JP2005346956A - Positive electrode active material for nonaqueous lithium secondary battery, manufacturing method thereof, and nonaqueous lithium secondary battery using the positive electrode active material - Google Patents

Positive electrode active material for nonaqueous lithium secondary battery, manufacturing method thereof, and nonaqueous lithium secondary battery using the positive electrode active material Download PDF

Info

Publication number
JP2005346956A
JP2005346956A JP2004162152A JP2004162152A JP2005346956A JP 2005346956 A JP2005346956 A JP 2005346956A JP 2004162152 A JP2004162152 A JP 2004162152A JP 2004162152 A JP2004162152 A JP 2004162152A JP 2005346956 A JP2005346956 A JP 2005346956A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004162152A
Other languages
Japanese (ja)
Inventor
Fumi Kurita
ふみ 栗田
Motoe Nakajima
源衛 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004162152A priority Critical patent/JP2005346956A/en
Publication of JP2005346956A publication Critical patent/JP2005346956A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a positive electrode active material for a nonaqueous lithium secondary battery capable of achieving a high output, and to provide the positive electrode active material and the lithium secondary battery using them. <P>SOLUTION: In the nonaqueous lithium secondary battery that uses a composite oxide composed of lithium and a transition metal as the positive electrode active material, the positive electrode active material is composed of an oxide having a layered crystal structure and represented by a composition formula Li<SB>a</SB>Mn<SB>x</SB>Ni<SB>y</SB>M<SB>z</SB>O<SB>2</SB>[M is at least one of Co and Al] where the followings are satisfied: 1≤a≤1.2; 0.2≤x≤0.5; 0.35≤y≤0.5; 0≤z≤0.45 and x+y+z=1. The oxide has undergone surface modification with a compound containing at least one of Al, Mg, Sn, Ti, Zn and Zr. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウム及び遷移金属からなる複合酸化物を用いたリチウム二次電池用正極活物質とその製造方法、並びにこれら正極活物質と製造方法を用いたリチウム二次電池に関するものである。   The present invention relates to a positive electrode active material for a lithium secondary battery using a composite oxide composed of lithium and a transition metal, a manufacturing method thereof, and a lithium secondary battery using the positive electrode active material and the manufacturing method.

近年、携帯電話やノート型コンピューターの高性能化及び急激な普及に伴って、これらに用いる二次電池に関して小型、軽量化、高容量の要望が高まってきている。リチウム二次電池はニッケルカドミウム電池、ニッケル水素電池に比べて電池電圧が高く、高エネルギ−密度で、上記の分野で急速に普及している。また最近の環境問題を背景に、電気自動車やハイブリッド自動車のモータ駆動用電源としても期待されている。特にハイブリッド自動車のエネルギー貯蔵用としては高い出力密度が必要であり、高出力放電特性と高いサイクル安定性が要求されている。   In recent years, with the high performance and rapid spread of mobile phones and notebook computers, there are increasing demands for small size, light weight, and high capacity for secondary batteries used in these. Lithium secondary batteries have a higher battery voltage and higher energy density than nickel cadmium batteries and nickel hydrogen batteries, and are rapidly spreading in the above fields. Against the background of recent environmental problems, it is also expected to serve as a motor drive power source for electric vehicles and hybrid vehicles. In particular, high power density is required for energy storage in hybrid vehicles, and high power discharge characteristics and high cycle stability are required.

リチウム二次電池は正極、負極およびセパレータを容器内に配置し、有機溶媒による非水電解液を充たして構成されている。正極はアルミニウム箔等の集電体に正極活物質を塗布し加圧成形したものである。このリチウム二次電池の正極活物質としては、α-NaFeO2構造を有するコバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、スピネル型構造を有するマンガン酸リチウム(LiMn2O4)などに代表されるようなリチウムと遷移金属の複合酸化物(以下、リチウム遷移金属酸化物と言うことがある。)の粉体が主として用いられ、例えば特許文献1にはその製法が詳しく開示されている。これら正極活物質の合成は一般にリチウム化合物(Li2CO3、LiOH等)粉末と遷移金属化合物(MnO2、 NiO、 Co3O4等)粉末を混合し、乾燥、焼成した後、解砕してリチウム遷移金属酸化物とする方法が広く採用されている。
正極活物質を集電体に塗布する際には、正極活物質に重量比で数%〜数十%程度の炭素粉を混ぜ、さらにPVdF(ポリフッ化ビリニデン)、PTFE(ポリテトラフルオロエチレン)等の結着材と混練してペースト状にして、集電体箔上に厚み20μm〜100μmに塗布、乾燥、プレス工程を経て正電極が作られている。
A lithium secondary battery is configured by arranging a positive electrode, a negative electrode, and a separator in a container and filling a non-aqueous electrolyte with an organic solvent. The positive electrode is formed by applying a positive electrode active material to a current collector such as an aluminum foil and press-molding it. As a positive electrode active material of this lithium secondary battery, lithium cobaltate (LiCoO 2 ) having an α-NaFeO 2 structure, lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ) having a spinel structure, etc. The powder of lithium-transition metal composite oxide (hereinafter sometimes referred to as lithium transition metal oxide) as typified by the above is mainly used. For example, Patent Document 1 discloses the production method in detail. Yes. In general, these positive electrode active materials are synthesized by mixing lithium compound (Li 2 CO 3 , LiOH, etc.) powder and transition metal compound (MnO 2, NiO, Co 3 O 4 etc.) powder, drying, firing, and crushing. Thus, a lithium transition metal oxide method has been widely adopted.
When the positive electrode active material is applied to the current collector, carbon powder of several percent to several tens percent by weight is mixed with the positive electrode active material, and PVdF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), etc. The positive electrode is made through a paste process by kneading with a binder and applying, drying and pressing the collector foil to a thickness of 20 μm to 100 μm.

上記正極活物質は、電気伝導率が10-1〜10-6S/cm2で一般の導体と比べ低く、アルミニウム集電体と正極活物質間の電気伝導度および電気的接触状況は、電池のサイクル特性、放電レート特性に大きな影響を与える。そこで、アルミニウム集電体と正極活物質間もしくは活物質相互間の電気伝導率を更に高めるように、正極活物質よりも電気伝導率の高い炭素粉等の導電助材が使用されることが多い。 The positive electrode active material has an electrical conductivity of 10 -1 to 10 -6 S / cm 2 and is lower than that of a general conductor. The electrical conductivity and electrical contact between the aluminum current collector and the positive electrode active material are This greatly affects the cycle characteristics and discharge rate characteristics. Therefore, in order to further increase the electrical conductivity between the aluminum current collector and the positive electrode active material or between the active materials, a conductive aid such as carbon powder having a higher electrical conductivity than the positive electrode active material is often used. .

一般に、放電電流を大きくすると内部抵抗のため放電容量が落ちる。ハイブリッド自動車等の二次電池として高出力を得るためには、できるだけ内部抵抗を低くする必要がある。例えば、特許文献2には、リチウムと遷移金属の酸化物にCo等の化合物を修飾することで内部抵抗を低減する手法が述べられている。また、特許文献3にも同様の手法により、サイクル特性を改善し、内部抵抗を低減する点が述べられている。   Generally, when the discharge current is increased, the discharge capacity decreases due to internal resistance. In order to obtain a high output as a secondary battery for a hybrid vehicle or the like, it is necessary to make the internal resistance as low as possible. For example, Patent Document 2 describes a method of reducing internal resistance by modifying a compound such as Co to an oxide of lithium and a transition metal. Patent Document 3 also describes that the cycle characteristics are improved and the internal resistance is reduced by a similar method.

特開平8−17471号公報JP-A-8-17471 特開平9−55210号公報JP 9-55210 A 特開2002−151083号公報JP 2002-151083 A

しかしながら、これらの手段では製造工程を簡便にすることが困難であった。
本発明は、より簡便な方法で製造でき、高出力が得られる非水系リチウム二次電池用正極活物質とその製造方法及びその正極活物質を用いた非水系リチウム二次電池を提供することを目的とする。
However, it has been difficult to simplify the manufacturing process with these means.
The present invention provides a positive electrode active material for a non-aqueous lithium secondary battery that can be manufactured by a simpler method and obtains a high output, a method for manufacturing the same, and a non-aqueous lithium secondary battery using the positive electrode active material. Objective.

本発明は、リチウム化合物と遷移金属化合物を混合後、焼成により合成したリチウム遷移金属酸化物に有機金属化合物を添加して解砕し、熱処理及び分級を行ったものを正極活物質として用いた場合に、内部抵抗を低くすることができて、高出力が得られることを知見したものである。本発明では、リチウム遷移金属酸化物の解砕時に有機金属化合物を添加することで、リチウム遷移金属酸化物を解砕すると同時に有機金属化合物をリチウム遷移金属酸化物表面に付着させ、その後熱処理を行うことで、金属化合物が表面修飾された形態とすることができる。表面修飾の形態は一概には言えないが、例えば粒子表面に部分的に数十ナノ程度の当該修飾物がくっついた状態であると言える。
即ち、本発明の非水系リチウム二次電池用正極活物質は、層状結晶構造を有する層状リチウム遷移金属酸化物に金属化合物を表面修飾することを特徴とし、望ましくはAl、Mg、Sn、Ti、Zn、及びZrのうち少なくとも一つを含む化合物を表面修飾したことを特徴とするものである。また、このときの正極活物質の組成としては、組成式がLiaMnxNiyz2[M=Co、Alのうち少なくとも一種]で表され、1≦a≦1.2、0≦x≦0.65、0.35≦y≦1、0≦z≦0.65の範囲でかつx+y+z=1、更には1≦a≦1.2、0.2≦x≦0.5、0.35≦y≦0.8、0≦z≦0.45の範囲でかつx+y+z=1の層状結晶構造を有する酸化物であることが望ましい。
In the present invention, after mixing a lithium compound and a transition metal compound, adding an organometallic compound to a lithium transition metal oxide synthesized by firing, crushing, and performing heat treatment and classification as a positive electrode active material Furthermore, it has been found that the internal resistance can be lowered and a high output can be obtained. In the present invention, by adding an organometallic compound at the time of pulverization of the lithium transition metal oxide, the lithium transition metal oxide is crushed, and at the same time, the organometallic compound is attached to the surface of the lithium transition metal oxide, followed by heat treatment. Thereby, it can be set as the form by which the metal compound was surface-modified. The form of the surface modification cannot be generally described, but it can be said that, for example, the modification product of about several tens of nanometers partially adheres to the particle surface.
That is, the positive electrode active material for a non-aqueous lithium secondary battery of the present invention is characterized by surface-modifying a metal compound to a layered lithium transition metal oxide having a layered crystal structure, preferably Al, Mg, Sn, Ti, A compound containing at least one of Zn and Zr is surface-modified. The composition of the positive electrode active material at this time is represented by a composition formula of Li a Mn x Ni y M z O 2 [M = Co, at least one of Al], 1 ≦ a ≦ 1.2, 0 ≦ x ≦ 0.65, 0.35 ≦ y ≦ 1, 0 ≦ z ≦ 0.65 and x + y + z = 1, further 1 ≦ a ≦ 1.2, 0.2 ≦ x ≦ 0.5, 0.35 ≦ y ≦ 0.8, 0 ≦ z ≦ An oxide having a layered crystal structure in the range of 0.45 and x + y + z = 1 is desirable.

本発明の正極活物質の製造方法は、リチウム化合物と遷移金属化合物を所定比で湿式混合し、乾燥させて顆粒状にし、大気中、窒素雰囲気中あるいは酸素雰囲気中にて850℃以上1100℃以下の温度で焼成を行って、組成式LiaMnxNiyz2[M=Co、Alのうち少なくとも一種]で表され、1≦a≦1.2、0≦x≦0.65、0.35≦y≦1、0≦z≦0.65の範囲で、かつx+y+z=1の層状結晶構造を有するリチウム遷移金属複合酸化物とした後、この複合酸化物にAl、Mg、Sn、Ti、Zn、及びZrのうち少なくとも一つを含む有機金属化合物を添加して解砕し、その後大気中、窒素雰囲気中あるいは酸素雰囲気中にて400℃以上700℃以下の温度で熱処理を行い、分級を行うことを特徴とするものである。
上記した有機金属化合物の添加量は、当該有機金属化合物をリチウムと遷移金属の複合酸化物に対して金属濃度が1ppm以上500ppm以下となるようにすることが望ましく、更に望ましくは1ppm以上200ppm以下である。1ppm未満では表面修飾の効果が不十分であり、500ppmを超えると修飾物の量が過剰になり、逆に特性の低下をもたらすため、望ましくない。
The method for producing a positive electrode active material according to the present invention comprises wet mixing a lithium compound and a transition metal compound in a predetermined ratio, drying to form granules, and 850 ° C. or higher and 1100 ° C. or lower in air, nitrogen atmosphere or oxygen atmosphere The composition is expressed by the composition formula Li a Mn x Ni y M z O 2 [M = Co, at least one of Al], 1 ≦ a ≦ 1.2, 0 ≦ x ≦ 0.65, 0.35 ≦ y A lithium transition metal composite oxide having a layered crystal structure of ≦ 1, 0 ≦ z ≦ 0.65 and x + y + z = 1, and then added to the composite oxide is Al, Mg, Sn, Ti, Zn. , And an organic metal compound containing at least one of Zr, and then pulverized, followed by heat treatment at a temperature of 400 ° C. to 700 ° C. in air, nitrogen atmosphere, or oxygen atmosphere to perform classification It is characterized by this.
The amount of the above-mentioned organometallic compound added is desirably such that the metal concentration of the organometallic compound is 1 ppm or more and 500 ppm or less, more preferably 1 ppm or more and 200 ppm or less with respect to the composite oxide of lithium and transition metal. is there. If it is less than 1 ppm, the effect of surface modification is insufficient, and if it exceeds 500 ppm, the amount of the modified product becomes excessive, and conversely, the characteristics are deteriorated.

ここで本発明の正極活物質の製造工程において、乾燥工程は、スプレードライヤによる噴霧乾燥とすることが望ましい。噴霧乾燥とは、微粒化装置を用いて乾燥室に微粒化した原料スラリーを供給し、熱風を接触させて瞬時に乾燥し、1〜100μmの顆粒状の粉末を得ることができるものであり、均一な組成の混合粉が得られることが特長である。また、前記焼成工程は、大気中、窒素雰囲気中あるいは酸素雰囲気中において850〜1100℃で行うことが望ましく、この焼成は複数回にわたって行っても良い。850℃未満の温度で焼成した場合は焼結がほとんど進行せず、また1100℃を超える温度で焼成した場合は粒子同士がくっついて解砕できなくなるためである。この焼成の後、Al、Mg、Sn、Ti、Zn、及びZrのうち少なくとも一つを含む有機金属化合物を添加して解砕を行うが、このとき樹脂でコートしたボールをメディアとして用いて行うことが望ましい。そして、再び大気中、窒素雰囲気中あるいは酸素雰囲気中で400〜700℃の熱処理を行うものである。その後、分級を行い、粗大粒を除去する。この分級工程では、フルイ機あるいは気流式分級機を用いる。   Here, in the manufacturing process of the positive electrode active material of the present invention, the drying process is preferably spray drying using a spray dryer. Spray drying is a method in which a raw material slurry atomized using a atomizer is supplied to a drying chamber and dried instantaneously by contacting with hot air to obtain a granular powder of 1 to 100 μm. A feature is that a mixed powder having a uniform composition can be obtained. Moreover, it is desirable to perform the said baking process at 850-1100 degreeC in air | atmosphere, nitrogen atmosphere, or oxygen atmosphere, and this baking may be performed in multiple times. This is because sintering hardly proceeds when fired at a temperature lower than 850 ° C., and when fired at a temperature higher than 1100 ° C., the particles adhere to each other and cannot be crushed. After this firing, an organometallic compound containing at least one of Al, Mg, Sn, Ti, Zn, and Zr is added for crushing, but at this time, using a resin-coated ball as a medium It is desirable. Then, heat treatment at 400 to 700 ° C. is performed again in the air, in a nitrogen atmosphere, or in an oxygen atmosphere. Thereafter, classification is performed to remove coarse particles. In this classification step, a fluid machine or an airflow classifier is used.

本発明による非水系リチウム二次電池用正極活物質を用いることによって内部抵抗が低く、高出力の非水系リチウム二次電池を提供することが出来た。   By using the positive electrode active material for a non-aqueous lithium secondary battery according to the present invention, it was possible to provide a non-aqueous lithium secondary battery with low internal resistance and high output.

以下、本発明を図面を参照して説明する。なお、本発明は以下に述べる実施例に限定されるものではない。
先ず、図1のフローチャートにより本発明の非水系リチウム二次電池用正極活物質の製造方法を説明する。
まず工程1で原料として、焼成によって酸化物となる遷移金属、例えばコバルト、ニッケル、マンガン、アルミニウムの化合物(例えばCo3O4, CoO, Co(OH)2, NiO, MnO2, Mn3O4, Mn2O3, MnCO3, Al(OH)3)のうち少なくとも一種と焼成によって酸化物となるリチウム化合物(例えばLi2CO3, LiOH, LiCl)とを所定の割合で秤量する。基本的には上述したように、組成式LiaMnxNiyz2[M=Co、Alのうち少なくとも一種]で表され、1≦a≦1.2、0≦x≦0.65、0.35≦y≦1、0≦z≦0.65の範囲でかつx+y+z=1の層状結晶構造を有する酸化物となるように選択する。
これらの原料粉末を工程2で溶媒液である水を加えて攪拌してスラリーを作製し、ボールミルを用いて原料を混合及び粉砕する。尚、スラリーを作製する際に分散剤を添加してもよい。
湿式混合・粉砕後のスラリーを工程3においてスプレードライヤで噴霧乾燥させ、1〜100μm程度の顆粒を作製する。噴霧乾燥とは、微粒化装置を用いて乾燥室に微粒化したスラリーを供給し、乾燥させて球状粒子を得る方法である。なお、噴霧乾燥前には、スラリーにPVA溶液を固形分に換算して1wt%前後添加することが好ましい。
次に工程4で焼成を行う。この焼成によって層状結晶構造を有するリチウム遷移金属酸化物となる。ここでの焼成は、大気中や窒素雰囲気中、酸素雰囲気中で800℃〜1100℃で10分から24時間行う。この焼成は2回以上行っても良い。そして、焼成後の粒子にAl、Mg、Sn、Ti、Zn、及びZrのうち少なくとも一つを含む有機金属化合物をそのリチウムと遷移金属の複合酸化物に対して金属濃度が1ppm〜500ppmとなるように添加して、工程5において解砕する。ここで、例えばナイロン等の樹脂でコートしたボールをメディアとして用いて、所望の粒度になるまで解砕を行う。
続いて工程6において大気中、窒素雰囲気中あるいは酸素雰囲気中で400〜700℃で0.5時間から10時間の熱処理を行う。さらに工程7にて粗大粒を分級し、この様な工程を経てリチウム遷移金属複合酸化物とする。
The present invention will be described below with reference to the drawings. In addition, this invention is not limited to the Example described below.
First, the manufacturing method of the positive electrode active material for nonaqueous lithium secondary batteries of this invention is demonstrated with the flowchart of FIG.
First, as a raw material in Step 1, a transition metal that becomes an oxide by firing, for example, a compound of cobalt, nickel, manganese, aluminum (for example, Co 3 O 4 , CoO, Co (OH) 2 , NiO, MnO 2 , Mn 3 O 4 , Mn 2 O 3 , MnCO 3 , Al (OH) 3 ) and a lithium compound (for example, Li 2 CO 3 , LiOH, LiCl) that is converted into an oxide by firing at a predetermined ratio. As described above basically formula Li a Mn x Ni y M z O 2 [M = Co, at least one of Al] is represented by, 1 ≦ a ≦ 1.2,0 ≦ x ≦ 0.65,0.35 ≦ The oxide is selected so as to be an oxide having a layered crystal structure of y ≦ 1, 0 ≦ z ≦ 0.65 and x + y + z = 1.
In step 2, these raw material powders are added with water as a solvent solution and stirred to produce a slurry, and the raw materials are mixed and pulverized using a ball mill. In addition, you may add a dispersing agent when producing a slurry.
The slurry after wet mixing and pulverization is spray-dried with a spray dryer in Step 3 to produce granules of about 1 to 100 μm. Spray drying is a method of obtaining spherical particles by supplying a slurry that has been atomized into a drying chamber using a atomizer and drying the slurry. In addition, before spray drying, it is preferable to add about 1 wt% of the PVA solution in terms of solid content to the slurry.
Next, firing is performed in step 4. By this firing, a lithium transition metal oxide having a layered crystal structure is obtained. The firing here is performed at 800 ° C. to 1100 ° C. for 10 minutes to 24 hours in air, nitrogen atmosphere, or oxygen atmosphere. This firing may be performed twice or more. And the metal concentration is 1 ppm to 500 ppm with respect to the composite oxide of lithium and transition metal, an organometallic compound containing at least one of Al, Mg, Sn, Ti, Zn, and Zr in the fired particles. And crush in step 5. Here, for example, a ball coated with a resin such as nylon is used as a medium and pulverized until a desired particle size is obtained.
Subsequently, in step 6, heat treatment is performed in the air, in a nitrogen atmosphere, or in an oxygen atmosphere at 400 to 700 ° C. for 0.5 to 10 hours. Further, coarse particles are classified in step 7, and a lithium transition metal composite oxide is obtained through such steps.

次に、以下で述べる実施例及び比較例、従来例による正極活物質の特性評価を次の手順で行う。正極材、導電助材(炭素粉)、結着剤(8wt%PVdF/NMP)を重量比で85.2:10.5:4.3の割合でメノウ鉢にて混練しスラリー状の合材とする。得られた合材を厚さ20μmの集電体(Al箔)上に約100μm厚に塗布する。塗布した合材は乾燥後、所定の寸法(巾10mm、長さはおよそ50mm)に切断し金型を用いて1.5×104ton/m2の圧力でプレスした。得られた正極は十分に電解液(エチレンカーボネート:ジメチルカーボネート=1:2、電解質1M-LiPF6)に浸潤した後、セパレータ(25μm厚ポリエチレン)、金属リチウム対極と重ね合わせて試験用電池とする。セルが電気化学的に平衡になるように数時間程度放置してから、充放電測定装置に接続し、電池の放電容量の測定を行い、初期抵抗を測定する。 Next, the characteristics evaluation of the positive electrode active material according to the following examples, comparative examples, and conventional examples is performed according to the following procedure. A positive electrode material, a conductive additive (carbon powder), and a binder (8 wt% PVdF / NMP) are kneaded in an agate bowl at a weight ratio of 85.2: 10.5: 4.3 to obtain a slurry-like mixture. The obtained composite material is applied to a thickness of about 100 μm on a current collector (Al foil) having a thickness of 20 μm. The applied composite material was dried, cut into predetermined dimensions (width 10 mm, length approximately 50 mm), and pressed at a pressure of 1.5 × 10 4 ton / m 2 using a mold. The obtained positive electrode is sufficiently infiltrated into an electrolytic solution (ethylene carbonate: dimethyl carbonate = 1: 2, electrolyte 1M-LiPF 6 ), and then superposed on a separator (25 μm thick polyethylene) and a metal lithium counter electrode to form a test battery. . After leaving the cell for about several hours so as to be electrochemically balanced, it is connected to a charge / discharge measuring device, the discharge capacity of the battery is measured, and the initial resistance is measured.

以下、実施例について説明する。
(実施例1)
Li:Mn:Ni:Co=1:0.4:0.4:0.2の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル及び酸化コバルトを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉中で焼成温度を1000℃、持続時間を4時間として焼成し、ステアリン酸アルミニウムをアルミニウム濃度がLi-Mn-Ni-Co複合酸化物粒子に対して5ppmとなるよう添加してボールミルにて樹脂(ナイロン)コートしたボールをメディアとして用いて解砕を行った。その後、電気炉中600℃で4時間熱処理をした後、目開き63μmの篩に通して分級し、Li-Mn-Ni-Co複合酸化物粒子を合成し、正極活物質とした。この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、16Ωであった。
Examples will be described below.
(Example 1)
Li: Mn: Ni: Co = 1: 0.4: 0.4: 0.2 Weighed lithium carbonate, manganese dioxide, nickel oxide and cobalt oxide at a stoichiometric ratio, added water to this, and stirred. A slurry was prepared. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were fired in an electric furnace at a firing temperature of 1000 ° C. and a duration of 4 hours so that the aluminum concentration of aluminum stearate was 5 ppm with respect to the Li-Mn-Ni-Co composite oxide particles. Crushing was performed using a ball coated with resin (nylon) and added with a ball mill as a medium. Thereafter, heat treatment was performed in an electric furnace at 600 ° C. for 4 hours, followed by classification through a sieve having an aperture of 63 μm to synthesize Li—Mn—Ni—Co composite oxide particles to obtain a positive electrode active material. A test battery using this positive electrode active material was prepared, and the initial resistance was measured with a charge / discharge test apparatus at room temperature.

(実施例2)
Li:Mn:Ni:Co=1.1:0.3:0.6:0.1の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル及び酸化コバルトを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉中で焼成温度を1000℃、持続時間を4時間として焼成し、ステアリン酸アルミニウムをアルミニウム濃度がLi-Mn-Ni-Co複合酸化物粒子に対して60ppmとなるよう添加してボールミルにて樹脂(ナイロン)でコートしたボールをメディアとして用いて解砕を行った。その後電気炉中600℃で4時間熱処理をした後、目開き63μmの篩に通して分級し、Li-Mn-Ni-Co複合酸化物粒子を合成し、正極活物質とした。この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、17Ωであった。
(Example 2)
Li: Mn: Ni: Co = 1.1: 0.3: 0.6: 0.1 Lithium carbonate, manganese dioxide, nickel oxide and cobalt oxide were weighed at a stoichiometric ratio, and water was added thereto. A slurry was prepared by stirring. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were baked in an electric furnace at a calcination temperature of 1000 ° C. and a duration of 4 hours so that the aluminum concentration of aluminum stearate was 60 ppm with respect to the Li—Mn—Ni—Co composite oxide particles. The balls were added and coated with a resin (nylon) in a ball mill and crushed using media. Then, after heat treatment at 600 ° C. for 4 hours in an electric furnace, the particles were classified by passing through a sieve having an aperture of 63 μm to synthesize Li—Mn—Ni—Co composite oxide particles to obtain a positive electrode active material. A test battery was produced using this positive electrode active material, and the initial resistance was measured at room temperature using a charge / discharge test apparatus. The result was 17Ω.

(実施例3)
Li:Mn:Ni:Co:Al=1:0.35:0.4:0.17:0.08の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル、酸化コバルト及び水酸化アルミニウムを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉中で焼成温度を950℃、持続時間を4時間として焼成し、ステアリン酸マグネシウムをマグネシウム濃度がLi-Mn-Ni-Co複合酸化物粒子に対して150ppmとなるよう添加してボールミルにて樹脂(ナイロン)でコートしたボールをメディアとして用いて解砕を行った。その後電気炉中600℃で4時間熱処理をした後、目開き63μmの篩に通して分級し、Li-Mn-Ni-Co-Al複合酸化物粒子を合成し、正極活物質とした。この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、17Ωであった。
(Example 3)
Lithium carbonate, manganese dioxide, nickel oxide, cobalt oxide and aluminum hydroxide are weighed at a stoichiometric ratio of Li: Mn: Ni: Co: Al = 1: 0.35: 0.4: 0.17: 0.08 Then, water was added thereto and stirred to prepare a slurry. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were fired in an electric furnace at a firing temperature of 950 ° C. and a duration of 4 hours so that the magnesium stearate had a magnesium concentration of 150 ppm with respect to the Li—Mn—Ni—Co composite oxide particles. The balls were added and coated with a resin (nylon) in a ball mill and crushed using media. Thereafter, heat treatment was performed in an electric furnace at 600 ° C. for 4 hours, followed by classification through a sieve having an aperture of 63 μm to synthesize Li—Mn—Ni—Co—Al composite oxide particles to obtain a positive electrode active material. A test battery was produced using this positive electrode active material, and the initial resistance was measured at room temperature using a charge / discharge test apparatus. The result was 17Ω.

(実施例4)
図1に従い、Li:Mn:Ni:Co=1.1:0.25:0.45:0.3の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル及び酸化コバルトを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉中で焼成温度を1000℃、持続時間を4時間として焼成し、ステアリン酸マグネシウムをマグネシウム濃度がLi-Mn-Ni-Co複合酸化物粒子に対して400ppmとなるよう添加してボールミルにて樹脂(ナイロン)でコートしたボールをメディアとして用いて解砕を行った。その後電気炉中600℃で4時間熱処理をした後、目開き63μmの篩に通して分級し、Li-Mn-Ni-Co複合酸化物粒子を合成し、正極活物質とした。この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、18Ωであった。
Example 4
According to FIG. 1, Li carbonate, manganese dioxide, nickel oxide and cobalt oxide were weighed at a stoichiometric ratio of Li: Mn: Ni: Co = 1.1: 0.25: 0.45: 0.3. Water was added and stirred to prepare a slurry. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were fired in an electric furnace at a firing temperature of 1000 ° C. and a duration of 4 hours so that the magnesium stearate had a magnesium concentration of 400 ppm with respect to the Li—Mn—Ni—Co composite oxide particles. The balls were added and coated with a resin (nylon) in a ball mill and crushed using media. Then, after heat treatment at 600 ° C. for 4 hours in an electric furnace, the particles were classified by passing through a sieve having an aperture of 63 μm to synthesize Li—Mn—Ni—Co composite oxide particles to obtain a positive electrode active material. A test battery using this positive electrode active material was prepared, and the initial resistance was measured by a charge / discharge test apparatus at room temperature.

(比較例1)
図1に従い、Li:Mn:Ni:Co=1.1:0.3:0.6:0.1の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル及び酸化コバルトを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉中で焼成温度を1000℃、持続時間を4時間として焼成し、ボールミルにて樹脂(ナイロン)でコートしたボールをメディアとして用いて解砕を行った。その後電気炉中600℃で4時間熱処理をした後、目開き63μmの篩に通して分級し、Li-Mn-Ni-Co複合酸化物粒子を合成し、正極活物質とした。この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、22Ωであった。
(Comparative Example 1)
According to FIG. 1, Li carbonate, manganese dioxide, nickel oxide and cobalt oxide were weighed at a stoichiometric ratio of Li: Mn: Ni: Co = 1.1: 0.3: 0.6: 0.1. Water was added and stirred to prepare a slurry. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were baked in an electric furnace at a calcination temperature of 1000 ° C. and a duration of 4 hours, and pulverized using a ball coated with resin (nylon) as a medium. Then, after heat treatment at 600 ° C. for 4 hours in an electric furnace, the particles were classified by passing through a sieve having an aperture of 63 μm to synthesize Li—Mn—Ni—Co composite oxide particles to obtain a positive electrode active material. A test battery was produced using this positive electrode active material, and the initial resistance was measured at room temperature using a charge / discharge test apparatus. The result was 22Ω.

(比較例2)
Li:Mn:Ni:Co=1.1:0.3:0.6:0.1の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル及び酸化コバルトを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉中で焼成温度を950℃、持続時間を4時間として焼成し、ステアリン酸アルミニウムをアルミニウム濃度がLi-Mn-Ni-Co複合酸化物粒子に対して1000ppmとなるよう添加してボールミルにて樹脂(ナイロン)でコートしたボールをメディアとして用いて解砕を行った。その後電気炉中600℃で4時間熱処理をした後、目開き63μmの篩に通して分級し、Li-Mn-Ni-Co複合酸化物粒子を合成し、正極活物質とした。この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、26Ωであった。
(Comparative Example 2)
Li: Mn: Ni: Co = 1.1: 0.3: 0.6: 0.1 Lithium carbonate, manganese dioxide, nickel oxide and cobalt oxide were weighed at a stoichiometric ratio, and water was added thereto. A slurry was prepared by stirring. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The resulting dried particles were fired in an electric furnace at a firing temperature of 950 ° C. and a duration of 4 hours, so that the aluminum stearate had an aluminum concentration of 1000 ppm with respect to the Li—Mn—Ni—Co composite oxide particles. The balls were added and coated with a resin (nylon) in a ball mill and crushed using media. Then, after heat treatment at 600 ° C. for 4 hours in an electric furnace, the particles were classified by passing through a sieve having an aperture of 63 μm to synthesize Li—Mn—Ni—Co composite oxide particles to obtain a positive electrode active material. When a test battery using this positive electrode active material was prepared and its initial resistance was measured with a charge / discharge test apparatus at room temperature, it was 26Ω.

(比較例3)
Li:Mn:Ni:Co=1.1:0.25:0.45:0.3の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル及び酸化コバルトを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉中で焼成温度を950℃、持続時間を4時間として焼成し、ステアリン酸アルミニウムをアルミニウム濃度がLi-Mn-Ni-Co複合酸化物粒子に対して2000ppmとなるよう添加してボールミルにて樹脂(ナイロン)でコートしたボールをメディアとして用いて解砕を行った。その後電気炉中600℃で4時間熱処理をした後、目開き63μmの篩に通して分級し、Li-Mn-Ni-Co複合酸化物粒子を合成し、正極活物質とした。この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、28Ωであった。
(Comparative Example 3)
Li: Mn: Ni: Co = 1.1: 0.25: 0.45: 0.3 Weigh lithium carbonate, manganese dioxide, nickel oxide and cobalt oxide at a stoichiometric ratio and add water to this. A slurry was prepared by stirring. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The resulting dried particles were fired in an electric furnace at a firing temperature of 950 ° C. and a duration of 4 hours, so that the aluminum stearate had an aluminum concentration of 2000 ppm with respect to the Li—Mn—Ni—Co composite oxide particles. The balls were added and coated with a resin (nylon) in a ball mill and crushed using media. Then, after heat treatment at 600 ° C. for 4 hours in an electric furnace, the particles were classified by passing through a sieve having an aperture of 63 μm to synthesize Li—Mn—Ni—Co composite oxide particles to obtain a positive electrode active material. A test battery using this positive electrode active material was prepared, and the initial resistance was measured by a charge / discharge test apparatus at room temperature.

(比較例4)
Li:Mn:Ni:Co=1:0.55:0.25:0.2の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル及び酸化コバルトを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉中で焼成温度を900℃、持続時間を4時間として焼成し、ボールミルにて樹脂(ナイロン)でコートしたボールをメディアとして用いて解砕を行った。その後電気炉中600℃で4時間熱処理をし、目開き63μmの篩に通して分級したが、層状構造単相は得られなかった。
(Comparative Example 4)
Li: Mn: Ni: Co = 1: 0.55: 0.25: 0.2 Weigh lithium carbonate, manganese dioxide, nickel oxide and cobalt oxide at a stoichiometric ratio, add water to this and stir. A slurry was prepared. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were baked in an electric furnace at a calcination temperature of 900 ° C. and a duration of 4 hours, and pulverized using a ball coated with a resin (nylon) as a medium. Thereafter, heat treatment was performed in an electric furnace at 600 ° C. for 4 hours, and the mixture was classified by passing through a sieve having an opening of 63 μm. However, a single layered structure was not obtained.

以上の実施例及び比較例について特性評価を行った結果を表1に示す。   Table 1 shows the results of the characteristic evaluation of the above examples and comparative examples.

Figure 2005346956
Figure 2005346956

表1から明らかなように、本発明の範囲の添加量の有機金属化合物を解砕時に添加して熱処理することで金属化合物を表面修飾したリチウム遷移金属酸化物を正極活物質として用いた場合、初期抵抗が低い値を示す。本実施例の正極活物質は何れも金属化合物を表面修飾したものであり、表面修飾を施していない比較例の正極活物質に比較して、低い抵抗値を示した。しかし、比較例2、3のように添加量が本発明の範囲外であると、低抵抗化の効果が得られない。また、本発明の正極活物質は組成式LiaMnxNiyz2[M=Co、Alのうち少なくとも一種]で表され、1≦a≦1.2、0≦x≦0.65、0.35≦y≦0.5、0≦z≦0.65の範囲でかつx+y+z=1の層状結晶構造を有する酸化物であるが、比較例4のようにこれよりMn含有量が多くなると、本発明の製造方法によれば層状結晶構造単相の生成が困難である。Co含有量が多くなると、Co原料が高価なため高コストとなり、実用性が低い。 As is apparent from Table 1, when a lithium transition metal oxide whose surface is modified by adding an organometallic compound in an addition amount within the range of the present invention at the time of pulverization and heat-treating it as a positive electrode active material, The initial resistance is low. All of the positive electrode active materials of this example were obtained by surface-modifying a metal compound, and exhibited a low resistance value as compared with the positive electrode active material of a comparative example that was not subjected to surface modification. However, if the added amount is outside the range of the present invention as in Comparative Examples 2 and 3, the effect of reducing resistance cannot be obtained. Further, the positive electrode active material of the present invention is represented by the composition formula Li a Mn x Ni y M z O 2 [M = Co, at least one of Al], and 1 ≦ a ≦ 1.2, 0 ≦ x ≦ 0.65, 0.35 ≦ The oxide has a layered crystal structure in the range of y ≦ 0.5 and 0 ≦ z ≦ 0.65 and x + y + z = 1. If the Mn content is higher than this as in Comparative Example 4, the present invention According to the production method, it is difficult to generate a single layered crystal structure. When the Co content is increased, the cost of the Co raw material is high and the utility is low.

以上の結果より、本発明の製造条件に沿って製造したリチウム遷移金属複合酸化物をリチウム二次電池用正極材として用いた場合、良好な初期抵抗特性を得られた。   From the above results, when the lithium transition metal composite oxide produced according to the production conditions of the present invention was used as a positive electrode material for a lithium secondary battery, good initial resistance characteristics were obtained.

本発明の正極活物質の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the positive electrode active material of this invention. 本発明の実施例及び比較例の複合酸化物の組成を表す3元状態図である。It is a ternary phase diagram showing the composition of complex oxides of examples and comparative examples of the present invention. 本発明の実施例及び比較例の複合酸化物の初期抵抗値を示すグラフである。It is a graph which shows the initial stage resistance value of the complex oxide of the Example and comparative example of this invention.

Claims (9)

リチウム及び遷移金属からなる複合酸化物を正極活物質とする非水系リチウム二次電池において、前記正極活物質に金属化合物を表面修飾することを特徴とする非水系リチウム二次電池用正極活物質。 A non-aqueous lithium secondary battery using a composite oxide comprising lithium and a transition metal as a positive electrode active material, wherein the positive electrode active material is surface-modified with a metal compound, the positive electrode active material for a non-aqueous lithium secondary battery. 前記金属化合物は、Al、Mg、Sn、Ti、Zn、及びZrのうち少なくとも一種を含有することを特徴とする請求項1記載の非水系リチウム二次電池用正極活物質。 The positive electrode active material for a non-aqueous lithium secondary battery according to claim 1, wherein the metal compound contains at least one of Al, Mg, Sn, Ti, Zn, and Zr. リチウム及び遷移金属からなる複合酸化物を正極活物質とする非水系リチウム二次電池において、前記正極活物質は、組成式LiaMnxNiyz2[M=Co、Alのうち少なくとも一種]で表され、1≦a≦1.2、0≦x≦0.65、0.35≦y≦1、0≦z≦0.65の範囲でかつx+y+z=1の層状結晶構造を有する酸化物であることを特徴とする請求項1乃至2記載の非水系リチウム二次電池用正極活物質。 In a non-aqueous lithium secondary battery using a composite oxide composed of lithium and a transition metal as a positive electrode active material, the positive electrode active material has a composition formula of Li a Mn x Ni y M z O 2 [M = Co, at least of Al An oxide having a layered crystal structure in the range of 1 ≦ a ≦ 1.2, 0 ≦ x ≦ 0.65, 0.35 ≦ y ≦ 1, 0 ≦ z ≦ 0.65 and x + y + z = 1 The positive electrode active material for a non-aqueous lithium secondary battery according to claim 1 or 2. 前記正極活物質は、組成式LiaMnxNiyz2[M=Co、Alのうち少なくとも一種]で表され、1≦a≦1.2、0.2≦x≦0.5、0.35≦y≦0.8、0≦z≦0.45の範囲で、かつx+y+z=1の層状結晶構造を有する酸化物であることを特徴とする請求項1乃至3記載の非水系リチウム二次電池用正極活物質。 The positive electrode active material is represented by a composition formula Li a Mn x Ni y M z O 2 [M = Co, at least one of Al], 1 ≦ a ≦ 1.2, 0.2 ≦ x ≦ 0.5, 0.35 ≦ y ≦ 0.8. 4. The positive electrode active material for a non-aqueous lithium secondary battery according to claim 1, which is an oxide having a layered crystal structure in a range of 0 ≦ z ≦ 0.45 and x + y + z = 1 . リチウム及び遷移金属からなる複合酸化物を正極活物質とする非水系リチウム二次電池において、リチウムと遷移金属の複合酸化物を解砕する工程において有機金属化合物を添加し、その後熱処理を行うことを特徴とすることを特徴とする非水系リチウム二次電池用正極活物質の製造方法。 In a non-aqueous lithium secondary battery using a composite oxide composed of lithium and a transition metal as a positive electrode active material, an organometallic compound is added in the step of crushing the composite oxide of lithium and transition metal, and then heat treatment is performed. A method for producing a positive electrode active material for a non-aqueous lithium secondary battery. 前記有機金属化合物はAl、Mg、Sn、Ti、Zn、及びZrの化合物のうち少なくとも一種を用いることを特徴とする請求項5記載の非水系リチウム二次電池用正極活物質の製造方法。 6. The method for producing a positive electrode active material for a non-aqueous lithium secondary battery according to claim 5, wherein the organometallic compound uses at least one of Al, Mg, Sn, Ti, Zn, and Zr compounds. 前記有機金属化合物をリチウムと遷移金属の複合酸化物に対して金属濃度が1ppm以上500ppm以下となるよう添加することを特徴とする請求項5又は6記載の非水系リチウム二次電池用正極活物質の製造方法。 7. The positive electrode active material for a non-aqueous lithium secondary battery according to claim 5, wherein the organometallic compound is added so that the metal concentration is 1 ppm or more and 500 ppm or less with respect to the composite oxide of lithium and transition metal. Manufacturing method. リチウム化合物と遷移金属化合物を所定比で湿式混合し、乾燥させて顆粒状にし、大気中、窒素雰囲気中あるいは酸素雰囲気中にて850℃以上1100℃以下の温度で焼成を行って、層状結晶構造を有するリチウム遷移金属複合酸化物とした後、この複合酸化物に有機金属化合物を添加して解砕し、その後大気中、窒素雰囲気中あるいは酸素雰囲気中にて400℃以上700℃以下の温度で熱処理を行った後、分級して粗大粒を除去することを特徴とする請求項5乃至7の何れかに記載の非水系リチウム二次電池用正極活物質の製造方法。 Lithium compound and transition metal compound are wet-mixed at a predetermined ratio, dried and granulated, and fired at a temperature of 850 ° C to 1100 ° C in air, nitrogen atmosphere or oxygen atmosphere, and layered crystal structure And then pulverizing the composite oxide by adding an organometallic compound to the composite oxide, and then in the air, in a nitrogen atmosphere or in an oxygen atmosphere at a temperature of 400 ° C. to 700 ° C. The method for producing a positive electrode active material for a non-aqueous lithium secondary battery according to any one of claims 5 to 7, wherein coarse particles are removed by classification after heat treatment. 請求項1乃至4の何れかに記載の正極活物質または請求項5乃至8の何れかに記載の正極活物質の製造方法を用いて構成されたことを特徴とする非水系リチウム二次電池。 A non-aqueous lithium secondary battery comprising the positive electrode active material according to any one of claims 1 to 4 or the method for producing a positive electrode active material according to any one of claims 5 to 8.
JP2004162152A 2004-05-31 2004-05-31 Positive electrode active material for nonaqueous lithium secondary battery, manufacturing method thereof, and nonaqueous lithium secondary battery using the positive electrode active material Pending JP2005346956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004162152A JP2005346956A (en) 2004-05-31 2004-05-31 Positive electrode active material for nonaqueous lithium secondary battery, manufacturing method thereof, and nonaqueous lithium secondary battery using the positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004162152A JP2005346956A (en) 2004-05-31 2004-05-31 Positive electrode active material for nonaqueous lithium secondary battery, manufacturing method thereof, and nonaqueous lithium secondary battery using the positive electrode active material

Publications (1)

Publication Number Publication Date
JP2005346956A true JP2005346956A (en) 2005-12-15

Family

ID=35499148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004162152A Pending JP2005346956A (en) 2004-05-31 2004-05-31 Positive electrode active material for nonaqueous lithium secondary battery, manufacturing method thereof, and nonaqueous lithium secondary battery using the positive electrode active material

Country Status (1)

Country Link
JP (1) JP2005346956A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142275A1 (en) * 2006-06-09 2007-12-13 Agc Seimi Chemical Co., Ltd. Positive electrode active material for rechargeable battery with nonaqueous electrolyte, and method for manufacturing the same
JP2008153017A (en) * 2006-12-15 2008-07-03 Ise Chemicals Corp Positive active material for nonaqueous electrolyte secondary battery
JP2009535781A (en) * 2006-05-04 2009-10-01 エルジー・ケム・リミテッド Electrode active material with improved safety and electrochemical device using the same
CN101621138A (en) * 2008-02-22 2010-01-06 三洋电机株式会社 Non-aqueous electrolyte secondary battery and method of manufacturing the same
WO2011052607A1 (en) * 2009-10-29 2011-05-05 Agcセイミケミカル株式会社 Process for production of positive electrode material for lithium ion secondary battery
JP5192818B2 (en) * 2006-03-02 2013-05-08 Agcセイミケミカル株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
KR20170045148A (en) 2014-09-03 2017-04-26 미쓰이금속광업주식회사 Positive-electrode active material for lithium secondary cell
KR20170048244A (en) 2014-09-03 2017-05-08 미쓰이금속광업주식회사 Lithium metal composite oxide powder

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5192818B2 (en) * 2006-03-02 2013-05-08 Agcセイミケミカル株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2009535781A (en) * 2006-05-04 2009-10-01 エルジー・ケム・リミテッド Electrode active material with improved safety and electrochemical device using the same
JP2014013770A (en) * 2006-05-04 2014-01-23 Lg Chem Ltd Electrode active material with improved safety and electrochemical device using the same
US8021785B2 (en) 2006-06-09 2011-09-20 Agc Seimi Chemical Co., Ltd. Cathode active material for non-aqueous electrolyte secondary battery and its production method
JP4909347B2 (en) * 2006-06-09 2012-04-04 Agcセイミケミカル株式会社 A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
JP2012079703A (en) * 2006-06-09 2012-04-19 Agc Seimi Chemical Co Ltd Positive electrode active material used for nonaqueous electrolyte secondary battery, and method for producing the same
WO2007142275A1 (en) * 2006-06-09 2007-12-13 Agc Seimi Chemical Co., Ltd. Positive electrode active material for rechargeable battery with nonaqueous electrolyte, and method for manufacturing the same
JP2008153017A (en) * 2006-12-15 2008-07-03 Ise Chemicals Corp Positive active material for nonaqueous electrolyte secondary battery
CN101621138A (en) * 2008-02-22 2010-01-06 三洋电机株式会社 Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPWO2011052607A1 (en) * 2009-10-29 2013-03-21 Agcセイミケミカル株式会社 Method for producing positive electrode material for lithium ion secondary battery
WO2011052607A1 (en) * 2009-10-29 2011-05-05 Agcセイミケミカル株式会社 Process for production of positive electrode material for lithium ion secondary battery
JP5742720B2 (en) * 2009-10-29 2015-07-01 旭硝子株式会社 Method for producing positive electrode material for lithium ion secondary battery
JP2015181113A (en) * 2009-10-29 2015-10-15 旭硝子株式会社 Positive electrode material for lithium ion secondary batteries
KR20170045148A (en) 2014-09-03 2017-04-26 미쓰이금속광업주식회사 Positive-electrode active material for lithium secondary cell
KR20170048244A (en) 2014-09-03 2017-05-08 미쓰이금속광업주식회사 Lithium metal composite oxide powder
US10141570B2 (en) 2014-09-03 2018-11-27 Mitsui Mining & Smelting Co., Ltd. Positive electrode active material for lithium secondary cell
US10312508B2 (en) 2014-09-03 2019-06-04 Mitsui Mining & Smelting Co., Ltd. Lithium metal composite oxide powder

Similar Documents

Publication Publication Date Title
KR101964726B1 (en) Spherical or spherical-like lithium ion battery cathode material and preparation method and application thereof
JP2005310744A (en) Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator
KR101395478B1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery using said positive electrode active material
JP5007919B2 (en) Method for producing positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and non-aqueous lithium secondary battery using the same
KR101391367B1 (en) Lithium metal compound oxide having layered structure
US9466829B2 (en) Lithium—manganese-type solid solution positive electrode material
JP4986098B2 (en) Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP3991359B2 (en) Cathode active material for non-aqueous lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery using the cathode active material
JP3355126B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP5494199B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP4951638B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JPWO2005020354A1 (en) Positive electrode active material powder for lithium secondary battery
JP5606654B2 (en) Lithium metal composite oxide
JP4997700B2 (en) Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2004281253A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method and nonaqueous system lithium secondary battery using the material
JP2008156163A (en) Spinel type lithium manganese oxide and method for manufacturing the same
JP4868271B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery, positive electrode using this active material, and non-aqueous lithium secondary battery
JP3709446B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP2020035605A (en) Production method of positive electrode active material for lithium ion secondary battery, and manufacturing method of lithium ion secondary battery
JP2009064585A (en) Manufacturing method of transition metal based compound for lithium secondary battery
JP2005346956A (en) Positive electrode active material for nonaqueous lithium secondary battery, manufacturing method thereof, and nonaqueous lithium secondary battery using the positive electrode active material
JP5062534B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery
JP2022177291A (en) Positive electrode active material for high-strength lithium ion secondary battery, and lithium ion secondary battery employing the positive electrode active material
JP2001155728A (en) Positive electrode active material for use in non-aqueous lithium secondary battery and method of fabricating it