JP2001155728A - Positive electrode active material for use in non-aqueous lithium secondary battery and method of fabricating it - Google Patents

Positive electrode active material for use in non-aqueous lithium secondary battery and method of fabricating it

Info

Publication number
JP2001155728A
JP2001155728A JP33242799A JP33242799A JP2001155728A JP 2001155728 A JP2001155728 A JP 2001155728A JP 33242799 A JP33242799 A JP 33242799A JP 33242799 A JP33242799 A JP 33242799A JP 2001155728 A JP2001155728 A JP 2001155728A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
particles
electrode active
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33242799A
Other languages
Japanese (ja)
Inventor
Motoe Nakajima
源衛 中嶋
Muneyuki Tanaka
宗幸 田中
Teruo Uchikawa
晃夫 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP33242799A priority Critical patent/JP2001155728A/en
Publication of JP2001155728A publication Critical patent/JP2001155728A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for a non-aqueous lithium secondary battery that has high output discharge characteristics and stable cycle characteristics with long life and with compact size. SOLUTION: A lithium secondary battery comprises a positive electrode coated with a lithium and manganese complex compound of spinel structure as the active material. The lithium and manganese complex compound consists of primary particles, and secondary particles obtained by condensing the primary particles. The active material applied to the positive electrode as the electricity collector has a density of 2.5 g/cm3 or more after formed under pressure. The primary particles are in a size range of 1-20 μm with the maximum to minimum particle size ratio equal to or greater than 3.0.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極活物質にスピ
ネル型構造のリチウムマンガン複合酸化物を用いた非水
系リチウム二次電池の正極活物質及びその製造方法に関
し、この正極活物質の出力放電特性とサイクル安定性の
改善と二次電池の小型化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for a non-aqueous lithium secondary battery using a lithium manganese composite oxide having a spinel structure as a positive electrode active material, and a method for producing the same. The present invention relates to improvement of characteristics and cycle stability and miniaturization of a secondary battery.

【0002】[0002]

【従来の技術】近年、化石燃料依存による地球温暖化、
そして排ガスCO2、NOXによる大気汚染などの環境問題が
顕在化し各国で各種規制が検討あるいは実施されてい
る。また21世紀後半には石油資源枯渇によるエネルギ
ー不足が憂慮されている。このためエネルギーの利用効
率向上や石油依存率を下げた社会への移行が検討されて
いる。例えば自動車においてはガソリンエンジンとモー
タを併用した各種ハイブリッド型自動車が開発されガソ
リンエンジン単独車よりエネルギ効率を50%程度上げ
ている。また、電源としては効率が高い燃料電池が開発
され家庭用電源や電気自動車の電源として実用化が検討
されている。これらのハイブリッド型自動車のエネルギ
ー貯蔵用としては、他の二次電池より電池電圧が高くエ
ネルギー密度が高いリチウム二次電池が適しており開発
が盛んである。とくに、ハイブリッド型自動車のエネル
ギー貯蔵用としては高い出力密度が必要であり、高出力
放電特性と高いサイクル安定性が要求されている。
2. Description of the Related Art In recent years, global warming due to fossil fuel dependence,
Environmental problems such as air pollution caused by exhaust gas CO 2 and NO X have become apparent, and various regulations are being studied or implemented in each country. In the latter half of the 21st century, energy shortages due to depletion of petroleum resources are of concern. For this reason, studies are underway to improve energy use efficiency and shift to a society where the dependence on oil is reduced. For example, in the case of automobiles, various hybrid automobiles using both a gasoline engine and a motor have been developed, and the energy efficiency has been increased by about 50% compared to a gasoline engine alone. As a power source, a highly efficient fuel cell has been developed, and its practical use as a home power source or a power source for an electric vehicle is being studied. For energy storage of these hybrid vehicles, lithium secondary batteries having a higher battery voltage and higher energy density than other secondary batteries are suitable and are being actively developed. In particular, a high output density is required for energy storage of a hybrid vehicle, and high output discharge characteristics and high cycle stability are required.

【0003】一般に、リチウム二次電池は正極、負極お
よびセパレ−タを容器内に配置し、有機溶媒による非水
電解液を満たして構成される。正極活物質はアルミニウ
ム箔等の集電体に正極活物質を塗布し加圧成形したもの
である。この正極活物質はLiCoO2、LiNiO2
LiMn24等に代表されるようにリチウムと遷移金属
の酸化物からなる粉体が主として用いられ、例えば特開
平8−17471号公報にはその製法が詳しく開示され
ている。これら正極活物質の合成は、一般にリチウム塩
粉末(LiOH、LiCO等)と遷移金属酸化物(MnO、C
oO、NiO等)粉末を混合し、焼成する方法が広く採用さ
れている。正極活物質を集電体に塗布する場合には、正
極材に重量比で数〜数十%程度の炭素粉を混ぜ、さらに
PVdF(ホ゜リフッ化ヒ゛ニリテ゛ン)、PTFE(ホ゜チテトラフルオロエチレン)等の結
着材と混練した後、ペ−スト状に練り上げて集電体箔に
厚み20μm〜100μm程度で塗布、乾燥、プレス工程を経
て正電極が製造される。
In general, a lithium secondary battery has a structure in which a positive electrode, a negative electrode, and a separator are arranged in a container and filled with a non-aqueous electrolyte using an organic solvent. The positive electrode active material is obtained by applying a positive electrode active material to a current collector such as an aluminum foil and press-molding the same. The positive electrode active material is LiCoO 2 , LiNiO 2 ,
Powders composed of an oxide of lithium and a transition metal, such as LiMn 2 O 4 , are mainly used. For example, Japanese Patent Application Laid-Open No. H8-17471 discloses the production method in detail. The synthesis of these positive electrode active materials is generally performed by mixing lithium salt powder (LiOH, Li 2 CO 3, etc.) and a transition metal oxide (MnO 2 , C
(oO, NiO, etc.) A method of mixing and firing powders is widely used. When the positive electrode active material is applied to the current collector, a carbon powder of several to several tens% by weight is mixed with the positive electrode material, and further,
After kneading with a binder such as PVdF (polyvinyl fluoride) and PTFE (polytetrafluoroethylene), it is kneaded into a paste and applied to a current collector foil with a thickness of about 20 to 100 μm, followed by drying and pressing. A positive electrode is manufactured.

【0004】一般的に上記正極活物質は、電気伝導性が
10−1〜10−6S/cmと一般の導体と比べ低い。Al集
電体−正極活物質間の電気伝導度および電気的接触状態
は、電池のサイクル特性、放電レート特性に大きな影響
を与える。このため、アルミニウムの集電体と正極活物
質間もしくは活物質相互間の電気伝導性を更に高めるよ
うに、正極活物質より電気伝導性の良い炭素粉等の導電
助材が使用される。従来のリチウムマンガン複合酸化物
からなる正極活物質を集電体箔に塗布形成した後の正極
活物質の粒形態を見ると、粒径はサブミクロンオーダー
の一次粒子が凝集した二次粒子からなっている。通常、
その粒形態は様々な大きさと形状を持ち、さらに凝集の
仕方のバラツキにより二次粒子径も0.1μm〜100μm程
度のバラツキがありその分布にも均一性が見られなかっ
た。そして、正極活物質としては、専ら粉砕して粒径を
細かくし比表面積を大きくした状態で、電極表面に塗布
するなどの試みがなされている。
Generally, the positive electrode active material has an electric conductivity.
10 -1 to 10 -6 S / cm 2 , lower than ordinary conductors. The electric conductivity and the electrical contact state between the Al current collector and the positive electrode active material greatly affect the cycle characteristics and discharge rate characteristics of the battery. For this reason, a conductive auxiliary material such as carbon powder having better electrical conductivity than the positive electrode active material is used so as to further increase the electrical conductivity between the aluminum current collector and the positive electrode active material or between the active materials. Looking at the particle morphology of the positive electrode active material after the conventional positive electrode active material composed of a lithium manganese composite oxide is applied to the current collector foil, the particle size is composed of secondary particles in which primary particles on the order of submicrons are aggregated. ing. Normal,
The particle morphology had various sizes and shapes, and the secondary particle diameter also varied from about 0.1 μm to 100 μm due to the variation of the aggregation method, and the distribution was not uniform. As the positive electrode active material, attempts have been made to apply it to the electrode surface in a state where it is exclusively ground to reduce the particle size and increase the specific surface area.

【0005】例えば、特開平10−321227号公報
では正極活物質の比表面積と一次、二次粒子の平均粒径
及び空隙率を所定範囲に制御することによって容量低下
を抑制することが提案されている。また、特開平10−
261415号公報では正電極成形前のタップ密度と成
形後の電極密度をそれぞれ所定範囲に制御することによ
ってサイクル安定性を改善することが提案されている。
また、或いは特開平11−149926号公報によれば
粒子形状を八面体となし、その粒子の大きさと比表面積
を規定して充放電容量の増加をはかることが提案されて
いる。
For example, Japanese Patent Application Laid-Open No. Hei 10-32227 proposes that the specific surface area of the positive electrode active material, the average particle size of the primary and secondary particles, and the porosity are controlled within predetermined ranges to suppress a decrease in capacity. I have. In addition, Japanese Patent Application Laid-Open
Japanese Patent No. 261415 proposes that the cycle density is improved by controlling the tap density before molding the positive electrode and the electrode density after molding in the respective predetermined ranges.
Also, according to Japanese Patent Application Laid-Open No. H11-149926, it is proposed that the particle shape be octahedral, and the size and specific surface area of the particle be defined to increase the charge / discharge capacity.

【0006】[0006]

【発明が解決しようとする課題】通常、リチウム塩粉末
(LiOH、LiCO等)と遷移金属酸化物(MnO2、CoO、
NiO等)粉末を混合し、焼成する方法で合成された正極
活物質は、粒径が数ミクロンから数百ミクロンと幅広
く、そのまま電極に塗布すると、電極密度は上がるもの
の、アルミニウムの集電体と正極活物質間もしくは活物
質相互間の電気伝導性が悪く、放電電流を大きくする
と、内部抵抗のため放電容量がおちる。このため、正極
活物質を粉砕して粒径および比表面積を制御することが
行われるのであるが、この方法だと、放電電流を大きく
したときの重量当たりの容量は改善するものの、電極密
度が小さくなり、体積当たりの容量、すなわち体積効率
が低下する。一方ハイブリッド自動車等の二次電池とし
て求められる要素として軽量化のための重量効率(Wh/K
g)と小型化のための体積効率(Wh/l)の向上がある。
この点で上記のように電極密度が低いと体積効率の向上
が望めないので小型化を進める上でも問題がある。尚、
上記した公知技術においても軽量化や小型化のための考
慮は全く開示されておらずこの点での改善が求められて
いた。
[0007] Normally, the lithium salt powder (LiOH, Li 2 CO 3, etc.) a transition metal oxide (MnO2, CoO,
The cathode active material synthesized by mixing and baking powders (NiO, etc.) has a wide range of particle sizes from several microns to several hundred microns. When the electric conductivity between the positive electrode active materials or between the active materials is poor and the discharge current is increased, the discharge capacity falls due to the internal resistance. For this reason, the positive electrode active material is crushed to control the particle size and specific surface area. According to this method, the capacity per weight when the discharge current is increased is improved, but the electrode density is reduced. As a result, the capacity per volume, that is, the volumetric efficiency is reduced. On the other hand, weight efficiency (Wh / K
g) and volumetric efficiency (Wh / l) for miniaturization.
At this point, if the electrode density is low as described above, improvement in volume efficiency cannot be expected, and thus there is a problem in downsizing. still,
Even in the above-mentioned known technology, no consideration for weight reduction and size reduction is disclosed at all, and improvement in this respect has been demanded.

【0007】そこで、本発明は、出力放電特性とサイク
ル安定性が高く、尚かつ電極密度が高い非水系リチウム
二次電池用正極活物質であって、特に体積効率の向上を
はかり小型化を可能とした非水系リチウム二次電池用正
極活物質及びその製造方法を提供することを目的とす
る。
Accordingly, the present invention provides a positive electrode active material for a non-aqueous lithium secondary battery having high output discharge characteristics and cycle stability and high electrode density, and in particular, improves volumetric efficiency and enables downsizing. It is an object of the present invention to provide a positive electrode active material for a non-aqueous lithium secondary battery and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明は正極活物質にリ
チウムマンガン複合酸化物を用い、これを集電体に塗布
し加圧成形した後の粒子の粒度分布と体積頻度を所要範
囲に制御することによって良好なサイクル特性、放電レ
ート特性と正電極密度を向上させ電池としての体積効率
が改善されることを見出し本発明に至ったものである。
すなわち、本発明は、スピネル型構造のリチウムマンガ
ン複合酸化物を正極活物質として塗布成形した正極を備
えたリチウム二次電池において、前記リチウムマンガン
複合酸化物は一次粒子と、一次粒子が凝集した二次粒子
とからなる粉体であって、この正極活物質を集電材に塗
布し加圧成形した後の正電極密度は2.5g/cm3
上であると共に前記一次粒子の粒度分布は1〜20μm
の範囲にあり、且つ(最大粒径/最小粒径)≧3.0で
ある非水系リチウム電池用正極活物質である。(最大粒
径/最小粒径)の比は3.0以上であるが、望ましくは
3.0〜10である。さらに、ここで上記一次粒子の粒
度分布は、3μm〜5μmの間の粒径を持つ粒子の体積
頻度が50%以上であることが望ましい。さらに望まし
くは3μm〜5μmの体積頻度が60%以上である。
According to the present invention, a lithium manganese composite oxide is used as a positive electrode active material, and the particle size distribution and volume frequency of the particles after applying to a current collector and pressing are controlled to a required range. By doing so, it was found that good cycle characteristics, discharge rate characteristics and positive electrode density were improved to improve the volumetric efficiency as a battery, leading to the present invention.
That is, the present invention relates to a lithium secondary battery provided with a positive electrode obtained by applying and forming a lithium manganese composite oxide having a spinel structure as a positive electrode active material, wherein the lithium manganese composite oxide has primary particles and secondary particles in which primary particles are aggregated. And a positive electrode density of 2.5 g / cm 3 or more after the positive electrode active material is applied to a current collector and pressed and formed, and the particle size distribution of the primary particles is 1 to 3. 20 μm
And the (maximum particle size / minimum particle size) ≧ 3.0 is a positive electrode active material for a non-aqueous lithium battery. The ratio of (maximum particle size / minimum particle size) is 3.0 or more, but preferably 3.0 to 10. Further, in the particle size distribution of the primary particles, it is desirable that the volume frequency of particles having a particle size between 3 μm and 5 μm is 50% or more. More preferably, the volume frequency of 3 μm to 5 μm is 60% or more.

【0009】上記した従来例のように正極活物質を粉砕
して粒径および比表面積を略一定に制御したものであっ
ても、図8に示すように粒度分布の幅が狭く且つ小さな
粒径に集中するものであった。このように小粒径域が急
峻な分布を示す粒度形態の場合、小さな粒子間では反撥
の静電気が働くことから粒子同士が反撥し合い密になら
ず疎の部分が生じる。このことから結果的に粒子が嵩張
ってしまい電極密度を高くすることが出来ないものであ
った。そこで、本発明では電極密度と共に粒度分布の範
囲と粒径の比を規制し、さらに適度な粒度分布と粒子の
体積頻度を規定したものである。すなわち、ある粒度範
囲内で大きめの粒子と小さめの粒子を混在させるもの
で、この場合大きな粒子と小さな粒子の間では反撥の静
電気よりも重力の方が勝り密接に接近して嵩張りが解け
る。また同時に大きめの粒子と大きめの粒子の間に小さ
な粒子が介在して粒間を埋めて密にできるのである。
Even when the positive electrode active material is pulverized to control the particle size and specific surface area to be substantially constant as in the above-mentioned conventional example, as shown in FIG. 8, the width of the particle size distribution is narrow and the particle size is small. Was to concentrate on In the case of the particle form in which the small particle size region shows a steep distribution as described above, repulsive static electricity acts between the small particles, so that the particles repel each other and do not become dense, but a sparse portion is generated. As a result, the particles became bulky and the electrode density could not be increased. Therefore, in the present invention, the range of the particle size distribution and the ratio of the particle size are regulated together with the electrode density, and further, an appropriate particle size distribution and the volume frequency of the particles are specified. That is, large particles and small particles are mixed in a certain particle size range. In this case, gravity is more closely approached than large repulsion static electricity between large particles and small particles, so that bulkiness is loosened. At the same time, small particles are interposed between the large particles and the large particles can be densely filled by filling the space between the particles.

【0010】本発明を換言すれば粒子径の分布は前記一
次粒子の粒度分布で1〜20μmの範囲にあり、且つ
(最大粒径/最小粒径)≧3.0であり、中でも粒子径
3〜5μmの粒子が全体の体積に占める割合が50%以
上であることによって電極密度を2.5g/cm3以上
に高めることが出来るのである。電極密度が2.5g/
cm3以上になると正極活物質と導電助剤およびAl集
電体間の電気的接触状態が良好になり、サイクル安定性
及び放電レート特性が更に向上する。ここで電極密度は
2.6g/cm3以上がより好ましい。ただし上限は製
造上の焼成温度によって制限されるところがあり約2.
8g/cm3程度が限界となる。よって、2.6〜2.
8g/cm3が現実的な好ましい範囲である。
In other words, the particle size distribution of the primary particles is in the range of 1 to 20 μm in the particle size distribution of the primary particles, and (maximum particle size / minimum particle size) ≧ 3.0. The electrode density can be increased to 2.5 g / cm 3 or more by the ratio of the particles having a size of 55 μm to the entire volume being 50% or more. The electrode density is 2.5g /
When it is not less than cm 3, the electrical contact state between the positive electrode active material, the conductive additive and the Al current collector becomes good, and the cycle stability and discharge rate characteristics are further improved. Here, the electrode density is more preferably 2.6 g / cm 3 or more. However, the upper limit is limited by the sintering temperature in production, and about 2.
The limit is about 8 g / cm 3 . Therefore, 2.6-2.
8 g / cm 3 is a practically preferable range.

【0011】本発明において粒子の径が1μmより小さ
い場合は、更に電極密度が低下し、実用的ではない。ま
た、塗布後の様子をSEMで観察すると導電材や結着剤
の分散性が悪くなっており電極特性が悪くなる。一方、
20μmより大きい粒子が多く含まれていると電極密度
は単に高まるが、ペースト状態で塗布した膜がかすれた
り偏ったりと均一な塗膜が得られないため好ましくな
く、電極特性も悪くなる。また、本発明ではペースト状
態の原料を集電材に膜厚200μm程度に塗布し、その
後プレス圧1.5ton/cm2相当を用いて加圧し100μ
m程度の均一な塗膜に仕上げるものであるが、加圧力は
これに限定されることはない。以上のようにして電極密
度を高い値に制御できるので体積効率をバランスさせて
電極材を小さく、ひいては二次電池自体の小型化が可能
となる。
In the present invention, when the particle diameter is smaller than 1 μm, the electrode density is further reduced, which is not practical. Further, when the state after the application is observed by SEM, the dispersibility of the conductive material and the binder is deteriorated, and the electrode characteristics are deteriorated. on the other hand,
When a large number of particles larger than 20 μm are contained, the electrode density simply increases, but the film applied in a paste state is unfavorable because a uniform coating film cannot be obtained when the film is blurred or uneven, and the electrode characteristics are deteriorated. Further, in the present invention, the paste-form raw material is applied to a current collector with a film thickness of about 200 μm, and then pressed using a press pressure equivalent to 1.5 ton / cm 2 to 100 μm.
The coating is finished to a uniform thickness of about m, but the pressing force is not limited to this. As described above, since the electrode density can be controlled to a high value, the volume efficiency can be balanced and the electrode material can be reduced, and the secondary battery itself can be reduced in size.

【0012】次に、出力放電特性の向上、言い換えると
放電電流を大きくした場合に電池から取り出せるエネル
ギーを増やすことについて考察すると、スピネル型構造
のリチウムマンガン複合酸化物の場合、放電の際の結晶
へのリチウムイオンの挿入を効率良くおこなう必要があ
る。充放電の際の結晶へのリチウムイオンの挿入と脱離
は結晶内を拡散させて行うため、結晶性の高い、すなわ
ち歪や格子欠陥が少ないスピネル型構造のリチウムマン
ガン複合酸化物を合成する必要がある。ところが通常の
手段で得られるスピネル型構造のリチウムマンガン複合
酸化物は焼成温度が1000℃以下と低い温度で合成し
てあり、また焼成後、粉砕工程で粒径を制御するため、
粒の角が欠けた球状もしくは格子歪や格子欠陥を多く含
んでおりリチウムイオンの脱離と挿入を効率良く行うこ
とができないものであった。
Next, considering the improvement of the output discharge characteristics, that is, the increase in energy that can be taken out of the battery when the discharge current is increased, the lithium manganese composite oxide having a spinel structure has a disadvantage in that the crystal during discharge is reduced. It is necessary to efficiently insert lithium ions. It is necessary to synthesize a lithium manganese composite oxide with high crystallinity, that is, a spinel-type structure with few distortions and lattice defects, because lithium ions are inserted into and desorbed from the crystal during charge / discharge by diffusing inside the crystal. There is. However, the spinel-type lithium manganese composite oxide obtained by ordinary means is synthesized at a low firing temperature of 1000 ° C. or less, and after firing, in order to control the particle size in a pulverizing step,
The particles lacked spherical corners or contained many lattice strains and lattice defects, so that lithium ions could not be efficiently desorbed and inserted.

【0013】そこで、本発明のリチウムマンガン複合酸
化物粉は、一次粒子と、一次粒子が凝集した二次粒子と
からなり、特に一次粒子は1000℃以上の高温で焼成
しているため結晶性の高い(111)面が成長した略八
面体様(以下、単に八面体あるいは八面体粒子と言うこ
とがある。)をしている。これを集電材に塗布し加圧成
形した後にも面積比の少なくとも3%以上が八面体粒
子、あるいは八面体であった粒子で構成することが望ま
しく、この八面体粒子で尚かつ上記した粒度分布などの
条件を満たすものが最も望ましい。本発明のリチウムマ
ンガン複合酸化物の一次粒子を略八面体様とすることに
よって放電特性が特に優れることがわかった。この理由
は八面体は結晶の(111)面が成長したものであり結
晶性が高く結晶構造が破壊され難くなること、及び体積
当たりの比表面積が他の形状より多く電解液及び導電助
剤との接触が良好であることから、充放電によってリチ
ウムが挿入、離脱する機能が増えるためであると考えて
いる。
Therefore, the lithium manganese composite oxide powder of the present invention is composed of primary particles and secondary particles obtained by aggregating the primary particles. It has a substantially octahedral-like (hereinafter sometimes simply referred to as octahedron or octahedral particles) with a high (111) plane grown. It is desirable that at least 3% or more of the area ratio be composed of octahedral particles or particles that were octahedral even after being applied to the current collector and press-molded. Those that satisfy the conditions such as above are most desirable. It was found that the discharge characteristics were particularly excellent when the primary particles of the lithium manganese composite oxide of the present invention were made substantially octahedral. The reason for this is that the octahedron is formed by growing the (111) plane of the crystal and has high crystallinity so that the crystal structure is difficult to be destroyed. It is believed that this is because the function of inserting and removing lithium by charging and discharging is increased due to the good contact of the metal.

【0014】尚、一般的な酸化物活物質の粒子は、活物
質の結晶形を反映して成長した一次粒子と、これが凝集
(例えば静電気力や機械的な接触によって集合している
形態)または焼結(例えば結晶的に繋がって成長してい
る形態)等で構成された二次粒子からなるが、本発明で
は凝集形態と焼結形態等をまとめて「凝集」と言う。正
極活物質は一次粒子と一次粒子が凝集した二次粒子から
なり、これらの一次粒子が略八面体をとっていることが
望ましい。八面体粒子は概略八面体形状であることを確
認できれば良く、例えば頂点や辺が欠けた形状であって
もこれに含まれるものでこれらを含めて八面体様と呼ぶ
ことにする。また現実には球状や六面体形状また不定形
状の粒子も含まれていることがある。さらに塗布成形後
は加圧により八面体であることが明確に確認できないこ
ともあるが一部にその形跡が残っていれば良い。そし
て、正極活物質での粒径や粒度分布は塗布成形後に上記
の条件を満足するような粒径の範囲とすればよい。
A general oxide active material particle is composed of a primary particle that reflects the crystal form of the active material and a particle that aggregates (for example, forms aggregated by electrostatic force or mechanical contact) or It is composed of secondary particles formed by sintering (for example, in a form of crystal connection and growth). In the present invention, the aggregated form, the sintered form, and the like are collectively referred to as “aggregation”. The positive electrode active material is composed of primary particles and secondary particles in which the primary particles are aggregated, and it is desirable that these primary particles have a substantially octahedral shape. It is sufficient that the octahedral particles can be confirmed to have a substantially octahedral shape. For example, even if the vertices or sides are missing, they are included in the shape and are called octahedral-like. Also, in reality, spherical, hexahedral or irregular shaped particles may be included. Further, after application molding, it may not be possible to clearly confirm that it is an octahedron by applying pressure, but it is sufficient if the trace remains in a part. Then, the particle size and the particle size distribution of the positive electrode active material may be in a range of the particle size that satisfies the above conditions after coating and molding.

【0015】次に、本発明の正極活物質は二次粒子の凝
集を解しやすくしたことも特徴で、無理に粉砕しなくと
も特に塗布成形時の圧力によって二次粒子から略八面体
の一次粒子がほぐれ、ボロボロと剥がれるようにして一
次粒子が分散され、これと共に二次粒子の姿はほとんど
見えなくなる。このときの単位面積当たりの八面体粒子
の個数が3%以下では上記した効果が少ないので、少な
くとも3%以上、望ましくは60%以上が八面体粒子で
あることが好ましい。尚、ここで八面体粒子の占有率に
ついては、(株)日立製作所製の走査型電子顕微鏡によ
るSEM写真をとり、ここでの代表的な視野における単
位面積当たりの八面体粒子の個数をカウントして比率を
求めたものである。また、粒度分布については同じく電
極表面の代表的な視野におけるSEM写真上で各粒子の
水平方向長さを測定して得たもので、体積頻度は各粒子
の体積を前記で測定した粒子径から球体の体積に換算
し、百分率で全体体積に占める割合を求めたものであ
る。
Next, the positive electrode active material of the present invention is characterized in that secondary particles are easily aggregated. Even if the secondary particles are not pulverized, the primary particles are substantially octahedral primary by the pressure during coating and molding. The primary particles are dispersed so that the particles are loosened and peeled off, and the secondary particles are almost invisible. If the number of octahedral particles per unit area at this time is 3% or less, the above-mentioned effect is small. Therefore, it is preferable that at least 3% or more, and preferably 60% or more, be octahedral particles. Here, regarding the occupancy of octahedral particles, a SEM photograph was taken with a scanning electron microscope manufactured by Hitachi, Ltd., and the number of octahedral particles per unit area in a typical visual field was counted. The ratio was calculated by using The particle size distribution was also obtained by measuring the horizontal length of each particle on a SEM photograph in a representative field of view of the electrode surface, and the volume frequency was calculated from the particle diameter obtained by measuring the volume of each particle. It is converted into the volume of a sphere, and the ratio to the total volume is calculated as a percentage.

【0016】次に、本発明の非水系リチウム二次電池用
正極活物質の製造方法について説明する。製造工程の中
で粒径と粒度分布を制御するために重要な製造過程は、
適切な焼成を行ったことである。またこの焼成は八面体
粒子を得るためにも重要な工程である。適切な熱処理を
行うことによって八面体形状の粒子の成長を促すと共に
粒子径を制御し、正電極密度を高めることができる。す
なわち、本発明は、スピネル型構造のリチウムマンガン
複合酸化物からなる非水系リチウム二次電池用正極活物
質の製造方法であって、前記正極活物質の焼成を大気雰
囲気中で1000℃以上1100℃以下の温度で第1の
焼成を行った後、再度600℃±100℃の温度で第2
の焼成を行う工程を含む非水系リチウム二次電池用正極
活物質の製造方法である。
Next, a method for producing the positive electrode active material for a non-aqueous lithium secondary battery of the present invention will be described. The important manufacturing processes to control the particle size and particle size distribution in the manufacturing process are:
That is, proper firing was performed. This calcination is also an important step for obtaining octahedral particles. By performing an appropriate heat treatment, the growth of octahedral shaped particles can be promoted, the particle size can be controlled, and the positive electrode density can be increased. That is, the present invention relates to a method for producing a positive electrode active material for a non-aqueous lithium secondary battery comprising a lithium manganese composite oxide having a spinel structure, wherein the calcination of the positive electrode active material is carried out at 1,000 ° C. or more and 1100 ° C. in an air atmosphere. After performing the first baking at the following temperature, the second baking is performed again at a temperature of 600 ° C. ± 100 ° C.
This is a method for producing a positive electrode active material for a non-aqueous lithium secondary battery, which comprises a step of baking.

【0017】焼成温度が600〜700℃では一次粒子
の中に八面体の結晶は確認できず、電極特性も劣る。八
面体の一次粒子が確認できるのは焼成温度800℃以上
の場合であり焼成温度を上げると一次粒子の中の八面体
の比率およびその粒径は増すが、1100℃以上では結
晶の溶融が始まり正極活物質としての特性が低下する。
一方、1000℃より低い温度では狙いの粒子径が成長
し難く電極密度も高くならない。図6に示すように10
30℃付近で電極密度2.6g/cm3が達成できるこ
とがわかる。以上のことより、焼成温度は大気中雰囲気
で1000℃以上1100℃以下の範囲から選定し、望
ましくは1030〜1080℃である。更に望ましくは
1050℃である。また、焼成時間は1時間以上行うこ
とが好ましく、さらに好ましくは4時間以上である。
When the sintering temperature is 600 to 700 ° C., octahedral crystals cannot be confirmed in the primary particles, and the electrode characteristics are poor. Primary particles of the octahedron can be confirmed when the sintering temperature is 800 ° C or higher. When the sintering temperature is increased, the ratio of the octahedron in the primary particles and the particle size increase, but at 1100 ° C or higher, the melting of the crystal starts. The characteristics as a positive electrode active material are reduced.
On the other hand, if the temperature is lower than 1000 ° C., the target particle diameter does not easily grow and the electrode density does not increase. As shown in FIG.
It can be seen that an electrode density of 2.6 g / cm @ 3 can be achieved around 30 DEG C. From the above, the firing temperature is selected from the range of 1000 ° C. or more and 1100 ° C. or less in the atmosphere in the air, and is desirably 1030 to 1080 ° C. More preferably, the temperature is 1050 ° C. The firing time is preferably one hour or more, more preferably four hours or more.

【0018】ここで一次粒子を成長させ略八面体を形成
させるために900℃以上で第1の焼成を行った材料に
ついては、材料が還元してしまい電極特性の低下が著し
いため酸化させる必要がある。焼成時に還元されると格
子定数が大きくなる。そこで、焼成後に再度第2の焼成
を行うことで再酸化させて格子定数を小さくしてやるこ
と有効である。この焼成温度は図7に示すように600
℃±100℃であることが確認されている。以上より八
面体状の一次粒子を得て、さらにこの一次粒子の格子定
数を抑制するためには1000℃以上1100℃以下の
温度で行う第1の焼成の工程と、さらに600℃±10
0℃で行う第2の焼成の工程を含むことが重要である。
また第2の焼成を行わないとLi2MnO3やMn3O4等が残存し
やすいので、第2の焼成はLi2MnO3やMn3O4の分解温度以
上である600℃±100℃としている。また、第2の
熱処理の代わりに900℃以上で焼成した場合は、その
後酸素雰囲気中で冷却するという処置をとることでも活
物質の還元を防ぐことが出来る。
Here, the material which has been subjected to the first baking at 900 ° C. or higher to grow primary particles and form a substantially octahedron needs to be oxidized because the material is reduced and the electrode characteristics are remarkably deteriorated. is there. When reduced during firing, the lattice constant increases. Therefore, it is effective to reduce the lattice constant by reoxidizing by performing the second firing again after the firing. This firing temperature was set at 600 as shown in FIG.
It has been confirmed that the temperature was ± 100 ° C. From the above, octahedral primary particles are obtained, and in order to further suppress the lattice constant of the primary particles, a first baking step performed at a temperature of 1000 ° C. or more and 1100 ° C. or less,
It is important to include a second baking step performed at 0 ° C.
If the second firing is not performed, Li 2 MnO 3 , Mn 3 O 4, and the like are likely to remain. Therefore, the second firing is performed at a temperature equal to or higher than the decomposition temperature of Li 2 MnO 3 or Mn 3 O 4 at 600 ° C. ± 100 ° C. And In the case where firing is performed at 900 ° C. or higher instead of the second heat treatment, reduction of the active material can be prevented by taking a measure of cooling in an oxygen atmosphere thereafter.

【0019】次に、正電極に塗布成形したとき八面体粒
子が3%以上の面積を占め高い電極密度を得るために重
要なポイントとしては、上記した焼成を行う前に粉体の
造粒を行い適当な顆粒を作り、上記第1の熱処理を行っ
た後にあえて解砕を行うことである。すなわち、原料粉
を混合した後、単に焼成を行った場合より、混合後スプ
レードライヤー等を用いて10〜200μ程度の顆粒を作っ
たのち焼成した場合の方が八面体が生成し易いし、また
一次粒子の成長と粒度分布を制御しやすく電極密度を高
めることができる。前記スプレードライヤーとは、原料
粉体にPVA(ホ゜リヒ゛ニルアルコール)等の有機物質と純水を加えス
ラリーとし、このスラリーを所要の速度で回転する円盤
上に滴下すると、滴下されたスラリーはコリオリの力を
受け円盤から外径方向に飛散し、空中で自身の表面張力
でほぼ球状の粒子を得ることである。粒子径はスラリー
を滴下する円盤の回転数を適宜選ぶことにより制御で
き、高速で回転するほど粒子径は小さくなる。
Next, in order to obtain a high electrode density with the octahedral particles occupying an area of 3% or more when coated and formed on the positive electrode, the granulation of the powder before the above-mentioned firing is important. After the first heat treatment is performed, the granulation is performed. That is, after mixing the raw material powder, the octahedron is easier to produce when baked after making granules of about 10 to 200μ using a spray dryer or the like after mixing, rather than simply firing. The growth of the primary particles and the particle size distribution can be easily controlled, and the electrode density can be increased. The spray dryer is a slurry in which an organic substance such as PVA (polyvinyl alcohol) and pure water are added to raw material powder to form a slurry, and the slurry is dropped on a rotating disk at a required speed, and the dropped slurry has a Coriolis force. In this way, the particles are scattered from the disk in the outer diameter direction and substantially spherical particles are obtained in the air by their own surface tension. The particle diameter can be controlled by appropriately selecting the number of revolutions of the disk on which the slurry is dropped, and the higher the speed of rotation, the smaller the particle diameter.

【0020】この粒子を乾燥して上記した条件で焼成す
れば、焼成完了時に一次粒子が八面体状の粒形態をな
し、この一次粒子が凝集して二次粒子を形成している。
このときの二次粒子は丁度ぶどうの房のようにほぼ一定
の粒径を持つ一次粒子が寄り集まって凝集した形態をと
っている。さらにこの二次粒子から構成された原料粉体
を解砕すると、ぶどうの房からぶどうの粒がボロボロと
解かれるように粒子の分散が進み、一次粒子と二次粒子
が混在した状態となる。このときの二次粒子は凝集が解
けやすい状態となっているので強い粉砕が必要なく八面
体を損傷させることが少ない。以上の焼成温度、焼成前
の粉体制御により八面体粒子を有した正極活物質が得ら
れ、塗布成形後には適度な粒度分布と粒径を持った正電
極が得られる。
If the particles are dried and fired under the above conditions, the primary particles form an octahedral particle form upon completion of the firing, and the primary particles aggregate to form secondary particles.
At this time, the secondary particles have a form in which primary particles having a substantially constant particle size are gathered and aggregated like a grape cluster. Further, when the raw material powder composed of the secondary particles is crushed, the dispersion of the particles proceeds so that the grape particles are broken from the grape clusters, and the primary particles and the secondary particles are mixed. At this time, the secondary particles are in a state in which aggregation is easily dissolved, so that strong pulverization is not required and damage to the octahedron is small. A positive electrode active material having octahedral particles can be obtained by controlling the above-mentioned firing temperature and powder before firing, and a positive electrode having an appropriate particle size distribution and particle size can be obtained after coating and molding.

【0021】正極活物質の放電特性およびサイクル安定
性の向上には、上述してきた粒子の形状と同様にその組
成が重要である。スピネル型構造のリチウムマンガン複
合酸化物の場合、組成は原子数の比であるLi/Mn比
で0.5〜0.6が一般的であるが、本発明では特に
0.56≦Li/Mn≦0.62と規定した。Li/M
n比が0.56以下ではサイクル特性が悪く500サイ
クルで充放電容量が初期の70%以下になり実用的でな
い。また他方0.62を越えると充放電容量が100mA
h/g以下になり実用的でないことが分かっている。より
好ましい範囲は0.57≦Li/Mn≦0.59であ
り、更に好ましくはLi/Mn=0.58である。
In order to improve the discharge characteristics and cycle stability of the positive electrode active material, the composition of the particles is important, as in the case of the above-mentioned particles. In the case of a lithium manganese composite oxide having a spinel structure, the composition is generally 0.5 to 0.6 in Li / Mn ratio, which is the ratio of the number of atoms, but in the present invention, particularly, 0.56 ≦ Li / Mn. ≦ 0.62. Li / M
When the n ratio is 0.56 or less, the cycle characteristics are poor, and the charge / discharge capacity becomes less than 70% of the initial value at 500 cycles, which is not practical. On the other hand, if it exceeds 0.62, the charge / discharge capacity becomes 100 mA.
It is known that it is not practical because it is less than h / g. A more preferred range is 0.57 ≦ Li / Mn ≦ 0.59, and still more preferably Li / Mn = 0.58.

【0022】[0022]

【発明の実施の形態】以下に実施例を挙げ、本発明を説
明する。尚、本発明は以下に述べる実施例に限定される
ものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to examples. Note that the present invention is not limited to the embodiments described below.

【0023】(実施例)図1に本発明の正極活物質を使
って塗布、加圧成形した時の正電極表面のSEM写真
(1000倍)を示し、図2にその模式図を示す。尚、
模式図は理解しやすいように模式的に示したものであっ
て、その縮尺や密度等については実際とは異なる。また
粒子は必ずしも八面体ばかりではなくその一部が欠けた
ものや不定形状等も含まれている。正極活物質は圧力で
潰されるので八面体粒子を確認しずらいが倍率を高くす
ると比較的容易に確認できる。正極活物質3は八面体様
に成長した大小粒径の異なる一次粒子及び八面体であっ
た(変形した)一次粒子1と電極組織(導電材及び結着
材)2が集まったものである。図2は理想的な状態を示
しているが、一次粒子の粒度分布は1〜20μmの中に
あり、大粒径の粒子の間に小径粒子が入り込むようにし
て均一に塗布されている。
(Example) FIG. 1 shows a SEM photograph (magnification: × 1000) of the surface of the positive electrode when the positive electrode active material of the present invention was coated and pressed, and FIG. 2 is a schematic diagram thereof. still,
The schematic diagram is schematically shown for easy understanding, and its scale and density are different from actual ones. In addition, the particles are not limited to octahedrons, but also include particles partially missing or irregular shapes. Since the positive electrode active material is crushed by pressure, it is difficult to confirm the octahedral particles, but it can be relatively easily confirmed by increasing the magnification. The positive electrode active material 3 is composed of octahedral-grown primary particles having different sizes and small and large octahedral (deformed) primary particles 1 and an electrode structure (conductive material and binder) 2. FIG. 2 shows an ideal state, but the particle size distribution of the primary particles is in the range of 1 to 20 μm, and the particles are uniformly applied so that the small particles enter between the large particles.

【0024】本実施例では、原料として二酸化マンガン
と炭酸リチウムを使用し、原子比でLi/Mn比が0.58に
なるよう秤量し、樹脂製のボールミルにより湿式で50
時間混合した。混合液にはPVA溶液を固形分に換算して
1wt%添加混合後、スプレードライヤにより造粒し乾燥
させて10〜100μmの顆粒を作成した。次に1回目
の焼成について、温度をそれぞれ600℃、700℃、
800℃、900℃、1000℃、1050℃、108
0℃、1100℃と変えて、持続時間は共に10時間と
した。
In this embodiment, manganese dioxide and lithium carbonate are used as raw materials, weighed so that the Li / Mn ratio becomes 0.58 in atomic ratio, and wet weighed by a ball mill made of resin.
Mix for hours. The PVA solution was added to the mixed solution in an amount of 1 wt% in terms of solid content, mixed and then granulated by a spray dryer and dried to prepare granules of 10 to 100 μm. Next, for the first firing, the temperature was set at 600 ° C., 700 ° C., respectively.
800 ° C, 900 ° C, 1000 ° C, 1050 ° C, 108
The duration was changed to 10 hours at 0 ° C. and 1100 ° C.

【0025】その後、ライカイ機によりスプレードライ
ヤで作成した顆粒の形態が残らぬよう解砕し、その後で
解砕時に傷付いたり変形した八面体状粒子を補正するた
めに2回目の熱処理焼成を第1の焼成と同じ条件で行っ
た。尚、この2回目の焼成については必ずしも行う必要
はない。さらに、第1の焼成(第一の熱処理)において
焼成温度が900〜1100℃の実施例については酸化
させて格子定数を小さくするために600℃で5時間の
第2の焼成(第二の熱処理)を行った。これらの製造工
程を図3に示す。本実施例により、得られた正極活物質
原料粉体をSEMにより観察したところ、第1の焼成温
度が800℃以上の実施例については八面体の結晶が確
認された。さらにそのSEMによる観察像から八面体と
確認できる一次粒子の個数比率と(最大粒径/最小粒
径)比を測定した結果を表1に示す。尚、ここで一次粒
子は、(株)日立製作所製の走査型電子顕微鏡によるS
EM写真をとりここでの代表的な視野における単位面積
当たりの一次粒子の個数をカウントして比率を求めた。
また、電極表面の代表的な視野におけるSEM写真上で
の各粒子の水平方向長さを測定して得た粒度分布から、
その最大粒径と最小粒径を用いて、(最大粒径/最小粒
径)比を算出した。
Thereafter, the granules produced by a spray dryer are crushed by a raikai machine so that no morphology remains, and then a second heat treatment calcination is carried out in order to correct octahedral particles damaged or deformed during crushing. This was performed under the same conditions as in the firing of No. 1. It is not always necessary to perform the second firing. Further, in the embodiment in which the firing temperature is 900 to 1100 ° C. in the first firing (first heat treatment), the second firing (second heat treatment) at 600 ° C. for 5 hours in order to oxidize and reduce the lattice constant. ) Was done. FIG. 3 shows these manufacturing steps. When the obtained positive electrode active material raw material powder was observed by SEM according to this example, octahedral crystals were confirmed in the examples in which the first firing temperature was 800 ° C. or higher. Table 1 shows the results of measuring the number ratio of primary particles and the ratio of (maximum particle size / minimum particle size), which can be confirmed to be octahedral from the SEM observation image. Here, the primary particles are S particles by a scanning electron microscope manufactured by Hitachi, Ltd.
An EM photograph was taken and the number of primary particles per unit area in a typical visual field was counted to obtain a ratio.
Also, from the particle size distribution obtained by measuring the horizontal length of each particle on a SEM photograph in a representative visual field of the electrode surface,
The ratio of (maximum particle size / minimum particle size) was calculated using the maximum particle size and the minimum particle size.

【0026】[0026]

【表1】 [Table 1]

【0027】正極活物質の特性を評価するための正電極
作成に当たっては本実施例の正極活物質、炭素系導電材
及び結着剤を重量%で表してそれぞれ、90:5.5:4.5(wt
%)の割合で混合し、均一に混合されたスラリーを、厚
み15μmのアルミ集電体箔上に塗布した後90℃で乾燥
し、1.5ton/cm2で加圧し、100μmの塗膜を形成した。
In preparing a positive electrode for evaluating the characteristics of the positive electrode active material, the positive electrode active material, the carbon-based conductive material, and the binder of the present embodiment were expressed in terms of% by weight, and were respectively 90: 5.5: 4.5 (wt.
%), And the uniformly mixed slurry is applied to a 15 μm thick aluminum current collector foil, dried at 90 ° C, and pressed at 1.5 ton / cm 2 to form a 100 μm coating. did.

【0028】ここで、図5にプレス圧を変えたときの電
極密度を示す。図の各線図は第1の焼成温度を示してい
るが、このように焼成温度を高くするほど低いプレス圧
でも密度が上がることがわかる。しかし、一般にプレス
圧を2ton/cm2以上に上げると、塗布された正極材粒子
が損傷し、サイクル特性が悪くなるため、1から2ton/
cm2の範囲が望ましく、さらに望ましくは1.5ton/cm2
度の圧力でプレスすることである。次に、この1.5ton/
cm2圧力での第1の焼成温度と電極密度の関係を図6に
示す。この図より焼成温度を1030℃以上にすると、
2.6g/cm3以上の電極密度が得られることがわかる。さら
に第2の焼成温度と格子定数の関係を図7に示す。これ
より約600℃を中心に±100℃、さらに望ましくは
±50℃の焼成温度で格子定数が再び小さくなりサイク
ル特性が回復するのである。
FIG. 5 shows the electrode density when the pressing pressure is changed. Each diagram in the figure shows the first firing temperature. It can be seen that the higher the firing temperature, the higher the density even with a lower press pressure. However, in general, when the pressing pressure is increased to 2 ton / cm 2 or more, the applied cathode material particles are damaged, and the cycle characteristics are deteriorated.
range cm 2 is desirable, and more preferably is to press at a pressure of about 1.5 ton / cm 2. Next, this 1.5ton /
FIG. 6 shows the relationship between the first firing temperature at a pressure of cm 2 and the electrode density. From this figure, if the firing temperature is set to 1030 ° C. or higher,
It is understood that an electrode density of 2.6 g / cm 3 or more can be obtained. FIG. 7 shows the relationship between the second firing temperature and the lattice constant. At a firing temperature of about ± 100 ° C., more preferably about ± 50 ° C., centered at about 600 ° C., the lattice constant becomes smaller again and the cycle characteristics recover.

【0029】以上の条件の下、実施例2の正電極材の一
次粒子の粒度分布と体積頻度を図4に示す。これより本
例の粒子の粒度分布は約1.5〜8μmの範囲にあり、
(最大粒径/最小粒径)比が6.5であった。(最大粒
径/最小粒径)比が2.6で電極密度が低かった従来の
図8のものに比べ、粒度の幅が広がっていることがわか
る。また3μm〜5μmの粒子の体積頻度は60%以上
であった。尚、SEM写真からの測定により粒子は八面
体粒子あるいは変形した八面体粒子が全面積の約85%
を占めていることが確認された。また、実施例1、3、
4の正極電極材の一次粒子の粒度分布は、1〜20μm
の範囲の中にあり、(最大粒径/最小粒径)比は、それ
ぞれ3.5、7、18であった。また3μm〜5μmの
粒子の体積頻度はそれぞれ50%以上であることが確認
された。
Under the above conditions, the particle size distribution and volume frequency of the primary particles of the positive electrode material of Example 2 are shown in FIG. Thus, the particle size distribution of the particles of this example is in the range of about 1.5 to 8 μm,
The ratio (maximum particle size / minimum particle size) was 6.5. It can be seen that the width of the particle size is wider than that of the conventional one shown in FIG. 8 in which the (maximum particle size / minimum particle size) ratio is 2.6 and the electrode density is low. The volume frequency of the particles having a size of 3 μm to 5 μm was 60% or more. According to the measurement from the SEM photograph, the particles are octahedral particles or deformed octahedral particles are about 85% of the total area.
It was confirmed that it occupied. Examples 1, 3,
The particle size distribution of the primary particles of the positive electrode material of No. 4 is 1 to 20 μm
And the (maximum particle size / minimum particle size) ratio was 3.5, 7, and 18, respectively. In addition, it was confirmed that the volume frequency of the particles of 3 μm to 5 μm was 50% or more.

【0030】次に、リチウム二次電池の負極としては通
常炭素系材料を使用するが、本実施例では評価結果に負
極の特性が加味されないようリチウム金属電極を用い試
験用電池を作成した。電解液には1.2MLiPF6を電解質と
した、エチルカーボネートとジメチルカーボネートの混
合溶媒を用いた。本実施例で作成した試料について上記
簡易電池を作成し、2.5mA/cm2の電流密度で放電したと
きの放電容量と、0.5mA/cm2の電流密度で放電したとき
の初期放電容量を表2に示す。
Next, a carbon-based material is usually used as the negative electrode of the lithium secondary battery. In this example, a test battery was prepared using a lithium metal electrode so that the characteristics of the negative electrode were not taken into consideration in the evaluation results. As the electrolytic solution, a mixed solvent of ethyl carbonate and dimethyl carbonate using 1.2 M LiPF6 as an electrolyte was used. Table The initial discharge capacity when the sample prepared in this example creates the simple cell, and the discharge capacity when discharged at a current density of 2.5 mA / cm 2, and discharged at a current density of 0.5 mA / cm 2 It is shown in FIG.

【0031】[0031]

【表2】 [Table 2]

【0032】表1と表2のデータより実施例の正極で
は、八面体の一次粒子が確認され、なおかつ粒度分布が
適度に広がり、すなわち(最大粒径/最小粒径)比が
3.0以上の正極活物質を使用すると電極密度が上が
り、且つ、短時間(初期容量測定時の1/6の時間)で
放電を行う2Cでの放電容量は初期容量の90%以上を
確保しており、粉砕工程で粒度を細かくしているもしく
は、800℃程度の焼成温度で作成した従来の活物質と
比較して、高い放電容量を持つことがわかる。また結晶
性の高い(111)面が成長した八面体の一次粒子が含
まれる場合に優れた放電特性が得られ、電極密度も上が
り、体積当たりの放電容量が大きいことがわかる.
From the data in Tables 1 and 2, in the positive electrode of the example, primary particles of octahedron were confirmed, and the particle size distribution was appropriately widened, that is, the ratio of (maximum particle size / minimum particle size) was 3.0 or more. When the positive electrode active material is used, the electrode density is increased, and the discharge capacity at 2C where the discharge is performed in a short time (1/6 of the time of the initial capacity measurement) is 90% or more of the initial capacity. It can be seen that the material has a higher discharge capacity as compared with a conventional active material which has been made finer in the pulverization step or has been formed at a firing temperature of about 800 ° C. In addition, it is found that excellent discharge characteristics are obtained when primary particles of an octahedron with high crystallinity (111) planes are included, the electrode density is increased, and the discharge capacity per volume is large.

【0033】[0033]

【発明の効果】以上のように本発明によれば、正極活物
質にリチウムマンガン複合酸化物を用い、これを集電体
に塗布し加圧成形した後の一次粒子の粒度分布とその最
大粒径/最小粒径比、体積頻度などを所要範囲に制御す
ることによって正電極密度を向上させたまま放電容量特
性とサイクル安定性を改善させることができた。また、
一次粒子の形状を略八面体に制御しその占有率を規定
し、さらに、リチウムカンガン複合酸化物の原料粉のL
i/Mn比を所要の範囲に規定した。これらのことによ
り高い出力放電特性と高いサイクル特性が得られ寿命の
長い非水系リチウム二次電池用正極活物質を提供するこ
とができた。そして、正電極密度と放電容量特性とサイ
クル安定性が向上したことにより電極の体積効率を高め
て小型化が可能となり、ひいては小型で特性の良好な非
水系リチウム二次電池を得ることが出来る。
As described above, according to the present invention, the lithium manganese composite oxide is used as the positive electrode active material, the particle size distribution of the primary particles after being applied to the current collector and pressed and molded, and the maximum particle size thereof. By controlling the diameter / minimum particle diameter ratio, the volume frequency, and the like to the required ranges, the discharge capacity characteristics and the cycle stability could be improved while the positive electrode density was improved. Also,
The shape of the primary particles is controlled to be substantially octahedral and its occupancy is regulated.
The i / Mn ratio was defined in a required range. As a result, high output discharge characteristics and high cycle characteristics were obtained, and a long-life positive electrode active material for non-aqueous lithium secondary batteries could be provided. Since the positive electrode density, the discharge capacity characteristic and the cycle stability have been improved, the volume efficiency of the electrode can be increased and the size can be reduced. As a result, a nonaqueous lithium secondary battery having a small size and excellent characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の正極活物質を正電極材に成形した後の
走査電子顕微鏡写真の一例である。
FIG. 1 is an example of a scanning electron microscope photograph after the positive electrode active material of the present invention has been formed into a positive electrode material.

【図2】図1の写真の模式図である。FIG. 2 is a schematic diagram of the photograph of FIG.

【図3】本発明の実施例の製造工程を示すフローチャー
トである。
FIG. 3 is a flowchart showing a manufacturing process according to the embodiment of the present invention.

【図4】一実施例の正電極材の一次粒子の粒度分布と体
積頻度を示す図である。
FIG. 4 is a diagram showing a particle size distribution and a volume frequency of primary particles of a positive electrode material according to an example.

【図5】各第1の焼成温度におけるプレス圧力と電極密
度の関係を示す図である。
FIG. 5 is a diagram showing a relationship between a pressing pressure and an electrode density at each first firing temperature.

【図6】プレス圧1.5ton/cm2時の第1の焼成温度と電
極密度の関係を示す図である。
FIG. 6 is a diagram showing a relationship between a first baking temperature and an electrode density at a press pressure of 1.5 ton / cm 2 .

【図7】第2の焼成温度と格子定数の関係を示す図であ
る。
FIG. 7 is a diagram showing a relationship between a second firing temperature and a lattice constant.

【図8】従来の正電極材の一次粒子の粒度分布と体積頻
度の一例を示す図である。
FIG. 8 is a diagram showing an example of a particle size distribution and a volume frequency of primary particles of a conventional positive electrode material.

【図9】従来例の正極活物質の一例を示す模式図であ
る。
FIG. 9 is a schematic view showing an example of a conventional positive electrode active material.

【符号の説明】[Explanation of symbols]

1:正極活物質の一次粒子 2:導電助
1: Primary particles of positive electrode active material 2: Conductive aid

フロントページの続き Fターム(参考) 5H003 AA02 AA04 BA05 BB05 BC00 BC01 BC06 BD01 BD02 BD03 BD05 5H014 AA01 AA06 BB05 BB08 EE10 HH00 HH06 HH08 5H029 AJ03 AJ05 AK03 AL06 AM03 AM05 AM07 CJ03 CJ22 CJ28 DJ16 DJ17 HJ02 HJ05 HJ08 HJ14 Continued on front page F-term (reference) 5H003 AA02 AA04 BA05 BB05 BC00 BC01 BC06 BD01 BD02 BD03 BD05 5H014 AA01 AA06 BB05 BB08 EE10 HH00 HH06 HH08 5H029 AJ03 AJ05 AK03 AL06 AM03 AM05 AM07 CJ03 HJ14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 スピネル型構造のリチウムマンガン複合
酸化物を正極活物質として塗布成形した正極を備えたリ
チウム二次電池において、前記リチウムマンガン複合酸
化物は一次粒子と、一次粒子が凝集した二次粒子とから
なる粉体であって、この正極活物質を集電材に塗布し加
圧成形した後の正電極密度は2.5g/cm3以上であ
ると共に前記一次粒子の粒度分布は1〜20μmの範囲
にあり、且つ(最大粒径/最小粒径)≧3.0であるこ
とを特徴とする非水系リチウム電池用正極活物質。
1. A lithium secondary battery provided with a positive electrode formed by applying and forming a lithium manganese composite oxide having a spinel structure as a positive electrode active material, wherein the lithium manganese composite oxide is composed of primary particles and secondary particles in which the primary particles are aggregated. And a positive electrode density of 2.5 g / cm 3 or more after applying the positive electrode active material to a current collector and press-molding the same, and a particle size distribution of the primary particles of 1 to 20 μm. And (maximum particle size / minimum particle size) ≧ 3.0, wherein the positive electrode active material for a non-aqueous lithium battery is characterized in that:
【請求項2】 前記一次粒子の粒度分布において、3μ
m〜5μmの間の粒径を持つ粒子の体積頻度が50%以
上であることを特徴とする請求項1記載の非水系リチウ
ム電池用正極活物質。
2. In the particle size distribution of the primary particles, 3 μm
2. The positive electrode active material for a non-aqueous lithium battery according to claim 1, wherein the volume frequency of particles having a particle size of m to 5 [mu] m is 50% or more.
【請求項3】 前記リチウムマンガン複合酸化物粉の粒
子は一次粒子と、一次粒子が凝集した二次粒子とからな
り、これら一次粒子は略八面体様の粒子形態をしてお
り、前記正極活物質を集電材に塗布し加圧成形した後の
集電材においては、面積比の少なくとも3%以上が略八
面体様をしている或いは略八面体様をしていた一次粒子
で構成されていることを特徴とする請求項1または2記
載の非水系リチウム電池用正極活物質。
3. The particles of the lithium manganese composite oxide powder are composed of primary particles and secondary particles in which the primary particles are aggregated, and these primary particles have a substantially octahedral-like particle form. In the current collector after the substance is applied to the current collector and pressed, at least 3% or more of the area ratio is composed of substantially octahedral-like or substantially octahedral-like primary particles. The positive electrode active material for a non-aqueous lithium battery according to claim 1 or 2, wherein:
【請求項4】 前記リチウムマンガン複合酸化物は、そ
のリチウムとマンガンの原子比が0.56≦Li/Mn
≦0.62であることを特徴とする請求項1乃至3記載
の非水系リチウム二次電池用正極活物質。
4. The lithium-manganese composite oxide has an atomic ratio of lithium to manganese of 0.56 ≦ Li / Mn.
The positive electrode active material for a non-aqueous lithium secondary battery according to any one of claims 1 to 3, wherein ≤ 0.62.
【請求項5】 スピネル型構造のリチウムマンガン複合
酸化物からなる非水系リチウム二次電池用正極活物質の
製造方法であって、マンガン酸化物と炭酸リチウム等の
リチウム塩の混合物を大気雰囲気中で1000℃以上1
100℃以下の温度で第1の焼成を行った後、再度60
0℃±100℃の温度で第2の焼成を行う工程を含むこ
とを特徴とする非水系リチウム二次電池用正極活物質の
製造方法。
5. A method for producing a positive electrode active material for a non-aqueous lithium secondary battery comprising a lithium manganese composite oxide having a spinel structure, wherein a mixture of a manganese oxide and a lithium salt such as lithium carbonate is placed in an air atmosphere. 1000 ° C or higher 1
After performing the first baking at a temperature of 100 ° C. or less,
A method for producing a positive electrode active material for a non-aqueous lithium secondary battery, comprising a step of performing a second baking at a temperature of 0 ° C. ± 100 ° C.
【請求項6】マンガン酸化物と炭酸リチウム等のリチウ
ム塩の混合物を造粒して顆粒状となし、前記第1の焼成
をすることによって略八面体様の一次粒子を成長させる
工程と、その後、略八面体様の一次粒子が凝集した二次
粒子を解砕して二次粒子を解しやすくする工程とを含む
ことを特徴とする請求項5記載の非水系リチウム二次電
池用正極活物質の製造方法。
6. A step of granulating a mixture of a manganese oxide and a lithium salt such as lithium carbonate into granules, and subjecting the first baking to growing substantially octahedral primary particles, A step of crushing the secondary particles in which the substantially octahedral primary particles are agglomerated to make the secondary particles easier to break. 6. The positive electrode active material for a non-aqueous lithium secondary battery according to claim 4, The method of manufacturing the substance.
JP33242799A 1999-11-24 1999-11-24 Positive electrode active material for use in non-aqueous lithium secondary battery and method of fabricating it Pending JP2001155728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33242799A JP2001155728A (en) 1999-11-24 1999-11-24 Positive electrode active material for use in non-aqueous lithium secondary battery and method of fabricating it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33242799A JP2001155728A (en) 1999-11-24 1999-11-24 Positive electrode active material for use in non-aqueous lithium secondary battery and method of fabricating it

Publications (1)

Publication Number Publication Date
JP2001155728A true JP2001155728A (en) 2001-06-08

Family

ID=18254860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33242799A Pending JP2001155728A (en) 1999-11-24 1999-11-24 Positive electrode active material for use in non-aqueous lithium secondary battery and method of fabricating it

Country Status (1)

Country Link
JP (1) JP2001155728A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124258A (en) * 2000-10-13 2002-04-26 Toda Kogyo Corp Lithium manganate particle powder and its manufacturing method
KR100398744B1 (en) * 2000-02-16 2003-09-19 주식회사 엘지화학 Method for preparing lithium manganese spinel oxide with improved electrochemical performance
CN1300869C (en) * 2002-05-20 2007-02-14 日亚化学工业株式会社 Positive pole active material for nonaqueous electrolyte secondary battery
JP2009173486A (en) * 2008-01-24 2009-08-06 Toyota Central R&D Labs Inc Lithium-manganese compound oxide, lithium-ion secondary battery and method for producing lithium-manganese compound oxide
JP2010073686A (en) * 2008-08-19 2010-04-02 Hitachi Maxell Ltd Electrode for electrochemical element and nonaqueous secondary battery
JP2012212669A (en) * 2011-03-30 2012-11-01 Ngk Insulators Ltd Positive electrode active material powder for lithium secondary battery and lithium secondary battery
US9105928B2 (en) 2011-11-25 2015-08-11 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
WO2022080108A1 (en) * 2020-10-13 2022-04-21 国立大学法人信州大学 Lithium-ion secondary cell and positive electrode of same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398744B1 (en) * 2000-02-16 2003-09-19 주식회사 엘지화학 Method for preparing lithium manganese spinel oxide with improved electrochemical performance
JP2002124258A (en) * 2000-10-13 2002-04-26 Toda Kogyo Corp Lithium manganate particle powder and its manufacturing method
CN1300869C (en) * 2002-05-20 2007-02-14 日亚化学工业株式会社 Positive pole active material for nonaqueous electrolyte secondary battery
JP2009173486A (en) * 2008-01-24 2009-08-06 Toyota Central R&D Labs Inc Lithium-manganese compound oxide, lithium-ion secondary battery and method for producing lithium-manganese compound oxide
JP2010073686A (en) * 2008-08-19 2010-04-02 Hitachi Maxell Ltd Electrode for electrochemical element and nonaqueous secondary battery
JP2012212669A (en) * 2011-03-30 2012-11-01 Ngk Insulators Ltd Positive electrode active material powder for lithium secondary battery and lithium secondary battery
US9105928B2 (en) 2011-11-25 2015-08-11 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
WO2022080108A1 (en) * 2020-10-13 2022-04-21 国立大学法人信州大学 Lithium-ion secondary cell and positive electrode of same
JP2022064294A (en) * 2020-10-13 2022-04-25 国立大学法人信州大学 Lithium ion secondary battery, positive electrode of the same, and method of manufacturing the positive electrode
JP7148937B2 (en) 2020-10-13 2022-10-06 国立大学法人信州大学 Method for manufacturing positive electrode for lithium ion secondary battery

Similar Documents

Publication Publication Date Title
KR101964726B1 (en) Spherical or spherical-like lithium ion battery cathode material and preparation method and application thereof
KR101116764B1 (en) Cathode material, preparing method thereof and lithium secondary battery
JP4644895B2 (en) Lithium secondary battery
JP5266861B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP4986098B2 (en) Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
KR20190035670A (en) Spherical or Spherical-like Cathode Material for a Lithium Battery, a battery and preparation method and application thereof
JP7446486B2 (en) Cobalt-free layered cathode material and preparation method, lithium ion battery
KR20190006907A (en) Spherical or spherical-like cathode material for lithium-ion battery and lithium-ion battery
JP2005310744A (en) Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator
JP2004355824A (en) Cathode active substance for nonaqueous secondary battery and cathode
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
WO2003003489A1 (en) Nonaqueous electrolyte secondary battery-use anode active matter, production method therefor, nonaqueous electrolyte secondary battery, and production method for anode
CN107534144A (en) Non-aqueous electrolyte secondary battery positive active material and its manufacture method and the non-aqueous electrolyte secondary battery for having used the positive active material
JP3991359B2 (en) Cathode active material for non-aqueous lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery using the cathode active material
JP4581333B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP5002872B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
JP2006318929A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP4740415B2 (en) Lithium secondary battery for electric or hybrid vehicles
JP2004281253A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method and nonaqueous system lithium secondary battery using the material
JP2003173777A (en) Combining method and its combining material of positive electrode active material for nonaqueous lithium secondary battery and conductive subsidiary material, and positive electrode and nonaqueous lithium secondary battery using the same
JP4656349B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery, its production method and lithium secondary battery using the same
JP2004311427A (en) Positive electrode active material for lithium secondary battery and its manufacturing method and non-aqueous lithium secondary battery
JP4743804B2 (en) Cathode active material for non-aqueous lithium secondary battery and method for producing the same
JP3709446B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP2001155728A (en) Positive electrode active material for use in non-aqueous lithium secondary battery and method of fabricating it