WO2014042083A1 - All-solid-state battery, green laminate for all-solid-state battery, and method for producing all-solid-state battery - Google Patents

All-solid-state battery, green laminate for all-solid-state battery, and method for producing all-solid-state battery Download PDF

Info

Publication number
WO2014042083A1
WO2014042083A1 PCT/JP2013/074040 JP2013074040W WO2014042083A1 WO 2014042083 A1 WO2014042083 A1 WO 2014042083A1 JP 2013074040 W JP2013074040 W JP 2013074040W WO 2014042083 A1 WO2014042083 A1 WO 2014042083A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode layer
solid
current collector
solid electrolyte
Prior art date
Application number
PCT/JP2013/074040
Other languages
French (fr)
Japanese (ja)
Inventor
充 吉岡
倍太 尾内
剛司 林
武郎 石倉
彰佑 伊藤
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2014535524A priority Critical patent/JP5804208B2/en
Publication of WO2014042083A1 publication Critical patent/WO2014042083A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/664Ceramic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all-solid battery, an unfired laminate for an all-solid battery, and a method for producing an all-solid battery.
  • the battery having the above configuration has a risk of leakage of the electrolyte.
  • the organic solvent etc. which are used for electrolyte solution are combustible substances. For this reason, it is required to further increase the safety of the battery.
  • Patent Document 1 JP-A-8-138671 (hereinafter referred to as Patent Document 1), a metal foil is used as a current collector layer in order to obtain a current collecting effect. Is commonly used.
  • Patent Document 1 When a metal foil as disclosed in Patent Document 1 is used as a current collector layer of an all-solid battery, the metal foil is easily oxidized when the laminate is fired to produce an all-solid battery. However, there is a problem that the current collecting performance is remarkably lowered and the battery capacity is lowered. In addition, since the metal foil is easily oxidized when the laminate is fired, there is a problem that the laminated structure constituting the all-solid battery is easily destroyed.
  • an object of the present invention is to provide an all-solid battery, an unfired laminate for an all-solid battery, and a method for producing an all-solid battery that can improve the battery capacity by improving the current collecting performance. is there.
  • the present invention has the following features.
  • An all-solid battery includes an electrode layer of at least one of a positive electrode layer and a negative electrode layer, a solid electrolyte layer laminated on one side of the electrode layer, and a current collector laminated on the other side of the electrode layer.
  • the conductive body preferably has a fiber shape or a flat shape.
  • the conductive material preferably contains carbon.
  • At least one layer constituting the electrode layer and the current collector layer includes another conductive body having a shape different from that of the conductive body. It is preferable that another electroconductive body of a different shape is a particle shape.
  • At least one of the electrode layer and the current collector layer contains ceramics.
  • the above ceramic contains a lithium-containing phosphate compound.
  • the lithium-containing phosphate compound is a lithium-containing phosphate compound having at least one of a nasicon type structure and an olivine type structure.
  • the electrode layer and the current collector layer contain a solid electrolyte material constituting the solid electrolyte layer.
  • the solid electrolyte material is a lithium-containing phosphate compound having at least one of a NASICON structure and an olivine structure.
  • the above-mentioned solid electrolyte material may be a glass phase in which a crystalline phase of a lithium-containing phosphate compound having at least one of a nasicon type structure and an olivine type structure is deposited by firing.
  • the all solid state battery according to the present invention comprises a positive electrode layer as an electrode layer laminated on one side of a solid electrolyte layer, and a positive electrode as a current collector layer laminated on the positive electrode layer on the side opposite to the solid electrolyte layer side.
  • a current collector layer, a negative electrode layer as an electrode layer laminated on the other side of the solid electrolyte layer, and a negative electrode current collector layer as a current collector layer laminated on the negative electrode layer on the side opposite to the solid electrolyte layer side It is preferable to have a single cell structure.
  • the all solid state battery of the present invention may have a structure in which at least two unit cell structures are connected in series or in parallel.
  • the unfired laminate for an all-solid battery according to the present invention is laminated on an unfired electrode layer that is an unfired body of at least one of the positive electrode layer and the negative electrode layer, and one side of the unfired electrode layer.
  • An unsintered solid electrolyte layer that is an unsintered body of the solid electrolyte layer, and an unsintered current collector layer that is laminated on the other side of the unsintered electrode layer and is an unsintered body of the current collector layer.
  • At least one layer constituting the green electrode layer and the green current collector layer includes a plurality of conductive bodies. Each of the plurality of conductive bodies has a major axis and a minor axis. In most of the plurality of conductive bodies, the direction in which the major axis extends is oriented substantially perpendicular to the stacking direction.
  • the green electrode layer, the green solid electrolyte layer, and the green current collector layer may have the form of a green sheet or a printed layer.
  • the manufacturing method of the all-solid-state battery according to the present invention includes the following steps.
  • an unsintered electrode layer that is an unsintered body of at least one of a positive electrode layer and a negative electrode layer, an unsintered solid electrolyte layer that is an unsintered body of a solid electrolyte layer, and an unsintered body of a current collector layer
  • the at least one layer constituting the green electrode layer and the green current collector layer includes a plurality of conductive bodies.
  • Each of the plurality of conductive bodies has a major axis and a minor axis. In most of the plurality of conductive bodies, the direction in which the major axis extends is oriented substantially perpendicular to the stacking direction.
  • most of the plurality of conductive bodies are oriented so that the direction in which the major axis extends is substantially perpendicular to the stacking direction.
  • an all-solid battery stack 10 is configured by a single cell including a positive electrode layer 11, a solid electrolyte layer 13, a negative electrode layer 12, and a current collector layer 14. Is done.
  • the positive electrode layer 11 is disposed on one surface of the solid electrolyte layer 13, and the negative electrode layer 12 is disposed on the other surface opposite to the one surface of the solid electrolyte layer 13.
  • the positive electrode layer 11 and the negative electrode layer 12 are provided at positions facing each other with the solid electrolyte layer 13 interposed therebetween.
  • the current collector layer 14 is disposed on the surface of the positive electrode layer 11 that does not contact the solid electrolyte layer 13, and the current collector layer 14 is disposed on the surface of the negative electrode layer 12 that does not contact the solid electrolyte layer 13.
  • a plurality of unit cells each composed of a positive electrode layer 11, a solid electrolyte layer 13, and a negative electrode layer 12, for example, Two of them are connected in series via the current collector layer 14.
  • the current collector layer 14 disposed inside the all-solid battery stack 20 is provided between the positive electrode layer 11 and the negative electrode layer 12.
  • a current collector layer 14 is disposed on the outer surface of the all-solid battery stack 20 on the surface of the positive electrode layer 11 located on the outermost layer and not in contact with the solid electrolyte layer 13, and the negative electrode layer 12 located on the outermost layer.
  • the current collector layer 14 is disposed on the surface not contacting the solid electrolyte layer 13.
  • a positive electrode terminal is connected to the current collector layer 14 in contact with the outermost positive electrode layer 11, and a negative electrode terminal is connected to the current collector layer 14 in contact with the outermost negative electrode layer 12.
  • a plurality of unit cells each composed of a positive electrode layer 11, a solid electrolyte layer 13, and a negative electrode layer 12, for example, 2 are connected in parallel via the current collector layer 14.
  • the current collector layer 14 disposed inside the all-solid battery stack 30 is provided between the negative electrode layer 12 and the negative electrode layer 12 (or between the positive electrode layer 11 and the positive electrode layer 11). Outside the all-solid-state battery stack 30, the current collector layer 14 is disposed on the surface of the positive electrode layer 11 (or the surface of the negative electrode layer 12) located in the outermost layer and not in contact with the solid electrolyte layer 13. Yes.
  • a current collector layer 14 in contact with the outermost positive electrode layer 11 (or negative electrode layer 12) is connected to a positive electrode terminal (or negative electrode terminal), and the current collector layer 14 in contact with the internal negative electrode layer 12 (or positive electrode layer 11).
  • a negative terminal (or a positive terminal) is connected to.
  • each of the positive electrode layer 11 and the negative electrode layer 12 includes a solid electrolyte and an electrode active material
  • the solid electrolyte layer 13 includes a solid electrolyte
  • the all-solid battery stack 10, 20, 30 as an embodiment of the present invention configured as described above is stacked on at least one electrode layer of the positive electrode layer 11 or the negative electrode layer 12 and on one side of the electrode layer.
  • At least one of the electrode layer and the current collector layer 14 includes a plurality of conductive bodies.
  • Each of the plurality of conductive bodies has a major axis and a minor axis. In most of the plurality of conductive bodies, the direction in which the major axis extends is oriented substantially perpendicular to the stacking direction. In the present invention, the “major axis” is the longest side of the conductive body, and the “short axis” is the shortest side of the conductive body.
  • Most of the plurality of conductive bodies have a current distribution in a plane direction in the positive electrode layer 11, the negative electrode layer 12, or the current collector layer 14 because the direction in which the major axis extends is oriented substantially perpendicular to the stacking direction. Can be made uniform, and the current collecting effect can be enhanced.
  • the “most” in the present invention includes 50% or more of the plurality of conductive bodies, preferably 70% or more, more preferably 80% or more.
  • substantially vertical as used in the present invention includes 90 ° ⁇ 45 °, preferably includes 90 ° ⁇ 30 °, and more preferably includes 90 ° ⁇ 15 °.
  • the plurality of conductive bodies are prevented from shorting internally across the solid electrolyte layer 13 adjacent to the positive electrode layer 11 or the negative electrode layer 12. Accordingly, the electron conductivity in the surface direction can be increased inside the positive electrode layer 11, the negative electrode layer 12, or the current collector layer 14, and the battery capacity can be improved by improving the current collecting performance.
  • the conductive body may be any material having electronic conductivity such as carbon, metal, or oxide.
  • the conductive body has a fiber shape or a flat shape. Since the conductive material does not contribute to the charge / discharge capacity of the battery, or the contribution ratio is extremely small, the energy density per weight of the battery can be reduced by using a conductive material in a fiber shape or flat shape with a low bulk density. Can be high.
  • the conductive material preferably contains carbon.
  • carbon that does not substantially burn off at the temperature at which the unfired laminated body constituting the all-solid battery is fired to remove organic substances is used, carbon remains even after the laminated body is fired. It can suppress that an electric effect falls.
  • the carbon that does not substantially burn out may be carbon that does not burn out completely, and does not need to be carbon that does not burn at the temperature at which the laminate is fired to remove organic substances.
  • At least one layer constituting the positive electrode layer 11, the negative electrode layer 12, and the current collector layer 14 includes another conductive body having a shape different from that of the conductive body. It is preferable that another electroconductive body of a different shape is a particle shape. By doing in this way, since connection of said electroconductive bodies can be reinforced with another electroconductive body of particle shape, current collection performance can be improved.
  • the particle-shaped conductive body may be any material having electronic conductivity, such as carbon, metal, and oxide.
  • the ceramic contains a lithium-containing phosphate compound.
  • the lithium-containing phosphate compound is preferably a lithium-containing phosphate compound having at least one of a NASICON structure and an olivine structure.
  • the ceramics contained in the positive electrode layer 11, the negative electrode layer 12, and the current collector layer 14 and the lithium-containing phosphate compound contained in the solid electrolyte are preferably lithium-containing phosphate compounds containing a common component element. , They may not have the same composition.
  • the ceramic is not limited to a lithium-containing phosphate compound as long as it is a material that is sintered at a temperature at which the laminate is fired.
  • the positive electrode layer 11, the negative electrode layer 12, and the current collector layer 14 include a solid electrolyte material constituting the solid electrolyte layer 13.
  • the solid electrolyte material is preferably a lithium-containing phosphate compound having at least one of a NASICON structure and an olivine structure.
  • the solid electrolyte material may be a glass phase in which a crystal phase of a lithium-containing phosphate compound having at least one of a NASICON structure and an olivine structure is deposited by firing.
  • the solid electrolyte material contained in the positive electrode layer 11, the negative electrode layer 12, the current collector layer 14, and the solid electrolyte layer 13 is a lithium-containing phosphate compound containing a common component element, but may not have the same composition. .
  • the unsintered laminated body for an all-solid battery of the present invention includes an unsintered electrode layer that is an unsintered body of at least one of the positive electrode layer 11 and the negative electrode layer 12, and one side of the unsintered electrode layer.
  • At least one layer constituting the unfired electrode layer and the unfired current collector layer has a plurality of conductive bodies each having a major axis and a minor axis, and the ratio of the major axis to the minor axis is larger than 1. Including. In most of the plurality of conductive bodies, the direction in which the major axis extends is oriented substantially perpendicular to the stacking direction.
  • the green electrode layer, the green solid electrolyte layer, and the green current collector layer may have the form of a green sheet or a printed layer.
  • an unfired body that is an unfired body of at least one of the positive electrode layer 11 or the negative electrode layer 12 is used.
  • the green electrode layer, the green solid electrolyte layer, and the green current collector layer may have the form of a green sheet or a printed layer.
  • an unsintered solid electrolyte layer is laminated on one side of the unsintered electrode layer, and an unsintered current collector layer is laminated on the other side of the unsintered electrode layer to form a laminate (laminated body forming step). And the obtained laminated body is baked (baking process). The current collector layer 14 and the positive electrode layer 11 and / or the negative electrode layer 12 and the solid electrolyte layer 13 are joined by firing. Finally, the fired laminate is sealed, for example, in a coin cell.
  • the sealing method is not particularly limited. For example, you may seal the laminated body after baking with resin. Alternatively, an insulating paste having an insulating property such as Al 2 O 3 may be applied or dipped around the laminate, and the insulating paste may be heat-treated for sealing.
  • a conductive layer such as a metal layer may be formed on the current collector layer.
  • the method for forming the conductive layer include a sputtering method.
  • the metal paste may be applied or dipped and heat-treated.
  • the unfired bodies of the current collector layer 14, the positive electrode layer 11, the solid electrolyte layer 13, the negative electrode layer 12, and the current collector layer 14 are laminated to form a single cell structure. It is preferable to form a green laminate.
  • a plurality of laminated bodies having the single cell structure described above are laminated with the unfired body of the current collector layer 14 interposed therebetween. It may be formed. In this case, a plurality of laminates having a single battery structure may be laminated electrically in series or in parallel.
  • the method for forming the unfired electrode layer, the unfired solid electrolyte layer, and the unfired current collector layer is not particularly limited, but a doctor blade method, a die coater, a comma coater, or the like, or printing to form a green sheet Screen printing or the like can be used to form the layer.
  • the method for laminating the green electrode layer, the green solid electrolyte layer, and the green current collector layer is not particularly limited, but a hot isostatic press, a cold isostatic press, an isostatic press, or the like is used.
  • an unsintered electrode layer, an unsintered solid electrolyte layer, and an unsintered current collector layer can be laminated.
  • a slurry for forming a green sheet or printed layer is prepared by wet-mixing an organic vehicle in which an organic material is dissolved in a solvent and a positive electrode material, a negative electrode material, a solid electrolyte material, or a current collector material.
  • Media can be used in wet mixing, and specifically, a ball mill method, a viscomill method, or the like can be used.
  • a wet mixing method that does not use media may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
  • the organic material contained in the slurry is not particularly limited, and polyvinyl acetal resin, cellulose resin, acrylic resin, urethane resin, vinyl acetate resin, polyvinyl alcohol resin, and the like can be used.
  • the slurry may contain a plasticizer.
  • plasticizer is not particularly limited, phthalic acid esters such as dioctyl phthalate and diisononyl phthalate may be used.
  • most of the plurality of conductive bodies are oriented so that the direction in which the major axis extends is substantially perpendicular to the stacking direction, for example, the line of a comma coater It is possible by increasing the speed, i.e. by increasing the application speed of the slurry.
  • the atmosphere is not particularly limited, but it is preferably performed under conditions that do not change the valence of the transition metal contained in the electrode active material.
  • the type of the electrode active material contained in the positive electrode layer 11 or negative electrode layer 12 of the all-solid battery stack 10, 20, 30 of the present invention is not limited, as the positive electrode active material, Li 3 V 2 (PO 4 ) Lithium-containing phosphate compounds having a nasic structure such as 3; Lithium-containing phosphate compounds having an olivine structure such as LiFePO 4 and LiMnPO 4 , LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2, etc.
  • a lithium-containing compound having a spinel structure such as LiMn 2 O 4 or LiNi 0.5 Mn 1.5 O 4 can be used.
  • MOx is at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, and x is 0.9 ⁇ x ⁇ 2.5.
  • a compound having a composition represented by the following formula can be used. For example, it may be used a mixture prepared by mixing two or more active material having a composition represented by MOx containing different element M of such TiO 2 and SiO 2.
  • the lithium containing phosphoric acid containing the common component element contained in the positive electrode layer 11, the negative electrode layer 12, the electrical power collector layer 14, and the solid electrolyte layer 13 of the all-solid-state battery laminated body 10, 20, 30 of this invention is not limited, a lithium-containing phosphate compound having a NASICON structure or an olivine structure can be used.
  • Lithium-containing phosphoric acid compound having a NASICON-type structure the chemical formula Li x M y (PO 4) 3 ( Formula, x 1 ⁇ x ⁇ 2, y is a number in the range of 1 ⁇ y ⁇ 2, M Is one or more elements selected from the group consisting of Ti, Ge, Al, Ga and Zr).
  • part of P in the above chemical formula may be substituted with B, Si, or the like.
  • a mixture obtained by mixing two or more Nasicon-type lithium-containing phosphate compounds having different compositions such as Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 is used. It may be used.
  • lithium-containing phosphate compound having an olivine type structure formula Li x M y PO 4 (in the chemical formula, x 1 ⁇ x ⁇ 2, y is a number in the range of 1 ⁇ y ⁇ 2, M is It is one or more elements selected from the group consisting of Mg, Al and Zr).
  • a part of P may be substituted with B, Si or the like, and a part of O may be substituted with F.
  • lithium-containing phosphate compound having a NASICON type structure or an olivine type structure used in the above solid electrolyte
  • a glass in which a crystal phase of a lithium-containing phosphate compound having a NASICON structure or an olivine structure is precipitated by heat treatment may be used.
  • a material having ion conductivity and small enough to have negligible electronic conductivity is used as the material used for the solid electrolyte. Is possible. Examples of such a material include lithium halide, lithium nitride, lithium oxyacid salt, and derivatives thereof.
  • Li—PO compounds such as lithium phosphate (Li 3 PO 4 ), LIPON (LiPO 4 ⁇ x N x ) in which nitrogen is introduced into lithium phosphate, Li—Si— such as Li 4 SiO 4 O-based compounds, Li-P-Si-O based compounds, Li-V-Si-O based compounds, La 0.51 Li 0.35 TiO 2.94 , La 0.55 Li 0.35 TiO 3 , Li 3x La 2 / 3-x TiO 3, etc.
  • Li—PO compounds such as lithium phosphate (Li 3 PO 4 ), LIPON (LiPO 4 ⁇ x N x ) in which nitrogen is introduced into lithium phosphate
  • Li—Si— such as Li 4 SiO 4 O-based compounds, Li-P-Si-O based compounds, Li-V-Si-O based compounds, La 0.51 Li 0.35 TiO 2.94 , La 0.55 Li 0.35 TiO 3 , Li 3x La 2 / 3-x TiO 3, etc.
  • Examples thereof include compounds having
  • the material forming at least one of the positive electrode layer 11, the solid electrolyte layer 13, and the negative electrode layer 12 of the all-solid battery laminate 10, 20, 30 of the present invention is a lithium-containing phosphorus having a NASICON structure or an olivine structure. It is preferable to include a solid electrolyte made of an acid compound. In this case, high ion conductivity that is essential for battery operation of an all-solid battery can be obtained.
  • a glass or glass ceramic having a composition of a lithium-containing phosphate compound having a NASICON structure or an olivine structure is used as a solid electrolyte, a denser fired body can be easily formed due to the viscous flow of the glass phase in the firing process. Since it can be obtained, it is particularly preferable to prepare a starting material for the solid electrolyte in the form of glass or glass ceramics.
  • the material forming at least one of the positive electrode layer 11 and the negative electrode layer 12 of the all-solid battery stack 10, 20, 30 of the present invention includes an electrode active material made of a lithium-containing phosphate compound.
  • the phase change of the electrode active material in the firing step or the reaction of the electrode active material with the solid electrolyte can be easily suppressed by the high temperature stability of the phosphoric acid skeleton. The capacity can be increased.
  • an electrode active material composed of a lithium-containing phosphate compound and a solid electrolyte composed of a lithium-containing phosphate compound having a NASICON structure are used in combination, the reaction between the electrode active material and the solid electrolyte is suppressed in the firing step. It is particularly preferable to use a combination of the electrode active material and the solid electrolyte material as described above, since both of them can be obtained and good contact can be obtained.
  • the current collector layer 14 of the all-solid battery stack 10, 20, 30 of the present invention includes an electron conductive material.
  • An electron conductive material may be comprised from said electroconductive body, and may be comprised from said electroconductive body and another electroconductive body.
  • Example shown below is an example and this invention is not limited to the following Example.
  • NASICON-type lithium-containing vanadium phosphate compound Li 3 V 2 (PO 4 ) 3 ) containing 5% by weight of acetylene black as a positive electrode active material, anatase-type titanium oxide (TiO 2 ) as a negative electrode active material, solid
  • glass powder of Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 that precipitates a crystal phase of a lithium-containing phosphate compound having a NASICON type structure as an electrolyte and the carbon material shown in Table 1 as a conductive material
  • Table 1 also shows organic substances used as binders for preparing the slurry.
  • the major axis of fibrous carbon 1 (VGCF) shown in Table 1 is 150 nm
  • the minor axis is 8 nm
  • the major axis of carbon 2 (VGCF-H) is 150 nm
  • the minor axis is 6 nm
  • the major axis of carbon 3 (VGCF-X) Is 15 nm and the minor axis is 3 nm.
  • the ratio of the major axis to the minor axis is greater than 1.
  • the solid electrolyte was mixed in the binder solution to prepare a solid electrolyte slurry.
  • the mixing ratio of the solid electrolyte and polyvinyl alcohol was 80:20 by weight.
  • the positive electrode active material was mixed in the binder solution to prepare a positive electrode active material slurry.
  • the mixing ratio of the positive electrode active material and polyvinyl alcohol was 80:20 by weight.
  • the negative electrode active material was mixed in the binder solution to prepare a negative electrode active material slurry.
  • the mixing ratio of the negative electrode active material and polyvinyl alcohol was 80:20 by weight.
  • Each of carbon 1 to 4 was mixed in a binder solution to prepare a slurry of carbon 1 to 4.
  • the mixing ratio of each of carbon 1 to 4 and polyvinyl alcohol was 80:20 by weight.
  • the solid electrolyte slurry, the positive electrode active material slurry, the negative electrode active material slurry, and the carbon 1 to 4 slurry obtained above were mixed in the ratios shown in Tables 2 to 4 below. 1-5, negative electrode layer no. 1 to 5 and the current collector layer No. Slurries 1-7 were prepared.
  • the comma coater In the production of the solid electrolyte layer green sheet, the comma coater was formed to a thickness of 100 ⁇ m at a line speed of 100 cm / min. Positive electrode layer No. 1 to 5 and negative electrode layer no. In the production of 1 to 5 green sheets, the line speed of the comma coater was set to 100 cm / min and molded to a thickness of 50 ⁇ m. Current collector layer No. In the production of 1 to 6 green sheets, the line speed of the comma coater was set to 100 cm / min and molded to a thickness of 10 ⁇ m. Current collector layer No. In the production of the green sheet No. 7, the comma coater was formed to a thickness of 10 ⁇ m at a line speed of 50 cm / min.
  • Each green sheet punched into a disk shape having a diameter of 12 mm is laminated in the order of a current collector layer 14, a positive electrode layer 11, a solid electrolyte layer 13, a negative electrode layer 12, and a current collector layer 14 as shown in FIG.
  • Thermocompression bonding was performed at a temperature of 80 ° C. and a pressure of 1 ton to produce an unfired all-solid battery stack 10.
  • the green sheets of Examples 1 to 5 and Comparative Examples 1 and 2 were produced by combining the green sheets 1 to 7, respectively.
  • the obtained all solid state battery laminate 10 was dried at a temperature of 100 ° C. to remove moisture. Then, the all-solid-state battery laminated body 10 was sealed with a 2032 type coin cell, and the all-solid-state battery was produced.
  • the current collector layer, the positive electrode layer, and the negative electrode layer contain only granular carbon 4 as a conductive material, the current collector layer, the positive electrode layer, and the negative electrode layer It is considered that the current distribution in the surface direction in the inside cannot be made uniform, so that the discharge capacity at a high current density is lowered and a low discharge capacity maintenance rate is exhibited.
  • the current collector layer No. formed with a comma coater line speed as low as 50 cm / min was used. Since the green sheet of No. 7 was used, the current collector layer, the positive electrode layer, and the negative electrode layer were all solid even though the ratio of the major axis to the minor axis contained fibrous carbon 2 larger than 1.
  • SEM scanning electron microscope
  • the present invention is particularly useful for the production of an all-solid secondary battery.

Abstract

Provided are: an all-solid-state battery that can have increased battery capacity by means of increasing current collection performance; a green laminate for an all-solid-state battery, and a method for producing an all-solid-state battery. An all-solid-state battery laminate (10) is provided with: an electrode layer that is a cathode layer (11) and/or an anode layer (12); a solid electrolyte layer (13) laminated to one side of the electrode layer; and a collector layer (14) laminated to the other side of the electrode layer. At least one layer configuring the electrode layer and the collector layer (14) includes a plurality of conductive bodies. The plurality of conductive bodies each have a major diameter and a minor diameter. Most of the plurality of conductive bodies are oriented with the direction of extension of the major diameter approximately perpendicular to the direction of lamination.

Description

全固体電池、全固体電池用未焼成積層体、および全固体電池の製造方法All-solid battery, unfired laminate for all-solid battery, and method for producing all-solid battery
 本発明は、全固体電池、全固体電池用未焼成積層体、および全固体電池の製造方法に関する。 The present invention relates to an all-solid battery, an unfired laminate for an all-solid battery, and a method for producing an all-solid battery.
 近年、携帯電話、携帯用パーソナルコンピュータ等の携帯用電子機器の電源として電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させるための媒体として有機溶媒等の電解質(電解液)が従来から使用されている。 In recent years, the demand for batteries as a power source for portable electronic devices such as mobile phones and portable personal computers has greatly increased. In a battery used for such an application, an electrolyte (electrolytic solution) such as an organic solvent has been conventionally used as a medium for moving ions.
 しかし、上記の構成の電池では、電解液が漏出するという危険性がある。また、電解液に用いられる有機溶媒等は可燃性物質である。このため、電池の安全性をさらに高めることが求められている。 However, the battery having the above configuration has a risk of leakage of the electrolyte. Moreover, the organic solvent etc. which are used for electrolyte solution are combustible substances. For this reason, it is required to further increase the safety of the battery.
 そこで、電池の安全性を高めるための一つの対策として、電解液に代えて、固体電解質を用いることが提案されている。さらに、電解質として固体電解質を用いるとともに、その他の構成要素も固体で構成されている全固体電池の開発が進められている。また、全固体電池の電極において集電効果を高めることが検討されている。 Therefore, it has been proposed to use a solid electrolyte instead of the electrolytic solution as one countermeasure for improving the safety of the battery. Furthermore, development of an all-solid battery in which a solid electrolyte is used as an electrolyte and the other constituent elements are also made of solid is being promoted. Further, it has been studied to enhance the current collection effect in the electrodes of all solid state batteries.
 なお、非水電解液二次電池では、たとえば、特開平8‐138671号公報(以下、特許文献1という)に開示されているように、集電効果を得るために集電体層として金属箔が一般的に使用されている。 In the non-aqueous electrolyte secondary battery, for example, as disclosed in JP-A-8-138671 (hereinafter referred to as Patent Document 1), a metal foil is used as a current collector layer in order to obtain a current collecting effect. Is commonly used.
特開平8‐138671号公報JP-A-8-138671
 特許文献1に開示されているような金属箔を全固体電池の集電体層として用いた場合には、全固体電池を製造するために積層体を焼成した時に、金属箔が酸化しやすいために集電性能が著しく低下して電池容量が低下するという問題がある。また、積層体の焼成時に金属箔が酸化しやすいために、全固体電池を構成する積層構造が破壊されやすくなるという問題がある。 When a metal foil as disclosed in Patent Document 1 is used as a current collector layer of an all-solid battery, the metal foil is easily oxidized when the laminate is fired to produce an all-solid battery. However, there is a problem that the current collecting performance is remarkably lowered and the battery capacity is lowered. In addition, since the metal foil is easily oxidized when the laminate is fired, there is a problem that the laminated structure constituting the all-solid battery is easily destroyed.
 そこで、本発明の目的は、集電性能を高めることにより、電池容量を向上させることが可能な全固体電池、全固体電池用未焼成積層体、および全固体電池の製造方法を提供することである。 Accordingly, an object of the present invention is to provide an all-solid battery, an unfired laminate for an all-solid battery, and a method for producing an all-solid battery that can improve the battery capacity by improving the current collecting performance. is there.
 発明者らが上記の課題を解決するために種々検討を重ねた結果、電極層または集電体層内に、積層方向に対してほぼ垂直に配向した複数の導電性体を含ませることにより、電極層または集電体層内の面方向の電子伝導性を高めることができ、電池容量を向上させることができることを見出した。このような発明者らの知見に基づいて、本発明は以下の特徴を備えている。 As a result of various studies by the inventors to solve the above-mentioned problems, by including a plurality of conductive bodies oriented almost perpendicular to the stacking direction in the electrode layer or the current collector layer, It has been found that the electron conductivity in the surface direction in the electrode layer or the current collector layer can be increased, and the battery capacity can be improved. Based on such knowledge of the inventors, the present invention has the following features.
 本発明に従った全固体電池は、正極層または負極層の少なくともいずれか一方の電極層と、電極層の一方側に積層された固体電解質層と、電極層の他方側に積層された集電体層とを備える。電極層および集電体層を構成する少なくとも一つの層は複数の導電性体を含む。複数の導電性体は、各々が長径と短径を有する。複数の導電性体のほとんどは、長径の延びる方向が積層方向に対してほぼ垂直に配向している。 An all-solid battery according to the present invention includes an electrode layer of at least one of a positive electrode layer and a negative electrode layer, a solid electrolyte layer laminated on one side of the electrode layer, and a current collector laminated on the other side of the electrode layer. A body layer. At least one layer constituting the electrode layer and the current collector layer includes a plurality of conductive bodies. Each of the plurality of conductive bodies has a major axis and a minor axis. In most of the plurality of conductive bodies, the direction in which the major axis extends is oriented substantially perpendicular to the stacking direction.
 本発明の全固体電池において、導電性体が、繊維形状または扁平形状の形態を有することが好ましい。 In the all solid state battery of the present invention, the conductive body preferably has a fiber shape or a flat shape.
 また、導電性体が炭素を含むことが好ましい。 In addition, the conductive material preferably contains carbon.
 さらに、電極層および集電体層を構成する少なくとも一つの層が、上記の導電性体と異なる形状の別の導電性体を含むことが好ましい。異なる形状の別の導電性体は、粒子形状であることが好ましい。 Furthermore, it is preferable that at least one layer constituting the electrode layer and the current collector layer includes another conductive body having a shape different from that of the conductive body. It is preferable that another electroconductive body of a different shape is a particle shape.
 本発明の全固体電池において、電極層および集電体層の少なくとも一層が、セラミックスを含むことが好ましい。 In the all solid state battery of the present invention, it is preferable that at least one of the electrode layer and the current collector layer contains ceramics.
 また、上記のセラミックスがリチウム含有リン酸化合物を含むことが好ましい。 In addition, it is preferable that the above ceramic contains a lithium-containing phosphate compound.
 さらに、上記のリチウム含有リン酸化合物が、ナシコン型構造またはオリビン型構造の少なくともいずれか一種の構造を有するリチウム含有リン酸化合物であることが好ましい。 Furthermore, it is preferable that the lithium-containing phosphate compound is a lithium-containing phosphate compound having at least one of a nasicon type structure and an olivine type structure.
 本発明の全固体電池において、電極層および集電体層が、固体電解質層を構成する固体電解質材料を含むことが好ましい。 In the all solid state battery of the present invention, it is preferable that the electrode layer and the current collector layer contain a solid electrolyte material constituting the solid electrolyte layer.
 また、上記の固体電解質材料が、ナシコン型構造またはオリビン型構造の少なくともいずれか一種の構造を有するリチウム含有リン酸化合物であることが好ましい。 Further, it is preferable that the solid electrolyte material is a lithium-containing phosphate compound having at least one of a NASICON structure and an olivine structure.
 上記の固体電解質材料が、焼成により、ナシコン型構造またはオリビン型構造の少なくともいずれか一種の構造を有するリチウム含有リン酸化合物の結晶相を析出するガラス相であってもよい。 The above-mentioned solid electrolyte material may be a glass phase in which a crystalline phase of a lithium-containing phosphate compound having at least one of a nasicon type structure and an olivine type structure is deposited by firing.
 本発明に従った全固体電池は、固体電解質層の一方側に積層された電極層としての正極層と、固体電解質層の側と反対側で正極層に積層された集電体層としての正極集電体層と、固体電解質層の他方側に積層された電極層としての負極層と、固体電解質層の側と反対側で負極層に積層された集電体層としての負極集電体層とを備えることにより、単電池構造を有することが好ましい。なお、本発明の全固体電池は、少なくとも2つの単電池構造を直列または並列に接続した構造を有していてもよい。 The all solid state battery according to the present invention comprises a positive electrode layer as an electrode layer laminated on one side of a solid electrolyte layer, and a positive electrode as a current collector layer laminated on the positive electrode layer on the side opposite to the solid electrolyte layer side. A current collector layer, a negative electrode layer as an electrode layer laminated on the other side of the solid electrolyte layer, and a negative electrode current collector layer as a current collector layer laminated on the negative electrode layer on the side opposite to the solid electrolyte layer side It is preferable to have a single cell structure. The all solid state battery of the present invention may have a structure in which at least two unit cell structures are connected in series or in parallel.
 本発明に従った全固体電池用未焼成積層体は、正極層または負極層の少なくともいずれか一方の電極層の未焼成体である未焼成電極層と、未焼成電極層の一方側に積層され、固体電解質層の未焼成体である未焼成固体電解質層と、未焼成電極層の他方側に積層され、集電体層の未焼成体である未焼成集電体層とを備える。未焼成電極層および未焼成集電体層を構成する少なくとも一つの層は複数の導電性体を含む。複数の導電性体は、各々が長径と短径を有する。複数の導電性体のほとんどは、長径の延びる方向が積層方向に対してほぼ垂直に配向している。 The unfired laminate for an all-solid battery according to the present invention is laminated on an unfired electrode layer that is an unfired body of at least one of the positive electrode layer and the negative electrode layer, and one side of the unfired electrode layer. An unsintered solid electrolyte layer that is an unsintered body of the solid electrolyte layer, and an unsintered current collector layer that is laminated on the other side of the unsintered electrode layer and is an unsintered body of the current collector layer. At least one layer constituting the green electrode layer and the green current collector layer includes a plurality of conductive bodies. Each of the plurality of conductive bodies has a major axis and a minor axis. In most of the plurality of conductive bodies, the direction in which the major axis extends is oriented substantially perpendicular to the stacking direction.
 本発明の全固体電池用未焼成積層体において、未焼成電極層と未焼成固体電解質層と未焼成集電体層は、グリーンシートまたは印刷層の形態を有していてもよい。 In the green laminate for an all-solid battery of the present invention, the green electrode layer, the green solid electrolyte layer, and the green current collector layer may have the form of a green sheet or a printed layer.
 本発明に従った全固体電池の製造方法は、以下の工程を備える。 The manufacturing method of the all-solid-state battery according to the present invention includes the following steps.
 (A)正極層または負極層の少なくともいずれか一方の未焼成体である未焼成電極層と、固体電解質層の未焼成体である未焼成固体電解質層と、集電体層の未焼成体である未焼成集電体層とを作製する未焼成層作製工程 (A) an unsintered electrode layer that is an unsintered body of at least one of a positive electrode layer and a negative electrode layer, an unsintered solid electrolyte layer that is an unsintered body of a solid electrolyte layer, and an unsintered body of a current collector layer An unsintered layer production process for producing an unsintered current collector layer
 (B)未焼成電極層の一方側に未焼成固体電解質層を積層し、未焼成電極層の他方側に未焼成集電体層を積層して積層体を形成する積層体形成工程 (B) Laminate forming step of forming a laminate by laminating an unsintered solid electrolyte layer on one side of the unsintered electrode layer and laminating an unsintered current collector layer on the other side of the unsintered electrode layer
 (C)積層体を焼成する焼成工程 (C) Firing step of firing the laminate
 未焼成電極層および未焼成集電体層を構成する少なくとも一つの層は複数の導電性体を含む。複数の導電性体は、各々が長径と短径を有する。複数の導電性体のほとんどは、長径の延びる方向が積層方向に対してほぼ垂直に配向している。 The at least one layer constituting the green electrode layer and the green current collector layer includes a plurality of conductive bodies. Each of the plurality of conductive bodies has a major axis and a minor axis. In most of the plurality of conductive bodies, the direction in which the major axis extends is oriented substantially perpendicular to the stacking direction.
 本発明によれば、電極層および集電体層の少なくとも一つの層では、複数の導電性体のほとんどは、長径の延びる方向が積層方向に対してほぼ垂直に配向しているので、集電性能を高めることにより、電池容量を向上させることが可能になる。 According to the present invention, in at least one of the electrode layer and the current collector layer, most of the plurality of conductive bodies are oriented so that the direction in which the major axis extends is substantially perpendicular to the stacking direction. By increasing the performance, the battery capacity can be improved.
本発明の一つの実施形態としての全固体電池の断面構造を模式的に示す断面図である。It is sectional drawing which shows typically the cross-section of the all-solid-state battery as one embodiment of this invention. 本発明のもう一つの実施形態としての全固体電池の断面構造を模式的に示す断面図である。It is sectional drawing which shows typically the cross-section of the all-solid-state battery as another embodiment of this invention. 本発明の別の実施形態としての全固体電池の断面構造を模式的に示す断面図である。It is sectional drawing which shows typically the cross-section of the all-solid-state battery as another embodiment of this invention.
 図1に示すように、本発明の一つの実施の形態としての全固体電池積層体10は、正極層11と固体電解質層13と負極層12と集電体層14とからなる単電池で構成される。固体電解質層13の一方面に正極層11が配置され、固体電解質層13の一方面と反対側の他方面に負極層12が配置されている。いいかえれば、正極層11と負極層12とは、固体電解質層13を介して互いに対向する位置に設けられている。固体電解質層13に接しない正極層11の面に集電体層14が配置され、固体電解質層13に接しない負極層12の面に集電体層14が配置されている。 As shown in FIG. 1, an all-solid battery stack 10 according to one embodiment of the present invention is configured by a single cell including a positive electrode layer 11, a solid electrolyte layer 13, a negative electrode layer 12, and a current collector layer 14. Is done. The positive electrode layer 11 is disposed on one surface of the solid electrolyte layer 13, and the negative electrode layer 12 is disposed on the other surface opposite to the one surface of the solid electrolyte layer 13. In other words, the positive electrode layer 11 and the negative electrode layer 12 are provided at positions facing each other with the solid electrolyte layer 13 interposed therebetween. The current collector layer 14 is disposed on the surface of the positive electrode layer 11 that does not contact the solid electrolyte layer 13, and the current collector layer 14 is disposed on the surface of the negative electrode layer 12 that does not contact the solid electrolyte layer 13.
 図2に示すように、本発明のもう一つの実施の形態としての全固体電池積層体20では、正極層11と固体電解質層13と負極層12とから構成される単電池が複数個、たとえば2個、集電体層14を介して直列に接続されている。全固体電池積層体20の内部に配置される集電体層14は、正極層11と負極層12との間に設けられている。全固体電池積層体20の外側には、最外層に位置する正極層11の面のうち、固体電解質層13に接しない面に集電体層14が配置され、最外層に位置する負極層12の面のうち、固体電解質層13に接しない面に集電体層14が配置されている。最外層の正極層11に接する集電体層14には正極端子が接続され、最外層の負極層12に接する集電体層14には負極端子が接続される。 As shown in FIG. 2, in the all-solid battery stack 20 as another embodiment of the present invention, a plurality of unit cells each composed of a positive electrode layer 11, a solid electrolyte layer 13, and a negative electrode layer 12, for example, Two of them are connected in series via the current collector layer 14. The current collector layer 14 disposed inside the all-solid battery stack 20 is provided between the positive electrode layer 11 and the negative electrode layer 12. A current collector layer 14 is disposed on the outer surface of the all-solid battery stack 20 on the surface of the positive electrode layer 11 located on the outermost layer and not in contact with the solid electrolyte layer 13, and the negative electrode layer 12 located on the outermost layer. The current collector layer 14 is disposed on the surface not contacting the solid electrolyte layer 13. A positive electrode terminal is connected to the current collector layer 14 in contact with the outermost positive electrode layer 11, and a negative electrode terminal is connected to the current collector layer 14 in contact with the outermost negative electrode layer 12.
 図3に示すように、本発明の別の実施の形態としての全固体電池積層体30では、正極層11と固体電解質層13と負極層12とから構成される単電池が複数個、たとえば2個、集電体層14を介して並列に接続されている。全固体電池積層体30の内部に配置される集電体層14は、負極層12と負極層12との間に(または正極層11と正極層11との間に)設けられている。全固体電池積層体30の外側には、最外層に位置する正極層11の面(または負極層12の面)のうち、固体電解質層13に接しない面に集電体層14が配置されている。最外層の正極層11(または負極層12)に接する集電体層14には正極端子(または負極端子)が接続され、内部の負極層12(または正極層11)に接する集電体層14には負極端子(または正極端子)が接続される。 As shown in FIG. 3, in the all solid state battery stack 30 as another embodiment of the present invention, a plurality of unit cells each composed of a positive electrode layer 11, a solid electrolyte layer 13, and a negative electrode layer 12, for example, 2 Are connected in parallel via the current collector layer 14. The current collector layer 14 disposed inside the all-solid battery stack 30 is provided between the negative electrode layer 12 and the negative electrode layer 12 (or between the positive electrode layer 11 and the positive electrode layer 11). Outside the all-solid-state battery stack 30, the current collector layer 14 is disposed on the surface of the positive electrode layer 11 (or the surface of the negative electrode layer 12) located in the outermost layer and not in contact with the solid electrolyte layer 13. Yes. A current collector layer 14 in contact with the outermost positive electrode layer 11 (or negative electrode layer 12) is connected to a positive electrode terminal (or negative electrode terminal), and the current collector layer 14 in contact with the internal negative electrode layer 12 (or positive electrode layer 11). A negative terminal (or a positive terminal) is connected to.
 なお、正極層11と負極層12のそれぞれは固体電解質と電極活物質とを含み、固体電解質層13は固体電解質を含む。 Note that each of the positive electrode layer 11 and the negative electrode layer 12 includes a solid electrolyte and an electrode active material, and the solid electrolyte layer 13 includes a solid electrolyte.
 以上のように構成された本発明の実施形態としての全固体電池積層体10、20、30は、正極層11または負極層12の少なくともいずれか一方の電極層と、電極層の一方側に積層された固体電解質層13と、電極層の他方側に積層された集電体層14とを備える。電極層および集電体層14を構成する少なくとも一つの層は複数の導電性体を含む。複数の導電性体は、各々が長径と短径を有する。複数の導電性体のほとんどは、長径の延びる方向が積層方向に対してほぼ垂直に配向している。なお、本発明でいう「長径」は導電性体の一番長い辺であり、「短径」は導電性体の一番短い辺である。 The all- solid battery stack 10, 20, 30 as an embodiment of the present invention configured as described above is stacked on at least one electrode layer of the positive electrode layer 11 or the negative electrode layer 12 and on one side of the electrode layer. A solid electrolyte layer 13 and a current collector layer 14 laminated on the other side of the electrode layer. At least one of the electrode layer and the current collector layer 14 includes a plurality of conductive bodies. Each of the plurality of conductive bodies has a major axis and a minor axis. In most of the plurality of conductive bodies, the direction in which the major axis extends is oriented substantially perpendicular to the stacking direction. In the present invention, the “major axis” is the longest side of the conductive body, and the “short axis” is the shortest side of the conductive body.
 複数の導電性体のほとんどは、長径の延びる方向が積層方向に対してほぼ垂直に配向していることにより、正極層11、負極層12、または、集電体層14において面方向の電流分布を均一化させることができ、集電効果を高めることができる。なお、本発明でいう「ほとんど」とは、複数の導電性体の50%以上を含み、好ましくは70%以上を含み、より好ましくは80%以上を含む。さらに、本発明でいう「ほぼ垂直」とは、90°±45°を含むものであり、好ましくは90°±30°を含み、より好ましくは90°±15°を含む。また、複数の導電性体が、正極層11または負極層12に隣接する固体電解質層13を横断して内部短絡することを防止する。これらにより、正極層11、負極層12、または、集電体層14の内部において面方向の電子伝導性を高めることができ、集電性能を高めることにより、電池容量を向上させることができる。なお、導電性体は、炭素、金属、酸化物等、電子伝導性を有する材料であればよい。 Most of the plurality of conductive bodies have a current distribution in a plane direction in the positive electrode layer 11, the negative electrode layer 12, or the current collector layer 14 because the direction in which the major axis extends is oriented substantially perpendicular to the stacking direction. Can be made uniform, and the current collecting effect can be enhanced. The “most” in the present invention includes 50% or more of the plurality of conductive bodies, preferably 70% or more, more preferably 80% or more. Furthermore, “substantially vertical” as used in the present invention includes 90 ° ± 45 °, preferably includes 90 ° ± 30 °, and more preferably includes 90 ° ± 15 °. In addition, the plurality of conductive bodies are prevented from shorting internally across the solid electrolyte layer 13 adjacent to the positive electrode layer 11 or the negative electrode layer 12. Accordingly, the electron conductivity in the surface direction can be increased inside the positive electrode layer 11, the negative electrode layer 12, or the current collector layer 14, and the battery capacity can be improved by improving the current collecting performance. Note that the conductive body may be any material having electronic conductivity such as carbon, metal, or oxide.
 本発明の全固体電池積層体10、20、30において、導電性体が、繊維形状または扁平形状の形態を有することが好ましい。導電性体は電池の充放電容量に寄与しない、または寄与する比率が極めて小さいので、嵩密度が低い繊維形状または扁平形状の形態の導電性体を用いることにより、電池の重量当たりのエネルギー密度を高くすることができる。 In the all- solid battery stack 10, 10, and 30 of the present invention, it is preferable that the conductive body has a fiber shape or a flat shape. Since the conductive material does not contribute to the charge / discharge capacity of the battery, or the contribution ratio is extremely small, the energy density per weight of the battery can be reduced by using a conductive material in a fiber shape or flat shape with a low bulk density. Can be high.
 また、導電性体が炭素を含むことが好ましい。この場合、全固体電池を構成する未焼成積層体を焼成して有機物を除去する温度で実質的に焼失しない炭素を用いると、積層体の焼成後においても炭素が残存するため、焼成後において集電効果が低下することを抑制することができる。ここで、実質的に焼失しない炭素とは、完全には焼失しない炭素であればよく、積層体を焼成して有機物を除去する温度において、全く燃焼しない炭素である必要はない。 In addition, the conductive material preferably contains carbon. In this case, if carbon that does not substantially burn off at the temperature at which the unfired laminated body constituting the all-solid battery is fired to remove organic substances is used, carbon remains even after the laminated body is fired. It can suppress that an electric effect falls. Here, the carbon that does not substantially burn out may be carbon that does not burn out completely, and does not need to be carbon that does not burn at the temperature at which the laminate is fired to remove organic substances.
 さらに、正極層11、負極層12、および、集電体層14を構成する少なくとも一つの層が、上記の導電性体と異なる形状の別の導電性体を含むことが好ましい。異なる形状の別の導電性体は粒子形状であることが好ましい。このようにすることにより、上記の導電性体同士の繋がりを粒子形状の別の導電性体で補強することができるので、集電性能を向上させることができる。なお、粒子形状の導電性体は、炭素、金属、酸化物等、電子伝導性を有する材料であればよい。 Furthermore, it is preferable that at least one layer constituting the positive electrode layer 11, the negative electrode layer 12, and the current collector layer 14 includes another conductive body having a shape different from that of the conductive body. It is preferable that another electroconductive body of a different shape is a particle shape. By doing in this way, since connection of said electroconductive bodies can be reinforced with another electroconductive body of particle shape, current collection performance can be improved. Note that the particle-shaped conductive body may be any material having electronic conductivity, such as carbon, metal, and oxide.
 本発明の全固体電池積層体10、20、30において、正極層11、負極層12、および、集電体層14の少なくとも一層が、セラミックスを含むことが好ましい。このようにすることにより、全固体電池を構成する積層体を緻密に一体焼成によって作製することが可能になる。この場合、上記の積層体をより緻密に一体焼成によって作製するためには、上記のセラミックスがリチウム含有リン酸化合物を含むことが好ましい。さらに、上記のリチウム含有リン酸化合物が、ナシコン型構造またはオリビン型構造の少なくともいずれか一種の構造を有するリチウム含有リン酸化合物であることが好ましい。正極層11、負極層12、および、集電体層14に含まれるセラミックスと固体電解質に含まれるリチウム含有リン酸化合物とは、共通する成分元素を含むリチウム含有リン酸化合物であることが好ましいが、同じ組成でなくてもよい。また、上記のセラミックスは、積層体を焼成する温度で焼結する材料であればよく、リチウム含有リン酸化合物に限定されない。 In the all-solid-state battery stacks 10, 20, and 30 of the present invention, it is preferable that at least one of the positive electrode layer 11, the negative electrode layer 12, and the current collector layer 14 includes ceramics. By doing in this way, it becomes possible to produce the laminated body which comprises an all-solid-state battery densely by integral baking. In this case, in order to produce the above laminated body more precisely by integral firing, it is preferable that the ceramic contains a lithium-containing phosphate compound. Further, the lithium-containing phosphate compound is preferably a lithium-containing phosphate compound having at least one of a NASICON structure and an olivine structure. The ceramics contained in the positive electrode layer 11, the negative electrode layer 12, and the current collector layer 14 and the lithium-containing phosphate compound contained in the solid electrolyte are preferably lithium-containing phosphate compounds containing a common component element. , They may not have the same composition. In addition, the ceramic is not limited to a lithium-containing phosphate compound as long as it is a material that is sintered at a temperature at which the laminate is fired.
 本発明の全固体電池積層体10、20、30において、正極層11、負極層12、および、集電体層14が、固体電解質層13を構成する固体電解質材料を含むことが好ましい。このようにすることにより、全固体電池を構成する積層体を緻密に一体焼成によって作製することが可能になる。この場合、上記の固体電解質材料が、ナシコン型構造またはオリビン型構造の少なくともいずれか一種の構造を有するリチウム含有リン酸化合物であることが好ましい。上記の固体電解質材料が、焼成により、ナシコン型構造またはオリビン型構造の少なくともいずれか一種の構造を有するリチウム含有リン酸化合物の結晶相を析出するガラス相であってもよい。正極層11、負極層12、集電体層14、および、固体電解質層13に含まれる固体電解質材料は、共通する成分元素を含むリチウム含有リン酸化合物であるが、同じ組成でなくてもよい。 In the all- solid battery stack 10, 20, 30 of the present invention, it is preferable that the positive electrode layer 11, the negative electrode layer 12, and the current collector layer 14 include a solid electrolyte material constituting the solid electrolyte layer 13. By doing in this way, it becomes possible to produce the laminated body which comprises an all-solid-state battery densely by integral baking. In this case, the solid electrolyte material is preferably a lithium-containing phosphate compound having at least one of a NASICON structure and an olivine structure. The solid electrolyte material may be a glass phase in which a crystal phase of a lithium-containing phosphate compound having at least one of a NASICON structure and an olivine structure is deposited by firing. The solid electrolyte material contained in the positive electrode layer 11, the negative electrode layer 12, the current collector layer 14, and the solid electrolyte layer 13 is a lithium-containing phosphate compound containing a common component element, but may not have the same composition. .
 なお、本発明の全固体電池用未焼成積層体は、正極層11または負極層12の少なくともいずれか一方の電極層の未焼成体である未焼成電極層と、未焼成電極層の一方側に積層され、固体電解質層13の未焼成体である未焼成固体電解質層と、未焼成電極層の他方側に積層され、集電体層14の未焼成体である未焼成集電体層とを備える。未焼成電極層および未焼成集電体層を構成する少なくとも一つの層は、各々が長径と短径を有し、短径に対する長径の比率が1よりも大きな形態からなる複数の導電性体を含む。複数の導電性体のほとんどは、長径の延びる方向が積層方向に対してほぼ垂直に配向している。 The unsintered laminated body for an all-solid battery of the present invention includes an unsintered electrode layer that is an unsintered body of at least one of the positive electrode layer 11 and the negative electrode layer 12, and one side of the unsintered electrode layer. An unsintered solid electrolyte layer that is laminated and an unsintered body of the solid electrolyte layer 13, and an unsintered current collector layer that is stacked on the other side of the unsintered electrode layer and is an unsintered body of the current collector layer 14. Prepare. At least one layer constituting the unfired electrode layer and the unfired current collector layer has a plurality of conductive bodies each having a major axis and a minor axis, and the ratio of the major axis to the minor axis is larger than 1. Including. In most of the plurality of conductive bodies, the direction in which the major axis extends is oriented substantially perpendicular to the stacking direction.
 本発明の全固体電池用未焼成積層体において、未焼成電極層と未焼成固体電解質層と未焼成集電体層は、グリーンシートまたは印刷層の形態を有していてもよい。 In the green laminate for an all-solid battery of the present invention, the green electrode layer, the green solid electrolyte layer, and the green current collector layer may have the form of a green sheet or a printed layer.
 さらに、上記のように構成された全固体電池積層体10、20、30を製造するために、本発明では、まず、正極層11または負極層12の少なくともいずれか一方の未焼成体である未焼成電極層と、固体電解質層13の未焼成体である未焼成固体電解質層と、集電体層14の未焼成体である未焼成集電体層とを作製する(未焼成層作製工程)。未焼成電極層と未焼成固体電解質層と未焼成集電体層は、グリーンシートまたは印刷層の形態を有していてもよい。その後、未焼成電極層の一方側に未焼成固体電解質層を積層し、未焼成電極層の他方側に未焼成集電体層を積層して積層体を形成する(積層体形成工程)。そして、得られた積層体を焼成する(焼成工程)。焼成により、集電体層14と正極層11および/または負極層12と固体電解質層13とが接合される。最後に、焼成した積層体を、たとえばコインセル内に封止する。封止方法は特に限定されない。たとえば、焼成後の積層体を樹脂で封止してもよい。また、Al23等の絶縁性を有する絶縁体ペーストを積層体の周囲に塗布またはディップして、この絶縁ペーストを熱処理することにより封止してもよい。 Furthermore, in order to manufacture the all- solid battery stack 10, 20, 30 configured as described above, in the present invention, first, an unfired body that is an unfired body of at least one of the positive electrode layer 11 or the negative electrode layer 12 is used. A sintered electrode layer, an unsintered solid electrolyte layer that is an unsintered body of the solid electrolyte layer 13, and an unsintered current collector layer that is an unsintered body of the current collector layer 14 are manufactured (unsintered layer manufacturing step). . The green electrode layer, the green solid electrolyte layer, and the green current collector layer may have the form of a green sheet or a printed layer. Thereafter, an unsintered solid electrolyte layer is laminated on one side of the unsintered electrode layer, and an unsintered current collector layer is laminated on the other side of the unsintered electrode layer to form a laminate (laminated body forming step). And the obtained laminated body is baked (baking process). The current collector layer 14 and the positive electrode layer 11 and / or the negative electrode layer 12 and the solid electrolyte layer 13 are joined by firing. Finally, the fired laminate is sealed, for example, in a coin cell. The sealing method is not particularly limited. For example, you may seal the laminated body after baking with resin. Alternatively, an insulating paste having an insulating property such as Al 2 O 3 may be applied or dipped around the laminate, and the insulating paste may be heat-treated for sealing.
 なお、正極層11と負極層12から効率的に電流を引き出すため、集電体層14の上に金属層等の導電層を形成してもよい。導電層の形成方法は、たとえば、スパッタリング法が挙げられる。また、金属ペーストを塗布またはディップして、この金属ペーストを熱処理してもよい。 In order to efficiently draw current from the positive electrode layer 11 and the negative electrode layer 12, a conductive layer such as a metal layer may be formed on the current collector layer. Examples of the method for forming the conductive layer include a sputtering method. Alternatively, the metal paste may be applied or dipped and heat-treated.
 また、積層体形成工程では、図1に示すように、集電体層14、正極層11、固体電解質層13、負極層12、集電体層14の未焼成体を積層して単電池構造の未焼成積層体を形成することが好ましい。さらに、積層体形成工程において、図2、図3に示すように、集電体層14の未焼成体を介在させて、上記の単電池構造の積層体を複数個、積層して積層体を形成してもよい。この場合、単電池構造の積層体を複数個、電気的に直列、または並列に積層してもよい。 Further, in the laminated body forming step, as shown in FIG. 1, the unfired bodies of the current collector layer 14, the positive electrode layer 11, the solid electrolyte layer 13, the negative electrode layer 12, and the current collector layer 14 are laminated to form a single cell structure. It is preferable to form a green laminate. Furthermore, in the laminated body forming step, as shown in FIGS. 2 and 3, a plurality of laminated bodies having the single cell structure described above are laminated with the unfired body of the current collector layer 14 interposed therebetween. It may be formed. In this case, a plurality of laminates having a single battery structure may be laminated electrically in series or in parallel.
 上記の未焼成電極層と未焼成固体電解質層と未焼成集電体層を形成する方法は特に限定されないが、グリーンシートを形成するためにドクターブレード法、ダイコーター、コンマコーター等、または、印刷層を形成するためにスクリーン印刷等を使用することができる。上記の未焼成電極層と未焼成固体電解質層と未焼成集電体層を積層する方法は特に限定されないが、熱間等方圧プレス、冷間等方圧プレス、静水圧プレス等を使用して未焼成電極層と未焼成固体電解質層と未焼成集電体層を積層することができる。 The method for forming the unfired electrode layer, the unfired solid electrolyte layer, and the unfired current collector layer is not particularly limited, but a doctor blade method, a die coater, a comma coater, or the like, or printing to form a green sheet Screen printing or the like can be used to form the layer. The method for laminating the green electrode layer, the green solid electrolyte layer, and the green current collector layer is not particularly limited, but a hot isostatic press, a cold isostatic press, an isostatic press, or the like is used. Thus, an unsintered electrode layer, an unsintered solid electrolyte layer, and an unsintered current collector layer can be laminated.
 グリーンシートまたは印刷層を形成するためのスラリーは、有機材料を溶剤に溶解した有機ビヒクルと、正極材料、負極材料、固体電解質材料、または、集電体材料とを湿式混合することによって作製することができる。湿式混合ではメディアを用いることができ、具体的には、ボールミル法、ビスコミル法等を用いることができる。一方、メディアを用いない湿式混合方法を用いてもよく、サンドミル法、高圧ホモジナイザー法、ニーダー分散法等を用いることができる。スラリーに含まれる有機材料は特に限定されないが、ポリビニルアセタール樹脂、セルロース樹脂、アクリル樹脂、ウレタン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂などを用いることができる。 A slurry for forming a green sheet or printed layer is prepared by wet-mixing an organic vehicle in which an organic material is dissolved in a solvent and a positive electrode material, a negative electrode material, a solid electrolyte material, or a current collector material. Can do. Media can be used in wet mixing, and specifically, a ball mill method, a viscomill method, or the like can be used. On the other hand, a wet mixing method that does not use media may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used. The organic material contained in the slurry is not particularly limited, and polyvinyl acetal resin, cellulose resin, acrylic resin, urethane resin, vinyl acetate resin, polyvinyl alcohol resin, and the like can be used.
 スラリーは可塑剤を含んでもよい。可塑剤の種類は特に限定されないが、フタル酸ジオクチル、フタル酸ジイソノニル等のフタル酸エステル等を使用してもよい。 The slurry may contain a plasticizer. Although the kind of plasticizer is not particularly limited, phthalic acid esters such as dioctyl phthalate and diisononyl phthalate may be used.
 なお、未焼成電極層と未焼成集電体層の内部において、複数の導電性体のほとんどを、長径の延びる方向が積層方向に対してほぼ垂直に配向させることは、たとえば、コンマコーターのライン速度を高めることによって、すなわち、スラリーの塗布速度を高めることによって、可能である。 Note that in the inside of the unfired electrode layer and unfired current collector layer, most of the plurality of conductive bodies are oriented so that the direction in which the major axis extends is substantially perpendicular to the stacking direction, for example, the line of a comma coater It is possible by increasing the speed, i.e. by increasing the application speed of the slurry.
 焼成工程では、雰囲気は特に限定されないが、電極活物質に含まれる遷移金属の価数が変化しない条件で行うことが好ましい。 In the firing step, the atmosphere is not particularly limited, but it is preferably performed under conditions that do not change the valence of the transition metal contained in the electrode active material.
 なお、本発明の全固体電池積層体10、20、30の正極層11または負極層12に含まれる電極活物質の種類は限定されないが、正極活物質としては、Li32(PO43等のナシコン型構造を有するリチウム含有リン酸化合物、LiFePO4、LiMnPO4等のオリビン型構造を有するリチウム含有リン酸化合物、LiCoO2、LiCo1/3Ni1/3Mn1/32等の層状化合物、LiMn24、LiNi0.5Mn1.54等のスピネル型構造を有するリチウム含有化合物を用いることができる。 The type of the electrode active material contained in the positive electrode layer 11 or negative electrode layer 12 of the all- solid battery stack 10, 20, 30 of the present invention is not limited, as the positive electrode active material, Li 3 V 2 (PO 4 ) Lithium-containing phosphate compounds having a nasic structure such as 3; Lithium-containing phosphate compounds having an olivine structure such as LiFePO 4 and LiMnPO 4 , LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2, etc. A lithium-containing compound having a spinel structure such as LiMn 2 O 4 or LiNi 0.5 Mn 1.5 O 4 can be used.
 負極活物質としては、MOx(MはTi、Si、Sn、Cr、Fe、NbおよびMoからなる群より選ばれた少なくとも1種以上の元素であり、xは0.9≦x≦2.5の範囲内の数値である)で表わされる組成を有する化合物を用いることができる。たとえば、TiO2とSiO2等の異なる元素Mを含むMOxで表わされる組成を有する2つ以上の活物質を混合した混合物を用いてもよい。また、負極活物質としては、黒鉛-リチウム化合物、Li‐Al等のリチウム合金、Li32(PO43、Li3Fe2(PO43、Li4Ti512等の酸化物等を用いることができる。 As the negative electrode active material, MOx (M is at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, and x is 0.9 ≦ x ≦ 2.5. A compound having a composition represented by the following formula can be used. For example, it may be used a mixture prepared by mixing two or more active material having a composition represented by MOx containing different element M of such TiO 2 and SiO 2. As the negative electrode active material, graphite-lithium compounds, lithium alloys such as Li-Al, oxidation of Li 3 V 2 (PO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , Li 4 Ti 5 O 12, etc. A thing etc. can be used.
 また、本発明の全固体電池積層体10、20、30の正極層11、負極層12、集電体層14、および、固体電解質層13に含まれる、共通する成分元素を含むリチウム含有リン酸化合物の種類、または、固体電解質の種類は限定されないが、ナシコン型構造またはオリビン型構造を有するリチウム含有リン酸化合物を用いることができる。ナシコン型構造を有するリチウム含有リン酸化合物は、化学式Lixy(PO43(化学式中、xは1≦x≦2、yは1≦y≦2の範囲内の数値であり、MはTi、Ge、Al、GaおよびZrからなる群より選ばれた1種以上の元素である)で表わされる。この場合、上記化学式においてPの一部をB、Si等で置換してもよい。たとえば、Li1.5Al0.5Ge1.5(PO43とLi1.2Al0.2Ti1.8(PO43等の異なる組成を有する2つ以上のナシコン型構造を有するリチウム含有リン酸化合物を混合した混合物を用いてもよい。また、オリビン型構造を有するリチウム含有リン酸化合物は、化学式LixyPO4(化学式中、xは1≦x≦2、yは1≦y≦2の範囲内の数値であり、MはMg、AlおよびZrからなる群より選ばれた1種以上の元素である)で表わされる。この場合、上記化学式においてPの一部をB、Si等で置換してもよく、Oの一部をFで置換してもよい。 Moreover, the lithium containing phosphoric acid containing the common component element contained in the positive electrode layer 11, the negative electrode layer 12, the electrical power collector layer 14, and the solid electrolyte layer 13 of the all-solid-state battery laminated body 10, 20, 30 of this invention. Although the kind of compound or the kind of solid electrolyte is not limited, a lithium-containing phosphate compound having a NASICON structure or an olivine structure can be used. Lithium-containing phosphoric acid compound having a NASICON-type structure, the chemical formula Li x M y (PO 4) 3 ( Formula, x 1 ≦ x ≦ 2, y is a number in the range of 1 ≦ y ≦ 2, M Is one or more elements selected from the group consisting of Ti, Ge, Al, Ga and Zr). In this case, part of P in the above chemical formula may be substituted with B, Si, or the like. For example, a mixture obtained by mixing two or more Nasicon-type lithium-containing phosphate compounds having different compositions such as Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 is used. It may be used. Furthermore, lithium-containing phosphate compound having an olivine type structure, formula Li x M y PO 4 (in the chemical formula, x 1 ≦ x ≦ 2, y is a number in the range of 1 ≦ y ≦ 2, M is It is one or more elements selected from the group consisting of Mg, Al and Zr). In this case, in the above chemical formula, a part of P may be substituted with B, Si or the like, and a part of O may be substituted with F.
 また、上記の固体電解質に用いられるナシコン型構造またはオリビン型構造を有するリチウム含有リン酸化合物としては、ナシコン型構造またはオリビン型構造を有するリチウム含有リン酸化合物の結晶相を含む化合物、または、焼成または熱処理によりナシコン型構造またはオリビン型構造を有するリチウム含有リン酸化合物の結晶相を析出するガラスを用いてもよい。 Further, as the lithium-containing phosphate compound having a NASICON type structure or an olivine type structure used in the above solid electrolyte, a compound containing a crystal phase of a lithium-containing phosphate compound having a NASICON type structure or an olivine type structure, or firing Alternatively, a glass in which a crystal phase of a lithium-containing phosphate compound having a NASICON structure or an olivine structure is precipitated by heat treatment may be used.
 なお、上記の固体電解質に用いられる材料としては、ナシコン型構造またはオリビン型構造を有するリチウム含有リン酸化合物以外に、イオン伝導性を有し、電子伝導性が無視できるほど小さい材料を用いることが可能である。このような材料として、たとえば、ハロゲン化リチウム、窒化リチウム、リチウム酸素酸塩、および、これらの誘導体を挙げることができる。また、リン酸リチウム(Li3PO4)等のLi‐P‐O系化合物、リン酸リチウムに窒素が導入されたLIPON(LiPO4-xx)、Li4SiO4等のLi‐Si‐O系化合物、Li‐P‐Si‐O系化合物、Li‐V‐Si‐O系化合物、La0.51Li0.35TiO2.94、La0.55Li0.35TiO3、Li3xLa2/3-xTiO3等のぺロブスカイト型構造を有する化合物、Li、La、Zrを有するガーネット型構造を有する化合物等を挙げることができる。 In addition to the lithium-containing phosphate compound having a NASICON type structure or an olivine type structure, a material having ion conductivity and small enough to have negligible electronic conductivity is used as the material used for the solid electrolyte. Is possible. Examples of such a material include lithium halide, lithium nitride, lithium oxyacid salt, and derivatives thereof. In addition, Li—PO compounds such as lithium phosphate (Li 3 PO 4 ), LIPON (LiPO 4−x N x ) in which nitrogen is introduced into lithium phosphate, Li—Si— such as Li 4 SiO 4 O-based compounds, Li-P-Si-O based compounds, Li-V-Si-O based compounds, La 0.51 Li 0.35 TiO 2.94 , La 0.55 Li 0.35 TiO 3 , Li 3x La 2 / 3-x TiO 3, etc. Examples thereof include compounds having a perovskite structure, compounds having a garnet structure having Li, La, and Zr.
 本発明の全固体電池積層体10、20、30の正極層11、固体電解質層13、および、負極層12の少なくとも一つの層を形成する材料が、ナシコン型構造またはオリビン型構造のリチウム含有リン酸化合物からなる固体電解質を含むことが好ましい。この場合、全固体電池の電池動作に必須となる高いイオン伝導性を得ることができる。また、ナシコン型構造またはオリビン型構造のリチウム含有リン酸化合物の組成を有するガラス、または、ガラスセラミックスを固体電解質として用いると、焼成工程においてガラス相の粘性流動により、より緻密な焼成体を容易に得ることができるため、ガラス、または、ガラスセラミックスの形態で固体電解質の出発原料を準備することが特に好ましい。 The material forming at least one of the positive electrode layer 11, the solid electrolyte layer 13, and the negative electrode layer 12 of the all- solid battery laminate 10, 20, 30 of the present invention is a lithium-containing phosphorus having a NASICON structure or an olivine structure. It is preferable to include a solid electrolyte made of an acid compound. In this case, high ion conductivity that is essential for battery operation of an all-solid battery can be obtained. In addition, when a glass or glass ceramic having a composition of a lithium-containing phosphate compound having a NASICON structure or an olivine structure is used as a solid electrolyte, a denser fired body can be easily formed due to the viscous flow of the glass phase in the firing process. Since it can be obtained, it is particularly preferable to prepare a starting material for the solid electrolyte in the form of glass or glass ceramics.
 また、本発明の全固体電池積層体10、20、30の正極層11および負極層12の少なくとも一つの層を形成する材料が、リチウム含有リン酸化合物からなる電極活物質を含むことが好ましい。この場合、焼成工程において電極活物質が相変化すること、または、電極活物質が固体電解質と反応することをリン酸骨格の高い温度安定性により容易に抑制することができるため、全固体電池の容量を高くすることができる。また、リチウム含有リン酸化合物からなる電極活物質と、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質とを組み合わせて用いると、焼成工程において電極活物質と固体電解質との反応を抑制することができるとともに、両者の良好な接触を得ることができるため、上記のように電極活物質と固体電解質の材料を組み合わせて用いることが特に好ましい。 Moreover, it is preferable that the material forming at least one of the positive electrode layer 11 and the negative electrode layer 12 of the all- solid battery stack 10, 20, 30 of the present invention includes an electrode active material made of a lithium-containing phosphate compound. In this case, the phase change of the electrode active material in the firing step or the reaction of the electrode active material with the solid electrolyte can be easily suppressed by the high temperature stability of the phosphoric acid skeleton. The capacity can be increased. In addition, when an electrode active material composed of a lithium-containing phosphate compound and a solid electrolyte composed of a lithium-containing phosphate compound having a NASICON structure are used in combination, the reaction between the electrode active material and the solid electrolyte is suppressed in the firing step. It is particularly preferable to use a combination of the electrode active material and the solid electrolyte material as described above, since both of them can be obtained and good contact can be obtained.
 さらに、本発明の全固体電池積層体10、20、30の集電体層14は電子伝導材料を含む。電子伝導材料は、上記の導電性体から構成されてもよく、上記の導電性体と他の導電性体とから構成されてもよい。 Furthermore, the current collector layer 14 of the all- solid battery stack 10, 20, 30 of the present invention includes an electron conductive material. An electron conductive material may be comprised from said electroconductive body, and may be comprised from said electroconductive body and another electroconductive body.
 次に、本発明の実施例を具体的に説明する。なお、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。 Next, specific examples of the present invention will be described. In addition, the Example shown below is an example and this invention is not limited to the following Example.
 正極活物質として5重量%のアセチレンブラックを含むナシコン型構造のリチウム含有バナジウムリン酸化合物(Li32(PO43)、負極活物質としてアナターゼ型構造の酸化チタン(TiO2)、固体電解質としてナシコン型構造のリチウム含有リン酸化合物の結晶相を析出するLi1.5Al0.5Ge1.5(PO43のガラス粉末、および、導電性体として表1に示す炭素材料を用いて、以下の手順で実施例1~5と比較例1、2の全固体電池を作製した。また、表1には、スラリーを作製するためにバインダーとして用いた有機物も示す。 NASICON-type lithium-containing vanadium phosphate compound (Li 3 V 2 (PO 4 ) 3 ) containing 5% by weight of acetylene black as a positive electrode active material, anatase-type titanium oxide (TiO 2 ) as a negative electrode active material, solid Using the glass powder of Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 that precipitates a crystal phase of a lithium-containing phosphate compound having a NASICON type structure as an electrolyte, and the carbon material shown in Table 1 as a conductive material, the following All-solid batteries of Examples 1 to 5 and Comparative Examples 1 and 2 were prepared according to the procedure. Table 1 also shows organic substances used as binders for preparing the slurry.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1に示す繊維状の炭素1(VGCF)の長径は150nm、短径は8nm、炭素2(VGCF‐H)の長径は150nm、短径は6nm、炭素3(VGCF‐X)の長径は15nm、短径は3nmである。繊維状の炭素1~3は、いずれも短径に対する長径の比率は1よりも大きい。 The major axis of fibrous carbon 1 (VGCF) shown in Table 1 is 150 nm, the minor axis is 8 nm, the major axis of carbon 2 (VGCF-H) is 150 nm, the minor axis is 6 nm, and the major axis of carbon 3 (VGCF-X). Is 15 nm and the minor axis is 3 nm. In each of the fibrous carbons 1 to 3, the ratio of the major axis to the minor axis is greater than 1.
 <炭素と有機物の燃焼温度の評価>
 導電性体としての炭素とバインダーとしての有機物の燃焼しやすさを評価するために、セイコーインスツルメンツ社製の示差熱・熱重量同時測定装置(型番:TG‐DTA7200)を用いて、表1に示す炭素1~4と有機物を酸素ガス雰囲気中で3℃/分の昇温速度で熱分析(TG測定)を行った。TG測定の結果から求めた燃焼開始温度を表1に示す。
<Evaluation of combustion temperature of carbon and organic matter>
In order to evaluate the ease of combustion of carbon as a conductive material and organic matter as a binder, it is shown in Table 1 using a differential thermal and thermogravimetric simultaneous measurement device (model number: TG-DTA7200) manufactured by Seiko Instruments Inc. Thermal analysis (TG measurement) was performed on carbon 1 to 4 and organic matter in an oxygen gas atmosphere at a rate of temperature increase of 3 ° C./min. Table 1 shows the combustion start temperatures obtained from the results of TG measurement.
 <スラリーの作製> バインダーとなるポリビニルアルコール(有機物)をトルエンとエタノールの混合溶媒に溶解し、バインダー溶液を作製した。 <Preparation of slurry> Polyvinyl alcohol (organic substance) serving as a binder was dissolved in a mixed solvent of toluene and ethanol to prepare a binder solution.
 バインダー溶液中に固体電解質を混合し、固体電解質スラリーを作製した。固体電解質とポリビニルアルコールとの調合比を重量比率で80:20とした。 The solid electrolyte was mixed in the binder solution to prepare a solid electrolyte slurry. The mixing ratio of the solid electrolyte and polyvinyl alcohol was 80:20 by weight.
 バインダー溶液中に正極活物質を混合し、正極活物質スラリーを作製した。正極活物質とポリビニルアルコールとの調合比を重量比率で80:20とした。 The positive electrode active material was mixed in the binder solution to prepare a positive electrode active material slurry. The mixing ratio of the positive electrode active material and polyvinyl alcohol was 80:20 by weight.
 バインダー溶液中に負極活物質を混合し、負極活物質スラリーを作製した。負極活物質とポリビニルアルコールとの調合比を重量比率で80:20とした。 The negative electrode active material was mixed in the binder solution to prepare a negative electrode active material slurry. The mixing ratio of the negative electrode active material and polyvinyl alcohol was 80:20 by weight.
 バインダー溶液中に炭素1~4のそれぞれを混合し、炭素1~4のスラリーを作製した。炭素1~4のそれぞれとポリビニルアルコールとの調合比を重量比率で80:20とした。 Each of carbon 1 to 4 was mixed in a binder solution to prepare a slurry of carbon 1 to 4. The mixing ratio of each of carbon 1 to 4 and polyvinyl alcohol was 80:20 by weight.
 次に、上記で得られた固体電解質スラリー、正極活物質スラリー、負極活物質スラリー、および、炭素1~4のスラリーを以下の表2~4に示す比率で混合し、正極層No.1~5、負極層No.1~5、および、集電体層No.1~7のスラリーを作製した。 Next, the solid electrolyte slurry, the positive electrode active material slurry, the negative electrode active material slurry, and the carbon 1 to 4 slurry obtained above were mixed in the ratios shown in Tables 2 to 4 below. 1-5, negative electrode layer no. 1 to 5 and the current collector layer No. Slurries 1-7 were prepared.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 <グリーンシートの作製>
 固体電解質スラリー、正極層No.1~5のスラリー、負極層No.1~5のスラリー、および、集電体層No.1~7のスラリーを、コンマコーターを用いて成形して、固体電解質層、正極層No.1~5、負極層No.1~5、および、集電体層No.1~7の各グリーンシートを作製した。
<Production of green sheet>
Solid electrolyte slurry, positive electrode layer No. 1-5 slurry, negative electrode layer no. 1-5 slurry and current collector layer No. The slurries 1 to 7 were molded using a comma coater, and the solid electrolyte layer, the positive electrode layer No. 1-5, negative electrode layer no. 1 to 5 and the current collector layer No. Green sheets 1 to 7 were prepared.
 固体電解質層のグリーンシートの作製では、コンマコーターのライン速度を100cm/minにして、100μmの厚みに成形した。正極層No.1~5および負極層No.1~5のグリーンシートの作製では、コンマコーターのライン速度を100cm/minにして、50μmの厚みに成形した。集電体層No.1~6のグリーンシートの作製では、コンマコーターのライン速度を100cm/minにして、10μmの厚みに成形した。集電体層No.7のグリーンシートの作製では、コンマコーターのライン速度を50cm/minにして、10μmの厚みに成形した。 In the production of the solid electrolyte layer green sheet, the comma coater was formed to a thickness of 100 μm at a line speed of 100 cm / min. Positive electrode layer No. 1 to 5 and negative electrode layer no. In the production of 1 to 5 green sheets, the line speed of the comma coater was set to 100 cm / min and molded to a thickness of 50 μm. Current collector layer No. In the production of 1 to 6 green sheets, the line speed of the comma coater was set to 100 cm / min and molded to a thickness of 10 μm. Current collector layer No. In the production of the green sheet No. 7, the comma coater was formed to a thickness of 10 μm at a line speed of 50 cm / min.
 <全固体電池の作製>
 上記で作製された各グリーンシートを組合せて、次のようにして全固体電池を作製した。
<Preparation of all-solid battery>
All the green sheets produced above were combined and the all-solid-state battery was produced as follows.
 直径が12mmの円板形状に打ち抜いた各グリーンシートを、図1に示すように集電体層14、正極層11、固体電解質層13、負極層12、集電体層14の順に積層し、80℃の温度で1トンの圧力で熱圧着し、未焼成の全固体電池積層体10を作製した。以下の表5に示すように、集電体層No.1~7、正極層No.1~5、負極層No.1~5、集電体層No.1~7の各々のグリーンシートを組み合わせて、実施例1~5と比較例1、2の未焼成の全固体電池積層体10を作製した。 Each green sheet punched into a disk shape having a diameter of 12 mm is laminated in the order of a current collector layer 14, a positive electrode layer 11, a solid electrolyte layer 13, a negative electrode layer 12, and a current collector layer 14 as shown in FIG. Thermocompression bonding was performed at a temperature of 80 ° C. and a pressure of 1 ton to produce an unfired all-solid battery stack 10. As shown in Table 5 below, the current collector layer No. 1-7, positive electrode layer no. 1-5, negative electrode layer no. 1-5, current collector layer No. The green sheets of Examples 1 to 5 and Comparative Examples 1 and 2 were produced by combining the green sheets 1 to 7, respectively.
 未焼成の全固体電池積層体10を2枚のアルミナ製のセラミックス板で挟んだ状態で、酸素を僅かに含む窒素ガス雰囲気中にて500℃の温度で焼成して有機物の除去を行った(第1の焼成工程)。その後、窒素ガス雰囲気中にて600℃の温度で焼成する(第2の焼成工程)ことにより、集電体層14と正極層11と固体電解質層13と負極層12と集電体層14とを焼成により接合することによって、全固体電池積層体10を作製した。 In a state where the unfired all-solid battery laminate 10 was sandwiched between two alumina ceramic plates, the organic matter was removed by firing at a temperature of 500 ° C. in a nitrogen gas atmosphere slightly containing oxygen ( 1st baking process). Thereafter, the current collector layer 14, the positive electrode layer 11, the solid electrolyte layer 13, the negative electrode layer 12, and the current collector layer 14 are fired at a temperature of 600 ° C. in a nitrogen gas atmosphere (second firing step). Were bonded by firing to produce an all-solid battery stack 10.
 得られた全固体電池積層体10を100℃の温度で乾燥し、水分を除去した。その後、全固体電池積層体10を2032型のコインセルで封止して全固体電池を作製した。 The obtained all solid state battery laminate 10 was dried at a temperature of 100 ° C. to remove moisture. Then, the all-solid-state battery laminated body 10 was sealed with a 2032 type coin cell, and the all-solid-state battery was produced.
 <全固体電池の評価>
 得られた全固体電池に対して、0~3.5Vの電圧範囲で30μA/cm2と300μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、得られた放電容量と、電流密度30μA/cm2での放電容量に対する電流密度300μA/cm2での放電容量の比率(放電容量維持率)を以下の表5に示す。なお、比較例2の全固体電池では、定電流で充電しても電圧は0Vを示し、短絡していることがわかった。
<Evaluation of all solid state battery>
Against all-solid was subjected to constant current constant voltage charge and discharge in a voltage range of 0 ~ 3.5 V at a current density of 30 .mu.A / cm 2 and 300 .mu.A / cm 2. As a result, the discharge capacity obtained are shown the ratio of the discharge capacity at a current density of 300 .mu.A / cm 2 to the discharge capacity at a current density of 30 .mu.A / cm 2 (the discharge capacity retention ratio) in Table 5 below. In addition, in the all-solid-state battery of the comparative example 2, even if it charged with the constant current, the voltage showed 0V and it turned out that it is short-circuited.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示す結果から、実施例1~5の全固体電池では、比較例1に比べて高い放電容量維持率を示したことがわかる。これは、実施例1~5の全固体電池では、集電体層、正極層、および、負極層は、短径に対する長径の比率が1よりも大きな繊維状の炭素1~3のいずれかを含んでいることと、全固体電池の破断面を走査型電子顕微鏡(SEM)で観察したところ、集電体層、正極層、および、負極層の断面において、繊維状の炭素のほとんどは、長径の延びる方向が積層方向に対してほぼ垂直に配向していることが確認されたことによるものと考えられる。これらのことから、集電体層、正極層、および、負極層の内部での面方向の電流分布を均一化させることができ、高い放電容量維持率を示したものと考えられる。 From the results shown in Table 5, it can be seen that the all solid-state batteries of Examples 1 to 5 showed a higher discharge capacity retention rate than Comparative Example 1. This is because, in the all solid state batteries of Examples 1 to 5, the current collector layer, the positive electrode layer, and the negative electrode layer are made of any one of fibrous carbons 1 to 3 in which the ratio of the major axis to the minor axis is larger than 1. And the fracture surface of the all-solid-state battery was observed with a scanning electron microscope (SEM), and most of the fibrous carbon in the cross sections of the current collector layer, the positive electrode layer, and the negative electrode layer had a long diameter. This is considered to be because it was confirmed that the extending direction of the film was oriented substantially perpendicular to the stacking direction. From these facts, it is considered that the current distribution in the plane direction inside the current collector layer, the positive electrode layer, and the negative electrode layer can be made uniform, and a high discharge capacity retention rate was exhibited.
 比較例1の全固体電池では、集電体層、正極層、および、負極層が導電性体として粒状の炭素4のみを含んでいることから、集電体層、正極層、および、負極層の内部での面方向の電流分布を均一化させることができないので、高い電流密度での放電容量が低下し、低い放電容量維持率を示したものと考えられる。 In the all-solid-state battery of Comparative Example 1, since the current collector layer, the positive electrode layer, and the negative electrode layer contain only granular carbon 4 as a conductive material, the current collector layer, the positive electrode layer, and the negative electrode layer It is considered that the current distribution in the surface direction in the inside cannot be made uniform, so that the discharge capacity at a high current density is lowered and a low discharge capacity maintenance rate is exhibited.
 比較例2の全固体電池では、コンマコーターのライン速度を50cm/minという低い速度で成形された集電体層No.7のグリーンシートを用いたので、集電体層、正極層、および、負極層は、短径に対する長径の比率が1よりも大きな繊維状の炭素2を含んでいるにもかかわらず、全固体電池の破断面を走査型電子顕微鏡(SEM)で観察したところ、集電体層の断面において、繊維状の炭素は、長径の延びる方向が積層方向に対してランダムに配向していることが確認された。これにより、集電体層に含まれている炭素2が、正極層および負極層に隣接する固体電解質層を介して内部短絡を引き起こしたものと考えられる。 In the all-solid-state battery of Comparative Example 2, the current collector layer No. formed with a comma coater line speed as low as 50 cm / min was used. Since the green sheet of No. 7 was used, the current collector layer, the positive electrode layer, and the negative electrode layer were all solid even though the ratio of the major axis to the minor axis contained fibrous carbon 2 larger than 1. When the fracture surface of the battery was observed with a scanning electron microscope (SEM), it was confirmed that in the cross section of the current collector layer, the fibrous carbon was randomly oriented in the direction in which the major axis extends in the stacking direction. It was done. Thereby, it is considered that the carbon 2 contained in the current collector layer caused an internal short circuit through the solid electrolyte layer adjacent to the positive electrode layer and the negative electrode layer.
 今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the claims.
 集電性能を高めることにより、電池容量を向上させることが可能になるので、本発明は全固体二次電池の製造に特に有用である。 Since the battery capacity can be improved by increasing the current collecting performance, the present invention is particularly useful for the production of an all-solid secondary battery.
 10,20,30:全固体電池積層体、11:正極層、12:負極層、13:固体電解質層、14:集電体層。
                                                                                
10, 20, 30: All-solid battery laminate, 11: positive electrode layer, 12: negative electrode layer, 13: solid electrolyte layer, 14: current collector layer.

Claims (15)

  1.  正極層または負極層の少なくともいずれか一方の電極層と、
     前記電極層の一方側に積層された固体電解質層と、
     前記電極層の他方側に積層された集電体層とを備え、
     前記電極層および前記集電体層を構成する少なくとも一つの層は複数の導電性体を含み、
     前記複数の導電性体は、各々が長径と短径を有し、
     前記複数の導電性体のほとんどは、前記長径の延びる方向が積層方向に対してほぼ垂直に配向している、全固体電池。
    At least one of the positive electrode layer and the negative electrode layer;
    A solid electrolyte layer laminated on one side of the electrode layer;
    A current collector layer laminated on the other side of the electrode layer,
    At least one layer constituting the electrode layer and the current collector layer includes a plurality of conductive bodies,
    Each of the plurality of conductive bodies has a major axis and a minor axis,
    Most of the plurality of conductive bodies are all solid state batteries in which the direction in which the major axis extends is oriented substantially perpendicular to the stacking direction.
  2.  前記導電性体が、繊維形状または扁平形状の形態を有する、請求項1に記載の全固体電池。 The all-solid-state battery according to claim 1, wherein the conductive body has a fiber shape or a flat shape.
  3.  前記導電性体が、炭素を含む、請求項1または請求項2に記載の全固体電池。 The all-solid-state battery according to claim 1 or 2, wherein the conductive body contains carbon.
  4.  前記電極層および前記集電体層を構成する少なくとも一つの層が、前記導電性体と異なる形状の別の導電性体を含む、請求項1から請求項3までのいずれか1項に記載の全固体電池。 The at least 1 layer which comprises the said electrode layer and the said collector layer contains another electroconductive body of the shape different from the said electroconductive body, The any one of Claim 1- Claim 3 characterized by the above-mentioned. All solid battery.
  5.  前記異なる形状の別の導電性体が、粒子形状である、請求項4に記載の全固体電池。 The all-solid-state battery according to claim 4, wherein the another conductive body having a different shape has a particle shape.
  6.  前記電極層および前記集電体層の少なくとも一層が、セラミックスを含む、請求項1から請求項5までのいずれか1項に記載の全固体電池。 The all-solid-state battery according to any one of claims 1 to 5, wherein at least one of the electrode layer and the current collector layer contains ceramics.
  7.  前記セラミックスが、リチウム含有リン酸化合物を含む、請求項6に記載の全固体電池。 The all-solid-state battery according to claim 6, wherein the ceramic contains a lithium-containing phosphate compound.
  8.  前記リチウム含有リン酸化合物が、ナシコン型構造またはオリビン型構造の少なくともいずれか一種の構造を有するリチウム含有リン酸化合物である、請求項7に記載の全固体電池。 The all-solid-state battery according to claim 7, wherein the lithium-containing phosphoric acid compound is a lithium-containing phosphoric acid compound having at least one of a nasicon type structure and an olivine type structure.
  9.  前記電極層および前記集電体層が、前記固体電解質層を構成する固体電解質材料を含む、請求項1から請求項4までのいずれか1項に記載の全固体電池。 The all-solid-state battery according to any one of claims 1 to 4, wherein the electrode layer and the current collector layer include a solid electrolyte material constituting the solid electrolyte layer.
  10.  前記固体電解質材料が、ナシコン型構造またはオリビン型構造の少なくともいずれか一種の構造を有するリチウム含有リン酸化合物である、請求項9に記載の全固体電池。 The all-solid-state battery according to claim 9, wherein the solid electrolyte material is a lithium-containing phosphate compound having at least one of a NASICON structure and an olivine structure.
  11.  前記固体電解質材料が、焼成により、ナシコン型構造またはオリビン型構造の少なくともいずれか一種の構造を有するリチウム含有リン酸化合物の結晶相を析出するガラス相である、請求項9に記載の全固体電池。 The all-solid-state battery according to claim 9, wherein the solid electrolyte material is a glass phase in which a crystal phase of a lithium-containing phosphate compound having at least one of a nasicon type structure and an olivine type structure is deposited by firing. .
  12.  前記固体電解質層の一方側に積層された前記電極層としての正極層と、
     前記固体電解質層の側と反対側で前記正極層に積層された前記集電体層としての正極集電体層と、
     前記固体電解質層の他方側に積層された前記電極層としての負極層と、
     前記固体電解質層の側と反対側で前記負極層に積層された前記集電体層としての負極集電体層とを備えた、請求項1から請求項11までのいずれか1項に記載の全固体電池。
    A positive electrode layer as the electrode layer laminated on one side of the solid electrolyte layer;
    A positive electrode current collector layer as the current collector layer laminated on the positive electrode layer on the side opposite to the solid electrolyte layer side;
    A negative electrode layer as the electrode layer laminated on the other side of the solid electrolyte layer;
    The negative electrode current collector layer as the current collector layer laminated on the negative electrode layer on a side opposite to the solid electrolyte layer side, according to any one of claims 1 to 11. All solid battery.
  13.  正極層または負極層の少なくともいずれか一方の電極層の未焼成体である未焼成電極層と、
     前記未焼成電極層の一方側に積層され、固体電解質層の未焼成体である未焼成固体電解質層と、
     前記未焼成電極層の他方側に積層され、集電体層の未焼成体である未焼成集電体層とを備え、
     前記未焼成電極層および前記未焼成集電体層を構成する少なくとも一つの層は複数の導電性体を含み、
     前記複数の導電性体は、各々が長径と短径を有し、
     前記複数の導電性体のほとんどは、前記長径の延びる方向が積層方向に対してほぼ垂直に配向している、全固体電池用未焼成積層体。
    A green electrode layer that is a green body of at least one of the positive electrode layer and the negative electrode layer;
    An unsintered solid electrolyte layer that is laminated on one side of the unsintered electrode layer and is an unsintered body of a solid electrolyte layer;
    An unsintered current collector layer that is laminated on the other side of the unsintered electrode layer and is an unsintered body of a current collector layer;
    At least one layer constituting the green electrode layer and the green current collector layer includes a plurality of conductive bodies,
    Each of the plurality of conductive bodies has a major axis and a minor axis,
    Most of the plurality of conductive bodies are all-solid battery unfired laminates in which the direction in which the major axis extends is oriented substantially perpendicular to the lamination direction.
  14.  前記未焼成電極層と前記未焼成固体電解質層と前記未焼成集電体層は、グリーンシートまたは印刷層の形態を有する、請求項13に記載の全固体電池用未焼成積層体。 The unsintered laminate for an all-solid-state battery according to claim 13, wherein the unsintered electrode layer, the unsintered solid electrolyte layer, and the unsintered current collector layer have a form of a green sheet or a printed layer.
  15.  正極層または負極層の少なくともいずれか一方の未焼成体である未焼成電極層と、固体電解質層の未焼成体である未焼成固体電解質層と、集電体層の未焼成体である未焼成集電体層とを作製する未焼成層作製工程と、
     前記未焼成電極層の一方側に前記未焼成固体電解質層を積層し、前記未焼成電極層の他方側に前記未焼成集電体層を積層して積層体を形成する積層体形成工程と、
     前記積層体を焼成する焼成工程とを備え、
     前記未焼成電極層および前記未焼成集電体層を構成する少なくとも一つの層は複数の導電性体を含み、
     前記複数の導電性体は、各々が長径と短径を有し、
     前記複数の導電性体のほとんどは、前記長径の延びる方向が積層方向に対してほぼ垂直に配向している、全固体電池の製造方法。
                                                                                    
    A green electrode layer that is a green body of at least one of a positive electrode layer and a negative electrode layer, a green solid electrolyte layer that is a green body of a solid electrolyte layer, and a green body that is a green body of a current collector layer An unsintered layer manufacturing step of manufacturing a current collector layer;
    A laminated body forming step of laminating the green solid electrolyte layer on one side of the green electrode layer and laminating the green current collector layer on the other side of the green electrode layer; and
    A firing step of firing the laminate,
    At least one layer constituting the green electrode layer and the green current collector layer includes a plurality of conductive bodies,
    Each of the plurality of conductive bodies has a major axis and a minor axis,
    In most of the plurality of conductive bodies, the direction in which the major axis extends is oriented substantially perpendicular to the stacking direction.
PCT/JP2013/074040 2012-09-11 2013-09-06 All-solid-state battery, green laminate for all-solid-state battery, and method for producing all-solid-state battery WO2014042083A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014535524A JP5804208B2 (en) 2012-09-11 2013-09-06 All-solid battery, unfired laminate for all-solid battery, and method for producing all-solid battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-199086 2012-09-11
JP2012199086 2012-09-11

Publications (1)

Publication Number Publication Date
WO2014042083A1 true WO2014042083A1 (en) 2014-03-20

Family

ID=50278196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074040 WO2014042083A1 (en) 2012-09-11 2013-09-06 All-solid-state battery, green laminate for all-solid-state battery, and method for producing all-solid-state battery

Country Status (2)

Country Link
JP (1) JP5804208B2 (en)
WO (1) WO2014042083A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167356A (en) * 2015-03-09 2016-09-15 Fdk株式会社 Manufacturing method for all-solid battery and all-solid battery
WO2018047946A1 (en) * 2016-09-12 2018-03-15 富士フイルム株式会社 Electrode layer material, sheet for all-solid-state secondary battery electrode, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JP2019175771A (en) * 2018-03-29 2019-10-10 太陽誘電株式会社 All-solid battery and manufacturing method of the same
WO2019216216A1 (en) * 2018-05-09 2019-11-14 積水化学工業株式会社 Collector layer for all-solid-state batteries, all-solid-state battery and carbon material
JP2020521286A (en) * 2017-05-31 2020-07-16 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフトTdk Electronics Ag Energy storage
CN113474926A (en) * 2019-03-26 2021-10-01 株式会社村田制作所 Solid-state battery
CN114556671A (en) * 2019-10-11 2022-05-27 株式会社村田制作所 Solid battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345607A (en) * 1998-06-03 1999-12-14 Toyota Central Res & Dev Lab Inc Positive electrode for lithium secondary battery
JP2007227362A (en) * 2006-01-27 2007-09-06 Matsushita Electric Ind Co Ltd Method for producing solid-state battery
JP2012089420A (en) * 2010-10-21 2012-05-10 Toyota Motor Corp Ion conductor for battery
WO2012063874A1 (en) * 2010-11-09 2012-05-18 株式会社村田製作所 Electrode active substance for all-solid-state battery, and all-solid-state battery using same
WO2012077177A1 (en) * 2010-12-06 2012-06-14 トヨタ自動車株式会社 Process for manufacture of lithium ion secondary battery
JP2012114027A (en) * 2010-11-26 2012-06-14 Toyota Motor Corp Negative electrode material for metal secondary battery, negative electrode for metal secondary battery, and metal secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345607A (en) * 1998-06-03 1999-12-14 Toyota Central Res & Dev Lab Inc Positive electrode for lithium secondary battery
JP2007227362A (en) * 2006-01-27 2007-09-06 Matsushita Electric Ind Co Ltd Method for producing solid-state battery
JP2012089420A (en) * 2010-10-21 2012-05-10 Toyota Motor Corp Ion conductor for battery
WO2012063874A1 (en) * 2010-11-09 2012-05-18 株式会社村田製作所 Electrode active substance for all-solid-state battery, and all-solid-state battery using same
JP2012114027A (en) * 2010-11-26 2012-06-14 Toyota Motor Corp Negative electrode material for metal secondary battery, negative electrode for metal secondary battery, and metal secondary battery
WO2012077177A1 (en) * 2010-12-06 2012-06-14 トヨタ自動車株式会社 Process for manufacture of lithium ion secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167356A (en) * 2015-03-09 2016-09-15 Fdk株式会社 Manufacturing method for all-solid battery and all-solid battery
WO2018047946A1 (en) * 2016-09-12 2018-03-15 富士フイルム株式会社 Electrode layer material, sheet for all-solid-state secondary battery electrode, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JPWO2018047946A1 (en) * 2016-09-12 2019-06-24 富士フイルム株式会社 Electrode layer material, sheet for all solid secondary battery electrode and all solid secondary battery, electrode sheet for all solid secondary battery, and method for manufacturing all solid secondary battery
JP2020521286A (en) * 2017-05-31 2020-07-16 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフトTdk Electronics Ag Energy storage
JP7032973B2 (en) 2018-03-29 2022-03-09 太陽誘電株式会社 All-solid-state battery and its manufacturing method
CN110323450A (en) * 2018-03-29 2019-10-11 太阳诱电株式会社 All-solid-state battery and its manufacturing method
US11217820B2 (en) 2018-03-29 2022-01-04 Taiyo Yuden Co., Ltd. All solid battery and manufacturing method of the same
JP2019175771A (en) * 2018-03-29 2019-10-10 太陽誘電株式会社 All-solid battery and manufacturing method of the same
CN110323450B (en) * 2018-03-29 2023-08-25 太阳诱电株式会社 All-solid battery and manufacturing method thereof
WO2019216216A1 (en) * 2018-05-09 2019-11-14 積水化学工業株式会社 Collector layer for all-solid-state batteries, all-solid-state battery and carbon material
JP6674072B1 (en) * 2018-05-09 2020-04-01 積水化学工業株式会社 Current collecting layer for all-solid-state battery, all-solid-state battery, and carbon material
CN112074979A (en) * 2018-05-09 2020-12-11 积水化学工业株式会社 Current collecting layer for all-solid-state battery, and carbon material
KR20210006897A (en) 2018-05-09 2021-01-19 세키스이가가쿠 고교가부시키가이샤 All-solid-state battery current collector layer, all-solid-state battery and carbon material
US11949112B2 (en) 2018-05-09 2024-04-02 Sekisui Chemical Co., Ltd. Collector layer for all-solid-state batteries, all-solid-state battery and carbon material
CN113474926A (en) * 2019-03-26 2021-10-01 株式会社村田制作所 Solid-state battery
CN114556671A (en) * 2019-10-11 2022-05-27 株式会社村田制作所 Solid battery

Also Published As

Publication number Publication date
JPWO2014042083A1 (en) 2016-08-18
JP5804208B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
JP5910737B2 (en) All solid battery
JP5644857B2 (en) Stacked solid battery
JP5804208B2 (en) All-solid battery, unfired laminate for all-solid battery, and method for producing all-solid battery
TWI528618B (en) Lithium ion secondary battery
WO2013137224A1 (en) All solid state cell and method for producing same
WO2011132627A1 (en) All-solid state secondary battery and production method for same
WO2012008422A1 (en) All-solid-state battery
WO2012020700A1 (en) Layered solid-state battery
WO2013008677A1 (en) All-solid-state battery and manufacturing method thereof
JP5516749B2 (en) All-solid battery and method for manufacturing the same
JP6262129B2 (en) All-solid battery and method for manufacturing the same
JP6248498B2 (en) All-solid battery and method for manufacturing the same
JP6197495B2 (en) All solid battery
JP2018166020A (en) All-solid battery and manufacturing method thereof
WO2013100002A1 (en) All-solid-state battery, and manufacturing method therefor
JP5644951B2 (en) Non-sintered laminate for all solid state battery, all solid state battery and method for producing the same
JP5556969B2 (en) Laminated molded body for all solid state battery, all solid state battery and method for producing the same
WO2012060402A1 (en) All-solid-state battery and method for manufacturing same
JP5935892B2 (en) All solid battery
JP6264807B2 (en) All-solid battery and method for manufacturing the same
WO2013035526A1 (en) Laminated molded body for all-solid-state battery, all-solid-state battery, and production method therefor
JP6003982B2 (en) All solid battery
WO2013133394A1 (en) All solid battery
WO2017146105A1 (en) Laminate green sheet and continuous laminate green sheet, method for manufacturing same, and method for manufacturing all-solid-state secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535524

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13837602

Country of ref document: EP

Kind code of ref document: A1