池用電極活物質は、電極活物質利用率を高めることができる。従って、電池特性に優れた全固体電池に有用である。   The electrode active material for all solid state batteries of the present invention can increase the utilization rate of the electrode active material. Therefore, it is useful for an all solid state battery excellent in battery characteristics.

10:積層体
11:負極層
12:固体電解質層
13:正極層
10: Laminate 11: Negative electrode layer 12: Solid electrolyte layer 13: Positive electrode layer

Claims (1)

ナシコン構造を有するリチウム含有化合物を含む電極活物質を含み、かつ無機材料からなる電極層と、固体電解質層とを備えた全固体電池の製造方法であって、
レーザー回折散乱型粒度分布測定装置を用いて測定した粒度分布において、D50が1.1μm以上20μm以下であり、かつD90が40μm以下であるナシコン構造を有するリチウム含有化合物を形成し、このナシコン構造を有するリチウム含有化合物を炭素粉末と混合し、焼成することによって得られた電極活物質粉末を含む電極スラリーを成形して前記電極層のグリーンシートを作製し、
固体電解質スラリーを成形して前記固体電解質層のグリーンシートを作製し、
前記電極層のグリーンシートと固体電解質層のグリーンシートとを積層して積層体を形成し、
前記積層体を焼成することにより、前記電極層と前記固体電解質層とを一体的に焼結接合する、全固体電池の製造方法。
A method for producing an all-solid battery comprising an electrode active material comprising a lithium-containing compound having a NASICON structure and comprising an electrode layer made of an inorganic material and a solid electrolyte layer,
Forming a lithium-containing compound having a NASICON structure having a D 50 of 1.1 μm or more and 20 μm or less and a D 90 of 40 μm or less in a particle size distribution measured using a laser diffraction / scattering type particle size distribution analyzer; Mixing a lithium-containing compound having a structure with carbon powder and forming an electrode slurry containing an electrode active material powder obtained by firing to produce a green sheet of the electrode layer,
Forming a solid electrolyte slurry to produce a green sheet of the solid electrolyte layer,
A laminate is formed by laminating the green sheet of the electrode layer and the green sheet of the solid electrolyte layer,
A method for manufacturing an all-solid battery, in which the electrode body and the solid electrolyte layer are integrally sintered and bonded by firing the laminate.
JP2012542961A 2010-11-09 2011-11-09 Manufacturing method of all solid state battery Active JP6030960B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010251285 2010-11-09
JP2010251285 2010-11-09
PCT/JP2011/075852 WO2012063874A1 (en) 2010-11-09 2011-11-09 Electrode active substance for all-solid-state battery, and all-solid-state battery using same

Publications (2)

Publication Number Publication Date
JPWO2012063874A1 JPWO2012063874A1 (en) 2014-05-12
JP6030960B2 true JP6030960B2 (en) 2016-11-24

Family

ID=46051014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012542961A Active JP6030960B2 (en) 2010-11-09 2011-11-09 Manufacturing method of all solid state battery

Country Status (2)

Country Link
JP (1) JP6030960B2 (en)
WO (1) WO2012063874A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5534109B2 (en) * 2011-09-12 2014-06-25 株式会社村田製作所 All-solid battery and method for manufacturing the same
WO2014042083A1 (en) * 2012-09-11 2014-03-20 株式会社 村田製作所 All-solid-state battery, green laminate for all-solid-state battery, and method for producing all-solid-state battery
JP6164812B2 (en) 2012-09-19 2017-07-19 株式会社オハラ All solid lithium ion secondary battery
JP7154847B2 (en) * 2018-07-06 2022-10-18 Fdk株式会社 Method for manufacturing all-solid-state battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09251854A (en) * 1996-03-14 1997-09-22 Matsushita Electric Ind Co Ltd Manufacture of positive active material for non-aqueous electrolyte secondary battery
JP2006172995A (en) * 2004-12-17 2006-06-29 Nissan Motor Co Ltd Electrode ink and battery
JP2007258148A (en) * 2006-02-24 2007-10-04 Ngk Insulators Ltd All-solid battery
WO2010124384A1 (en) * 2009-04-27 2010-11-04 Bathium Canada Inc. Electrodes and electrode material for lithium electrochemical cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09251854A (en) * 1996-03-14 1997-09-22 Matsushita Electric Ind Co Ltd Manufacture of positive active material for non-aqueous electrolyte secondary battery
JP2006172995A (en) * 2004-12-17 2006-06-29 Nissan Motor Co Ltd Electrode ink and battery
JP2007258148A (en) * 2006-02-24 2007-10-04 Ngk Insulators Ltd All-solid battery
WO2010124384A1 (en) * 2009-04-27 2010-11-04 Bathium Canada Inc. Electrodes and electrode material for lithium electrochemical cells

Also Published As

Publication number Publication date
JPWO2012063874A1 (en) 2014-05-12
WO2012063874A1 (en) 2012-05-18

Similar Documents

Publication Publication Date Title
US9368828B2 (en) All-solid battery and manufacturing method therefor
JP5299860B2 (en) All solid battery
WO2012008422A1 (en) All-solid-state battery
JP5304168B2 (en) All solid battery
JP5905076B2 (en) Battery and battery pack
JP2010272344A (en) All-solid-state lithium ion secondary battery
JP6262129B2 (en) All-solid battery and method for manufacturing the same
JP5811191B2 (en) All-solid battery and method for manufacturing the same
JP5796686B2 (en) All-solid battery and method for manufacturing the same
WO2013100002A1 (en) All-solid-state battery, and manufacturing method therefor
WO2011111555A1 (en) All-solid secondary cell and method for producing same
JP6030960B2 (en) Manufacturing method of all solid state battery
JP5644951B2 (en) Non-sintered laminate for all solid state battery, all solid state battery and method for producing the same
WO2012060402A1 (en) All-solid-state battery and method for manufacturing same
JP7306493B2 (en) solid state battery
JP2015181120A (en) Method of producing solid electrolyte
CN115699212A (en) Solid electrolyte material, solid electrolyte, method for producing same, and all-solid-state battery
CN115699211A (en) Solid electrolyte material, solid electrolyte, method for producing solid electrolyte, and all-solid-state battery
JP6652705B2 (en) Solid electrolyte and all solid state battery
KR101627848B1 (en) Solid electrolyte for all solid state rechargeable lithium battery, method for preparing the same, and all solid state rechargeable lithium battery including the same
JP6003982B2 (en) All solid battery
JP7260659B2 (en) Solid electrolyte material, solid electrolyte, method for producing solid electrolyte, and all-solid battery
WO2023032772A1 (en) Lithium ion conductive solid electrolyte material, lithium ion conductive solid electrolyte, method for producing said lithium ion conductive solid electrolyte material, method for producing said lithium ion conductive solid electrolyte, and all-solid-state battery
JP7260660B2 (en) Solid electrolyte material, solid electrolyte, method for producing solid electrolyte, and all-solid battery
WO2013161982A1 (en) Solid-state battery, and method for producing same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161021

R150 Certificate of patent or registration of utility model

Ref document number: 6030960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150