JP5556969B2 - Laminated molded body for all solid state battery, all solid state battery and method for producing the same - Google Patents

Laminated molded body for all solid state battery, all solid state battery and method for producing the same Download PDF

Info

Publication number
JP5556969B2
JP5556969B2 JP2013532525A JP2013532525A JP5556969B2 JP 5556969 B2 JP5556969 B2 JP 5556969B2 JP 2013532525 A JP2013532525 A JP 2013532525A JP 2013532525 A JP2013532525 A JP 2013532525A JP 5556969 B2 JP5556969 B2 JP 5556969B2
Authority
JP
Japan
Prior art keywords
solid
molded body
laminated
solid electrolyte
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013532525A
Other languages
Japanese (ja)
Other versions
JPWO2013035525A1 (en
Inventor
剛司 林
充 吉岡
倍太 尾内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2013532525A priority Critical patent/JP5556969B2/en
Application granted granted Critical
Publication of JP5556969B2 publication Critical patent/JP5556969B2/en
Publication of JPWO2013035525A1 publication Critical patent/JPWO2013035525A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、全固体電池用積層成形体、全固体電池およびその製造方法に関する。   The present invention relates to an all-solid battery laminated molded body, an all-solid battery, and a method for producing the same.

近年、携帯電話、携帯用パーソナルコンピュータ等の携帯用電子機器の電源として電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させるための媒体として有機溶媒等の電解質(電解液)が従来から使用されている。   In recent years, the demand for batteries as a power source for portable electronic devices such as mobile phones and portable personal computers has greatly increased. In a battery used for such an application, an electrolyte (electrolytic solution) such as an organic solvent has been conventionally used as a medium for moving ions.

しかし、上記の構成の電池では、電解液が漏出するという危険性がある。また、電解液に用いられる有機溶媒等は可燃性物質である。このため、電池の安全性をさらに高めることが求められている。   However, in the battery having the above configuration, there is a risk that the electrolyte solution leaks. Moreover, the organic solvent etc. which are used for electrolyte solution are combustible substances. For this reason, it is required to further increase the safety of the battery.

そこで、電池の安全性を高めるための一つの対策は、電解質として、電解液に代えて、固体電解質を用いることが提案されている。さらに、電解質として固体電解質を用いるとともに、その他の構成要素も固体で構成されている全固体電池の開発が進められている。   Therefore, as one countermeasure for enhancing the safety of the battery, it has been proposed to use a solid electrolyte as the electrolyte instead of the electrolytic solution. Furthermore, development of an all-solid battery in which a solid electrolyte is used as an electrolyte and the other constituent elements are also made of solid is being promoted.

たとえば、特開2007‐5279号公報(以下、特許文献1という)には、全固体電池の製造方法が提案されている。特許文献1に開示された全固体電池の製造方法によれば、リン酸化合物を含む活物質と固体電解質とを、それぞれ、バインダーおよび可塑剤を含む溶液中に分散させて、スラリーを作製し、これらのスラリーを成形して得られた活物質グリーンシートと固体電解質グリーンシートとを積層し、熱処理することによって、全固体電池の積層体を製造する。   For example, Japanese Patent Laid-Open No. 2007-5279 (hereinafter referred to as Patent Document 1) proposes a method for manufacturing an all-solid battery. According to the method for producing an all-solid battery disclosed in Patent Document 1, an active material containing a phosphoric acid compound and a solid electrolyte are dispersed in a solution containing a binder and a plasticizer, respectively, to prepare a slurry, An active material green sheet and a solid electrolyte green sheet obtained by molding these slurries are laminated and heat-treated to produce an all-solid battery laminate.

特開2007‐5279号公報JP 2007-5279 A

発明者らが、特許文献1に記載されているような全固体電池の製造方法を種々検討した結果、焼成前のグリーンシート、膜等の成形体を積層し、熱処理して、全固体電池の発電要素を構成する積層体を形成するためには、成形体に含まれるバインダー、可塑剤等の有機化合物を熱処理にて完全に除去する技術が重要であることがわかった。しかしながら、有機化合物を除去する熱処理は、電極層の焼成前の成形体に含まれる導電剤としての炭素をも燃焼させるので、電池特性の劣化を引き起こす可能性があることがわかった。本発明は、上記の知見に基づいてなされたものである。   As a result of various studies on the manufacturing method of the all-solid battery as described in Patent Document 1, the inventors laminated green bodies before firing, a molded body such as a film, and heat-treated. In order to form a laminate constituting the power generation element, it has been found that a technique for completely removing organic compounds such as a binder and a plasticizer contained in the molded body by heat treatment is important. However, it has been found that the heat treatment for removing the organic compound also burns carbon as a conductive agent contained in the molded body before firing the electrode layer, which may cause deterioration of battery characteristics. The present invention has been made based on the above findings.

したがって、本発明の目的は、電極層の焼成前のグリーンシート、膜等の成形体に含まれる導電剤の燃焼を抑制するとともに、固体電解質層の焼成前のグリーンシート、膜等の成形体に含まれるバインダーを除去することが可能な全固体電池用積層成形体、全固体電池およびその製造方法を提供することである。   Accordingly, an object of the present invention is to suppress burning of the conductive agent contained in a green sheet, a film or the like before firing the electrode layer, and to form a green sheet, a film or the like before firing the solid electrolyte layer. An object of the present invention is to provide a laminate for an all-solid battery capable of removing the contained binder, an all-solid battery, and a method for producing the same.

発明者らが上記の課題を解決するために種々検討を重ねた結果、含まれるバインダー種が異なる電極層の焼成前の成形体と固体電解質層の焼成前の成形体とを用いることにより、電極層の焼成前の成形体に含まれる導電剤の燃焼を抑制するとともに、固体電解質層の焼成前の成形体に含まれるバインダーを除去することが可能になることを見出した。このような発明者らの知見に基づいて、本発明は以下の特徴を備えている。   As a result of various studies by the inventors in order to solve the above-described problems, an electrode layer having different binder species contained therein and a molded body before firing of the electrode layer and a molded body before firing of the solid electrolyte layer were used. It has been found that it is possible to suppress the burning of the conductive agent contained in the compact before firing the layer and to remove the binder contained in the compact before firing the solid electrolyte layer. Based on such knowledge of the inventors, the present invention has the following features.

本発明に従った全固体電池用積層成形体は、正極活物質または負極活物質のいずれかの電極活物質と第1の高分子材料とを含む第1の成形体と、第1の成形体に積層され、固体電解質と第2の高分子材料とを含む第2の成形体とを備える。第1の高分子材料の分解温度が第2の高分子材料の分解温度よりも高い。   An all-solid battery laminate molded body according to the present invention includes a first molded body including an electrode active material of either a positive electrode active material or a negative electrode active material and a first polymer material, and a first molded body. And a second molded body including a solid electrolyte and a second polymer material. The decomposition temperature of the first polymer material is higher than the decomposition temperature of the second polymer material.

本発明の全固体電池用積層成形体において、第1および第2の高分子材料の分子量が10000以上であることが好ましい。   In the all-solid-state battery laminate molded body of the present invention, the first and second polymer materials preferably have a molecular weight of 10,000 or more.

なお、本発明の全固体電池用積層成形体において、成形体は、グリーンシートおよび膜からなる群より選ばれた一つの形態であればよい。   In the all-solid battery laminated molded article of the present invention, the molded article may be in one form selected from the group consisting of a green sheet and a film.

本発明の一つの局面に従った全固体電池の製造方法は、以下の工程と特徴を備える。   An all-solid-state battery manufacturing method according to one aspect of the present invention includes the following steps and features.

(A)正極活物質または負極活物質のいずれかの電極活物質と第1の高分子材料とを含む第1の成形体と、固体電解質と第2の高分子材料とを含む第2の成形体とを作製する成形体作製工程   (A) The 2nd shaping | molding containing the 1st molded object containing the electrode active material of either a positive electrode active material or a negative electrode active material, and a 1st polymeric material, and a solid electrolyte and a 2nd polymeric material. Process for producing a molded body

(B)第1の成形体と第2の成形体とを積層して積層成形体を形成する積層成形体形成工程   (B) Laminated molded body forming step of laminating the first molded body and the second molded body to form a laminated molded body

(C)積層成形体を焼成して電極層と固体電解質層とからなる積層焼成体を形成する積層焼成体形成工程   (C) A laminated fired body forming step of firing a laminated molded body to form a laminated fired body comprising an electrode layer and a solid electrolyte layer

(D)第1の高分子材料の分解温度が第2の高分子材料の分解温度よりも高い。   (D) The decomposition temperature of the first polymer material is higher than the decomposition temperature of the second polymer material.

本発明のもう一つの局面に従った全固体電池の製造方法は、以下の工程と特徴を備える。   The manufacturing method of the all-solid-state battery according to another aspect of the present invention includes the following steps and features.

(E)正極活物質または負極活物質のいずれかの電極活物質と第1の高分子材料とを含む第1の固液混合物を作製する工程   (E) The process of producing the 1st solid-liquid mixture containing the electrode active material of either a positive electrode active material or a negative electrode active material, and a 1st polymeric material.

(F)固体電解質と第2の高分子材料とを含む第2の固液混合物を作製する工程   (F) The process of producing the 2nd solid-liquid mixture containing a solid electrolyte and a 2nd polymeric material

(G)第1の固液混合物から第1の成形体を形成する工程   (G) The process of forming a 1st molded object from a 1st solid-liquid mixture.

(H)第2の固液混合物から第2の成形体を形成する工程   (H) Step of forming a second molded body from the second solid-liquid mixture

(I)第1の成形体を焼成して電極層を形成する工程   (I) A step of firing the first molded body to form an electrode layer

(J)第2の成形体を焼成して固体電解質層を形成する工程   (J) A step of firing the second molded body to form a solid electrolyte layer

(D)第1の高分子材料の分解温度が前記第2の高分子材料の分解温度よりも高い。   (D) The decomposition temperature of the first polymer material is higher than the decomposition temperature of the second polymer material.

本発明のもう一つの局面に従った全固体電池の製造方法において、第1の成形体を形成する工程(G)が、固体電解質層に第1の固液混合物を塗工して固体電解質層と第1の成形体の積層体を形成することを含み、第1の成形体を焼成して電極層を形成する工程(I)が、固体電解質層と第1の成形体の積層体を焼成して固体電解質層と電極層とからなる積層焼成体を形成することを含むようにしてもよい。   In the method for manufacturing an all-solid battery according to another aspect of the present invention, the step (G) of forming the first molded body includes applying the first solid-liquid mixture to the solid electrolyte layer and then solid electrolyte layer. Forming a laminated body of the first molded body and firing the first molded body to form an electrode layer (I) firing the laminated body of the solid electrolyte layer and the first molded body. And forming a laminated fired body composed of a solid electrolyte layer and an electrode layer.

また、本発明のもう一つの局面に従った全固体電池の製造方法において、第1の成形体を形成する工程(G)が、第2の成形体に第1の固液混合物を塗工して第1の成形体と第2の成形体とからなる積層成形体を形成することを含み、第1の成形体を焼成して電極層を形成する工程(I)と、第2の成形体を焼成して固体電解質層を形成する工程(J)とが、上記の積層成形体を焼成して固体電解質層と電極層とからなる積層焼成体を形成することを含むようにしてもよい。   Moreover, in the method for producing an all-solid battery according to another aspect of the present invention, the step (G) of forming the first molded body applies the first solid-liquid mixture to the second molded body. Forming a laminated molded body comprising the first molded body and the second molded body, firing the first molded body to form an electrode layer (I), and the second molded body The step (J) of forming a solid electrolyte layer by firing the substrate may include firing the laminated molded body to form a laminated fired body including the solid electrolyte layer and the electrode layer.

本発明の別の局面に従った全固体電池の製造方法は、以下の工程と特徴を備える。   The manufacturing method of the all-solid-state battery according to another situation of this invention is equipped with the following processes and characteristics.

(K)正極活物質と第1の高分子材料とを含む正極用固液混合物を作製する工程   (K) The process of producing the solid-liquid mixture for positive electrodes containing a positive electrode active material and a 1st polymeric material.

(L)負極活物質と第1の高分子材料とを含む負極用固液混合物を作製する工程   (L) The process of producing the solid-liquid mixture for negative electrodes containing a negative electrode active material and a 1st polymeric material.

(M)固体電解質と第2の高分子材料とを含む固体電解質用固液混合物を作製する工程   (M) The process of producing the solid-liquid mixture for solid electrolytes containing a solid electrolyte and a 2nd polymer material

(N)正極用固液混合物または負極用固液混合物のいずれか一方の電極用固液混合物を基材に塗工して基材と一方電極成形体とからなる第1の積層成形体を形成する工程   (N) A solid-liquid mixture for electrodes, either a solid-liquid mixture for positive electrodes or a solid-liquid mixture for negative electrodes, is applied to a substrate to form a first laminated molded body composed of the substrate and one-electrode molded body. Process

(O)第1の積層成形体を焼成して基材と一方電極焼成層とからなる第1の積層焼成体を形成する工程   (O) A step of firing the first laminated molded body to form a first laminated fired body comprising a base material and one electrode fired layer.

(P)第1の積層焼成体に固体電解質用固液混合物を塗工して第1の積層焼成体と固体電解質成形体とからなる第2の積層成形体を形成する工程   (P) A step of applying a solid-liquid mixture for solid electrolyte to the first laminated fired body to form a second laminated molded body comprising the first laminated fired body and the solid electrolyte molded body.

(Q)第2の積層成形体を焼成して基材と一方電極焼成層と固体電解質層とからなる第2の積層焼成体を形成する工程   (Q) A step of firing the second laminated molded body to form a second laminated fired body comprising a substrate, one electrode fired layer, and a solid electrolyte layer.

(R)正極用固液混合物または負極用固液混合物のいずれか他方の電極用固液混合物を第2の積層焼成体に塗工して第2の積層焼成体と他方電極成形体とからなる第3の積層成形体を形成する工程   (R) A solid-liquid mixture for positive electrode or a solid-liquid mixture for negative electrode, which is the other solid-liquid mixture for electrode, is applied to the second laminated fired body, and consists of the second laminated fired body and the other electrode molded body. Step of forming the third laminated molded body

(S)第3の積層成形体を焼成して正極層と固体電解質層と負極層とからなる積層焼成体を形成する工程   (S) A step of firing the third laminated molded body to form a laminated fired body comprising a positive electrode layer, a solid electrolyte layer, and a negative electrode layer.

(D)第1の高分子材料の分解温度が第2の高分子材料の分解温度よりも高い。   (D) The decomposition temperature of the first polymer material is higher than the decomposition temperature of the second polymer material.

本発明の全固体電池の製造方法において、固液混合物は、スラリー、ペースト、および、コロイドからなる群より選ばれた一つの形態であればよい。   In the manufacturing method of the all-solid-state battery of this invention, a solid-liquid mixture should just be one form chosen from the group which consists of a slurry, a paste, and a colloid.

本発明の全固体電池の製造方法において、成形体は、グリーンシートおよび膜からなる群より選ばれた一つの形態であればよい。   In the method for producing an all solid state battery of the present invention, the molded body may be in one form selected from the group consisting of a green sheet and a film.

本発明の全固体電池の製造方法において、第1の高分子材料の分解温度と第2の高分子材料の分解温度との差は、50℃以上500℃以下であることが好ましく、50℃以上200℃以下であることがより好ましい。   In the method for producing an all solid state battery of the present invention, the difference between the decomposition temperature of the first polymer material and the decomposition temperature of the second polymer material is preferably 50 ° C. or more and 500 ° C. or less, preferably 50 ° C. or more. More preferably, it is 200 ° C. or lower.

また、第1の高分子材料と第2の高分子材料は、ポリビニルアセタール樹脂、セルロース、アクリル樹脂およびウレタン樹脂からなる群より選ばれた少なくとも1種を含むことが好ましい。   Moreover, it is preferable that a 1st polymeric material and a 2nd polymeric material contain at least 1 sort (s) chosen from the group which consists of a polyvinyl acetal resin, a cellulose, an acrylic resin, and a urethane resin.

さらに、第1の成形体における第1の高分子材料と第2の成形体における第2の高分子材料のそれぞれの重量含有比率は、無機材料100重量部に対して5重量部以上35重量部以下であることが好ましい。   Furthermore, the weight content ratio of the first polymer material in the first molded body and the second polymer material in the second molded body is 5 parts by weight or more and 35 parts by weight with respect to 100 parts by weight of the inorganic material. The following is preferable.

本発明の全固体電池の製造方法において形成される積層焼成体は、正極層、固体電解質層および負極層を積層した単電池構造の積層焼成体を含んでもよい。   The laminated fired body formed in the method for producing an all-solid battery of the present invention may include a laminated fired body having a single battery structure in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are laminated.

さらに、積層焼成体は、集電体層を介在させて、単電池構造の積層焼成体を複数個、積層した積層焼成体を含んでもよい。   Furthermore, the laminated fired body may include a laminated fired body in which a plurality of laminated fired bodies having a single battery structure are stacked with a current collector layer interposed.

本発明の全固体電池の製造方法において、正極層、固体電解質層および負極層からなる群より選ばれた少なくとも一つの層を形成する材料は、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質を含むことが好ましい。   In the method for producing an all-solid battery of the present invention, the material forming at least one layer selected from the group consisting of a positive electrode layer, a solid electrolyte layer and a negative electrode layer is a solid electrolyte comprising a lithium-containing phosphate compound having a NASICON structure It is preferable to contain.

本発明の全固体電池の製造方法において、正極層および負極層からなる群より選ばれた少なくとも一つの層を形成する材料は、リチウム含有リン酸化合物からなる電極活物質を含むことが好ましい。   In the method for producing an all-solid battery of the present invention, the material forming at least one layer selected from the group consisting of a positive electrode layer and a negative electrode layer preferably contains an electrode active material made of a lithium-containing phosphate compound.

本発明の全固体電池の製造方法において、第1および第2の高分子材料の分子量は10000以上であることが好ましい。   In the method for producing an all solid state battery of the present invention, the molecular weight of the first and second polymer materials is preferably 10,000 or more.

本発明に従った全固体電池は、上述の特徴を備えた製造方法によって製造されたものである。   The all solid state battery according to the present invention is manufactured by a manufacturing method having the above-described characteristics.

本発明の全固体電池用積層成形体を焼成して全固体電池を製造すると、正極層または負極層では導電剤の燃焼を抑制することができるとともに、緻密な固体電解質層を形成することができるので、放電容量等の電池特性を高めることができる。   When an all-solid battery is produced by firing the laminate for an all-solid battery of the present invention, combustion of the conductive agent can be suppressed and a dense solid electrolyte layer can be formed in the positive electrode layer or the negative electrode layer. Therefore, battery characteristics such as discharge capacity can be improved.

本発明の製造方法が適用される一つの実施形態としての全固体電池の断面構造を模式的に示す断面図である。It is sectional drawing which shows typically the cross-section of the all-solid-state battery as one embodiment with which the manufacturing method of this invention is applied. 本発明の製造方法が適用されるもう一つの実施形態としての全固体電池の断面構造を模式的に示す断面図である。It is sectional drawing which shows typically the cross-section of the all-solid-state battery as another embodiment with which the manufacturing method of this invention is applied.

図1に示すように、本発明の製造方法が適用される一つの実施の形態としての全固体電池の積層体10は、正極層1と固体電解質層2と負極層3とからなる単電池で構成される。固体電解質層2の一方面に正極層1が配置され、固体電解質層2の一方面と反対側の他方面に負極層3が配置されている。いいかえれば、正極層1と負極層3とは、固体電解質層2を介して互いに対向する位置に設けられている。   As shown in FIG. 1, a laminate 10 of an all-solid battery as one embodiment to which the manufacturing method of the present invention is applied is a single battery composed of a positive electrode layer 1, a solid electrolyte layer 2, and a negative electrode layer 3. Composed. The positive electrode layer 1 is disposed on one surface of the solid electrolyte layer 2, and the negative electrode layer 3 is disposed on the other surface opposite to the one surface of the solid electrolyte layer 2. In other words, the positive electrode layer 1 and the negative electrode layer 3 are provided at positions facing each other with the solid electrolyte layer 2 interposed therebetween.

図2に示すように、本発明の製造方法が適用されるもう一つの実施の形態としての全固体電池の積層体20では、正極層1と固体電解質層2と負極層3とから構成される単電池が複数個、たとえば2個、集電体層4を介して直列に接続されている。全固体電池の積層体20の内部に配置される集電体層4は、正極層1と負極層3との間に設けられている。   As shown in FIG. 2, an all-solid battery laminate 20 as another embodiment to which the manufacturing method of the present invention is applied includes a positive electrode layer 1, a solid electrolyte layer 2, and a negative electrode layer 3. A plurality of, for example, two unit cells are connected in series via the current collector layer 4. The current collector layer 4 disposed inside the laminate 20 of the all solid state battery is provided between the positive electrode layer 1 and the negative electrode layer 3.

なお、正極層1と負極層3のそれぞれは固体電解質と電極活物質とを含み、固体電解質層2は固体電解質を含む。正極層1と負極層3の少なくとも一方は、導電剤として、炭素等を含む。   Each of the positive electrode layer 1 and the negative electrode layer 3 includes a solid electrolyte and an electrode active material, and the solid electrolyte layer 2 includes a solid electrolyte. At least one of the positive electrode layer 1 and the negative electrode layer 3 contains carbon or the like as a conductive agent.

上記のように構成された全固体電池の積層体10、20を製造するために用いられる全固体電池用積層成形体は、正極活物質または負極活物質のいずれかの電極活物質と第1の高分子材料とを含む第1の成形体と、第1の成形体に積層され、固体電解質と第2の高分子材料とを含む第2の成形体とを備える。第1の高分子材料の分解温度が第2の高分子材料の分解温度よりも高い。   The all-solid battery laminate molded body used for producing the all-solid battery laminates 10 and 20 configured as described above includes an electrode active material of either a positive electrode active material or a negative electrode active material and a first active material. A first molded body including a polymer material; and a second molded body stacked on the first molded body and including a solid electrolyte and a second polymer material. The decomposition temperature of the first polymer material is higher than the decomposition temperature of the second polymer material.

上記のように構成された全固体電池の積層体10、20を製造するために、本発明の一つの局面では、まず、正極活物質または負極活物質のいずれかの電極活物質と第1の高分子材料とを含む第1の成形体と、固体電解質と第2の高分子材料とを含む第2の成形体とを作製する(成形体作製工程)。次に、第1の成形体と第2の成形体とを積層して積層成形体を形成する(積層成形体形成工程)。そして、得られた積層成形体を焼成して電極層と固体電解質層とからなる積層焼成体を形成する(積層焼成体形成工程)。このようにして、固液混合物から成形体を形成し、正極層1、固体電解質層2および負極層3の成形体を積層して積層成形体を形成し、この積層成形体を焼成することにより、正極層1と固体電解質層2と負極層3の積層焼成体を形成してもよい。   In order to manufacture the all-solid-state battery laminates 10 and 20 configured as described above, in one aspect of the present invention, first, an electrode active material of either the positive electrode active material or the negative electrode active material and the first A first molded body including the polymer material and a second molded body including the solid electrolyte and the second polymer material are manufactured (molded body manufacturing step). Next, the first molded body and the second molded body are laminated to form a laminated molded body (laminated molded body forming step). Then, the obtained laminated molded body is fired to form a laminated fired body including an electrode layer and a solid electrolyte layer (laminated fired body forming step). In this way, a molded body is formed from the solid-liquid mixture, the molded body of the positive electrode layer 1, the solid electrolyte layer 2 and the negative electrode layer 3 is laminated to form a laminated molded body, and this laminated molded body is fired. Alternatively, a laminated fired body of the positive electrode layer 1, the solid electrolyte layer 2, and the negative electrode layer 3 may be formed.

あるいは、上記のように構成された全固体電池の積層体10、20を製造するために、本発明のもう一つの局面では、まず、正極活物質または負極活物質のいずれかの電極活物質と第1の高分子材料とを含む第1の固液混合物を作製する。次に、固体電解質と第2の高分子材料とを含む第2の固液混合物を作製する。そして、得られた第1の固液混合物から第1の成形体を形成する。得られた第2の固液混合物から第2の成形体を形成する。さらに、得られた第1の成形体を焼成して電極層、すなわち、正極層1と負極層3を形成する。得られた第2の成形体を焼成して固体電解質層2を形成する。このようにして、固液混合物から成形体を形成し、得られた成形体を焼成することにより、正極層1、固体電解質層2および負極層3のそれぞれの焼成体を形成してもよい。   Or in order to manufacture the laminated bodies 10 and 20 of the all-solid-state battery comprised as mentioned above, in another aspect of this invention, first, either the electrode active material of a positive electrode active material or a negative electrode active material and A first solid-liquid mixture containing the first polymer material is prepared. Next, a second solid-liquid mixture containing the solid electrolyte and the second polymer material is prepared. And a 1st molded object is formed from the obtained 1st solid-liquid mixture. A second molded body is formed from the obtained second solid-liquid mixture. Furthermore, the obtained 1st molded object is baked and the electrode layer, ie, the positive electrode layer 1, and the negative electrode layer 3, is formed. The obtained 2nd molded object is baked and the solid electrolyte layer 2 is formed. Thus, you may form each sintered compact of the positive electrode layer 1, the solid electrolyte layer 2, and the negative electrode layer 3 by forming a molded object from a solid-liquid mixture and baking the obtained molded object.

なお、成形体は、グリーンシートおよび膜からなる群より選ばれた一つの形態であればよい。固液混合物は、スラリー、ペーストおよびコロイドからなる群より選ばれた一つの形態であればよい。   In addition, a molded object should just be one form chosen from the group which consists of a green sheet and a film | membrane. The solid-liquid mixture may be in one form selected from the group consisting of slurry, paste and colloid.

本発明のもう一つの局面に従った全固体電池の製造方法では、第1の成形体を形成する工程が、固体電解質層に第1の固液混合物を塗工して固体電解質層と第1の成形体の積層体を形成することを含み、第1の成形体を焼成して電極層を形成する工程が、固体電解質層と第1の成形体の積層体を焼成して固体電解質層と電極層とからなる積層焼成体を形成することを含むようにしてもよい。   In the method for producing an all-solid battery according to another aspect of the present invention, the step of forming the first molded body includes the step of applying the first solid-liquid mixture to the solid electrolyte layer and the first step. Forming the electrode body by firing the first compact, and firing the solid electrolyte layer and the first compact to form the solid electrolyte layer. You may make it include forming the laminated fired body which consists of an electrode layer.

具体的には、たとえば、まず、第2の固液混合物から第2の成形体としての固体電解質材料のグリーンシートを形成する。この固体電解質材料のグリーンシートを焼成して固体電解質層2を作製する。この固体電解質層2の一方面に第1の固液混合物としての正極材料のスラリーまたはペーストを塗工し、一方面と反対側の他方面に第1の固液混合物としての負極材料のスラリーまたはペーストを塗工して、第1の成形体としての正極塗工膜および負極塗工膜と固体電解質層2との積層体を形成する。そして、この積層体を焼成して正極層1と固体電解質層2と電極層3とからなる積層焼成体を形成してもよい。   Specifically, for example, first, a green sheet of a solid electrolyte material as a second molded body is formed from the second solid-liquid mixture. The green sheet of the solid electrolyte material is fired to produce the solid electrolyte layer 2. A slurry or paste of the positive electrode material as the first solid-liquid mixture is applied to one surface of the solid electrolyte layer 2, and the slurry of the negative electrode material as the first solid-liquid mixture is applied to the other surface opposite to the one surface. The paste is applied to form a positive electrode coating film as a first molded body and a laminate of the negative electrode coating film and the solid electrolyte layer 2. Then, the laminate may be fired to form a laminated fired body including the positive electrode layer 1, the solid electrolyte layer 2, and the electrode layer 3.

また、本発明のもう一つの局面に従った全固体電池の製造方法では、第1の成形体を形成する工程が、第2の成形体に第1の固液混合物を塗工して第1の成形体と第2の成形体とからなる積層成形体を形成することを含み、第1の成形体を焼成して電極層を形成する工程と、第2の成形体を焼成して固体電解質層を形成する工程とが、上記の積層成形体を焼成して固体電解質層と電極層とからなる積層焼成体を形成することを含むようにしてもよい。   In the all-solid-state battery manufacturing method according to another aspect of the present invention, the step of forming the first molded body includes the first solid-liquid mixture applied to the second molded body. Forming a laminated molded body composed of the molded body and the second molded body, firing the first molded body to form an electrode layer, firing the second molded body, and solid electrolyte The step of forming a layer may include firing the laminated molded body to form a laminated fired body including a solid electrolyte layer and an electrode layer.

具体的には、たとえば、まず、第2の固液混合物から第2の成形体としての固体電解質材料のグリーンシートを形成する。この固体電解質材料のグリーンシートの一方面に第1の固液混合物としての正極材料のスラリーまたはペーストを塗工し、一方面と反対側の他方面に第1の固液混合物としての負極材料のスラリーまたはペーストを塗工して、第1の成形体としての正極塗工膜および負極塗工膜と第2の成形体としての固体電解質のグリーンシートとの積層成形体を形成する。そして、この積層成形体を焼成して正極層1と固体電解質層2と負極層3とからなる積層焼成体を形成してもよい。   Specifically, for example, first, a green sheet of a solid electrolyte material as a second molded body is formed from the second solid-liquid mixture. The positive electrode material slurry or paste as the first solid-liquid mixture is applied to one surface of the green sheet of the solid electrolyte material, and the negative electrode material as the first solid-liquid mixture is applied to the other surface opposite to the one surface. The slurry or paste is applied to form a positive electrode coating film as a first molded body and a laminated molded body of a negative electrode coating film and a solid electrolyte green sheet as a second molded body. Then, the multilayer molded body may be fired to form a multilayer fired body including the positive electrode layer 1, the solid electrolyte layer 2, and the negative electrode layer 3.

あるいは、固体電解質材料のグリーンシートの一方面に第1の固液混合物としての正極材料のスラリーまたはペーストを塗工し、第1の成形体としての正極塗工膜と第2の成形体としての固体電解質のグリーンシートとの積層成形体を形成する。そして、この積層成形体を焼成して正極層1と固体電解質層2とからなる積層焼成体を形成してもよい。この場合、固体電解質層2の一方面と反対側の他方面には、負極層3として合金等の金属箔を固着してもよい。   Alternatively, a positive electrode material slurry or paste as a first solid-liquid mixture is applied to one surface of a solid electrolyte material green sheet, and a positive electrode coating film as a first molded body and a second molded body as A laminated molded body with a solid electrolyte green sheet is formed. And this laminated molded body may be fired to form a laminated fired body comprising the positive electrode layer 1 and the solid electrolyte layer 2. In this case, a metal foil such as an alloy may be fixed as the negative electrode layer 3 on the other surface opposite to the one surface of the solid electrolyte layer 2.

さらに、本発明の別の局面に従った全固体電池の製造方法では、まず、正極活物質と第1の高分子材料とを含む正極用固液混合物を作製する。負極活物質と第1の高分子材料とを含む負極用固液混合物を作製する。固体電解質と第2の高分子材料とを含む固体電解質用固液混合物を作製する。得られた正極用固液混合物または負極用固液混合物のいずれか一方の電極用固液混合物を基材に塗工して基材と一方電極成形体とからなる第1の積層成形体を形成する。第1の積層成形体を焼成して基材と一方電極焼成層とからなる第1の積層焼成体を形成する。次に、第1の積層焼成体に固体電解質用固液混合物を塗工して第1の積層焼成体と固体電解質成形体とからなる第2の積層成形体を形成する。さらに、第2の積層成形体を焼成して基材と一方電極焼成層と固体電解質層とからなる第2の積層焼成体を形成する。そして、得られた正極用固液混合物または負極用固液混合物のいずれか他方の電極用固液混合物を第2の積層焼成体に塗工して第2の積層焼成体と他方電極成形体とからなる第3の積層成形体を形成する。最後に、第3の積層成形体を焼成して正極層と固体電解質層と負極層とからなる積層焼成体を形成する。このようにして、正極層1、固体電解質層2および負極層3の各層を、順次、塗工し、焼成して積層することにより、形成してもよい。   Furthermore, in the method for producing an all-solid battery according to another aspect of the present invention, first, a solid-liquid mixture for a positive electrode including a positive electrode active material and a first polymer material is prepared. A solid-liquid mixture for negative electrode containing a negative electrode active material and a first polymer material is prepared. A solid-liquid mixture for solid electrolyte containing the solid electrolyte and the second polymer material is prepared. Either the obtained solid-liquid mixture for positive electrode or solid-liquid mixture for negative electrode is applied to the base material to form a first laminated molded body composed of the base material and the one-electrode molded body. To do. The first laminated molded body is fired to form a first laminated fired body including a base material and one electrode fired layer. Next, a solid-liquid mixture for solid electrolyte is applied to the first laminated fired body to form a second laminated molded body composed of the first laminated fired body and the solid electrolyte molded body. Further, the second laminated molded body is fired to form a second laminated fired body composed of the base material, the one electrode fired layer, and the solid electrolyte layer. Then, either the obtained solid-liquid mixture for positive electrode or solid-liquid mixture for negative electrode is applied to the second laminated fired body, and the second laminated fired body, the other electrode molded body, A third laminated molded body is formed. Finally, the third laminated molded body is fired to form a laminated fired body including a positive electrode layer, a solid electrolyte layer, and a negative electrode layer. In this way, the positive electrode layer 1, the solid electrolyte layer 2, and the negative electrode layer 3 may be formed by sequentially coating, firing, and laminating.

具体的には、たとえば、まず、ポリエチレンテレフタレート(PET)等の基材の上に正極材料のペーストを塗工し、焼成することにより正極層1を形成する。得られた正極層1の上に、固体電解質材料のペーストを塗工し、焼成することにより固体電解質層2を形成する。得られた固体電解質層2の上に負極材料のペーストを塗工し、焼成することにより負極層3を形成する。このようにして、正極層1と固体電解質層2と負極層3とからなる積層焼成体を形成してもよい。この場合、基材の上に負極層3を先に形成してもよい。   Specifically, for example, first, the positive electrode layer 1 is formed by applying a paste of a positive electrode material on a base material such as polyethylene terephthalate (PET) and baking it. The solid electrolyte layer 2 is formed by applying a paste of a solid electrolyte material on the obtained positive electrode layer 1 and baking it. A negative electrode material paste is applied on the obtained solid electrolyte layer 2 and baked to form the negative electrode layer 3. In this way, a laminated fired body composed of the positive electrode layer 1, the solid electrolyte layer 2, and the negative electrode layer 3 may be formed. In this case, you may form the negative electrode layer 3 previously on a base material.

なお、本発明のさらに別の局面に従った全固体電池の製造方法では、まず、正極活物質と第1の高分子材料とを含む正極用固液混合物を作製する。負極活物質と第1の高分子材料とを含む負極用固液混合物を作製する。固体電解質と第2の高分子材料とを含む固体電解質用固液混合物を作製する。得られた固体電解質用固液混合物を成形し、焼成することにより、固体電解質層2を形成する。得られた正極用固液混合物または負極用固液混合物のいずれか一方の電極用固液混合物を成形することにより、一方電極成形体を形成する。一方電極成形体を固体電解質層の一方面の上に積層して積層体を形成する。この積層体を焼成することにより、固体電解質層と一方電極焼成層とからなる積層焼成体を形成する。得られた正極用固液混合物または負極用固液混合物のいずれか他方の電極用固液混合物を成形することにより、他方電極成形体を形成する。他方電極成形体を固体電解質層の一方面と反対側の他方面の上に積層して積層体を形成する。この積層体を焼成することにより、正極層1と固体電解質層2と負極層3とからなる積層焼成体を形成してもよい。このようにして、正極層1、固体電解質層2および負極層3の焼成前の各成形体を、順次、積層し、焼成することにより、積層焼成体を形成してもよい。   In the all-solid battery manufacturing method according to still another aspect of the present invention, first, a solid-liquid mixture for a positive electrode including a positive electrode active material and a first polymer material is prepared. A solid-liquid mixture for negative electrode containing a negative electrode active material and a first polymer material is prepared. A solid-liquid mixture for solid electrolyte containing the solid electrolyte and the second polymer material is prepared. The solid electrolyte layer 2 is formed by shaping and firing the obtained solid-liquid mixture for solid electrolyte. One electrode molded body is formed by molding any one of the obtained solid-liquid mixture for positive electrode or solid-liquid mixture for negative electrode. On the other hand, an electrode compact is laminated on one surface of the solid electrolyte layer to form a laminate. By firing this laminated body, a laminated fired body comprising a solid electrolyte layer and one electrode fired layer is formed. The other electrode molded body is formed by molding either the obtained solid-liquid mixture for positive electrode or solid-liquid mixture for negative electrode, which is the other solid-liquid mixture for electrode. The other electrode molded body is laminated on the other surface opposite to the one surface of the solid electrolyte layer to form a laminate. By firing this laminate, a laminate fired body composed of the positive electrode layer 1, the solid electrolyte layer 2, and the negative electrode layer 3 may be formed. In this way, a laminated fired body may be formed by sequentially laminating and firing the compacts of the positive electrode layer 1, the solid electrolyte layer 2, and the negative electrode layer 3 before firing.

本発明の全固体電池の製造方法について種々説明したが、本発明の全固体電池の製造方法は上述した製造方法に限定されるものではない。   Although the various manufacturing methods of the all-solid-state battery of the present invention have been described, the manufacturing method of the all-solid-state battery of the present invention is not limited to the above-described manufacturing method.

上述したように、本発明の全固体電池用積層成形体は、正極層1、固体電解質層2および負極層3のそれぞれの焼成前の成形体を積層した構造を有する。正極層1または負極層3の少なくともいずれかの焼成前の成形体に含まれる第1の高分子材料の種類と、固体電解質層2の焼成前の成形体に含まれる第2の高分子材料の種類とが異なる。また、第1の高分子材料の分解温度は第2の高分子材料の分解温度よりも高い。これにより、正極層1または負極層3では、高分子材料の残渣を優先的に残存させることができ、粒子同士のネッキングと導電剤の燃焼とを抑制することができる。一方、固体電解質層2では、イオン伝導性を阻害する高分子材料の残渣、高分子材料除去後の空孔、等を抑制することができ、緻密な固体電解質層を形成することができるとともに、さらに高分子材料の残渣による内部短絡を抑制することができる。したがって、本発明の全固体電池用積層成形体を焼成して全固体電池を製造すると、放電容量等の電池特性を高めることができる。   As described above, the all-solid-state battery laminate formed body of the present invention has a structure in which the respective pre-fired formed bodies of the positive electrode layer 1, the solid electrolyte layer 2, and the negative electrode layer 3 are laminated. The kind of the first polymer material contained in the molded body before firing of at least one of the positive electrode layer 1 and the negative electrode layer 3, and the second polymer material contained in the molded body before firing of the solid electrolyte layer 2 The type is different. The decomposition temperature of the first polymer material is higher than the decomposition temperature of the second polymer material. Thereby, in the positive electrode layer 1 or the negative electrode layer 3, a residue of the polymer material can be preferentially left, and necking between particles and burning of the conductive agent can be suppressed. On the other hand, in the solid electrolyte layer 2, it is possible to suppress the residue of the polymer material that inhibits ion conductivity, the voids after the removal of the polymer material, and the like, and to form a dense solid electrolyte layer, Furthermore, an internal short circuit due to a residue of the polymer material can be suppressed. Therefore, when the all-solid battery laminate molded body of the present invention is fired to produce an all-solid battery, battery characteristics such as discharge capacity can be improved.

本発明の全固体電池の製造方法において、第1の高分子材料の分解温度と第2の高分子材料の分解温度との差が、50℃以上500℃以下であることが好ましく、50℃以上200℃以下であることがより好ましい。   In the method for producing an all solid state battery of the present invention, the difference between the decomposition temperature of the first polymer material and the decomposition temperature of the second polymer material is preferably 50 ° C. or more and 500 ° C. or less, preferably 50 ° C. or more. More preferably, it is 200 ° C. or lower.

第1の高分子材料の分解温度と第2の高分子材料の分解温度との差が、50℃以上500℃以下であることにより、上記の効果をより顕著に得ることができる。より好ましくは、第1の高分子材料の分解温度と第2の高分子材料の分解温度との差が、50℃以上200度以下であることにより、必要最低限の高分子材料の残渣を用いて上記の効果を得ることができるため、焼成後に高分子材料の残渣を含む正極層または負極層においても、その緻密化を阻害されることがないので、全固体電池用積層成形体の焼結性を高めることができる。   When the difference between the decomposition temperature of the first polymer material and the decomposition temperature of the second polymer material is 50 ° C. or more and 500 ° C. or less, the above effect can be obtained more remarkably. More preferably, when the difference between the decomposition temperature of the first polymer material and the decomposition temperature of the second polymer material is 50 ° C. or higher and 200 ° C. or lower, the minimum necessary polymer material residue is used. Therefore, even in the positive electrode layer or the negative electrode layer containing a polymer material residue after firing, the densification of the positive electrode layer or the negative electrode layer is not hindered. Can increase the sex.

また、本発明の全固体電池の製造方法において、第1の高分子材料と第2の高分子材料は、ポリビニルアセタール樹脂、セルロース、アクリル樹脂およびウレタン樹脂からなる群より選ばれた少なくとも1種を含むことが好ましい。このような第1と第2の高分子材料を用いることにより、成形体を作製するためのスラリーまたはペーストにおいて分散性と粘性を両立させることができる。   In the method for producing an all-solid-state battery of the present invention, the first polymer material and the second polymer material are at least one selected from the group consisting of polyvinyl acetal resin, cellulose, acrylic resin, and urethane resin. It is preferable to include. By using such first and second polymer materials, it is possible to achieve both dispersibility and viscosity in a slurry or paste for producing a molded body.

さらに、本発明の全固体電池の製造方法において、第1の成形体における第1の高分子材料と第2の成形体における第2の高分子材料のそれぞれの重量含有比率は、無機材料100重量部に対して5重量部以上35重量部以下であることが好ましい。このように第1と第2の高分子材料の重量含有比率を限定することにより、成形体の機械的強度を維持し、成形体を積層する際に成形体間の密着性を維持することができる。   Furthermore, in the manufacturing method of the all-solid-state battery of this invention, each weight content ratio of the 1st polymeric material in a 1st molded object and the 2nd polymeric material in a 2nd molded object is 100 weight of inorganic materials. It is preferably 5 parts by weight or more and 35 parts by weight or less with respect to parts. Thus, by limiting the weight content ratio of the first and second polymer materials, the mechanical strength of the molded body can be maintained, and the adhesion between the molded bodies can be maintained when the molded bodies are laminated. it can.

なお、第1および第2の高分子材料の分子量が10000以上であることが好ましい。   The molecular weight of the first and second polymer materials is preferably 10,000 or more.

上記の積層焼成体は、正極層1、固体電解質層2および負極層3を積層して単電池構造の積層体10でもよく、集電体層4を介在させて、上記の単電池構造の積層体10を複数個、積層した積層体20でもよい。この場合、単電池構造の積層体10を複数個、電気的に直列または並列に積層してもよい。   The laminated fired body may be a single battery structure laminated body 10 by laminating the positive electrode layer 1, the solid electrolyte layer 2 and the negative electrode layer 3, and the single battery structure laminated body with the current collector layer 4 interposed therebetween. A laminated body 20 in which a plurality of bodies 10 are laminated may be used. In this case, a plurality of laminates 10 having a single cell structure may be stacked electrically in series or in parallel.

上記の成形体を形成する方法は特に限定されないが、ダイコーター、コンマコーター、スクリーン印刷等を使用することができる。成形体を積層する方法は特に限定されないが、熱間等方圧プレス、冷間等方圧プレス、静水圧プレス等を使用して成形体を積層することができる。   The method for forming the molded body is not particularly limited, but a die coater, a comma coater, screen printing, or the like can be used. The method of laminating the molded body is not particularly limited, but the molded body can be laminated using a hot isostatic press, a cold isostatic press, an isostatic press, or the like.

成形体を形成するための固液混合物は、高分子材料を溶剤に溶解した有機ビヒクルと、正極活物質、負極活物質、固体電解質または集電体材料とを湿式混合することによって作製することができる。湿式混合ではメディアを用いることができ、具体的には、ボールミル法、ビスコミル法等を用いることができる。一方、メディアを用いない湿式混合方法を用いてもよく、サンドミル法、高圧ホモジナイザー法、ニーダー分散法等を用いることができる。   A solid-liquid mixture for forming a molded body may be prepared by wet-mixing an organic vehicle in which a polymer material is dissolved in a solvent and a positive electrode active material, a negative electrode active material, a solid electrolyte, or a current collector material. it can. Media can be used in wet mixing, and specifically, a ball mill method, a viscomill method, or the like can be used. On the other hand, a wet mixing method that does not use media may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.

固液混合物は可塑剤を含んでもよい。可塑剤の種類は特に限定されないが、フタル酸ジオクチル、フタル酸ジイソノニル等のフタル酸エステル等を使用してもよい。   The solid-liquid mixture may contain a plasticizer. Although the kind of plasticizer is not particularly limited, phthalic acid esters such as dioctyl phthalate and diisononyl phthalate may be used.

焼成工程では、雰囲気は特に限定されないが、電極活物質に含まれる遷移金属の価数が変化しない条件で行うことが好ましい。   In the firing step, the atmosphere is not particularly limited, but it is preferably performed under conditions that do not change the valence of the transition metal contained in the electrode active material.

なお、本発明の製造方法が適用される全固体電池の積層体10、20の正極層1または負極層3に含まれる電極活物質の種類は限定されないが、正極活物質としては、Li32(PO43等のナシコン型構造を有するリチウム含有リン酸化合物、LiFePO4、LiMnPO4等のオリビン型構造を有するリチウム含有リン酸化合物、LiCoO2、LiCo1/3Ni1/3Mn1/32等の層状化合物、LiMn24、LiNi0.5Mn1.54等のスピネル型構造を有するリチウム含有化合物を用いることができる。In addition, although the kind of electrode active material contained in the positive electrode layer 1 or the negative electrode layer 3 of the laminated bodies 10 and 20 of the all-solid-state battery to which the manufacturing method of the present invention is applied is not limited, as the positive electrode active material, Li 3 V 2 (PO 4 ) 3 and other lithium-containing phosphate compounds having NASICON type structure, LiFePO 4 and LiMnPO 4 and other olivine-type phosphate compounds, LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1 A layered compound such as / 3 O 2 and a lithium-containing compound having a spinel structure such as LiMn 2 O 4 and LiNi 0.5 Mn 1.5 O 4 can be used.

負極活物質としては、MOx(MはTi、Si、Sn、Cr、Fe、NbおよびMoからなる群より選ばれた少なくとも1種以上の元素であり、xは0.9≦x≦2.0の範囲内の数値である)で表わされる組成を有する化合物を用いることができる。たとえば、TiO2とSiO2等の異なる元素Mを含むMOxで表わされる組成を有する2つ以上の活物質を混合した混合物を用いてもよい。また、負極活物質としては、黒鉛-リチウム化合物、Li‐Al等のリチウム合金、Li32(PO43、Li3Fe2(PO43、Li4Ti512等の酸化物等を用いることができる。As the negative electrode active material, MOx (M is at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, and x is 0.9 ≦ x ≦ 2.0. A compound having a composition represented by the following formula can be used. For example, it may be used a mixture prepared by mixing two or more active material having a composition represented by MOx containing different element M of such TiO 2 and SiO 2. As the negative electrode active material, graphite-lithium compounds, lithium alloys such as Li-Al, oxidation of Li 3 V 2 (PO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , Li 4 Ti 5 O 12, etc. A thing etc. can be used.

また、本発明の製造方法が適用される全固体電池の積層体10、20の正極層1、負極層3または固体電解質層2に含まれる固体電解質の種類は限定されないが、固体電解質としては、ナシコン型構造を有するリチウム含有リン酸化合物を用いることができる。ナシコン型構造を有するリチウム含有リン酸化合物は、化学式Lixy(PO43(化学式中、xは1≦x≦2、yは1≦y≦2の範囲内の数値であり、MはTi、Ge、Al、GaおよびZrからなる群より選ばれた1種以上の元素である)で表わされる。この場合、上記化学式においてPの一部をB、Si等で置換してもよい。たとえば、Li1.5Al0.5Ge1.5(PO43とLi1.2Al0.2Ti1.8(PO43等の異なる組成を有する2つ以上のナシコン型構造を有するリチウム含有リン酸化合物を混合した混合物を用いてもよい。Further, the type of solid electrolyte contained in the positive electrode layer 1, the negative electrode layer 3 or the solid electrolyte layer 2 of the laminates 10 and 20 of the all-solid battery to which the production method of the present invention is applied is not limited, A lithium-containing phosphate compound having a NASICON structure can be used. Lithium-containing phosphoric acid compound having a NASICON-type structure, the chemical formula Li x M y (PO 4) 3 ( Formula, x 1 ≦ x ≦ 2, y is a number in the range of 1 ≦ y ≦ 2, M Is one or more elements selected from the group consisting of Ti, Ge, Al, Ga and Zr). In this case, part of P in the above chemical formula may be substituted with B, Si, or the like. For example, a mixture obtained by mixing two or more Nasicon-type lithium-containing phosphate compounds having different compositions such as Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 is used. It may be used.

また、上記の固体電解質に用いられるナシコン型構造を有するリチウム含有リン酸化合物としては、ナシコン型構造を有するリチウム含有リン酸化合物の結晶相を含む化合物、または、熱処理によりナシコン型構造を有するリチウム含有リン酸化合物の結晶相を析出するガラスを用いてもよい。   The lithium-containing phosphate compound having a NASICON structure used in the solid electrolyte is a compound containing a crystal phase of a lithium-containing phosphate compound having a NASICON structure or a lithium-containing phosphate having a NASICON structure by heat treatment. You may use the glass which precipitates the crystal phase of a phosphoric acid compound.

なお、上記の固体電解質に用いられる材料としては、ナシコン型構造を有するリチウム含有リン酸化合物以外に、イオン伝導性を有し、電子伝導性が無視できるほど小さい材料を用いることが可能である。このような材料として、たとえば、ハロゲン化リチウム、窒化リチウム、リチウム酸素酸塩、および、これらの誘導体を挙げることができる。また、リン酸リチウム(Li3PO4)等のLi‐P‐O系化合物、リン酸リチウムに窒素が導入されたLIPON(LiPO4-xx)、Li4SiO4等のLi‐Si‐O系化合物、Li‐P‐Si‐O系化合物、Li‐V‐Si‐O系化合物、La0.51Li0.35TiO2.94、La0.55Li0.35TiO3、Li3xLa2/3-xTiO3等のぺロブスカイト型構造を有する化合物、Li、La、Zrを有するガーネット型構造を有する化合物等を挙げることができる。In addition, as a material used for said solid electrolyte, it is possible to use the material which has ion conductivity and is so small that electronic conductivity can be disregarded other than the lithium-containing phosphate compound which has a NASICON structure. Examples of such a material include lithium halide, lithium nitride, lithium oxyacid salt, and derivatives thereof. In addition, Li—PO compounds such as lithium phosphate (Li 3 PO 4 ), LIPON (LiPO 4−x N x ) in which nitrogen is introduced into lithium phosphate, Li—Si— such as Li 4 SiO 4 O-based compounds, Li-P-Si-O based compounds, Li-V-Si-O based compounds, La 0.51 Li 0.35 TiO 2.94 , La 0.55 Li 0.35 TiO 3 , Li 3x La 2 / 3-x TiO 3, etc. Examples thereof include compounds having a perovskite structure, compounds having a garnet structure having Li, La, and Zr.

本発明の製造方法が適用される全固体電池の積層体10、20の正極層1、固体電解質層2または負極層3の少なくとも一つの層を形成する材料が、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質を含むことが好ましい。この場合、全固体電池の電池動作に必須となる高いイオン伝導性を得ることができる。また、ナシコン型構造のリチウム含有リン酸化合物の組成を有するガラスまたはガラスセラミックスを固体電解質として用いると、焼成工程においてガラス相の粘性流動により、より緻密な焼結体を容易に得ることができるため、ガラスまたはガラスセラミックスの形態で固体電解質の出発原料を準備することが特に好ましい。   The material forming at least one of the positive electrode layer 1, the solid electrolyte layer 2 or the negative electrode layer 3 of the laminates 10 and 20 of the all-solid-state battery to which the manufacturing method of the present invention is applied is a lithium-containing phosphoric acid having a NASICON structure. It is preferable to include a solid electrolyte made of a compound. In this case, high ion conductivity that is essential for battery operation of an all-solid battery can be obtained. In addition, when glass or glass ceramics having a composition of a lithium-containing phosphate compound having a NASICON type structure is used as a solid electrolyte, a denser sintered body can be easily obtained due to the viscous flow of the glass phase in the firing step. It is particularly preferred to prepare the solid electrolyte starting material in the form of glass or glass ceramic.

また、本発明の製造方法が適用される全固体電池の積層体10、20の正極層1または負極層3の少なくとも一つの層を形成する材料が、リチウム含有リン酸化合物からなる電極活物質を含むことが好ましい。この場合、焼成工程において電極活物質が相変化すること、または、電極活物質が固体電解質と反応することをリン酸骨格の高い温度安定性により容易に抑制することができるため、全固体電池の容量を高くすることができる。また、リチウム含有リン酸化合物からなる電極活物質と、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質とを組み合わせて用いると、焼成工程において電極活物質と固体電解質との反応を抑制することができるとともに、両者の良好な接触を得ることができるため、上記のように電極活物質と固体電解質の材料を組み合わせて用いることが特に好ましい。   Moreover, the material which forms at least 1 layer of the positive electrode layer 1 or the negative electrode layer 3 of the laminated bodies 10 and 20 of the all-solid-state battery to which the manufacturing method of this invention is applied is an electrode active material which consists of a lithium containing phosphate compound. It is preferable to include. In this case, the phase change of the electrode active material in the firing step or the reaction of the electrode active material with the solid electrolyte can be easily suppressed by the high temperature stability of the phosphoric acid skeleton. The capacity can be increased. In addition, when an electrode active material composed of a lithium-containing phosphate compound and a solid electrolyte composed of a lithium-containing phosphate compound having a NASICON structure are used in combination, the reaction between the electrode active material and the solid electrolyte is suppressed in the firing step. It is particularly preferable to use a combination of the electrode active material and the solid electrolyte material as described above, since both of them can be obtained and good contact can be obtained.

さらに、本発明の製造方法が適用される全固体電池の積層体20の集電体層4は電子伝導材料を含む。電子伝導材料は、導電性酸化物、金属および炭素材料からなる群より選ばれた少なくとも一種を含むことが好ましい。   Furthermore, the current collector layer 4 of the laminate 20 of the all solid state battery to which the manufacturing method of the present invention is applied contains an electron conductive material. The electron conductive material preferably contains at least one selected from the group consisting of conductive oxides, metals and carbon materials.

次に、本発明の実施例を具体的に説明する。なお、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。   Next, examples of the present invention will be specifically described. In addition, the Example shown below is an example and this invention is not limited to the following Example.

以下、本発明の製造方法に従って作製された全固体電池の実施例1〜5と比較例について説明する。   Hereinafter, Examples 1 to 5 and Comparative Examples of all solid state batteries manufactured according to the manufacturing method of the present invention will be described.

(有機ビヒクルの作製)   (Production of organic vehicle)

まず、溶剤100重量部に、バインダーとして、以下の表1に示す分解温度が異なる各種の高分子材料を20重量部溶解した有機ビヒクルを作製した。高分子材料の分解温度は、セイコーインスツル株式会社製の示差熱熱重量同時測定装置(型番:TG‐DTA7200)を用いて、高分子材料の重量減少率が95%を越える温度にて判断した。ウレタンAとして重量平均分子量が60,000のウレタン樹脂、ウレタンBとして重量平均分子量200,000のウレタン樹脂を使用した。   First, an organic vehicle was prepared by dissolving 20 parts by weight of various polymer materials having different decomposition temperatures shown in Table 1 below as binders in 100 parts by weight of a solvent. The decomposition temperature of the polymer material was judged at a temperature at which the weight loss rate of the polymer material exceeded 95% using a differential thermothermal gravimetric simultaneous measurement device (model number: TG-DTA7200) manufactured by Seiko Instruments Inc. . A urethane resin having a weight average molecular weight of 60,000 was used as urethane A, and a urethane resin having a weight average molecular weight of 200,000 was used as urethane B.

Figure 0005556969
Figure 0005556969

(スラリーの作製)   (Preparation of slurry)

固体電解質としてのナシコン型構造のリチウムゲルマニウム含有リン酸化合物(LAGP:Li1.5Al0.5Ge1.5(PO43)のガラス粉末50重量部と、電極活物質としてのLi32(PO43の結晶相を有する粉末45重量部と、導電剤としての炭素粉末5重量部と、以下の表2に示す高分子材料Aを含むように上記で作製された有機ビヒクル120重量部とを、直径が1mmのジルコニア製の球形メディアとともに容器に封入して容器を回転させた後、球形メディアを取り出し、電極スラリーを作製した。50 parts by weight of a glass powder of a lithium germanium-containing phosphate compound (LAGP: Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ) having a NASICON type structure as a solid electrolyte, and Li 3 V 2 (PO 4 ) as an electrode active material 45 parts by weight of a powder having a crystal phase of 3 , 5 parts by weight of carbon powder as a conductive agent, and 120 parts by weight of an organic vehicle prepared as described above so as to include the polymer material A shown in Table 2 below. A spherical medium made of zirconia having a diameter of 1 mm was enclosed in a container and the container was rotated, and then the spherical medium was taken out to prepare an electrode slurry.

固体電解質としてのLAGPガラス粉末100重量部と、以下の表2に示す高分子材料Bを含むように上記で作製された有機ビヒクル120重量部とを、直径が1mmのジルコニア製の球形メディアとともに容器に封入して容器を回転させた後、球形メディアを取り出し、固体電解質スラリーを作製した。   A container containing 100 parts by weight of LAGP glass powder as a solid electrolyte and 120 parts by weight of an organic vehicle prepared as described above so as to contain the polymer material B shown in Table 2 below, together with a zirconia spherical medium having a diameter of 1 mm After enclosing in and rotating the container, the spherical media was taken out to produce a solid electrolyte slurry.

なお、表2に、高分子材料の分解温度差(=(高分子材料Aの分解温度Ta)−(高分子材料Bの分解温度Tb))を示す。   Table 2 shows the difference in decomposition temperature of the polymer material (= (decomposition temperature Ta of polymer material A) − (decomposition temperature Tb of polymer material B)).

Figure 0005556969
Figure 0005556969

(グリーンシート作製工程)   (Green sheet production process)

電極スラリーのそれぞれを、ドクターブレード法を用いてポリエチレンテレフタレート(PET)フィルムの上に塗工し、厚みが50μmのシート状に成形し、直径が10mmの円板状に打ち抜くことにより、電極グリーンシートを作製した。   Each electrode slurry is coated on a polyethylene terephthalate (PET) film using a doctor blade method, formed into a sheet having a thickness of 50 μm, and punched into a disk having a diameter of 10 mm. Was made.

固体電解質スラリーを、ドクターブレード法を用いてPETフィルムの上に塗工し、厚みが30μmのシート状に成形し、直径が11mmの円板状に打ち抜くことにより、固体電解質グリーンシートを作製した。   The solid electrolyte slurry was coated on a PET film using a doctor blade method, formed into a sheet having a thickness of 30 μm, and punched into a disk having a diameter of 11 mm, thereby producing a solid electrolyte green sheet.

(積層体形成工程)   (Laminate formation process)

PETフィルムから剥離した固体電解質グリーンシートを4枚重ねて積層し、60℃の温度で加圧して圧着することによって固体電解質層を形成した。固体電解質グリーンシートを複数枚積層した理由は、焼成後の固体電解質層に十分な機械的強度を与えて、後述する工程における固体電解質層のハンドリングを容易にするためであり、固体電解質グリーンシートを複数枚積層しないで、固体電解質層を形成しても特に問題はない。   Four solid electrolyte green sheets peeled from the PET film were stacked and laminated, and a solid electrolyte layer was formed by pressurizing and pressure bonding at a temperature of 60 ° C. The reason for laminating a plurality of solid electrolyte green sheets is to give sufficient mechanical strength to the solid electrolyte layer after firing to facilitate the handling of the solid electrolyte layer in the process described later. There is no particular problem even if a solid electrolyte layer is formed without stacking a plurality of sheets.

PETフィルムから剥離した1枚の電極グリーンシートを、上記で得られた固体電解質層の片面に積層し、60℃の温度で加圧して圧着することにより、正極層を形成した。同様の方法で固体電解質層の反対側の面に2枚の電極シートを圧着することにより、負極層を形成した。このようにして、全固体電池用グリーンシート積層体を作製した。   One electrode green sheet exfoliated from the PET film was laminated on one side of the solid electrolyte layer obtained above, and pressed at a temperature of 60 ° C. for pressure bonding to form a positive electrode layer. A negative electrode layer was formed by pressure-bonding two electrode sheets to the opposite surface of the solid electrolyte layer in the same manner. Thus, the green sheet laminated body for all-solid-state batteries was produced.

なお、正極層と負極層において使用される電極シートの枚数に違いがある理由は、Li32(PO43を、正極活物質として用いた場合と負極活物質として用いた場合では、Li32(PO43の単位重量(グラム)当たりの容量が約2倍異なることを考慮したためである。なお、正極層と負極層の厚みは、使用する電極活物質の材料に応じて適宜変更することができる。The reason for the difference in the number of electrode sheets used in the positive electrode layer and the negative electrode layer is that when Li 3 V 2 (PO 4 ) 3 is used as the positive electrode active material and the negative electrode active material, This is because the capacity per unit weight (gram) of Li 3 V 2 (PO 4 ) 3 differs by about twice. In addition, the thickness of a positive electrode layer and a negative electrode layer can be suitably changed according to the material of the electrode active material to be used.

(焼成工程)   (Baking process)

得られた積層体を空気雰囲気中にて500℃の温度で熱処理することにより、高分子材料の除去を行った(第1焼成工程)。その後、窒素雰囲気中にて、700℃の温度で熱処理して積層体を焼結することにより、全固体電池を得た(第2焼成工程)。   The obtained laminate was heat treated in an air atmosphere at a temperature of 500 ° C. to remove the polymer material (first firing step). Then, the all-solid-state battery was obtained by heat-processing in a nitrogen atmosphere at the temperature of 700 degreeC, and sintering the laminated body (2nd baking process).

得られた全固体電池の破断面を、光学顕微鏡で固体電解質層の色味を観察することにより、固体電解質層に含まれる高分子材料の残渣を確認した。また、走査型電子顕微鏡で電極層の色味を観察することにより、電極層に含まれる導電剤の燃焼抑制効果を確認した。その結果を表3に示す。   By observing the color of the solid electrolyte layer with an optical microscope, the residue of the polymer material contained in the solid electrolyte layer was confirmed on the fracture surface of the obtained all-solid-state battery. Moreover, the burning suppression effect of the electrically conductive agent contained in an electrode layer was confirmed by observing the color of an electrode layer with a scanning electron microscope. The results are shown in Table 3.

また、得られた全固体電池を2032型コイン型電池に封止し、充放電試験を実施し、放電量を測定した。20μAの充電電流で電圧が4.5V(電圧が4.5Vに到達した後に4.5Vの電圧で3時間保持した)になるまで充電し、20μAの放電電流で電圧が3Vになるまで放電した。   Moreover, the obtained all-solid-state battery was sealed in a 2032 type coin-type battery, a charge / discharge test was performed, and the discharge amount was measured. The battery was charged until the voltage became 4.5 V with a charging current of 20 μA (the voltage was held for 3 hours at a voltage of 4.5 V after reaching the voltage of 4.5 V), and discharged until the voltage became 3 V with a discharging current of 20 μA. .

Figure 0005556969
Figure 0005556969

表3に示すように、実施例1〜5の全固体電池では、電極層の色味が黒色であることにより、導電剤としての炭素の燃焼が抑制されており、固体電解質層の色味が白色であることにより、高分子材料の残渣がないことがわかる。これに対して、比較例の全固体電池では、電極層の色味が灰色であることにより、導電剤としての炭素の燃焼が抑制されておらず、固体電解質層の色味が灰色であることにより、高分子材料の残渣があることがわかる。また、表3に示す通り、実施例1〜5の全固体電池は、比較例の全固体電池に比べて、高い放電容量を示すことが確認された。   As shown in Table 3, in the all solid state batteries of Examples 1 to 5, the color of the electrode layer is black, so that the combustion of carbon as a conductive agent is suppressed, and the color of the solid electrolyte layer is It turns out that there is no residue of a polymeric material by being white. On the other hand, in the all-solid battery of the comparative example, the color of the electrode layer is gray, so that the combustion of carbon as a conductive agent is not suppressed, and the color of the solid electrolyte layer is gray Thus, it can be seen that there is a residue of the polymer material. Moreover, as shown in Table 3, it was confirmed that the all-solid-state batteries of Examples 1 to 5 exhibit a higher discharge capacity than the all-solid-state battery of the comparative example.

なお、電池を構成するための封止方法は特に限定されず、焼結により得られた全固体電池の積層体を樹脂等で封止してもよい。たとえば、Al23等の絶縁性のペーストを積層体の周囲に塗布またはディップしたものを熱処理して封止してもよい。In addition, the sealing method for comprising a battery is not specifically limited, You may seal the laminated body of the all-solid-state battery obtained by sintering with resin etc. For example, a paste obtained by applying or dipping an insulating paste such as Al 2 O 3 around the laminate may be sealed by heat treatment.

また、正負極層から効率的に電流を引き出すために、正負極層の上にスパッタリング等で金属層等の導電層を形成してもよい。たとえば、正負極層の上に金属ペースト等を塗布またはディップした後、熱処理することにより、導電層を形成してもよい。   In order to efficiently draw current from the positive and negative electrode layers, a conductive layer such as a metal layer may be formed on the positive and negative electrode layers by sputtering or the like. For example, the conductive layer may be formed by applying or dipping a metal paste or the like on the positive and negative electrode layers, followed by heat treatment.

今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。   It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the claims.

本発明の全固体電池用積層成形体を焼成して全固体電池を製造すると、正極層または負極層では導電剤の燃焼を抑制することができるとともに、緻密な固体電解質層を形成することができ、放電容量等の電池特性を高めることができるので、本発明は全固体二次電池の製造に特に有用である。   When the all-solid battery laminated molded body of the present invention is baked to produce an all-solid battery, the positive electrode layer or the negative electrode layer can suppress the burning of the conductive agent and can form a dense solid electrolyte layer. Since battery characteristics such as discharge capacity can be improved, the present invention is particularly useful for the production of all-solid secondary batteries.

1:正極層、2:固体電解質層、3:負極層、4:集電体層、10、20:積層体。
1: positive electrode layer, 2: solid electrolyte layer, 3: negative electrode layer, 4: current collector layer, 10, 20: laminate.

Claims (20)

正極活物質または負極活物質のいずれかの電極活物質と第1の高分子材料とを含む第1の成形体と、
前記第1の成形体に積層され、固体電解質と第2の高分子材料とを含む第2の成形体と、を備え、
前記第1の高分子材料の分解温度が前記第2の高分子材料の分解温度よりも高い、全固体電池用積層成形体。
A first molded body containing an electrode active material of either a positive electrode active material or a negative electrode active material and a first polymer material;
A second molded body that is laminated on the first molded body and includes a solid electrolyte and a second polymer material,
An all-solid battery multilayer molded article, wherein a decomposition temperature of the first polymer material is higher than a decomposition temperature of the second polymer material.
前記第1および第2の高分子材料の分子量が10000以上である、請求項1に記載の全固体電池用積層成形体。   The multilayer molded body for an all-solid-state battery according to claim 1, wherein the molecular weight of the first and second polymer materials is 10,000 or more. 前記成形体が、グリーンシートおよび膜からなる群より選ばれた一つの形態である、請求項1または請求項2に記載の全固体電池用積層成形体。   The multilayer molded body for an all-solid-state battery according to claim 1 or 2, wherein the molded body is one form selected from the group consisting of a green sheet and a film. 正極活物質または負極活物質のいずれかの電極活物質と第1の高分子材料とを含む第1の成形体と、固体電解質と第2の高分子材料とを含む第2の成形体とを作製する成形体作製工程と、
前記第1の成形体と前記第2の成形体とを積層して積層成形体を形成する積層成形体形成工程と、
前記積層成形体を焼成して電極層と固体電解質層とからなる積層焼成体を形成する積層焼成体形成工程と、を備え、
前記第1の高分子材料の分解温度が前記第2の高分子材料の分解温度よりも高い、全固体電池の製造方法。
A first molded body including an electrode active material of either a positive electrode active material or a negative electrode active material and a first polymer material; and a second molded body including a solid electrolyte and a second polymer material. A molded body production process to be produced;
A laminated molded body forming step of laminating the first molded body and the second molded body to form a laminated molded body;
A laminated fired body forming step of firing the laminated molded body to form a laminated fired body comprising an electrode layer and a solid electrolyte layer, and
An all-solid battery manufacturing method, wherein a decomposition temperature of the first polymer material is higher than a decomposition temperature of the second polymer material.
正極活物質または負極活物質のいずれかの電極活物質と第1の高分子材料とを含む第1の固液混合物を作製する工程と、
固体電解質と第2の高分子材料とを含む第2の固液混合物を作製する工程と、
前記第1の固液混合物から第1の成形体を形成する工程と、
前記第2の固液混合物から第2の成形体を形成する工程と、
前記第1の成形体を焼成して電極層を形成する工程と、
前記第2の成形体を焼成して固体電解質層を形成する工程と、を備え、
前記第1の高分子材料の分解温度が前記第2の高分子材料の分解温度よりも高い、全固体電池の製造方法。
Producing a first solid-liquid mixture comprising an electrode active material of either a positive electrode active material or a negative electrode active material and a first polymer material;
Producing a second solid-liquid mixture comprising a solid electrolyte and a second polymer material;
Forming a first molded body from the first solid-liquid mixture;
Forming a second molded body from the second solid-liquid mixture;
Firing the first molded body to form an electrode layer;
Firing the second molded body to form a solid electrolyte layer,
An all-solid battery manufacturing method, wherein a decomposition temperature of the first polymer material is higher than a decomposition temperature of the second polymer material.
前記第1の成形体を形成する工程が、前記固体電解質層に前記第1の固液混合物を塗工して前記固体電解質層と前記第1の成形体の積層体を形成することを含み、
前記第1の成形体を焼成して電極層を形成する工程が、前記固体電解質層と前記第1の成形体の積層体を焼成して前記固体電解質層と前記電極層とからなる積層焼成体を形成することを含む、請求項5に記載の全固体電池の製造方法。
Forming the first molded body includes applying the first solid-liquid mixture to the solid electrolyte layer to form a laminate of the solid electrolyte layer and the first molded body;
The step of firing the first molded body to form an electrode layer includes laminating the solid electrolyte layer and the first molded body to form a laminated fired body comprising the solid electrolyte layer and the electrode layer. The manufacturing method of the all-solid-state battery of Claim 5 including forming.
前記第1の成形体を形成する工程が、前記第2の成形体に前記第1の固液混合物を塗工して前記第1の成形体と前記第2の成形体とからなる積層成形体を形成することを含み、
前記第1の成形体を焼成して電極層を形成する工程と、前記第2の成形体を焼成して固体電解質層を形成する工程とが、前記積層成形体を焼成して前記固体電解質層と前記電極層とからなる積層焼成体を形成することを含む、請求項5に記載の全固体電池の製造方法。
In the step of forming the first molded body, the first molded body and the second molded body are formed by applying the first solid-liquid mixture to the second molded body. Forming, and
The step of firing the first molded body to form an electrode layer and the step of firing the second molded body to form a solid electrolyte layer include firing the laminated molded body to form the solid electrolyte layer. The manufacturing method of the all-solid-state battery of Claim 5 including forming the laminated fired body which consists of and the said electrode layer.
正極活物質と第1の高分子材料とを含む正極用固液混合物を作製する工程と、
負極活物質と第1の高分子材料とを含む負極用固液混合物を作製する工程と、
固体電解質と第2の高分子材料とを含む固体電解質用固液混合物を作製する工程と、
前記正極用固液混合物または前記負極用固液混合物のいずれか一方の電極用固液混合物を基材に塗工して前記基材と一方電極成形体とからなる第1の積層成形体を形成する工程と、
前記第1の積層成形体を焼成して前記基材と一方電極焼成層とからなる第1の積層焼成体を形成する工程と、
前記第1の積層焼成体に前記固体電解質用固液混合物を塗工して前記第1の積層焼成体と固体電解質成形体とからなる第2の積層成形体を形成する工程と、
前記第2の積層成形体を焼成して前記基材と前記一方電極焼成層と固体電解質層とからなる第2の積層焼成体を形成する工程と、
前記正極用固液混合物または前記負極用固液混合物のいずれか他方の電極用固液混合物を前記第2の積層焼成体に塗工して前記第2の積層焼成体と他方電極成形体とからなる第3の積層成形体を形成する工程と、
前記第3の積層成形体を焼成して正極層と固体電解質層と負極層とからなる積層焼成体を形成する工程とを備え、
前記第1の高分子材料の分解温度が前記第2の高分子材料の分解温度よりも高い、全固体電池の製造方法。
Producing a solid-liquid mixture for a positive electrode comprising a positive electrode active material and a first polymer material;
Producing a solid-liquid mixture for a negative electrode comprising a negative electrode active material and a first polymer material;
Producing a solid-liquid mixture for a solid electrolyte comprising a solid electrolyte and a second polymer material;
Either a solid-liquid mixture for a positive electrode or a solid-liquid mixture for a negative electrode is applied to a base material to form a first laminated molded body composed of the base material and a one-electrode molded body. And a process of
Firing the first laminated molded body to form a first laminated fired body comprising the base material and one electrode fired layer;
Applying the solid-liquid mixture for solid electrolyte to the first laminated fired body to form a second laminated molded body comprising the first laminated fired body and a solid electrolyte molded body;
Firing the second laminated molded body to form a second laminated fired body comprising the substrate, the one electrode fired layer, and a solid electrolyte layer;
From the second laminated fired body and the other electrode molded body, either the solid-liquid mixture for positive electrode or the solid-liquid mixture for negative electrode is applied to the second laminated fired body. Forming a third laminated molded body comprising:
Firing the third laminated molded body to form a laminated fired body comprising a positive electrode layer, a solid electrolyte layer, and a negative electrode layer,
An all-solid battery manufacturing method, wherein a decomposition temperature of the first polymer material is higher than a decomposition temperature of the second polymer material.
前記固液混合物が、スラリー、ペーストおよびコロイドからなる群より選ばれた一つの形態である、請求項5から請求項8までのいずれか1項に記載の全固体電池の製造方法。   The manufacturing method of the all-solid-state battery of any one of Claim 5 to 8 whose said solid-liquid mixture is one form chosen from the group which consists of a slurry, a paste, and a colloid. 前記成形体が、グリーンシートおよび膜からなる群より選ばれた一つの形態である、請求項4から請求項9までのいずれか1項に記載の全固体電池の製造方法。   The manufacturing method of the all-solid-state battery of any one of Claim 4 to 9 whose said molded object is one form chosen from the group which consists of a green sheet and a film | membrane. 前記第1の高分子材料の分解温度と前記第2の高分子材料の分解温度との差が、50℃以上500℃以下である、請求項4から請求項10までのいずれか1項に記載の全固体電池の製造方法。   The difference between the decomposition temperature of the first polymer material and the decomposition temperature of the second polymer material is 50 ° C or more and 500 ° C or less, according to any one of claims 4 to 10. Of manufacturing all solid state battery. 前記第1の高分子材料の分解温度と前記第2の高分子材料の分解温度との差が、50℃以上200℃以下である、請求項11に記載の全固体電池の製造方法。   The manufacturing method of the all-solid-state battery of Claim 11 whose difference of the decomposition temperature of the said 1st polymeric material and the decomposition temperature of the said 2nd polymeric material is 50 to 200 degreeC. 前記第1の高分子材料と前記第2の高分子材料は、ポリビニルアセタール樹脂、セルロース、アクリル樹脂およびウレタン樹脂からなる群より選ばれた少なくとも1種を含む、請求項4から請求項12までのいずれか1項に記載の全固体電池の製造方法。   The first polymer material and the second polymer material include at least one selected from the group consisting of polyvinyl acetal resin, cellulose, acrylic resin, and urethane resin. The manufacturing method of the all-solid-state battery of any one. 前記第1の成形体における前記第1の高分子材料と前記第2の成形体における前記第2の高分子材料のそれぞれの重量含有比率は、無機材料100重量部に対して5重量部以上35重量部以下である、請求項4から請求項13までのいずれか1項に記載の全固体電池の製造方法。   The weight content ratio of the first polymer material in the first molded body and the second polymer material in the second molded body is 5 parts by weight or more and 35 parts by weight with respect to 100 parts by weight of the inorganic material. The manufacturing method of the all-solid-state battery of any one of Claim 4 to 13 which is below a weight part. 前記積層焼成体は、正極層、固体電解質層および負極層を積層した単電池構造の積層焼成体を含む、請求項4、請求項6、請求項7および請求項8のいずれか1項に記載の全固体電池の製造方法。   9. The laminated fired body according to claim 4, comprising a fired body having a single battery structure in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are laminated. Of manufacturing all solid state battery. 前記積層焼成体は、集電体層を介在させて、前記単電池構造の積層焼成体を複数個、積層した積層焼成体を含む、請求項15に記載の全固体電池の製造方法。   The method for manufacturing an all-solid battery according to claim 15, wherein the laminated fired body includes a laminated fired body in which a plurality of the laminated fired bodies having the single battery structure are laminated with a current collector layer interposed therebetween. 前記正極層、前記固体電解質層および前記負極層からなる群より選ばれた少なくとも一つの層を形成する材料が、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質を含む、請求項15または請求項16に記載の全固体電池の製造方法。   The material forming at least one layer selected from the group consisting of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer includes a solid electrolyte composed of a lithium-containing phosphate compound having a NASICON structure. Item 17. A method for producing an all solid state battery according to Item 16. 前記正極層および前記負極層からなる群より選ばれた少なくとも一つの層を形成する材料が、リチウム含有リン酸化合物からなる電極活物質を含む、請求項15から請求項17までのいずれか1項に記載の全固体電池の製造方法。   18. The material according to claim 15, wherein the material forming at least one layer selected from the group consisting of the positive electrode layer and the negative electrode layer includes an electrode active material made of a lithium-containing phosphate compound. The manufacturing method of the all-solid-state battery as described in 1 above. 前記第1および第2の高分子材料の分子量が10000以上である、請求項4から請求項18までのいずれか1項に記載の全固体電池の製造方法。   The manufacturing method of the all-solid-state battery of any one of Claim 4 to 18 whose molecular weight of the said 1st and 2nd polymeric material is 10,000 or more. 請求項4から請求項19までのいずれか1項に記載の製造方法によって製造された全固体電池。   The all-solid-state battery manufactured by the manufacturing method of any one of Claim 4-19.
JP2013532525A 2011-09-09 2012-08-22 Laminated molded body for all solid state battery, all solid state battery and method for producing the same Active JP5556969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013532525A JP5556969B2 (en) 2011-09-09 2012-08-22 Laminated molded body for all solid state battery, all solid state battery and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011196805 2011-09-09
JP2011196805 2011-09-09
PCT/JP2012/071136 WO2013035525A1 (en) 2011-09-09 2012-08-22 Laminated molded body for all-solid-state battery, all-solid-state battery, and production method therefor
JP2013532525A JP5556969B2 (en) 2011-09-09 2012-08-22 Laminated molded body for all solid state battery, all solid state battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP5556969B2 true JP5556969B2 (en) 2014-07-23
JPWO2013035525A1 JPWO2013035525A1 (en) 2015-03-23

Family

ID=47831975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013532525A Active JP5556969B2 (en) 2011-09-09 2012-08-22 Laminated molded body for all solid state battery, all solid state battery and method for producing the same

Country Status (2)

Country Link
JP (1) JP5556969B2 (en)
WO (1) WO2013035525A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6491810B2 (en) * 2013-09-30 2019-03-27 Fdk株式会社 All-solid battery and method for producing all-solid battery
EP3174154B1 (en) * 2014-07-22 2019-05-01 Rekrix Co., Ltd. Silicone secondary battery unit and battery module for electrical vehicle using same
JPWO2017146105A1 (en) * 2016-02-23 2018-12-13 凸版印刷株式会社 LAMINATE GREEN SHEET, CONTINUOUS LAMINATE GREEN SHEET, METHOD FOR PRODUCING THEM,
US11101497B2 (en) 2016-02-29 2021-08-24 Hitachi Zosen Corporation All-solid state secondary battery and method for manufacturing same
JP2021064584A (en) * 2019-10-17 2021-04-22 マクセルホールディングス株式会社 Solid electrolyte battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226639A (en) * 2007-03-13 2008-09-25 Ngk Insulators Ltd All-solid battery
JP2009181877A (en) * 2008-01-31 2009-08-13 Ohara Inc Solid battery and method for manufacturing its electrode
JP2009187911A (en) * 2008-02-08 2009-08-20 Ohara Inc Solid state battery and method for manufacturing electrode therefor
JP2010244727A (en) * 2009-04-01 2010-10-28 Namics Corp Electrode material, method for producing same, and lithium ion secondary battery
JP2011086610A (en) * 2009-09-17 2011-04-28 Ohara Inc All-solid battery and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226639A (en) * 2007-03-13 2008-09-25 Ngk Insulators Ltd All-solid battery
JP2009181877A (en) * 2008-01-31 2009-08-13 Ohara Inc Solid battery and method for manufacturing its electrode
JP2009187911A (en) * 2008-02-08 2009-08-20 Ohara Inc Solid state battery and method for manufacturing electrode therefor
JP2010244727A (en) * 2009-04-01 2010-10-28 Namics Corp Electrode material, method for producing same, and lithium ion secondary battery
JP2011086610A (en) * 2009-09-17 2011-04-28 Ohara Inc All-solid battery and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2013035525A1 (en) 2015-03-23
WO2013035525A1 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
JP5910737B2 (en) All solid battery
JP5741689B2 (en) All-solid battery and method for manufacturing the same
JP5742940B2 (en) All-solid battery and method for manufacturing the same
WO2013137224A1 (en) All solid state cell and method for producing same
WO2012008422A1 (en) All-solid-state battery
JP6262129B2 (en) All-solid battery and method for manufacturing the same
JP5811191B2 (en) All-solid battery and method for manufacturing the same
JP5516749B2 (en) All-solid battery and method for manufacturing the same
JP6248498B2 (en) All-solid battery and method for manufacturing the same
JP5804208B2 (en) All-solid battery, unfired laminate for all-solid battery, and method for producing all-solid battery
JP6197495B2 (en) All solid battery
JP5556969B2 (en) Laminated molded body for all solid state battery, all solid state battery and method for producing the same
WO2013100002A1 (en) All-solid-state battery, and manufacturing method therefor
WO2012060402A1 (en) All-solid-state battery and method for manufacturing same
JP5935892B2 (en) All solid battery
JP6192540B2 (en) All-solid battery and method for manufacturing the same
JP6264807B2 (en) All-solid battery and method for manufacturing the same
WO2013035526A1 (en) Laminated molded body for all-solid-state battery, all-solid-state battery, and production method therefor
JP6003982B2 (en) All solid battery
WO2013133394A1 (en) All solid battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5556969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150