JP2013089321A - Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery - Google Patents

Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery Download PDF

Info

Publication number
JP2013089321A
JP2013089321A JP2011226161A JP2011226161A JP2013089321A JP 2013089321 A JP2013089321 A JP 2013089321A JP 2011226161 A JP2011226161 A JP 2011226161A JP 2011226161 A JP2011226161 A JP 2011226161A JP 2013089321 A JP2013089321 A JP 2013089321A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011226161A
Other languages
Japanese (ja)
Inventor
Shinya Machida
信也 町田
Masatsugu Nakano
雅継 中野
Yuichi Aihara
雄一 相原
Yoshinobu Yamada
好伸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung R&D Institute Japan Co Ltd
Original Assignee
Samsung Yokohama Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Yokohama Research Institute filed Critical Samsung Yokohama Research Institute
Priority to JP2011226161A priority Critical patent/JP2013089321A/en
Publication of JP2013089321A publication Critical patent/JP2013089321A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: a lithium ion secondary battery in which a reaction at an interface between a positive electrode active material and a solid electrolyte is suppressed furthermore, so that rate characteristics and cycle characteristics thereof can be further improved; and a method for producing a positive electrode active material for the lithium ion secondary battery.SOLUTION: A lithium ion secondary battery 100 includes: a positive electrode layer 110 including a positive electrode active material 111 particle; a negative electrode layer 120; and a sulfur-based solid electrolyte layer 130 held between the positive electrode layer and the negative electrode layer and including at least LiS and PS. In the lithium ion secondary battery, a surface of the positive electrode active material 111 particle is coated with aLiO-ZrO.

Description

本発明は、レート特性及びサイクル特性に優れるリチウムイオン二次電池、及びこのリチウムイオン二次電池用の正極活物質の製造方法に関する。   The present invention relates to a lithium ion secondary battery excellent in rate characteristics and cycle characteristics, and a method for producing a positive electrode active material for the lithium ion secondary battery.

リチウムイオン二次電池は、大きな充放電容量、高い作動電位、優れた充放電サイクル特性を有するため、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、モーターを動力源とする自動二輪車、電気自動車、ハイブリッド電気自動車等の用途への需要が増大している。リチウムイオン二次電池では、電解質として、有機溶媒にリチウム塩を溶解させた非水電解液が用いられているが、このような非水電解液は、その発火のし易さや電解液の漏れ等の問題から、安全性が懸念されている。そのため、近年、リチウムイオン二次電池の安全性の向上を目的として、不燃材料である無機材料からなる固体電解質を用いた全固体型リチウムイオン二次電池(以下、「全固体二次電池」とも称する。)の研究が盛んに行われている。   Lithium ion secondary batteries have large charge / discharge capacity, high operating potential, and excellent charge / discharge cycle characteristics, so portable information terminals, portable electronic devices, small household electric power storage devices, motorcycles powered by motors, There is an increasing demand for applications such as electric vehicles and hybrid electric vehicles. In a lithium ion secondary battery, a non-aqueous electrolyte solution in which a lithium salt is dissolved in an organic solvent is used as an electrolyte. Such a non-aqueous electrolyte solution is easy to ignite, leak of the electrolyte solution, etc. Because of this, safety is a concern. Therefore, in recent years, for the purpose of improving the safety of lithium ion secondary batteries, all solid-state lithium ion secondary batteries (hereinafter referred to as “all solid state secondary batteries”) using solid electrolytes made of inorganic materials that are non-combustible materials have been developed. Research) has been actively conducted.

全固体二次電池の固体電解質としては硫化物や酸化物等を使用できるが、リチウムイオン伝導性の観点から硫化物系の固体電解質が最も期待できる材料である。ところが、硫化物系の固体電解質を使用した場合には、充電の際に正極活物質と固体電解質との界面で反応が起こり、この界面に抵抗成分が生成することにより、正極活物質と固体電解質との界面をリチウムイオンが移動する際の抵抗(以下、「界面抵抗」とも称する。)が増大しやすくなる。この界面抵抗の増大により、リチウムイオン伝導性が低下するため、リチウムイオン二次電池の出力が低下する、という問題があった。   Although sulfides, oxides, and the like can be used as the solid electrolyte of the all-solid-state secondary battery, a sulfide-based solid electrolyte is the most promising material from the viewpoint of lithium ion conductivity. However, when a sulfide-based solid electrolyte is used, a reaction occurs at the interface between the positive electrode active material and the solid electrolyte during charging, and a resistance component is generated at this interface, so that the positive electrode active material and the solid electrolyte are Resistance (hereinafter also referred to as “interface resistance”) tends to increase when lithium ions move on the interface. Due to the increase in the interfacial resistance, the lithium ion conductivity is lowered, which causes a problem that the output of the lithium ion secondary battery is lowered.

このような問題に対して、LiCoO(以下、「LCO」とも称する。)等の正極活物質の表面を他の物質で被覆処理して界面抵抗を減少させることが検討されている。 In order to solve such a problem, it has been studied to reduce the interface resistance by coating the surface of a positive electrode active material such as LiCoO 2 (hereinafter also referred to as “LCO”) with another material.

例えば、非特許文献1では、LCOにSiOやLiSiOを被覆する技術が、非特許文献2では、LCOにLiTiを被覆する技術が開示されている。また、特許文献1及び特許文献2では、LCO等の正極活物質にZrOを被覆する技術が開示されている。さらに、特許文献3には、正極活物質の表面を酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化ホウ素、酸化ケイ素等の酸化物で被覆する技術が開示されている。 For example, Non-Patent Document 1 discloses a technique for coating LCO with SiO 2 or Li 2 SiO 3 , and Non-Patent Document 2 discloses a technique for coating LCO with Li 2 Ti 2 O 5 . Patent Documents 1 and 2 disclose a technique for coating a positive electrode active material such as LCO with ZrO 2 . Furthermore, Patent Document 3 discloses a technique for coating the surface of a positive electrode active material with an oxide such as aluminum oxide, zirconium oxide, titanium oxide, boron oxide, or silicon oxide.

また、特許文献4及び特許文献5では、正極活物質の粒子表面を被覆するのではなく、正極層と硫化物系固体電解質層との間に、これら両層の界面近傍におけるリチウムイオンの偏りを緩衝する緩衝層や両層間の相互拡散を抑制する中間層を設ける技術が開示されている。   In Patent Document 4 and Patent Document 5, instead of coating the particle surface of the positive electrode active material, the bias of lithium ions in the vicinity of the interface between these two layers between the positive electrode layer and the sulfide-based solid electrolyte layer is detected. A technique for providing a buffer layer for buffering and an intermediate layer for suppressing mutual diffusion between both layers is disclosed.

特表2009−541938号公報JP-T 2009-541938 特表2011−519139号公報Special table 2011-519139 gazette 特開2008−103204号公報JP 2008-103204 A 特開2010−40439号公報JP 2010-40439 A 特開2011−44368号公報JP 2011-44368 A

J.Power sources,189,pp.527−530,2009J. et al. Power sources, 189, pp. 527-530, 2009 J.Power sources,195,pp.599−603,2010J. et al. Power sources, 195, pp. 599-603, 2010

しかしながら、上記非特許文献1〜2や特許文献1〜5に開示された技術のように、正極活物質の表面をSiO等の酸化物で被覆処理したり、正極層と固体電解質層との間に緩衝層や中間層を設けたりするだけでは、正極活物質と固体電解質との界面での反応を抑制するには不十分であり、より一層の抵抗成分の低減、ひいては、電池としてのレート特性及びサイクル特性の向上が望まれている。 However, like the techniques disclosed in Non-Patent Documents 1 and 2 and Patent Documents 1 to 5, the surface of the positive electrode active material is coated with an oxide such as SiO 2 or the positive electrode layer and the solid electrolyte layer are formed. It is not sufficient to suppress the reaction at the interface between the positive electrode active material and the solid electrolyte simply by providing a buffer layer or an intermediate layer between them, and it is possible to further reduce the resistance component, and thus the rate as a battery. Improvement of characteristics and cycle characteristics is desired.

そこで、本発明は、上記現状に鑑みてなされたものであり、正極活物質と固体電解質との界面での反応をより一層抑制し、レート特性及びサイクル特性をさらに向上させることが可能なリチウムイオン二次電池、及びこのリチウムイオン二次電池用の正極活物質の製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above-described situation, and lithium ions capable of further suppressing the reaction at the interface between the positive electrode active material and the solid electrolyte and further improving rate characteristics and cycle characteristics. It aims at providing the manufacturing method of a secondary battery and the positive electrode active material for this lithium ion secondary battery.

本発明者は、上記課題を解決するために鋭意検討を行った結果、正極活物質の表面をaLiO−ZrOで被覆することにより、正極活物質と固体電解質との界面での反応を顕著に抑制でき、このように表面が被覆された正極活物質を使用することで、リチウムイオン二次電池のレート特性及びサイクル特性を顕著に向上させることができることを見出し、この知見に基づいて本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventor has made the reaction at the interface between the positive electrode active material and the solid electrolyte by covering the surface of the positive electrode active material with aLi 2 O—ZrO 2. It was found that the rate characteristics and cycle characteristics of the lithium ion secondary battery can be remarkably improved by using the positive electrode active material whose surface is coated in this way. The invention has been completed.

すなわち、本発明のある観点によれば、aLiO−ZrO(0.1≦a≦2.0)で被覆された正極活物質粒子を含む正極層と、負極層と、前記正極層と前記負極層との間に挟持され、LiSとPとを少なくとも含む硫黄系固体電解質層と、を備え、前記正極活物質粒子と前記aLiO−ZrOの合計量に対するaLiO−ZrOの被覆量の割合が、0.1mol%以上2.0mol%以下である、リチウムイオン二次電池が提供される。 That is, according to an aspect of the present invention, a positive electrode layer including positive electrode active material particles coated with aLi 2 O—ZrO 2 (0.1 ≦ a ≦ 2.0), a negative electrode layer, and the positive electrode layer, A sulfur-based solid electrolyte layer sandwiched between the negative electrode layer and containing at least Li 2 S and P 2 S 5, and aLi with respect to the total amount of the positive electrode active material particles and the aLi 2 O—ZrO 2 A lithium ion secondary battery in which the ratio of the coating amount of 2 O—ZrO 2 is 0.1 mol% or more and 2.0 mol% or less is provided.

また、前記リチウムイオン二次電池において、前記正極活物質が、層状岩塩型構造を有する遷移金属酸化物のリチウム塩であることが好ましい。   In the lithium ion secondary battery, the positive electrode active material is preferably a lithium salt of a transition metal oxide having a layered rock salt structure.

前記層状岩塩型構造を有する遷移金属酸化物のリチウム塩としては、Li1−x−y−zNiCoAlまたはLi1−x−y−zNiCoMn(0<x<1、0<y<1、0<z<1、かつx+y+z<1)で表される3元系の遷移金属酸化物のリチウム塩が挙げられる。 Examples of the lithium salt of the transition metal oxide having the layered rock salt type structure include Li 1-x-yz Ni x Co y Al z O 2 or Li 1-x-yz Ni x Co y Mn z O 2. A lithium salt of a ternary transition metal oxide represented by (0 <x <1, 0 <y <1, 0 <z <1, and x + y + z <1).

また、本発明の別の観点によれば、正極活物質粒子とリチウムアルコキシドとジルコニウムアルコキシドとをアルコール溶液中で混合し、得られた混合溶液に超音波を照射しながらアルコールを蒸発乾燥させた後に、750℃以下の温度で焼成処理し、aLiO−ZrO(0.1≦a≦2.0)で被覆された正極活物質粒子を得る、リチウムイオン二次電池用正極活物質の製造方法が提供される。 According to another aspect of the present invention, after mixing the positive electrode active material particles, lithium alkoxide and zirconium alkoxide in an alcohol solution, and evaporating and drying the alcohol while irradiating the obtained mixed solution with ultrasonic waves. The positive electrode active material for lithium ion secondary batteries is obtained by firing at a temperature of 750 ° C. or less to obtain positive electrode active material particles coated with aLi 2 O—ZrO 2 (0.1 ≦ a ≦ 2.0). A method is provided.

本発明によれば、正極活物質の表面をaLiO−ZrOで被覆することで、正極活物質と固体電解質との界面での反応をより一層抑制することができ、これにより、レート特性及びサイクル特性をさらに向上させることが可能なリチウムイオン二次電池、及びこのリチウムイオン二次電池用の正極活物質の製造方法を提供することが可能となる。 According to the present invention, by covering the surface of the positive electrode active material with aLi 2 O—ZrO 2 , the reaction at the interface between the positive electrode active material and the solid electrolyte can be further suppressed, and thereby rate characteristics In addition, it is possible to provide a lithium ion secondary battery that can further improve cycle characteristics, and a method for producing a positive electrode active material for the lithium ion secondary battery.

全固体二次電池における界面抵抗の増大の様子を示す説明図である。It is explanatory drawing which shows the mode of the increase in interface resistance in an all-solid-state secondary battery. 本発明の好適な実施形態に係るリチウムイオン二次電池の構成を模式的に示す説明図である。It is explanatory drawing which shows typically the structure of the lithium ion secondary battery which concerns on suitable embodiment of this invention. aLiO−ZrOで被覆された正極活物質の作製方法の流れを示すフローチャートである。aLi is a flowchart showing a flow of a method for manufacturing 2 O-ZrO 2 coated with the cathode active material. 実施例2の充放電特性の評価結果を示すグラフである。6 is a graph showing evaluation results of charge / discharge characteristics of Example 2. 比較例1の充放電特性の評価結果を示すグラフである。6 is a graph showing the evaluation results of charge / discharge characteristics of Comparative Example 1. 実施例2のインピーダンスの評価結果を示すグラフである。5 is a graph showing the evaluation results of impedance in Example 2. 比較例1のインピーダンスの評価結果を示すグラフである。10 is a graph showing the evaluation results of impedance in Comparative Example 1.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

[1.固体電解質を用いた場合の問題点]
まず、図1を参照しながら、本発明の好適な実施形態に係るリチウムイオン二次電池について説明する前に、固体電解質を用いた場合の問題点について説明する。図1は、全固体二次電池における界面抵抗の増大の様子を示す説明図である。
[1. Problems when using solid electrolyte]
First, before describing a lithium ion secondary battery according to a preferred embodiment of the present invention, a problem when a solid electrolyte is used will be described with reference to FIG. FIG. 1 is an explanatory diagram showing an increase in interface resistance in an all-solid secondary battery.

固体電解質を用いた全固体二次電池では、正極活物質及び電解質が固体であるため、電解質として有機電解液を用いた場合よりも電解質が正極活物質の内部へ浸透しにくく、正極活物質と電解質との界面の面積が減少しやすいことから、リチウムイオン及び電子の移動経路を十分に確保することが困難である。そのため、図1に示すように、全固体二次電池1では、正極活物質11の粒子と固体電解質13の粒子とを混合した混合粒子を含有する正極合剤を正極材料として用い、負極活物質12の粒子と固体電解質13の粒子とを混合した混合粒子を含有する負極合剤を負極材料として用いることで、活物質と固体電解質との界面の面積を増大させている。   In an all-solid-state secondary battery using a solid electrolyte, since the positive electrode active material and the electrolyte are solid, the electrolyte is less likely to penetrate into the positive electrode active material than when an organic electrolyte is used as the electrolyte. Since the area of the interface with the electrolyte tends to decrease, it is difficult to secure a sufficient movement path for lithium ions and electrons. Therefore, as shown in FIG. 1, in the all-solid-state secondary battery 1, a positive electrode mixture containing mixed particles obtained by mixing particles of the positive electrode active material 11 and particles of the solid electrolyte 13 is used as a positive electrode material. By using a negative electrode mixture containing mixed particles obtained by mixing 12 particles and solid electrolyte 13 particles as the negative electrode material, the area of the interface between the active material and the solid electrolyte is increased.

しかしながら、上述したように、全固体二次電池1の固体電解質13として硫化物系の固体電解質を使用した場合には、充電の際に正極活物質11と固体電解質13との界面で反応が起こり、この界面に抵抗成分が生成することにより、正極活物質11の表面に高抵抗層15が形成されるため、正極活物質11と固体電解質13との界面抵抗が増大しやすくなる。ここで、「高抵抗層15」とは、正極活物質11と固体電解質13とが接触して反応した場合に、正極活物質11の表面に形成される抵抗成分からなる層であって、正極活物質11の内部や固体電解質13よりも、リチウムイオンが移動する際の抵抗が大きくなる層を意味する。このように、正極活物質11と固体電解質13との界面の面積を増大させると、リチウムイオン及び電子の移動経路を確保することができる反面、高抵抗層15が形成されやすくなる。すると、正極活物質11から固体電解質13へのリチウムイオンの移動が高抵抗層15により阻害され、リチウムイオン伝導性が低下するため、全固体二次電池1の出力が低下する、という問題があった。   However, as described above, when a sulfide-based solid electrolyte is used as the solid electrolyte 13 of the all-solid secondary battery 1, a reaction occurs at the interface between the positive electrode active material 11 and the solid electrolyte 13 during charging. Since the resistance component is generated at the interface, the high resistance layer 15 is formed on the surface of the positive electrode active material 11, so that the interface resistance between the positive electrode active material 11 and the solid electrolyte 13 is likely to increase. Here, the “high resistance layer 15” is a layer made of a resistance component formed on the surface of the positive electrode active material 11 when the positive electrode active material 11 and the solid electrolyte 13 react with each other, and It means a layer having higher resistance when lithium ions move than inside the active material 11 or the solid electrolyte 13. As described above, when the area of the interface between the positive electrode active material 11 and the solid electrolyte 13 is increased, a movement path of lithium ions and electrons can be secured, but the high resistance layer 15 is easily formed. Then, the movement of lithium ions from the positive electrode active material 11 to the solid electrolyte 13 is hindered by the high resistance layer 15, and the lithium ion conductivity is lowered, so that the output of the all-solid secondary battery 1 is lowered. It was.

そこで、以下に説明する本発明の好適な実施形態に係るリチウムイオン二次電池では、正極活物質の表面をaLiO−ZrOで被覆することにより、正極活物質と固体電解質との界面での反応を抑制し、これにより、リチウムイオン二次電池のレート特性及びサイクル特性を顕著に向上させている。 Therefore, in the lithium ion secondary battery according to a preferred embodiment of the present invention described below, the surface of the positive electrode active material is coated with aLi 2 O—ZrO 2 , so that the interface between the positive electrode active material and the solid electrolyte is obtained. As a result, the rate characteristics and cycle characteristics of the lithium ion secondary battery are remarkably improved.

[2.リチウムイオン二次電池の構成]
続いて、図2を参照しながら、本発明の好適な実施形態に係るリチウムイオン二次電池の構成について詳細に説明する。図2は、本実施形態に係るリチウムイオン二次電池の構成を模式的に示す説明図である。
[2. Configuration of lithium ion secondary battery]
Next, the configuration of the lithium ion secondary battery according to a preferred embodiment of the present invention will be described in detail with reference to FIG. FIG. 2 is an explanatory diagram schematically showing the configuration of the lithium ion secondary battery according to the present embodiment.

図2に示すように、本実施形態に係るリチウムイオン二次電池100は、正極層110と、負極層120と、正極層110と負極層120との間に挟持される固体電解質層130と、が積層された構造を有する。   As shown in FIG. 2, the lithium ion secondary battery 100 according to this embodiment includes a positive electrode layer 110, a negative electrode layer 120, a solid electrolyte layer 130 sandwiched between the positive electrode layer 110 and the negative electrode layer 120, Have a laminated structure.

[2.1.正極層110]
正極層110は、正極活物質111の粒子を含み、この正極活物質111の表面は、aLiO−ZrOからなる被覆層113で被覆されている。硫黄系固体電解質を使用した全固体型リチウムイオン二次電池は、正極活物質と固体電解質との界面での反応により界面抵抗が上昇し、電池の出力が低下するという問題がある。しかし、本実施形態に係るリチウムイオン二次電池100によれば、正極活物質111の表面がaLiO−ZrOからなる被覆層113で被覆されていることにより、当該被覆層113が、固体電解質層130に含まれる固体電解質粒子131と正極活物質111との直接接触を防ぐことができるので、正極活物質111と固体電解質131との界面で抵抗成分が生成しにくくなる。また、正極活物質111の表面がaLiO−ZrOで被覆されていると、正極活物質111と固体電解質131との界面でのリチウムイン濃度の低下が抑制され、さらには、リチウムイオンが移動可能な経路を形成することができるので、これによっても、正極活物質111と固体電解質131との界面における抵抗の上昇を抑制することが可能となる。このため、本実施形態に係るリチウムイオン二次電池100は、レート特性及びサイクル特性に優れる。
[2.1. Positive electrode layer 110]
The positive electrode layer 110 includes particles of the positive electrode active material 111, and the surface of the positive electrode active material 111 is covered with a coating layer 113 made of aLi 2 O—ZrO 2 . An all-solid-state lithium ion secondary battery using a sulfur-based solid electrolyte has a problem that the interface resistance increases due to a reaction at the interface between the positive electrode active material and the solid electrolyte, and the output of the battery decreases. However, according to the lithium ion secondary battery 100 according to the present embodiment, the surface of the positive electrode active material 111 is covered with the coating layer 113 made of aLi 2 O—ZrO 2 , so that the coating layer 113 is solid. Since direct contact between the solid electrolyte particles 131 included in the electrolyte layer 130 and the positive electrode active material 111 can be prevented, a resistance component is hardly generated at the interface between the positive electrode active material 111 and the solid electrolyte 131. Further, when the surface of the positive electrode active material 111 is coated with aLi 2 O—ZrO 2 , a decrease in the lithium-in concentration at the interface between the positive electrode active material 111 and the solid electrolyte 131 is suppressed, and further, lithium ions are Since a movable path can be formed, it is also possible to suppress an increase in resistance at the interface between the positive electrode active material 111 and the solid electrolyte 131. For this reason, the lithium ion secondary battery 100 according to the present embodiment is excellent in rate characteristics and cycle characteristics.

aLiO−ZrOは化学的に安定であるので、aLiO−ZrOにより正極活物質111の表面が被覆されていると、正極活物質111と固体電解質131とが直接接触するのを防ぐことができるため、正極活物質111と固体電解質131との界面における反応が抑制され、抵抗成分の生成を抑制することができる。 Since aLi 2 O—ZrO 2 is chemically stable, if the surface of the positive electrode active material 111 is coated with aLi 2 O—ZrO 2 , the positive electrode active material 111 and the solid electrolyte 131 are in direct contact with each other. Since it can prevent, reaction in the interface of the positive electrode active material 111 and the solid electrolyte 131 is suppressed, and the production | generation of a resistance component can be suppressed.

なお、正極活物質111は、その表面の少なくとも一部が被覆層113で被覆されていればよく、正極活物質111の表面全体が被覆層113で被覆されている場合、正極活物質111の表面が部分的に被覆層113で被覆されている場合がある。   In addition, the positive electrode active material 111 should just be coat | covered with the coating layer 113 at least one part of the surface, and when the whole surface of the positive electrode active material 111 is coat | covered with the coating layer 113, the surface of the positive electrode active material 111 May be partially covered with the covering layer 113.

また、本実施形態における「被覆」とは、正極活物質111の粒子の表面に、aLiO−ZrOが流動しない形態で配置された状態が維持されていることを意味する。さらに、本実施形態において、正極活物質111の粒子表面を被覆している被覆層113は、リチウムイオン伝導性を有し、かつ、正極活物質111や固体電解質131と接触しても流動しない層状の形態を維持し得る。 In addition, the “coating” in the present embodiment means that a state where aLi 2 O—ZrO 2 is arranged in a form that does not flow is maintained on the surface of the particles of the positive electrode active material 111. Further, in the present embodiment, the coating layer 113 covering the particle surface of the positive electrode active material 111 has a lithium ion conductivity and does not flow even when in contact with the positive electrode active material 111 or the solid electrolyte 131. Can be maintained.

また、正極活物質111の粒子表面にaLiO−ZrOからなる被覆層113が形成されていることは、例えば、正極活物質111と被覆層113との構造上の差異に起因するコントラストの違いを利用した、顕微鏡画像(走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)の画像)解析等の方法により確認することができる。 In addition, the formation of the coating layer 113 made of aLi 2 O—ZrO 2 on the particle surface of the positive electrode active material 111 means that, for example, the contrast due to the structural difference between the positive electrode active material 111 and the coating layer 113 is reduced. The difference can be confirmed by a method such as a microscopic image analysis (scanning electron microscope (SEM) or transmission electron microscope (TEM) image) analysis.

以下、正極層110に含まれる正極活物質111及び被覆層113について詳述する。   Hereinafter, the positive electrode active material 111 and the coating layer 113 included in the positive electrode layer 110 will be described in detail.

(正極活物質111)
本実施形態に係る正極層110に含まれる正極活物質111としては、リチウムイオンを可逆的に吸蔵及び放出することが可能な物質であれば特に限定されず、例えば、コバルト酸リチウム(LCO)、ニッケル酸リチウム、ニッケルコバルト酸リチウム、ニッケルコバルトアルミニウム酸リチウム(以下、「NCA」と称する場合もある。)、ニッケルコバルトマンガン酸リチウム(以下、「NCM」と称する場合もある。)、マンガン酸リチウム、リン酸鉄リチウム、硫化ニッケル、硫化銅、硫黄、酸化鉄、酸化バナジウム等が挙げられる。これらの正極活物質111は、単独で用いられてもよく、2種以上が併用されてもよい。
(Positive electrode active material 111)
The positive electrode active material 111 included in the positive electrode layer 110 according to the present embodiment is not particularly limited as long as it is a material capable of reversibly occluding and releasing lithium ions. For example, lithium cobalt oxide (LCO), Lithium nickelate, lithium nickelcobaltate, lithium nickelcobaltaluminate (hereinafter also referred to as “NCA”), nickelcobalt lithium manganate (hereinafter also referred to as “NCM”), lithiummanganate , Lithium iron phosphate, nickel sulfide, copper sulfide, sulfur, iron oxide, vanadium oxide and the like. These positive electrode active materials 111 may be used independently and 2 or more types may be used together.

正極活物質111は、上記に挙げた正極活物質の例のうち、特に、層状岩塩型構造を有する遷移金属酸化物のリチウム塩であることが好ましい。ここでいう「層状」とは、薄いシート状の形状のことを意味し、「岩塩型構造」とは、結晶構造の1種である塩化ナトリウム型構造のことであり、陽イオン及び陰イオンのそれぞれが形成する面心立方格子が、互いに単位格子の稜の1/2だけずれた構造を指す。このような層状岩塩型構造を有する遷移金属酸化物のリチウム塩としては、例えば、Li1−x−y−zNiCoAl(NCA)またはLi1−x−y−zNiCoMn(NCM)(0<x<1、0<y<1、0<z<1、かつx+y+z<1)で表される3元系の遷移金属酸化物のリチウム塩が挙げられる。 The positive electrode active material 111 is particularly preferably a lithium salt of a transition metal oxide having a layered rock salt structure among the examples of the positive electrode active materials listed above. “Layered” as used herein means a thin sheet-like shape, and “rock salt structure” refers to a sodium chloride structure, which is a kind of crystal structure, and includes cations and anions. Each of the face-centered cubic lattices formed by each indicates a structure that is shifted from each other by a half of the edge of the unit lattice. As a lithium salt of a transition metal oxide having such a layered rock salt structure, for example, Li 1-x-yz Ni x Co y Al z O 2 (NCA) or Li 1-x-yz Ni x Co y Mn z O 2 (NCM) (0 <x <1, 0 <y <1, 0 <z <1, and x + y + z <1) is represented by a lithium salt of a ternary transition metal oxide. Can be mentioned.

このように、正極活物質111として上記3元系の遷移金属酸化物のリチウム塩を用いることにより、エネルギー密度と熱安定性に優れる全固体型リチウムイオン電池を得ることができる。また、NCAやNCM等の3元系の遷移金属酸化物のリチウム塩の粒子(1次粒子の凝集体として存在)は、例えば、LCO等の粒子よりも粒径よりも小さく、比表面積が大きい(約10倍)。したがって、正極活物質111と固体電解質131との接触面積が大きくなり、リチウムイオン伝導性が向上するため、電池の出力が上昇する。また、正極活物質111の構成元素としてNiを含むことにより、リチウムイオン二次電池100の容量密度を上昇させ、また、充電状態での金属溶出が少ないため充電状態でのリチウムイオン二次電池100の長期信頼性を向上させることができる。   Thus, by using the lithium salt of the ternary transition metal oxide as the positive electrode active material 111, an all solid-state lithium ion battery excellent in energy density and thermal stability can be obtained. In addition, lithium salt particles (present as aggregates of primary particles) of ternary transition metal oxides such as NCA and NCM are smaller in particle size and larger in specific surface area than particles such as LCO, for example. (About 10 times). Therefore, the contact area between the positive electrode active material 111 and the solid electrolyte 131 is increased and the lithium ion conductivity is improved, so that the output of the battery is increased. Further, by including Ni as a constituent element of the positive electrode active material 111, the capacity density of the lithium ion secondary battery 100 is increased, and since the metal elution in the charged state is small, the lithium ion secondary battery 100 in the charged state is used. Can improve long-term reliability.

(被覆層113)
被覆層113は、上述したように、aLiO−ZrOからなる層であり、正極活物質111の粒子表面に被覆される。正極活物質111に被覆する被覆層113の成分として、aLiO−ZrOを使用することにより、正極活物質111と固体電解質131との界面の反応の抑制効果が飛躍的に向上する。特に、被覆層113の成分としてaLiO−ZrOを使用することにより、リチウムイオン二次電池100のサイクル特性やインピーダンスの改善効果に加え、他の材料を被覆層113の成分として使用する場合よりも、初期放電容量を飛躍的に上昇させることができる。また、aLiO−ZrOは、リチウムイオンの伝導性にも優れる。
(Coating layer 113)
As described above, the coating layer 113 is a layer made of aLi 2 O—ZrO 2 and is coated on the particle surface of the positive electrode active material 111. By using aLi 2 O—ZrO 2 as a component of the coating layer 113 that covers the positive electrode active material 111, the effect of suppressing the reaction at the interface between the positive electrode active material 111 and the solid electrolyte 131 is dramatically improved. In particular, when aLi 2 O—ZrO 2 is used as a component of the coating layer 113, in addition to the effect of improving the cycle characteristics and impedance of the lithium ion secondary battery 100, other materials are used as the component of the coating layer 113. Rather, the initial discharge capacity can be dramatically increased. Further, aLi 2 O-ZrO 2 is excellent in lithium ion conductivity.

ここで、被覆層113の成分であるaLiO−ZrOは、LiOとZrOの複合酸化物であり、これらの酸化物の混合割合、すなわち、aLiO−ZrOにおけるaの範囲は、0.1≦a≦2.0であることが好ましい。0.1≦a≦2.0とすることにより、リチウムイオン二次電池100のサイクル特性やインピーダンスの改善効果のみならず、初期放電容量の上昇効果をより顕著なものとすることが可能となる。 Here, aLi 2 O—ZrO 2 which is a component of the coating layer 113 is a composite oxide of Li 2 O and ZrO 2 , and a mixing ratio of these oxides, that is, a of a in the aLi 2 O—ZrO 2 . The range is preferably 0.1 ≦ a ≦ 2.0. By setting 0.1 ≦ a ≦ 2.0, not only the cycle characteristics and impedance improvement effect of the lithium ion secondary battery 100 but also the initial discharge capacity increase effect can be made more remarkable. .

aLiO−ZrOは、LiOとZrOとを両者が溶融する温度以上に加熱して所定の比率で溶融混合し、所定時間保持した後、急冷することにより得ることができる。 aLi 2 O—ZrO 2 can be obtained by heating Li 2 O and ZrO 2 to a temperature at which both of them are melted, melting and mixing them at a predetermined ratio, holding them for a predetermined time, and then rapidly cooling them.

また、被覆層113の被覆量としては、正極活物質111とaLiO−ZrOの合計量に対するaLiO−ZrOの被覆量の割合が、0.1mol%以上2.0mol%以下であることが好ましい。被覆層113の被覆量を上記範囲とすることにより、高い初期放電容量と優れたサイクル特性を両立することができる。一方、被覆層113の被覆量が0.1mol%未満の場合には、サイクル特性に劣る傾向にあり、被覆層113の被覆量が2.0mol%を超えると、初期放電容量が低下する傾向にある。 As the coating amount of the coating layer 113, the ratio of the coating amount of aLi 2 O-ZrO 2 to the total amount of the positive electrode active material 111 and aLi 2 O-ZrO 2 is more than 0.1 mol% 2.0 mol% or less Preferably there is. By setting the coating amount of the coating layer 113 within the above range, both a high initial discharge capacity and excellent cycle characteristics can be achieved. On the other hand, when the coating amount of the coating layer 113 is less than 0.1 mol%, the cycle characteristics tend to be inferior. When the coating amount of the coating layer 113 exceeds 2.0 mol%, the initial discharge capacity tends to decrease. is there.

(その他の添加剤)
正極層110には、表面が被覆層113で被覆された正極活物質111の粒子に加えて、例えば、導電剤、結着剤、電解質、フィラー、分散剤、イオン導電剤等の添加剤が適宜選択され配合されていてもよい。
(Other additives)
In addition to the particles of the positive electrode active material 111 whose surface is coated with the coating layer 113, for example, an additive such as a conductive agent, a binder, an electrolyte, a filler, a dispersant, and an ionic conductive agent is appropriately added to the positive electrode layer 110. It may be selected and blended.

上記導電剤としては、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉等が挙げられ、上記結着剤としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン等が挙げられる。上記電解質としては、後述する硫黄系固体電解質等が挙げられる。また、上記フィラー、分散剤、イオン導電剤等としては、通常リチウムイオン二次電池の電極に用いられる公知の物質を用いることができる。   Examples of the conductive agent include graphite, carbon black, acetylene black, ketjen black, carbon fiber, and metal powder. Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, and polyethylene. Is mentioned. As said electrolyte, the sulfur type solid electrolyte etc. which are mentioned later are mentioned. Moreover, as said filler, a dispersing agent, an ionic conductive agent, etc., the well-known substance normally used for the electrode of a lithium ion secondary battery can be used.

[2.2.負極層120]
(負極活物質121)
本実施形態に係る負極層120に含まれる負極活物質121としては、リチウムとの合金化、又は、リチウムの可逆的な吸蔵及び放出が可能な物質であれば特に限定されず、例えば、リチウム、インジウム、スズ、アルミ、ケイ素等の金属及びこれらの合金や、Li4/3Ti5/3、SnO等の遷移金属酸化物や、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛及び難黒鉛化性炭素等の炭素材料などが挙げられる。これらの負極活物質121は、単独で用いられてもよく、2種以上が併用されてもよい。
[2.2. Negative electrode layer 120]
(Negative electrode active material 121)
The negative electrode active material 121 included in the negative electrode layer 120 according to the present embodiment is not particularly limited as long as it is a material capable of alloying with lithium or reversibly occluding and releasing lithium, for example, lithium, Metals such as indium, tin, aluminum, silicon and alloys thereof, transition metal oxides such as Li 4/3 Ti 5/3 O 4 , SnO, artificial graphite, graphite carbon fiber, resin-fired carbon, pyrolysis gas Examples include carbon materials such as phase-grown carbon, coke, mesocarbon microbeads (MCMB), furfuryl alcohol resin calcined carbon, polyacene, pitch-based carbon fiber, vapor-grown carbon fiber, natural graphite, and non-graphitizable carbon. . These negative electrode active materials 121 may be used independently and 2 or more types may be used together.

(その他の添加剤)
なお、負極層120には、負極活物質121の粒子に加えて、例えば、導電剤、結着剤、電解質、フィラー、分散剤、イオン導電剤等の添加剤が適宜選択され配合されていてもよい。これらの具体例としては、上述した正極層110と同様の物質が挙げられる。
(Other additives)
In addition to the particles of the negative electrode active material 121, for example, additives such as a conductive agent, a binder, an electrolyte, a filler, a dispersant, and an ionic conductive agent may be appropriately selected and mixed in the negative electrode layer 120. Good. Specific examples thereof include the same substances as those of the positive electrode layer 110 described above.

[2.3.固体電解質層130]
本実施形態に係る固体電解質層130は、固体電解質131として、LiSとPとを少なくとも含む硫黄系固体電解質を含有する。この硫黄系固体電解質は、リチウムイオン伝導性が他の無機化合物より高いことが知られており、LiSとPの他に、SiS、GeS、B等の硫化物を含んでいてもよい。また、固体電解質層130には、固体電解質131として、硫黄系固体電解質に、適宜、LiPOやハロゲン、ハロゲン化合物等を添加した無機固体電解質を用いてもよい。
[2.3. Solid electrolyte layer 130]
The solid electrolyte layer 130 according to the present embodiment contains a sulfur-based solid electrolyte containing at least Li 2 S and P 2 S 5 as the solid electrolyte 131. This sulfur-based solid electrolyte is known to have higher lithium ion conductivity than other inorganic compounds. In addition to Li 2 S and P 2 S 5 , sulfur such as SiS 2 , GeS 2 , B 2 S 3, etc. It may contain things. The solid electrolyte layer 130 may be an inorganic solid electrolyte obtained by appropriately adding Li 3 PO 4 , halogen, a halogen compound, or the like to the sulfur-based solid electrolyte as the solid electrolyte 131.

また、硫黄系固体電解質は、LiSとPを含む硫化物とを両者が溶融する温度以上に加熱して所定の比率で溶融混合し、所定時間保持した後、急冷することにより得ることができる(溶融急冷法)。また、LiSとPを含む硫化物とをメカニカルミリング法(MM法)により処理して得ることができる。LiSとPを含む硫化物との混合比は、モル比で、通常50:50〜80:20、好ましくは60:40〜75:25である。 In addition, the sulfur-based solid electrolyte is heated to a temperature higher than the temperature at which both of Li 2 S and P 2 S 5 are melted, melted and mixed at a predetermined ratio, held for a predetermined time, and then rapidly cooled. Can be obtained (melt quenching method). Further, a sulfide containing Li 2 S and P 2 S 5 can be obtained by treating the mechanical milling (MM) method. The mixing ratio of the Li 2 S and the sulfide containing P 2 S 5 is usually 50:50 to 80:20, preferably 60:40 to 75:25 in terms of molar ratio.

[3.リチウムイオン二次電池の製造方法]
以上、本発明の好適な実施形態に係るリチウムイオン二次電池100の構成について詳細に説明したが、続いて、上述した構成を有するリチウムイオン二次電池100の製造方法について説明する。リチウムイオン二次電池100は、正極層110、負極層120及び固体電解質層130を作製した後に、これらの各層を積層することにより製造することができる。以下、各工程について詳述する。
[3. Manufacturing method of lithium ion secondary battery]
The configuration of the lithium ion secondary battery 100 according to the preferred embodiment of the present invention has been described in detail above. Next, a method for manufacturing the lithium ion secondary battery 100 having the above-described configuration will be described. The lithium ion secondary battery 100 can be manufactured by preparing the positive electrode layer 110, the negative electrode layer 120, and the solid electrolyte layer 130, and then laminating these layers. Hereinafter, each process is explained in full detail.

[3.1.正極層110の作製]
正極層110の作製方法は以下の通りである。例えば、表面がaLiO−ZrOで被覆された上記正極活物質111と各種添加剤との混合物を水や有機溶媒等の溶媒に添加してスラリー又はペースト状とし、得られたスラリー又はペーストを、ドクターブレード等を用いて集電体に塗布し、乾燥した後に、圧延ロール等で圧密化することで、正極層110を得ることができる。
[3.1. Preparation of positive electrode layer 110]
The manufacturing method of the positive electrode layer 110 is as follows. For example, a mixture of the positive electrode active material 111 whose surface is coated with aLi 2 O—ZrO 2 and various additives is added to a solvent such as water or an organic solvent to form a slurry or paste, and the resulting slurry or paste Is applied to a current collector using a doctor blade or the like, dried, and then consolidated with a rolling roll or the like, whereby the positive electrode layer 110 can be obtained.

このとき用いることができる集電体としては、例えば、インジウム、銅、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、ゲルマニウム、リチウム、又は、これらの合金等からなる板状体や箔状体等が挙げられる。なお、集電体を用いずに、表面がaLiO−ZrOで被覆された上記正極活物質111と各種添加剤との混合物をペレット状に圧密化成形して正極層110としてもよい。 The current collector that can be used at this time is, for example, a plate-like body made of indium, copper, magnesium, stainless steel, titanium, iron, cobalt, nickel, zinc, aluminum, germanium, lithium, or an alloy thereof. And foil. Note that the positive electrode layer 110 may be formed by compacting a mixture of the positive electrode active material 111 whose surface is coated with aLi 2 O—ZrO 2 and various additives into a pellet shape without using a current collector.

ここで、図3を参照しながら、表面がaLiO−ZrOで被覆された正極活物質111の作製方法について説明する。図3は、aLiO−ZrOで被覆された正極活物質111の作製方法の流れを示すフローチャートである。 Here, a manufacturing method of the positive electrode active material 111 whose surface is coated with aLi 2 O—ZrO 2 will be described with reference to FIG. FIG. 3 is a flowchart showing a flow of a manufacturing method of the positive electrode active material 111 coated with aLi 2 O—ZrO 2 .

図3に示すように、まず、リチウムアルコキシドとジルコニウムアルコキシドとをアルコール、アセト酢酸エチル等の有機溶媒及び水からなる溶媒中で撹拌混合し、aLiO−ZrOのアルコール溶液(aLiO−ZrO被覆用の塗布液)を調製する(ステップS101)。リチウムアルコキシドは、例えば、有機リチウムとアルコールとを反応させることにより得ることができる。また、撹拌混合の時間は特に限定されないが、例えば、30分程度とすればよい。なお、アセト酢酸エチル等のCH−CO−CH−CO−O−Rの構造を有する化合物は、該構造中のカルボニル基2個がキレート剤的に働き、不安定な金属を安定化させる効果があることから、ここでは、ジルコニウムアルコキシドの安定化剤として働くものである。 As shown in FIG. 3, first, lithium alkoxide and zirconium alkoxide are stirred and mixed in a solvent composed of an organic solvent such as alcohol and ethyl acetoacetate and water, and an alcohol solution of aLi 2 O—ZrO 2 (aLi 2 O— A coating solution for ZrO 2 coating is prepared (step S101). The lithium alkoxide can be obtained, for example, by reacting organic lithium with an alcohol. The time for stirring and mixing is not particularly limited, but may be, for example, about 30 minutes. Note that in a compound having a structure of CH 3 —CO—CH 2 —CO—O—R such as ethyl acetoacetate, two carbonyl groups in the structure act as a chelating agent to stabilize unstable metals. Since it is effective, it works here as a stabilizer for zirconium alkoxide.

次に、ステップS101で調製したaLiO−ZrO被覆用の塗布液を上述した正極活物質111と混合し、この混合溶液を撹拌しながら40℃程度に加熱し、アルコール等の溶媒を蒸発乾燥させる(ステップS103)。このとき、混合溶液には超音波を照射する。これにより、正極活物質111の粒子表面に、aLiO−ZrOの前駆体を担持することができる。 Next, the coating liquid for coating aLi 2 O—ZrO 2 prepared in step S101 is mixed with the positive electrode active material 111 described above, and this mixed solution is heated to about 40 ° C. while stirring to evaporate a solvent such as alcohol. Dry (step S103). At this time, the mixed solution is irradiated with ultrasonic waves. Thereby, the precursor of aLi 2 O—ZrO 2 can be supported on the particle surface of the positive electrode active material 111.

さらに、正極活物質111の粒子表面に担持されたaLiO−ZrOの前駆体を焼成する(ステップS105)。このとき、焼成温度を750℃以下とする。また、焼成時間は特に限定されないが、例えば、2時間程度とすればよい。また、焼成は酸素ガスを吹き込みながら行う。酸素ガスを吹き込むことにより、ニッケルを含む正極材料内のニッケルの還元を抑制し容量を維持することができる。 Further, the precursor of aLi 2 O—ZrO 2 supported on the particle surface of the positive electrode active material 111 is fired (step S105). At this time, the firing temperature is set to 750 ° C. or lower. Moreover, although baking time is not specifically limited, What is necessary is just to be about 2 hours, for example. The firing is performed while blowing oxygen gas. By blowing oxygen gas, reduction of nickel in the positive electrode material containing nickel can be suppressed and capacity can be maintained.

以上、ステップS101〜S105の工程を経ることにより、aLiO−ZrOが表面に被覆された正極活物質111を得ることができる(ステップS107)。 As described above, the positive electrode active material 111 whose surface is coated with aLi 2 O—ZrO 2 can be obtained through the steps S101 to S105 (step S107).

[3.2.負極層120の作製]
負極層120の作製方法は以下の通りである。例えば、上記負極活物質121と各種添加剤との混合物を水や有機溶媒等の溶媒に添加してスラリー又はペースト状とし、得られたスラリー又はペーストを、ドクターブレード等を用いて集電体に塗布し、乾燥した後に、圧延ロール等で圧密化することで、負極層120を得ることができる。
[3.2. Preparation of negative electrode layer 120]
The manufacturing method of the negative electrode layer 120 is as follows. For example, a mixture of the negative electrode active material 121 and various additives is added to a solvent such as water or an organic solvent to form a slurry or paste, and the obtained slurry or paste is used as a current collector using a doctor blade or the like. After apply | coating and drying, the negative electrode layer 120 can be obtained by compacting with a rolling roll etc. FIG.

このとき用いることができる集電体としては、例えば、インジウム、銅、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、ゲルマニウム、リチウム、又は、これらの合金等からなる板状体や箔状体等が挙げられる。なお、集電体を用いずに、上記負極活物質121と各種添加剤との混合物をペレット状に圧密化成形して負極層120としてもよい。また、負極活物質121として金属又はその合金を使用する場合、金属シート(箔)をそのまま使用してもよい。   The current collector that can be used at this time is, for example, a plate-like body made of indium, copper, magnesium, stainless steel, titanium, iron, cobalt, nickel, zinc, aluminum, germanium, lithium, or an alloy thereof. And foil. Note that the negative electrode layer 120 may be formed by compacting a mixture of the negative electrode active material 121 and various additives into a pellet shape without using a current collector. Moreover, when using a metal or its alloy as the negative electrode active material 121, you may use a metal sheet (foil) as it is.

[3.3.固体電解質層130の作製]
固体電解質層130の作製方法は以下の通りである。固体電解質131として用いる硫黄系固体電解質の製造方法としては、上述した溶融急冷法やメカニカルミリング法(MM法)がある。
[3.3. Preparation of solid electrolyte layer 130]
The method for producing the solid electrolyte layer 130 is as follows. As a method for producing a sulfur-based solid electrolyte used as the solid electrolyte 131, there are the above-described melt quenching method and mechanical milling method (MM method).

溶融急冷法による場合には、LiSとPとを所定量混合しペレット状にしたものを、真空中で所定の反応温度で反応させた後、急冷することにより、硫黄系固体電解質を得ることができる。この際の反応温度は、好ましくは400℃〜1000℃、より好ましくは、800℃〜900℃である。また、反応時間は、好ましくは0.1時間〜12時間、より好ましくは、1〜12時間である。さらに、上記反応物の急冷温度は、通常10℃以下、好ましくは0℃以下であり、その冷却速度は、通常1〜10000K/sec程度、好ましくは1〜1000K/secである。 In the case of the melt quenching method, a mixture of a predetermined amount of Li 2 S and P 2 S 5 and pelletized is reacted at a predetermined reaction temperature in a vacuum and then rapidly cooled to obtain a sulfur-based solid. An electrolyte can be obtained. The reaction temperature at this time is preferably 400 ° C to 1000 ° C, more preferably 800 ° C to 900 ° C. Moreover, reaction time becomes like this. Preferably it is 0.1 to 12 hours, More preferably, it is 1 to 12 hours. Furthermore, the quenching temperature of the reaction product is usually 10 ° C. or less, preferably 0 ° C. or less, and the cooling rate is usually about 1 to 10,000 K / sec, preferably 1 to 1000 K / sec.

MM法による場合には、LiSとPとを所定量混合し、メカニカルミリング法にて所定時間反応させることで、硫黄系固体電解質を得ることができる。上記原料を用いたメカニカルミリング法は、室温で反応を行うことができるという利点がある。MM法によれば、室温で固体電解質を製造できるため、原料の熱分解が起こらず、仕込み組成の固体電解質を得ることができる。 In the case of the MM method, a predetermined amount of Li 2 S and P 2 S 5 are mixed and reacted for a predetermined time by a mechanical milling method, whereby a sulfur-based solid electrolyte can be obtained. The mechanical milling method using the above raw materials has an advantage that the reaction can be performed at room temperature. According to the MM method, since a solid electrolyte can be produced at room temperature, the raw material is not thermally decomposed, and a solid electrolyte having a charged composition can be obtained.

MM法の回転速度及び回転時間は特に限定されないが、回転速度が速いほど固体電解質の生成速度が速くなり、回転時間が長いほど固体電解質ヘの原料の転化率が高くなる。   Although the rotation speed and rotation time of the MM method are not particularly limited, the higher the rotation speed, the higher the production rate of the solid electrolyte, and the longer the rotation time, the higher the conversion rate of the raw material to the solid electrolyte.

その後、得られた固体電解質を所定の温度で熱処理した後に、粉砕して粒子状の固体電解質131とする。   Thereafter, the obtained solid electrolyte is heat-treated at a predetermined temperature and then pulverized to form a particulate solid electrolyte 131.

このようにして得られた粒子状の固体電解質131を、例えば、ブラスト法、エアロゾルデポジション法、コールドスプレー法、スパッタリング法、気相成長法(CVD)、溶射法等の公知の製膜方法を用いて製膜することにより、固体電解質層130を作製できる。また、固体電解質131と溶媒やバインダー(結着材や高分子化合物等)を混合した溶液を塗布した後、溶媒を除去し製膜化する方法を用いてもよい。また、固体電解質131自体や固体電解質131とバインダー(結着材や高分子化合物等)や支持体(固体電解質層130の強度を補強させたり、固体電解質131自体の短絡を防ぐための材料や化合物等)を混合した電解質をプレスすることで製膜することもできる。   The particulate solid electrolyte 131 thus obtained is subjected to a known film forming method such as a blast method, an aerosol deposition method, a cold spray method, a sputtering method, a vapor deposition method (CVD), or a thermal spraying method. The solid electrolyte layer 130 can be produced by forming a film using the film. Alternatively, a method may be used in which a solution in which the solid electrolyte 131 is mixed with a solvent or a binder (such as a binder or a polymer compound) is applied, and then the solvent is removed to form a film. In addition, the solid electrolyte 131 itself, the solid electrolyte 131 and a binder (binder, polymer compound, etc.) and a support (strengthening the strength of the solid electrolyte layer 130, or a material or compound for preventing a short circuit of the solid electrolyte 131 itself) Etc.) can also be formed by pressing an electrolyte.

[3.4.各層の積層]
以上のようにして得られた正極層110、固体電解質層130及び負極層120をこの順で積層し、プレス等することにより、本実施形態に係るリチウムイオン二次電池100を製造することができる。
[3.4. Lamination of each layer]
The lithium ion secondary battery 100 according to the present embodiment can be manufactured by laminating the positive electrode layer 110, the solid electrolyte layer 130, and the negative electrode layer 120 obtained as described above in this order, and pressing or the like. .

次に、実施例を用いて本発明を更に具体的に説明するが、本発明は、以下の実施例のみに限定されるわけではない。   Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
まず、リチウムメトキシドとジルコニウム(IV)プロポキシドとを、エタノールとアセト酢酸エチルと水の混合溶液中で30分混合した。次いで、この混合溶液中に、正極活物質として日本化学社製のLiNi1/3Mn1/3Co1/3(以下、「NCM333」と記載する。)を、NCM333へのaLiO−ZrO(a=1)の被覆量が0.1mol%となるように添加し、混合溶液を40℃に加熱して撹拌しながら溶媒を蒸発乾燥させた。このとき、混合溶液には超音波を加えた。さらに、NCM333の表面へ担持されたLiO−ZrOの前駆体を、酸素を吹き込みながら300℃で2時間焼成し、0.1mol%のLiO−ZrOが表面に被覆されたNCM333(以下、「表面被覆NCM333」と記載する。)を得た。
Example 1
First, lithium methoxide and zirconium (IV) propoxide were mixed in a mixed solution of ethanol, ethyl acetoacetate and water for 30 minutes. Next, LiNi 1/3 Mn 1/3 Co 1/3 O 2 (hereinafter referred to as “NCM333”) manufactured by Nippon Kagaku Co., Ltd. as a positive electrode active material was added to this mixed solution as aLi 2 O to NCM333. -ZrO 2 (a = 1) coverage of is added to a 0.1 mol%, the solvent was evaporated to dryness with stirring and heating the mixture to 40 ° C.. At this time, ultrasonic waves were applied to the mixed solution. Furthermore, the precursor of Li 2 O—ZrO 2 supported on the surface of NCM333 was baked at 300 ° C. for 2 hours while blowing oxygen, and NCM333 with 0.1 mol% of Li 2 O—ZrO 2 coated on the surface. (Hereinafter referred to as “surface-coated NCM333”).

また、負極として使用するIn箔(厚み0.05mm)をφ13(mm)で打ち抜き、セル容器にセットした。その上に固体電解質であるLi2S−P2S5(80−20mol%)(SE)をメカニカルミリング処理(MM処理)したものを80mg積層し、成型機で軽く表面を整えた。さらに、上記のようにして得られた表面被覆NCM333と、SEと、導電剤である気相成長カーボンファイバ(VGCF)とを60/35/5質量%の比率で混合したものを、正極合剤としてSEの上に積層した。その状態で3t/cmの圧力で加圧してペレットを作製し試験用セルを得た。 Moreover, In foil (thickness 0.05mm) used as a negative electrode was punched out with φ13 (mm) and set in a cell container. On top of that, 80 mg of a solid electrolyte Li2S-P2S5 (80-20 mol%) (SE) mechanically milled (MM treated) was laminated, and the surface was lightly adjusted with a molding machine. Further, a mixture of the surface-coated NCM333 obtained as described above, SE, and vapor-grown carbon fiber (VGCF) as a conductive agent at a ratio of 60/35/5% by mass is used as a positive electrode mixture. Was laminated on top of SE. In that state, a pressure was applied at a pressure of 3 t / cm 2 to produce a pellet to obtain a test cell.

得られた試験用セルを、25℃で、0.02Cの定電流で、上限電圧4.3Vまで充電し、初期放電容量を測定した後、放電終止電圧2.5Vまで0.1C放電し、同様にして充放電を繰り返した。30サイクル終了後の初期容量に対する容量維持率を測定し、当該試験用セルのサイクル特性を評価した。   The obtained test cell was charged at 25 ° C. with a constant current of 0.02 C to an upper limit voltage of 4.3 V, and after measuring the initial discharge capacity, 0.1 C was discharged to a discharge end voltage of 2.5 V, The charge / discharge was repeated in the same manner. The capacity retention rate relative to the initial capacity after 30 cycles was measured, and the cycle characteristics of the test cell were evaluated.

(実施例2)
aLiO−ZrO(a=1)の被覆量を0.5mol%としたこと以外は、実施例1と同様にして試験用セルを作製し、電池特性を評価した。
(Example 2)
A test cell was prepared in the same manner as in Example 1 except that the coating amount of aLi 2 O—ZrO 2 (a = 1) was 0.5 mol%, and the battery characteristics were evaluated.

(実施例3)
aLiO−ZrO(a=1)の被覆量を2mol%としたこと以外は、実施例1と同様にして試験用セルを作製し、電池特性を評価した。
(Example 3)
A test cell was prepared in the same manner as in Example 1 except that the coating amount of aLi 2 O—ZrO 2 (a = 1) was 2 mol%, and the battery characteristics were evaluated.

(実施例4)
正極活物質としてLi1/3Ni1/3Co1/3Al1/3(NCA)を使用したこと以外は、実施例2と同様にして試験用セルを作製し、電池特性を評価した。
Example 4
A test cell was prepared in the same manner as in Example 2 except that Li 1/3 Ni 1/3 Co 1/3 Al 1/3 O 2 (NCA) was used as the positive electrode active material, and the battery characteristics were evaluated. did.

(実施例5)
正極活物質としてLiCoO(LCO)を使用したこと以外は、実施例2と同様にして試験用セルを作製し、電池特性を評価した。
(Example 5)
A test cell was prepared in the same manner as in Example 2 except that LiCoO 2 (LCO) was used as the positive electrode active material, and the battery characteristics were evaluated.

(実施例6)
aLiO−ZrOのaを0.1としたこと以外は、実施例2と同様にして試験用セルを作製し、電池特性を評価した。
(Example 6)
A test cell was prepared in the same manner as in Example 2 except that a in aLi 2 O—ZrO 2 was set to 0.1, and battery characteristics were evaluated.

(実施例6)
aLiO−ZrOのaを2としたこと以外は、実施例2と同様にして試験用セルを作製し、電池特性を評価した。
(Example 6)
A test cell was produced in the same manner as in Example 2 except that a in aLi 2 O—ZrO 2 was set to 2, and battery characteristics were evaluated.

(比較例1)
正極活物質(NCM333)に表面被覆を行わなかったこと以外は実施例1と同様にして試験用セルを作製し、電池特性を評価した。
(Comparative Example 1)
A test cell was prepared in the same manner as in Example 1 except that the positive electrode active material (NCM333) was not surface-coated, and the battery characteristics were evaluated.

(比較例2)
aLiO−ZrO(a=1)の被覆量を0.05mol%としたこと以外は、実施例1と同様にして試験用セルを作製し、電池特性を評価した。
(Comparative Example 2)
A test cell was prepared in the same manner as in Example 1 except that the coating amount of aLi 2 O—ZrO 2 (a = 1) was 0.05 mol%, and the battery characteristics were evaluated.

(比較例3)
aLiO−ZrO(a=1)の被覆量を3mol%としたこと以外は、実施例1と同様にして試験用セルを作製し、電池特性を評価した。
(Comparative Example 3)
A test cell was prepared in the same manner as in Example 1 except that the coating amount of aLi 2 O—ZrO 2 (a = 1) was 3 mol%, and battery characteristics were evaluated.

(比較例4)
正極活物質(NCM333)の表面に被覆する材料をLiSiOとしたこと以外は、実施例2と同様にして試験用セルを作製し、電池特性を評価した。
(Comparative Example 4)
A test cell was prepared in the same manner as in Example 2 except that the material for coating the surface of the positive electrode active material (NCM333) was Li 2 SiO 3, and the battery characteristics were evaluated.

(比較例5)
正極活物質(NCM333)の表面に被覆する材料をLiTiとしたこと以外は、実施例2と同様にして試験用セルを作製し、電池特性を評価した。
(Comparative Example 5)
A test cell was prepared in the same manner as in Example 2 except that the material to be coated on the surface of the positive electrode active material (NCM333) was Li 2 Ti 2 O 5, and the battery characteristics were evaluated.

(比較例6)
aLiO−ZrOのaを0としたこと、すなわち、正極活物質(NCM333)の表面に被覆する材料をZrOとしたこと以外は、実施例2と同様にして試験用セルを作製し、電池特性を評価した。
(Comparative Example 6)
A test cell was prepared in the same manner as in Example 2 except that a in aLi 2 O—ZrO 2 was set to 0, that is, the material coated on the surface of the positive electrode active material (NCM333) was ZrO 2. The battery characteristics were evaluated.

(比較例7)
aLiO−ZrOのaを2.5としたこと以外は、実施例2と同様にして試験用セルを作製し、電池特性を評価した。
(Comparative Example 7)
A test cell was prepared in the same manner as in Example 2 except that a in aLi 2 O—ZrO 2 was set to 2.5, and battery characteristics were evaluated.

実施例1〜7及び比較例1〜7で使用した正極活物質、被覆層の材料、被覆量、及び得られた電池特性の評価結果を下記表1に示した。   The positive electrode active materials used in Examples 1 to 7 and Comparative Examples 1 to 7, the material of the coating layer, the coating amount, and the evaluation results of the obtained battery characteristics are shown in Table 1 below.

Figure 2013089321
Figure 2013089321

表1に示したように、正極活物質の表面がaLiO−ZrO(0.1≦a≦2)で被覆され、かつ、被覆量が0.1〜2mol%である実施例1〜7はいずれも、高い初期放電容量が得られ、また、サイクル特性にも優れていた。 As shown in Table 1, the surface of the positive electrode active material was coated with aLi 2 O—ZrO 2 (0.1 ≦ a ≦ 2), and the coating amount was 0.1 to 2 mol%. In all cases, a high initial discharge capacity was obtained and cycle characteristics were excellent.

一方、正極活物質の表面を被覆しないか、被覆量が少ない場合には、初期放電容量が低く、また、サイクル特性にも劣る結果となった。また、正極活物質への被覆層の被覆量が多すぎるか、または、被覆層の材料がaLiO−ZrO以外の材料の場合には、初期放電容量が低いものとなった。また、被覆層の材料がZrOの場合には、サイクル特性に劣る結果となった。さらに、aLiO−ZrO中のLiOの量が多すぎても、初期放電容量が低いものとなった。 On the other hand, when the surface of the positive electrode active material was not coated or the coating amount was small, the initial discharge capacity was low and the cycle characteristics were inferior. Moreover, when the coating amount of the coating layer on the positive electrode active material was too large, or when the material of the coating layer was a material other than aLi 2 O—ZrO 2 , the initial discharge capacity was low. Moreover, when the material of the coating layer was ZrO 2 , the cycle characteristics were inferior. Furthermore, the amount of Li 2 O in aLi 2 O-ZrO 2 is also too large to become a initial discharge capacity is low.

(充放電特性及びインピーダンスの評価)
次に、図4A、図4B、図5A及び図5Bを参照しながら、実施例2及び比較例1の試験用セルについて、充放電特性、インピーダンス及びレート特性を評価した結果について説明する。図4A、図4Bは、それぞれ、実施例2及び比較例1の充放電特性の評価結果を示すグラフである。図5A、図5Bは、それぞれ、実施例2及び比較例1のインピーダンスの評価結果を示すグラフである。
(Evaluation of charge / discharge characteristics and impedance)
Next, with reference to FIGS. 4A, 4B, 5A, and 5B, the results of evaluating the charge / discharge characteristics, impedance, and rate characteristics of the test cells of Example 2 and Comparative Example 1 will be described. 4A and 4B are graphs showing the evaluation results of the charge / discharge characteristics of Example 2 and Comparative Example 1, respectively. 5A and FIG. 5B are graphs showing the impedance evaluation results of Example 2 and Comparative Example 1, respectively.

充放電特性に関しては、カットオフ電圧を充電時4.3V、放電時2.5Vの範囲で設定し、定電流法にて測定し、初期充電時及び30サイクル後の充放電特性を評価した。また、インピーダンスは、交流インピーダンス法で初期充電時及び30サイクル後のインピーダンスを評価した。   Regarding the charge / discharge characteristics, the cut-off voltage was set in the range of 4.3 V during charge and 2.5 V during discharge, and measured by a constant current method to evaluate the charge / discharge characteristics during initial charge and after 30 cycles. Moreover, the impedance evaluated the impedance at the time of initial charge and 30 cycles after by the alternating current impedance method.

図4A、図4B、図5A及び図5Bに示すように、正極活物質の表面にaLiO−ZrOが被覆された実施例2の試験用セルは、正極活物質の表面被覆処理が行われていない比較例2と比較して、インピーダンスの上昇が明らかに抑制され、その結果、充放電特性の向上につながったことがわかる。 As shown in FIGS. 4A, 4B, 5A, and 5B, the test cell of Example 2 in which the surface of the positive electrode active material was coated with aLi 2 O—ZrO 2 was subjected to surface coating treatment of the positive electrode active material. It can be seen that the increase in impedance is clearly suppressed as compared with Comparative Example 2 that is not known, and as a result, the charge / discharge characteristics are improved.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

100 リチウムイオン二次電池
110 正極層
111 正極活物質
113 被覆層
120 負極層
121 負極活物質
130 固体電解質層
131 (硫黄系)固体電解質

DESCRIPTION OF SYMBOLS 100 Lithium ion secondary battery 110 Positive electrode layer 111 Positive electrode active material 113 Cover layer 120 Negative electrode layer 121 Negative electrode active material 130 Solid electrolyte layer 131 (Sulfur system) Solid electrolyte

Claims (4)

aLiO−ZrO(0.1≦a≦2.0)で被覆された正極活物質粒子を含む正極層と、
負極層と、
前記正極層と前記負極層との間に挟持され、LiSとPとを少なくとも含む硫黄系固体電解質層と、
を備え、
前記正極活物質粒子と前記aLiO−ZrOの合計量に対するaLiO−ZrOの被覆量の割合が、0.1mol%以上2.0mol%以下である、リチウムイオン二次電池。
a positive electrode layer comprising positive electrode active material particles coated with aLi 2 O—ZrO 2 (0.1 ≦ a ≦ 2.0);
A negative electrode layer;
A sulfur-based solid electrolyte layer sandwiched between the positive electrode layer and the negative electrode layer and containing at least Li 2 S and P 2 S 5 ;
With
The positive active ratio of material particles and the aLi 2 O-ZrO 2 of ALI to the total amount of 2 O-ZrO 2 coating amount is less 0.1 mol% or more 2.0 mol%, a lithium ion secondary battery.
前記正極活物質が、層状岩塩型構造を有する遷移金属酸化物のリチウム塩である、請求項1に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the positive electrode active material is a lithium salt of a transition metal oxide having a layered rock salt structure. 前記リチウム塩が、Li1−x−y−zNiCoAlまたはLi1−x−y−zNiCoMn(0<x<1、0<y<1、0<z<1、かつx+y+z<1)で表される3元系の遷移金属酸化物のリチウム塩である、請求項2に記載のリチウムイオン二次電池。 The lithium salt is Li 1-x-yz Ni x Co y Al z O 2 or Li 1-x-yz Ni x Co y Mn z O 2 (0 <x <1, 0 <y <1 The lithium ion secondary battery according to claim 2, which is a lithium salt of a ternary transition metal oxide represented by 0 <z <1 and x + y + z <1). 正極活物質粒子とリチウムアルコキシドとジルコニウムアルコキシドとをアルコール溶液中で混合し、得られた混合溶液に超音波を照射しながらアルコールを蒸発乾燥させた後に、750℃以下の温度で焼成処理し、aLiO−ZrO(0.1≦a≦2.0)で被覆された正極活物質粒子を得る、リチウムイオン二次電池用正極活物質の製造方法。

The positive electrode active material particles, lithium alkoxide, and zirconium alkoxide are mixed in an alcohol solution, and the alcohol is evaporated and dried while irradiating the obtained mixed solution with ultrasonic waves, followed by firing at a temperature of 750 ° C. or less, and aLi 2 O-ZrO 2 to obtain a coated positive electrode active material particles (0.1 ≦ a ≦ 2.0), the method for producing a positive electrode active material for a lithium ion secondary battery.

JP2011226161A 2011-10-13 2011-10-13 Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery Pending JP2013089321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011226161A JP2013089321A (en) 2011-10-13 2011-10-13 Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011226161A JP2013089321A (en) 2011-10-13 2011-10-13 Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2013089321A true JP2013089321A (en) 2013-05-13

Family

ID=48533055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011226161A Pending JP2013089321A (en) 2011-10-13 2011-10-13 Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2013089321A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042417A (en) * 2014-08-15 2016-03-31 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium ion secondary battery
JP2016076477A (en) * 2014-10-03 2016-05-12 Tdk株式会社 Stabilized lithium powder, and lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2016103411A (en) * 2014-11-28 2016-06-02 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium ion secondary battery
JP2016110714A (en) * 2014-12-02 2016-06-20 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium ion secondary battery, and method for manufacturing positive electrode active material for lithium ion secondary battery
JP2016184496A (en) * 2015-03-26 2016-10-20 セイコーエプソン株式会社 Electrode composite body and battery
WO2017033480A1 (en) * 2015-08-26 2017-03-02 株式会社日立製作所 All-solid-state lithium secondary battery and secondary battery system provided with said secondary battery
US9608288B2 (en) 2014-07-17 2017-03-28 Samsung Electronics Co., Ltd. Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
JP2017098196A (en) * 2015-11-27 2017-06-01 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and method for manufacturing coating liquid
US9692041B2 (en) 2013-10-02 2017-06-27 Samsung Electronics Co., Ltd. Lithium battery and method of preparing cathode active material for the lithium battery
US9853323B2 (en) 2013-10-31 2017-12-26 Samsung Electronics Co., Ltd. Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
US10128507B2 (en) 2012-12-07 2018-11-13 Samsung Electronics Co., Ltd. Lithium secondary battery
US10141566B2 (en) 2014-08-15 2018-11-27 Samsung Electronics Co., Ltd. Lithium secondary battery including a coated cathode material and solid electrolyte, and method of preparing the same
JP2019508869A (en) * 2016-07-04 2019-03-28 エルジー・ケム・リミテッド Method for producing positive electrode active material for secondary battery and positive electrode active material for secondary battery produced thereby
US10340506B2 (en) 2014-11-28 2019-07-02 Samsung Electronics Co., Ltd. Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
CN112786851A (en) * 2019-11-05 2021-05-11 精工爱普生株式会社 Positive electrode active material composite
JP2021150286A (en) * 2020-03-18 2021-09-27 三星エスディアイ株式会社Samsung SDI Co., Ltd. Cathode for all-solid secondary battery and all-solid secondary battery including the same
US11217785B2 (en) 2017-01-24 2022-01-04 Samsung Electronics Co., Ltd. Composite cathode active material and secondary battery including the same
JP7379422B2 (en) 2021-08-02 2023-11-14 Dowaエレクトロニクス株式会社 Coated active material and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04319260A (en) * 1991-04-17 1992-11-10 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2008103204A (en) * 2006-10-19 2008-05-01 Idemitsu Kosan Co Ltd Cathode active material and secondary battery using it
JP2008218177A (en) * 2007-03-02 2008-09-18 Sanyo Electric Co Ltd Manufacturing method of positive active material and nonaqueous electrolyte secondary battery using the positive active material
JP2010146936A (en) * 2008-12-22 2010-07-01 Toyota Motor Corp All-solid battery
JP2010282948A (en) * 2009-05-01 2010-12-16 Toyota Motor Corp Solid electrolyte material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04319260A (en) * 1991-04-17 1992-11-10 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2008103204A (en) * 2006-10-19 2008-05-01 Idemitsu Kosan Co Ltd Cathode active material and secondary battery using it
JP2008218177A (en) * 2007-03-02 2008-09-18 Sanyo Electric Co Ltd Manufacturing method of positive active material and nonaqueous electrolyte secondary battery using the positive active material
JP2010146936A (en) * 2008-12-22 2010-07-01 Toyota Motor Corp All-solid battery
JP2010282948A (en) * 2009-05-01 2010-12-16 Toyota Motor Corp Solid electrolyte material

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10873084B2 (en) 2012-12-07 2020-12-22 Samsung Electronics Co., Ltd. Lithium secondary battery
US10128507B2 (en) 2012-12-07 2018-11-13 Samsung Electronics Co., Ltd. Lithium secondary battery
US9692041B2 (en) 2013-10-02 2017-06-27 Samsung Electronics Co., Ltd. Lithium battery and method of preparing cathode active material for the lithium battery
US9853323B2 (en) 2013-10-31 2017-12-26 Samsung Electronics Co., Ltd. Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
US9608288B2 (en) 2014-07-17 2017-03-28 Samsung Electronics Co., Ltd. Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
US9843038B2 (en) 2014-07-17 2017-12-12 Samsung Electronics Co., Ltd. Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
JP2016042417A (en) * 2014-08-15 2016-03-31 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium ion secondary battery
US10141566B2 (en) 2014-08-15 2018-11-27 Samsung Electronics Co., Ltd. Lithium secondary battery including a coated cathode material and solid electrolyte, and method of preparing the same
JP2016076477A (en) * 2014-10-03 2016-05-12 Tdk株式会社 Stabilized lithium powder, and lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
US10340506B2 (en) 2014-11-28 2019-07-02 Samsung Electronics Co., Ltd. Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
KR102477090B1 (en) * 2014-11-28 2022-12-13 삼성전자주식회사 Cathode for lithium ion secondary battery, and lithium ion secondary battery
KR20160064942A (en) * 2014-11-28 2016-06-08 삼성전자주식회사 Cathode for lithium ion secondary battery, and lithium ion secondary battery
JP2016103411A (en) * 2014-11-28 2016-06-02 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium ion secondary battery
JP2016110714A (en) * 2014-12-02 2016-06-20 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium ion secondary battery, and method for manufacturing positive electrode active material for lithium ion secondary battery
JP2016184496A (en) * 2015-03-26 2016-10-20 セイコーエプソン株式会社 Electrode composite body and battery
WO2017033480A1 (en) * 2015-08-26 2017-03-02 株式会社日立製作所 All-solid-state lithium secondary battery and secondary battery system provided with said secondary battery
JP2017098196A (en) * 2015-11-27 2017-06-01 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and method for manufacturing coating liquid
US10637056B2 (en) 2016-07-04 2020-04-28 Lg Chem, Ltd. Method of preparing positive electrode active material for secondary battery and positive electrode active material for secondary battery prepared thereby
JP2019508869A (en) * 2016-07-04 2019-03-28 エルジー・ケム・リミテッド Method for producing positive electrode active material for secondary battery and positive electrode active material for secondary battery produced thereby
US11217785B2 (en) 2017-01-24 2022-01-04 Samsung Electronics Co., Ltd. Composite cathode active material and secondary battery including the same
CN112786851A (en) * 2019-11-05 2021-05-11 精工爱普生株式会社 Positive electrode active material composite
CN112786851B (en) * 2019-11-05 2023-08-15 精工爱普生株式会社 Positive electrode active material complex
JP2021150286A (en) * 2020-03-18 2021-09-27 三星エスディアイ株式会社Samsung SDI Co., Ltd. Cathode for all-solid secondary battery and all-solid secondary battery including the same
JP7238003B2 (en) 2020-03-18 2023-03-13 三星エスディアイ株式会社 Positive electrode for all-solid secondary battery, and all-solid secondary battery including the same
JP7379422B2 (en) 2021-08-02 2023-11-14 Dowaエレクトロニクス株式会社 Coated active material and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2013089321A (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
KR102094991B1 (en) lithium secondary battery
JP6329745B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
KR101456350B1 (en) Composite positive electrode active material, all solid-state battery, and methods for manufacture thereof
KR20180091678A (en) Anode for all solid state secondary battery, all solid state secondary battery and method of manufacturing the same
KR20160032664A (en) All solid lithium ion secondary battery
JP6667985B2 (en) Lithium ion secondary battery
JP5551880B2 (en) All solid state secondary battery
JP6738121B2 (en) Lithium ion secondary battery
JP5682318B2 (en) All solid battery
KR20120010552A (en) Solid lithium ion secondary battery and electrode usable with same
WO2013190930A1 (en) Battery system, method for manufacturing battery system, and battery control apparatus
JP2012028231A (en) Solid lithium ion secondary battery
JP2011187370A (en) All solid battery
JP2016170942A (en) Method of manufacturing positive electrode active material for solid battery
JP2013041749A (en) Battery system
JP2012164571A (en) Negative electrode body and lithium ion battery
Uematsu et al. Suspension synthesis of Na3-xPS4-xClx solid electrolytes
JP2016134302A (en) All solid lithium ion secondary battery
JP6576033B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP6295966B2 (en) All solid battery
JP2017157473A (en) Lithium ion secondary battery
JP2010177042A (en) Positive electrode for nonaqueous electrolyte battery, method of manufacturing the same, and nonaqueous electrolyte battery
JP2020077571A (en) Composite structure, lithium battery, and method for manufacturing composite structure
US11532837B2 (en) Sulfide solid electrolyte particles and all-solid-state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150818