JP6652705B2 - Solid electrolyte and all solid state battery - Google Patents

Solid electrolyte and all solid state battery Download PDF

Info

Publication number
JP6652705B2
JP6652705B2 JP2016045860A JP2016045860A JP6652705B2 JP 6652705 B2 JP6652705 B2 JP 6652705B2 JP 2016045860 A JP2016045860 A JP 2016045860A JP 2016045860 A JP2016045860 A JP 2016045860A JP 6652705 B2 JP6652705 B2 JP 6652705B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
active material
electrode active
solid
containing layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016045860A
Other languages
Japanese (ja)
Other versions
JP2017162657A (en
Inventor
健司 本間
健司 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2016045860A priority Critical patent/JP6652705B2/en
Publication of JP2017162657A publication Critical patent/JP2017162657A/en
Application granted granted Critical
Publication of JP6652705B2 publication Critical patent/JP6652705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Description

本発明は、固体電解質、及び全固体電池に関する。   The present invention relates to a solid electrolyte and an all-solid battery.

太陽光エネルギー、振動エネルギー、人及び動物の体温などの微小なエネルギーから発電した電気を蓄え、センサー、無線発信電力などに利用する環境発電技術には、あらゆる地球環境下において安全で信頼性の高い二次電池が必要である。   Energy storage technology that stores electricity generated from minute energy such as solar energy, vibration energy, and human and animal body temperature, and uses it for sensors, wireless transmission power, etc., is safe and reliable under all global environments. A secondary battery is required.

現在、広く利用されている有機溶媒溶液を用いた液系電池では、サイクルを重ねると正極活物質が劣化し、電池容量低下が起こることが懸念される。また、前記液系電池では、デンドライト形成による電池短絡によって電池内の有機電解液に引火し、発火することが懸念される。   At present, in a liquid battery using an organic solvent solution that is widely used, there is a concern that the positive electrode active material is degraded with repeated cycles, and the battery capacity is reduced. Further, in the above-mentioned liquid battery, there is a concern that the organic electrolyte in the battery may catch fire due to short-circuit due to the formation of dendrites and fire.

そこで、近年、構成材料をすべて固体にした全固体電池が注目されている。全固体電池は液漏れや発火などの恐れもなくサイクル特性も優れ、形状の自由度が高いことが利点である。   Therefore, in recent years, all-solid-state batteries in which all constituent materials are solid have been attracting attention. The all-solid-state battery is advantageous in that it has excellent cycle characteristics without fear of liquid leakage or ignition and has a high degree of freedom in shape.

全固体リチウム二次電池に用いられる固体電解質、即ち、リチウムイオン導電体としては、例えば、以下のものが知られている(例えば、特許文献1〜3、非特許文献1〜5参照)。酸化物系としては、LiPOやLiGeOをベースとしたLISICON型、ナトリウムイオン導電体をベースとしたNASICON型、LiLaZrOガーネット型、LLTO等のペロブスカイト型などが知られている。また、硫化物系としては、Li10GeP11、Li11などが知られている。
しかし、これらの固体電解質は、大気中で不安定であったり、希少で高価なGeを使用しているという問題がある。
As a solid electrolyte used for an all-solid lithium secondary battery, that is, a lithium ion conductor, for example, the following are known (for example, see Patent Documents 1 to 3 and Non-Patent Documents 1 to 5). As oxides, there are known a LiSICON type based on Li 3 PO 4 and Li 4 GeO 4 , a NASICON type based on a sodium ion conductor, a LiLaZrO garnet type, and a perovskite type such as LLTO. Li 10 GeP 2 S 11 and Li 7 P 3 S 11 are known as sulfides.
However, these solid electrolytes have a problem that they are unstable in the atmosphere or use rare and expensive Ge.

特開2007−528108号公報JP 2007-528108A 特開2010−272344号公報JP 2010-272344 A 特開平8−198638号公報JP-A-8-198638

H.Y−P. Hong., Materials Research Bulletin, Volume 13, Issue 2, February 1978, Pages 117−124H. Y-P. Hong. , Materials Research Bulletin, Volume 13, Issue 2, February 1978, Pages 117-124. R. Murugan, V. Thangadurai, W. Weppner., Angew. Chem. Int. Ed., (2007)、46、 P.7778−7781R. Murugan, V .; Thangadurai, W.C. Weppner. Angew. Chem. Int. Ed. , (2007), 46; 7778-7781 Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, M. Wakihara., Solid State Communications Volume 86, Issue 10, June 1993, Pages 689−693Y. Inaguma, C.I. Liquan, M .; Itoh, T.W. Nakamura, T .; Uchida, H .; Ikuta, M .; Wakihara. , Solid State Communications Volume 86, Issue 10, June 1993, Pages 689-693. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T.Kamiyama, Y. Kato, S. Hama, K. Kawamoto & A. Mitsui., Nature Materials 10,682−686 (2011)N. Kayama, K .; Homma, Y .; Yamakawa, M .; Hirayama, R .; Kanno, M .; Yonemura, T .; Kamiyama, Y .; Kato, S.M. Hama, K .; Kawamoto & A. Mitsui. , Nature Materials 10,682-686 (2011). A. Hayashi, S. Hama, T. Minami, M. Tatsumisago., Electrochem. Commun., 5 (2003), p.111A. Hayashi, S .; Hama, T .; Minami, M .; Tatumsumago. , Electrochem. Commun. , 5 (2003), p. 111

本発明は、大気中でも安定であり、かつ安価な固体電解質、及び前記固体電解質を用いた全固体電池を提供することを目的とする。   An object of the present invention is to provide an inexpensive solid electrolyte that is stable even in the atmosphere, and an all-solid-state battery using the solid electrolyte.

一つの態様では、固体電解質は、
構成元素として、Li、Al、P、H、及びOを有し、
10構造と、6配位八面体構造であるAlO構造とを有する。
In one embodiment, the solid electrolyte comprises:
Having Li, Al, P, H, and O as constituent elements,
It has a P 3 O 10 structure and an AlO 6 structure that is a hexacoordinate octahedral structure.

また、一つの態様では、全固体電池は、
正極活物質含有層と、負極活物質含有層と、前記正極活物質含有層及び前記負極活物質含有層の間に介在する固体電解質層とを有し、
前記固体電解質層が、開示の前記固体電解質で構成される層である。
In one aspect, the all-solid-state battery is
A positive electrode active material-containing layer, a negative electrode active material-containing layer, and a solid electrolyte layer interposed between the positive electrode active material-containing layer and the negative electrode active material-containing layer,
The solid electrolyte layer is a layer composed of the disclosed solid electrolyte.

一つの側面では、大気中でも安定であり、かつ安価な固体電解質が得られる。
また、一つの側面では、大気中でも安定であり、かつ安価な固体電解質を用いた全固体電池が得られる。
In one aspect, an inexpensive solid electrolyte that is stable in the atmosphere can be obtained.
In one aspect, an all-solid-state battery that is stable even in the atmosphere and uses an inexpensive solid electrolyte can be obtained.

図1は、開示の全固体電池の一例の概略断面図である。FIG. 1 is a schematic cross-sectional view of an example of the disclosed all solid state battery. 図2は、実施例1で得られたAlH10のX線回折スペクトルである。FIG. 2 is an X-ray diffraction spectrum of AlH 2 P 3 O 10 obtained in Example 1. 図3は、実施例1で得られた固体電解質のX線回折スペクトルである。FIG. 3 is an X-ray diffraction spectrum of the solid electrolyte obtained in Example 1.

(固体電解質)
開示の固体電解質は、構成元素として、Li(リチウム)、Al(アルミニウム)、P(リン)、H(水素)、及びO(酸素)を有する。
前記固体電解質は、P10構造と、6配位八面体構造であるAlO構造とを有する。
(Solid electrolyte)
The disclosed solid electrolyte has Li (lithium), Al (aluminum), P (phosphorus), H (hydrogen), and O (oxygen) as constituent elements.
The solid electrolyte has a P 3 O 10 structure and an AlO 6 structure that is a hexacoordinate octahedral structure.

従来知られている硫化物系の固体電解質は、大気中で不安定である。また、固体電解質の必要性能であるリチウムイオン伝導性を得るために、Geなどの希少で高価な元素を必要とする固体電解質が多い。
開示の固体電解質は、構成元素としてS(硫黄)を必要としないため、大気中でも安定である。また、開示の固体電解質は、構成元素として、Li、Al、P、H、及びOを有する一方で、Geなどの希少元素を構成元素として必要としないため、Geなどの希少元素を構成元素として必要とする固体電解質よりも安価である。
Conventionally known sulfide-based solid electrolytes are unstable in the atmosphere. Further, many solid electrolytes require rare and expensive elements such as Ge in order to obtain lithium ion conductivity, which is a necessary performance of the solid electrolyte.
Since the disclosed solid electrolyte does not require S (sulfur) as a constituent element, it is stable even in the atmosphere. In addition, the disclosed solid electrolyte has Li, Al, P, H, and O as constituent elements, but does not require a rare element such as Ge as a constituent element. Therefore, a rare element such as Ge is used as a constituent element. Less expensive than the required solid electrolyte.

前記P10構造は、酸素原子を共有して結合した3つの四面体のPOから構成される。一つの四面体のPOは、一つのP(リン)を中心に有し、4つのO(酸素)を頂点に有する。P10構造において、外側の四面体は中心の四面体と1つの頂点を共有しており、中央の四面体は外側の四面体と2つの頂点を共有している。 The P 3 O 10 structure is composed of three tetrahedral PO 4 bonded by sharing an oxygen atom. One tetrahedral PO 4 has one P (phosphorus) at the center and four Os (oxygen) at the top. In the P 3 O 10 structure, the outer tetrahedron shares one vertex with the central tetrahedron, and the central tetrahedron shares two vertices with the outer tetrahedron.

前記固体電解質は、例えば、下記組成式(1)で表される。
LiAlH2.0−x10 ・・・組成式(1)
ただし、前記組成式(1)中、xは、0<x≦2.0を満たす。
The solid electrolyte is represented, for example, by the following composition formula (1).
Li x AlH 2.0-x P 3 O 10 ··· composition formula (1)
However, in the composition formula (1), x satisfies 0 <x ≦ 2.0.

<固体電解質の製造方法>
前記固体電解質の製造方法としては、特に制限はなく、目的に応じて適宜選択することができるが、AlH10のH(水素)の少なくとも一部をLi(リチウム)により置換する方法(以下、「イオン交換法」と称することがある)が、製造が容易である点で好ましい。
<Method for producing solid electrolyte>
The method for producing the solid electrolyte is not particularly limited and may be appropriately selected depending on the intended purpose. A method in which at least a part of H (hydrogen) of AlH 2 P 3 O 10 is replaced by Li (lithium). (Hereinafter may be referred to as “ion exchange method”) is preferable in that the production is easy.

AlH10は、P10構造と、6配位八面体構造であるAlO構造とを有する。そのため、AlH10において、H(水素)の少なくとも一部をLi(リチウム)により置換することにより、開示の固体電解質を容易に得ることができる。 AlH 2 P 3 O 10 has a P 3 O 10 structure and an AlO 6 structure which is a hexacoordinate octahedral structure. Therefore, by substituting at least part of H (hydrogen) with Li (lithium) in AlH 2 P 3 O 10 , the disclosed solid electrolyte can be easily obtained.

AlH10の製造方法は、例えば、文献〔d’Yvoire,F.Bull.Soc.Chim.Fr.1224(1962)〕に開示されている。 The method for producing AlH 2 P 3 O 10 is described, for example, in the literature [d'Yvoire, F. Bull. Soc. Chim. Fr. 1224 (1962)].

前記イオン交換法において用いるLi源としては、Li含有化合物であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、LiClO、LiCO、LiNO、LiBFなどが挙げられる。 The Li source used in the ion exchange method is not particularly limited as long as it is a Li-containing compound, and can be appropriately selected depending on the purpose. Examples thereof include LiClO 4 , LiCO 3 , LiNO 3 , and LiBF 4. Can be

前記イオン交換法においては、AlH10と、Li含有化合物とを混合し、焼成することにより、前記固体電解質を得ることができる。
混合する際のAlH10と、Li含有化合物との割合としては、特に制限はなく、目的に応じて適宜選択することができる。
焼成は、不活性雰囲気下で行うことが好ましく、Ar雰囲気下で行うことがより好ましい。
焼成の温度、時間としては、特に制限はなく、目的に応じて適宜選択することができる。
In the ion exchange method, the solid electrolyte can be obtained by mixing and firing AlH 2 P 3 O 10 and a Li-containing compound.
The ratio of AlH 2 P 3 O 10 and the Li-containing compound at the time of mixing is not particularly limited, and can be appropriately selected depending on the purpose.
The firing is preferably performed in an inert atmosphere, and more preferably in an Ar atmosphere.
The firing temperature and time are not particularly limited, and can be appropriately selected depending on the purpose.

(全固体電池)
開示の全固体電池は、正極活物質含有層と、負極活物質含有層と、前記正極活物質含有層及び前記負極活物質含有層の間に介在する固体電解質層とを少なくとも有し、更に必要に応じて、その他の部材を有する。
(All solid state battery)
The disclosed all solid state battery has at least a positive electrode active material-containing layer, a negative electrode active material-containing layer, and a solid electrolyte layer interposed between the positive electrode active material-containing layer and the negative electrode active material-containing layer. It has other members according to.

<正極活物質含有層>
前記正極活物質含有層としては、例えば、正極活物質を含有する層であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Positive electrode active material containing layer>
The positive electrode active material-containing layer is not particularly limited as long as it is a layer containing a positive electrode active material, and can be appropriately selected depending on the purpose.

前記正極活物質含有層は、前記正極活物質自体であってもよいし、前記正極活物質と、前記固体電解質とを混合した混合物であってもよい。
前記正極活物質含有層が、前記正極活物質と、前記固体電解質との混合物からなる層である場合、前記正極活物質含有層における、前記正極活物質と、前記固体電解質との割合としては、特に制限はなく、目的に応じて適宜選択することができるが、質量比(正極活物質:固体電解質)で、1.0:0.1〜1.0:2.0が好ましく、1.0:0.3〜1.0:1.5がより好ましく、1.0:0.5〜1.0:1.0が特に好ましい。
The positive electrode active material-containing layer may be the positive electrode active material itself or a mixture of the positive electrode active material and the solid electrolyte.
When the positive electrode active material-containing layer is a layer made of a mixture of the positive electrode active material and the solid electrolyte, in the positive electrode active material-containing layer, the ratio of the positive electrode active material and the solid electrolyte is as follows: There is no particular limitation, and it can be appropriately selected according to the purpose. However, the mass ratio (positive electrode active material: solid electrolyte) is preferably 1.0: 0.1 to 1.0: 2.0, and 1.0: 0.1 to 1.0: 2.0. : 0.3 to 1.0: 1.5 is more preferable, and 1.0: 0.5 to 1.0: 1.0 is particularly preferable.

前記正極活物質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、リチウム含有複合酸化物などが挙げられる。前記リチウム含有複合酸化物としては、リチウムと他の金属とを含有する複合酸化物であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、LiCoO、LiNiO、LiCrO、LiVO、LiMMn2-x(Mは、Co、Ni、Fe、Cr及びCuの少なくともいずれかである。0≦x<2)、LiFePO、LiCoPO、LiNiPO、LiNi1/3Mn1/3Co1/3などが挙げられる。 The positive electrode active material is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include a lithium-containing composite oxide. The lithium-containing composite oxide is not particularly limited as long as it is a composite oxide containing lithium and another metal, and can be appropriately selected depending on the purpose. For example, LiCoO 2 , LiNiO 2 , LiCrO 2 2 , LiVO 2 , LiM x Mn 2 -xO 4 (M is at least one of Co, Ni, Fe, Cr and Cu; 0 ≦ x <2), LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 and the like.

前記正極活物質含有層の平均厚みとしては、特に制限はないが、例えば、0.1mm〜1.0mm程度の範囲の中から、目的とする電池容量や、電池形状に応じて適宜選択することができる。   The average thickness of the positive electrode active material-containing layer is not particularly limited, but may be appropriately selected, for example, from a range of about 0.1 mm to 1.0 mm according to a target battery capacity and a battery shape. Can be.

<固体電解質層>
前記固体電解質層は、開示の前記固体電解質から構成される。
<Solid electrolyte layer>
The solid electrolyte layer comprises the disclosed solid electrolyte.

前記固体電解質層の平均厚みとしては、特に制限はなく、目的に応じて正極及び負極が短絡しない厚みで、適宜選択することができるが、0.05mm〜3.0mmが好ましく、0.1mm〜2.0mmがより好ましく、0.5mm〜1.5mmが特に好ましい。   The average thickness of the solid electrolyte layer is not particularly limited and may be appropriately selected depending on the intended purpose without a short circuit between the positive electrode and the negative electrode, and is preferably 0.05 mm to 3.0 mm, more preferably 0.1 mm to 3.0 mm. 2.0 mm is more preferable, and 0.5 mm to 1.5 mm is particularly preferable.

<負極活物質含有層>
前記負極活物質含有層としては、例えば、負極活物質を含有する層であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Negative electrode active material containing layer>
The negative electrode active material-containing layer is not particularly limited as long as it is a layer containing a negative electrode active material, and can be appropriately selected depending on the purpose.

前記負極活物質含有層は、前記負極活物質自体であってもよいし、前記負極活物質と、前記固体電解質とを混合した混合物であってもよい。
前記負極活物質含有層が、前記負極活物質と、前記固体電解質との混合物からなる層である場合、前記負極活物質含有層における、前記負極活物質と、前記固体電解質との割合としては、特に制限はなく、目的に応じて適宜選択することができるが、質量比(負極活物質:固体電解質)で、1.0:0.1〜1.0:2.0が好ましく、1.0:0.3〜1.0:1.5がより好ましく、1.0:0.5〜1.0:1.0が特に好ましい。
The negative electrode active material-containing layer may be the negative electrode active material itself or a mixture of the negative electrode active material and the solid electrolyte.
When the negative electrode active material-containing layer is a layer made of a mixture of the negative electrode active material and the solid electrolyte, in the negative electrode active material-containing layer, the ratio of the negative electrode active material and the solid electrolyte is as follows: There is no particular limitation, and it can be appropriately selected according to the purpose. However, the mass ratio (negative electrode active material: solid electrolyte) is preferably 1.0: 0.1 to 1.0: 2.0, and 1.0: 0.1 to 1.0: 2.0. : 0.3 to 1.0: 1.5 is more preferable, and 1.0: 0.5 to 1.0: 1.0 is particularly preferable.

前記負極活物質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、リチウム、リチウム合金、LiTi12、LiVO、非晶質カーボン、天然黒鉛、人造黒鉛、TiS、TiO、CoOなどが挙げられる。 The negative electrode active material is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include lithium, a lithium alloy, Li 4 Ti 5 O 12 , LiVO 3 , amorphous carbon, natural graphite, and artificial graphite. , TiS 2 , TiO 2 , CoO 2 and the like.

前記負極活物質含有層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、0.05mm〜3.0mmが好ましく、0.1mm〜2.0mmがより好ましく、0.5mm〜1.5mmが特に好ましい。   The average thickness of the negative electrode active material-containing layer is not particularly limited and may be appropriately selected depending on the intended purpose. However, the average thickness is preferably from 0.05 mm to 3.0 mm, more preferably from 0.1 mm to 2.0 mm, 0.5 mm to 1.5 mm is particularly preferred.

<その他の部材>
前記その他の部材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、正極集電体、負極集電体、電池ケースなどが挙げられる。
<Other components>
The other members are not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a positive electrode current collector, a negative electrode current collector, and a battery case.

<<正極集電体>>
前記正極集電体の大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
前記正極集電体の材質としては、例えば、ダイス鋼、ステンレス鋼、アルミニウム、アルミニウム合金、チタン合金、銅、ニッケルなどが挙げられる。
前記正極集電体の形状としては、例えば、箔状、板状、メッシュ状などが挙げられる。
<< Positive electrode current collector >>
The size and structure of the positive electrode current collector are not particularly limited, and can be appropriately selected depending on the purpose.
Examples of the material of the positive electrode current collector include die steel, stainless steel, aluminum, aluminum alloy, titanium alloy, copper, and nickel.
Examples of the shape of the positive electrode current collector include a foil shape, a plate shape, and a mesh shape.

<<負極集電体>>
前記負極集電体の大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
前記負極集電体の材質としては、例えば、ダイス鋼、金、インジウム、ニッケル、銅、ステンレス鋼などが挙げられる。
前記負極集電体の形状としては、例えば、箔状、板状、メッシュ状などが挙げられる。
<< Negative electrode current collector >>
The size and structure of the negative electrode current collector are not particularly limited, and can be appropriately selected depending on the purpose.
Examples of the material of the negative electrode current collector include die steel, gold, indium, nickel, copper, and stainless steel.
Examples of the shape of the negative electrode current collector include a foil shape, a plate shape, and a mesh shape.

<<電池ケース>>
前記電池ケースとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、従来の全固体電池で使用可能な公知のラミネートフィルムなどが挙げられる。前記ラミネートフィルムとしては、例えば、樹脂製のラミネートフィルム、樹脂製のラミネートフィルムに金属を蒸着させたフィルムなどが挙げられる。
<< Battery case >>
The battery case is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a known laminated film that can be used in a conventional all-solid-state battery. Examples of the laminate film include a resin laminate film and a film obtained by depositing a metal on a resin laminate film.

前記全固体電池の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、円筒型、角型、ボタン型、コイン型、扁平型などが挙げられる。   The shape of the all-solid-state battery is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include a cylindrical shape, a square shape, a button shape, a coin shape, and a flat shape.

前記全固体電池は、前記正極活物質含有層、前記固体電解質層、及び前記負極活物質含有層を、気相法を用いて積層した、いわゆる薄膜型全固体電池であることが、サイクル寿命が優れる点で好ましい。   The all-solid-state battery is a so-called thin-film all-solid-state battery in which the positive electrode active material-containing layer, the solid electrolyte layer, and the negative electrode active material-containing layer are stacked using a gas phase method, and has a cycle life of It is preferable because it is excellent.

図1は、開示の全固体電池の一例の断面模式図である。図1の全固体電池においては、正極集電体1上に、正極活物質含有層2、固体電解質層3、負極活物質含有層4、及び負極集電体5がこの順で積層されている。   FIG. 1 is a schematic cross-sectional view of an example of the disclosed all-solid-state battery. In the all-solid-state battery of FIG. 1, a positive electrode active material-containing layer 2, a solid electrolyte layer 3, a negative electrode active material-containing layer 4, and a negative electrode current collector 5 are stacked on a positive electrode current collector 1 in this order. .

前記全固体電池の動作原理について、リチウムイオン全固体二次電池を例として説明する。充電時、Liは、イオン化して正極活物質含有層から抜けて、固体電解質中を負極活物質含有層側に移動し、負極活物質含有層に挿入される。一方、放電時、負極活物質含有層に挿入されたLiイオンは、固体電解質中を正極活物質含有層側に移動し、正極活物質含有層に戻る。このように、リチウムイオン電池では正極と負極との間をLiイオンが移動することにより充電、放電を行っている。   The operation principle of the all-solid-state battery will be described by taking a lithium ion all-solid-state secondary battery as an example. At the time of charging, Li is ionized, escapes from the positive electrode active material containing layer, moves in the solid electrolyte toward the negative electrode active material containing layer, and is inserted into the negative electrode active material containing layer. On the other hand, at the time of discharge, the Li ions inserted into the negative electrode active material containing layer move to the positive electrode active material containing layer side in the solid electrolyte and return to the positive electrode active material containing layer. As described above, in the lithium ion battery, charging and discharging are performed by moving Li ions between the positive electrode and the negative electrode.

<全固体電池の製造方法>
前記全固体電池の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、正極活物質含有層を構成する材料の粉体と、粉体状の固体電解質と、負極活物質を構成する材料の粉体とを、層状に積層し、加圧成型する方法が挙げられる。
前記固体電解質を用いると、この加圧成型の際に、高温に加熱する必要がなく、低温で電池性能に優れる全固体電池を製造することができる。
前記加圧成型における圧力としては、例えば、127kgf/cm〜1,270kgf/cmなどが挙げられる。
前記加圧成型における温度としては、例えば、常温などが挙げられる。
<Manufacturing method of all solid state battery>
The method for producing the all-solid-state battery is not particularly limited and can be appropriately selected depending on the intended purpose.For example, a powder of a material constituting the positive electrode active material-containing layer, a powdery solid electrolyte, A method of laminating a powder of a material constituting the negative electrode active material in a layered form and press-molding the layered layer may be used.
When the solid electrolyte is used, it is not necessary to heat to a high temperature during the pressure molding, and an all-solid battery having excellent battery performance at a low temperature can be manufactured.
The pressure in the pressure molding includes, for example, 127 kgf / cm 2 to 1,270 kgf / cm 2 .
The temperature in the pressure molding includes, for example, room temperature.

以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。   Hereinafter, examples of the present invention will be described, but the present invention is not limited to the following examples.

(実施例1)
<固体電解質(リチウムイオン導電体)の合成>
<<前駆体(AlH10)の合成>>
まず、リン酸(HPO)、及び水酸化アルミニウム〔Al(OH)〕を、テフロン(登録商標)製のビーカー内で、質量比〔HPO:Al(OH)〕=12:1で混合した。得られた混合物について、電気炉にて220℃で12時間の熱処理を行った。得られたゲルを蒸留水で洗浄、及び濾過し、真空乾燥機にて200℃で12時間の乾燥を行い、AlH10を得た。
得られたAlH10のX線回折スペクトルを図2に示した。なお、図2及び図3において、中段のスペクトルデータは、AlH10の粉末データ(PDF:00−036−0320)である。
(Example 1)
<Synthesis of solid electrolyte (lithium ion conductor)>
<< Synthesis of Precursor (AlH 2 P 3 O 10 ) >>
First, phosphoric acid (H 3 PO 4 ) and aluminum hydroxide [Al (OH) 3 ] are mixed in a beaker made of Teflon (registered trademark) in a mass ratio of [H 3 PO 4 : Al (OH) 3 ] = Mix at 12: 1. The obtained mixture was subjected to a heat treatment at 220 ° C. for 12 hours in an electric furnace. The obtained gel was washed with distilled water, filtered, and dried in a vacuum dryer at 200 ° C. for 12 hours to obtain AlH 2 P 3 O 10 .
An X-ray diffraction spectrum of the obtained AlH 2 P 3 O 10 is shown in FIG. In FIG. 2 and FIG. 3, the middle spectrum data is powder data of AlH 2 P 3 O 10 (PDF: 00-036-0320).

<<イオン交換>>
置換するリチウム(Li)イオン源として、LiClOを、得られた前駆体に対してmol比(LiClO:前駆体)=4:1で混合した。得られた混合物について、Ar雰囲気中で260℃で12時間の焼成を行った。得られた固体を露点−46℃に調整されたドライルーム内で粉砕し、脱水エタノールを用いて洗浄、及び濾過を行った。
得られた粉体について、60℃で12時間の真空乾燥を行い、目的の固体電解質を得た。
<< Ion exchange >>
As a lithium (Li) ion source to be replaced, LiClO 4 was mixed with the obtained precursor at a molar ratio (LiClO 4 : precursor) = 4: 1. The obtained mixture was baked at 260 ° C. for 12 hours in an Ar atmosphere. The obtained solid was pulverized in a dry room adjusted to a dew point of -46 ° C, washed with dehydrated ethanol, and filtered.
The obtained powder was vacuum-dried at 60 ° C. for 12 hours to obtain a target solid electrolyte.

得られた固体電解質のX線回折スペクトルを図3に示した。図2のAlH10のスペクトル及びAlH10の粉末データ(PDF:00−036−0320)〔中段のスペクトル〕と対比することで、P10構造が維持されていることが確認された。 FIG. 3 shows an X-ray diffraction spectrum of the obtained solid electrolyte. By comparing the spectrum of AlH 2 P 3 O 10 of FIG. 2 with the powder data of AlH 2 P 3 O 10 (PDF: 00-036-0320) (middle spectrum), the P 3 O 10 structure is maintained. It was confirmed that.

また、得られた固体電解質のICP分析を行った。その結果、固体電解質におけるLi、P、Alの元素比は、Li:P:Al=1.07:3.13:1.00であった。   In addition, ICP analysis of the obtained solid electrolyte was performed. As a result, the element ratio of Li, P, and Al in the solid electrolyte was Li: P: Al = 1.07: 3.13: 1.00.

以上より、得られた固体電解質は、P10構造と、AlO構造とを有し、組成式がLiAlHP10(すなわち、前記組成式(1)において、Xが、約1.0)であることが確認された。 As described above, the obtained solid electrolyte has a P 3 O 10 structure and an AlO 6 structure, and the composition formula is LiAlHP 3 O 10 (that is, in the composition formula (1), X is about 1.0 ) Was confirmed.

<リチウムイオン伝導率>
得られた固体電解質を、28MPaで圧粉成形した後、ペレット(直径10mm、厚み0.5mm)を得た。ペレットの両面にAu電極(電極面積0.785cm)を圧着法によって成膜し、交流インピーダンスアナライザー(AUTOLAB PGSTAT30、Metrohm Autolab社製)に接続した。印加電圧は50mV、周波数範囲は1M−0.1Hzの範囲で測定した結果、200kΩの半円を示すコールコールプロットが得られた。その結果より、リチウムイオン伝導度は、3×10−7S/cmとなった。
なお、Au電極は、具体的には、Au粉末20mg(ニラコ製、2−5μm、樹枝状)を固体電解質の片面表面に均一に広げ、28MPaで圧着することで成膜した。
<Lithium ion conductivity>
After the obtained solid electrolyte was compacted at 28 MPa, pellets (diameter 10 mm, thickness 0.5 mm) were obtained. An Au electrode (electrode area: 0.785 cm 2 ) was formed on both surfaces of the pellet by a crimping method, and connected to an AC impedance analyzer (AUTOLAB PGSTAT30, manufactured by Metrohm Autolab). The applied voltage was 50 mV and the frequency range was 1 M-0.1 Hz. As a result, a Cole-Cole plot showing a semicircle of 200 kΩ was obtained. As a result, the lithium ion conductivity was 3 × 10 −7 S / cm.
Specifically, the Au electrode was formed by uniformly spreading 20 mg of Au powder (made by Nilaco, 2-5 μm, dendritic shape) on one surface of the solid electrolyte and crimping at 28 MPa.

以上の実施形態に関し、更に以下の付記を開示する。
(付記1)
構成元素として、Li、Al、P、H、及びOを有し、
10構造と、6配位八面体構造であるAlO構造とを有することを特徴とする固体電解質。
(付記2)
下記組成式(1)で表される付記1に記載の固体電解質。
LiAlH2.0−x10 ・・・組成式(1)
ただし、前記組成式(1)中、xは、0<x≦2.0を満たす。
(付記3)
正極活物質含有層と、負極活物質含有層と、前記正極活物質含有層及び前記負極活物質含有層の間に介在する固体電解質層とを有し、
前記固体電解質層が、固体電解質で構成される層であり、
前記固体電解質が、構成元素として、Li、Al、P、H、及びOを有し、更にP10構造と、6配位八面体構造であるAlO構造とを有する、
ことを特徴とする全固体電池。
(付記4)
前記固体電解質が、下記組成式(1)で表される付記3に記載の全固体電池。
LiAlH2.0−x10 ・・・組成式(1)
ただし、前記組成式(1)中、xは、0<x≦2.0を満たす。
Regarding the above embodiments, the following supplementary notes are further disclosed.
(Appendix 1)
Having Li, Al, P, H, and O as constituent elements,
A solid electrolyte having a P 3 O 10 structure and an AlO 6 structure which is a hexacoordinate octahedral structure.
(Appendix 2)
The solid electrolyte according to Supplementary Note 1 represented by the following composition formula (1).
Li x AlH 2.0-x P 3 O 10 ··· composition formula (1)
However, in the composition formula (1), x satisfies 0 <x ≦ 2.0.
(Appendix 3)
A positive electrode active material-containing layer, a negative electrode active material-containing layer, and a solid electrolyte layer interposed between the positive electrode active material-containing layer and the negative electrode active material-containing layer,
The solid electrolyte layer is a layer composed of a solid electrolyte,
The solid electrolyte has Li, Al, P, H, and O as constituent elements, and further has a P 3 O 10 structure and an AlO 6 structure that is a six-coordinate octahedral structure.
An all-solid-state battery comprising:
(Appendix 4)
The all-solid-state battery according to Supplementary Note 3, wherein the solid electrolyte is represented by the following composition formula (1).
Li x AlH 2.0-x P 3 O 10 ··· composition formula (1)
However, in the composition formula (1), x satisfies 0 <x ≦ 2.0.

1 正極集電体
2 正極活物質含有層
3 固体電解質層
4 負極活物質含有層
5 負極集電体
REFERENCE SIGNS LIST 1 positive electrode current collector 2 positive electrode active material containing layer 3 solid electrolyte layer 4 negative electrode active material containing layer 5 negative electrode current collector

Claims (2)

構成元素として、Li、Al、P、H、及びOを有し、
10構造と、6配位八面体構造であるAlO構造とを有し、
下記組成式(A)で表されることを特徴とする固体電解質。
LiAlHP 10 ・・・組成式(A)
Having Li, Al, P, H, and O as constituent elements,
And P 3 O 10 structure, the AlO 6 structure is 6-coordinated octahedral structure possess,
A solid electrolyte represented by the following composition formula (A) .
LiAlHP 3 O 10: Composition formula (A)
正極活物質含有層と、負極活物質含有層と、前記正極活物質含有層及び前記負極活物質含有層の間に介在する固体電解質層とを有し、A positive electrode active material-containing layer, a negative electrode active material-containing layer, and a solid electrolyte layer interposed between the positive electrode active material-containing layer and the negative electrode active material-containing layer,
前記固体電解質層が、固体電解質で構成される層であり、The solid electrolyte layer is a layer composed of a solid electrolyte,
前記固体電解質が、構成元素として、Li、Al、P、H、及びOを有し、更にPThe solid electrolyte has Li, Al, P, H, and O as constituent elements, and further includes P 3 O 1010 構造と、6配位八面体構造であるAlOStructure and a six-coordinate octahedral structure, AlO 6 構造とを有し、下記組成式(A)で表される、Having a structure represented by the following composition formula (A):
ことを特徴とする全固体電池。An all-solid-state battery comprising:
LiAlHPLiAlHP 3 O 1010 ・・・組成式(A)    ... Composition formula (A)
JP2016045860A 2016-03-09 2016-03-09 Solid electrolyte and all solid state battery Active JP6652705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016045860A JP6652705B2 (en) 2016-03-09 2016-03-09 Solid electrolyte and all solid state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016045860A JP6652705B2 (en) 2016-03-09 2016-03-09 Solid electrolyte and all solid state battery

Publications (2)

Publication Number Publication Date
JP2017162657A JP2017162657A (en) 2017-09-14
JP6652705B2 true JP6652705B2 (en) 2020-02-26

Family

ID=59858014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016045860A Active JP6652705B2 (en) 2016-03-09 2016-03-09 Solid electrolyte and all solid state battery

Country Status (1)

Country Link
JP (1) JP6652705B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109160502B (en) * 2018-09-17 2020-08-11 四川省乐山市华莱利科技有限公司 Method for synthesizing aluminum tripolyphosphate by using glufosinate-ammonium production byproduct

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3939212B2 (en) * 2002-07-17 2007-07-04 テイカ株式会社 Proton conductive composition
DE102009049694A1 (en) * 2009-10-16 2011-04-28 Süd-Chemie AG Pure phase lithium aluminum titanium phosphate and process for its preparation and use
DE102009049693A1 (en) * 2009-10-16 2011-04-21 Süd-Chemie AG Pure phase lithium aluminum titanium phosphate and process for its preparation and use
JP5949124B2 (en) * 2012-05-11 2016-07-06 富士通株式会社 Ionic conductor and secondary battery
JP6015762B2 (en) * 2012-09-13 2016-10-26 富士通株式会社 Ionic conductor and secondary battery
JP6387227B2 (en) * 2013-11-18 2018-09-05 日揮触媒化成株式会社 Positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2017162657A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
KR101850901B1 (en) All solid lithium secondary battery comprising gel polymer electrolyte and method for manufacturing the same
JP5594379B2 (en) Secondary battery positive electrode, secondary battery positive electrode manufacturing method, and all-solid secondary battery
CN105556731B (en) All-solid-state battery
JP6288716B2 (en) Method for producing sulfide solid electrolyte material
KR102108136B1 (en) All solid lithium secondary battery using solid electrolyte and method for manufacturing the same
JP5692184B2 (en) All solid lithium ion secondary battery
WO2012008422A1 (en) All-solid-state battery
JP5686300B2 (en) Solid electrolyte material and all solid lithium secondary battery
JP2015035334A (en) Solid electrolyte and all-solid-state lithium ion secondary battery
JP2010272344A (en) All-solid-state lithium ion secondary battery
JP2013089321A (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP2014209430A (en) Method for manufacturing sulfide-based solid electrolyte slurry and sulfide-based solid electrolyte slurry produced thereby, and method for manufacturing sulfide-based solid electrolyte powder and sulfide-based solid electrolyte powder produced thereby
JP2012164571A (en) Negative electrode body and lithium ion battery
JP2013045738A (en) Solid electrolyte sintered body, method of manufacturing the same, and all-solid lithium battery
JP6840946B2 (en) Solid electrolytes, all-solid-state batteries, and how to make them
KR20140046496A (en) Silicon compound based negative active material, manufacturing method thereof and lithium secondary battery comprising the same
JPWO2011111555A1 (en) All-solid secondary battery and manufacturing method thereof
JP6030960B2 (en) Manufacturing method of all solid state battery
JP6652705B2 (en) Solid electrolyte and all solid state battery
JP2020024780A (en) All-solid battery and manufacturing method thereof
JP7075006B2 (en) Solid electrolyte, its manufacturing method, and battery, and its manufacturing method
CN115699356A (en) Negative electrode for all-solid-state secondary battery, method for producing same, and all-solid-state secondary battery
JP2017098181A (en) All-solid-state battery
WO2022201609A1 (en) Positive electrode active material for all-solid-state lithium ion batteries, positive electrode for all-solid-state lithium ion batteries, all-solid-state lithium ion battery, and method for producing positive electrode active material for all-solid-state lithium ion batteries
KR20200046296A (en) Solid electrolyte for all-solid battery and all-solid battery comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200106

R150 Certificate of patent or registration of utility model

Ref document number: 6652705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150