JP5002872B2 - Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery - Google Patents

Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery Download PDF

Info

Publication number
JP5002872B2
JP5002872B2 JP2001242132A JP2001242132A JP5002872B2 JP 5002872 B2 JP5002872 B2 JP 5002872B2 JP 2001242132 A JP2001242132 A JP 2001242132A JP 2001242132 A JP2001242132 A JP 2001242132A JP 5002872 B2 JP5002872 B2 JP 5002872B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001242132A
Other languages
Japanese (ja)
Other versions
JP2003059489A (en
Inventor
繁治 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001242132A priority Critical patent/JP5002872B2/en
Publication of JP2003059489A publication Critical patent/JP2003059489A/en
Application granted granted Critical
Publication of JP5002872B2 publication Critical patent/JP5002872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池用正極活物質、その正極活物質を用いるリチウム二次電池用正極及びその正極を用いるリチウム二次電池並びにリチウム二次電池用正極活物質の製造方法に関する。
【0002】
【従来の技術】
パソコン、ビデオカメラ、携帯電話等の小型化に伴い、情報関連機器、通信機器の分野では、これらの機器に用いる電源として、高エネルギー密度であるという理由から、リチウム二次電池が実用化され広く普及するに至っている。また一方で、自動車の分野においても、環境問題、資源問題から電気自動車の開発が急がれており、この電気自動車用の電源としても、リチウム二次電池が検討されている。
【0003】
リチウム二次電池には、4V級の作動電圧が得られるものとして、層状岩塩構造のLiCoO2、LiNiO2、スピネル構造のLiMn24及びそれらの一部を他元素で置換したリチウム複合酸化物等の正極活物質がよく知られている。これらの中で実用化されているリチウム二次電池用正極活物質としては、LiCoO2系のリチウム複合酸化物がある。しかしながら、コバルトは、資源的に希少且つ高価であるので、より安価であって、リチウム二次電池に適用したときに高エネルギー密度を達成できるLiNiO2、LiNi1-XCoX2といったニッケルを主成分とするリチウム複合酸化物の開発が鋭意行われている。特に、LiNi1-XCoX2や、さらに一部元素を他元素で置換したリチウム複合酸化物は、コバルトを含有することでLiCoO2等のような好ましいリチウム二次電池用正極活物質として用いられることが期待されている。
【0004】
LiNi1-XCoX2等は、一般的な製造方法によって充分な性能をもつリチウム二次電池用正極活物質とすることが困難であった。そこで、従来、LiNi1-XCoX2等からなるリチウム二次電池用正極活物質を製造する方法として特開平11−219706号公報は、リチウム、ニッケル、コバルト等を含む化合物の混合物を1次焼成として500〜800℃で5〜20時間焼成を行い、得られた焼成物を水中で平均粒径が1μm以下となるまで解粒分散させた後に、噴霧乾燥法で造粒した後に、2次焼成として1次焼成温度より30℃以上高く且つ900℃以下の温度で焼成する方法を開示する。
【0005】
また、特開平9−251854号公報は、リチウム、ニッケル、コバルト等を含む化合物の混合物を1次焼成として300〜650℃で2〜20時間焼成を行う工程と、100℃以下に冷却後粉砕混合する工程と、2次焼成として700〜900℃の温度で焼成する工程とをもつ方法を開示する。
【0006】
【発明が解決しようとする課題】
しかしながら、従来の製造方法で製造したリチウム二次電池用正極活物質は、リチウム二次電池中で充放電サイクルを重ねることで接合界面で割れが発生し充分な性能が得られなかった。
【0007】
そこで本発明では、リチウム二次電池に適用したときに低コストでサイクル特性に優れたリチウム二次電池用正極活物質及びリチウム二次電池用正極並びに低コストでサイクル特性に優れたリチウム二次電池を提供することを解決すべき課題とする。
【0008】
さらに本発明では、リチウム二次電池に適用したときに低コストでサイクル特性に優れたリチウム二次電池用正極活物質を製造する方法を提供することを解決すべき課題とする。
【0009】
【課題を解決するための手段】
上記課題を解決する目的で本発明者は鋭意研究を行った結果、従来のリチウム二次電池用正極活物質は、その粒子若しくはその粒子を構成する1次粒子の表面近傍部位のコバルト濃度が内部のコバルト濃度と比較して低いことにより結晶構造が安定化できず、その表面近傍部位(接合界面)から割れが発生してリチウム二次電池用正極活物質の性能が低下しサイクル特性に影響を与えることを発見し、本発明に想到するに至った。
【0010】
すなわち、本発明のリチウム二次電池用正極活物質は、リチウム及びニッケルと、コバルト及び亜鉛から選択される元素と、を少なくとも含む層状岩塩構造リチウム複合酸化物を含む一次粒子を複数有するリチウム二次電池用正極活物質であって、前記リチウム二次電池用正極活物質及び前記一次粒子の少なくとも一方は、表面近傍部位のコバルト濃度が内部よりも高いことを特徴とする。
【0011】
つまり、リチウム二次電池用正極活物質の粒子若しくはその粒子を構成する1次粒子の表面近傍部位のコバルト濃度を内部のコバルト濃度と比較してより高濃度とすることで、表面近傍部位の結晶構造が安定化される結果、サイクル特性が向上する。その結果、高価なコバルトの有効利用を図ることもでき、低コスト化につながる。
【0012】
そして、上記課題を解決する本発明のリチウム二次電池用正極及びリチウム二次電池は、上述した本発明のリチウム二次電池用正極活物質を用いることを特徴とする。
【0013】
さらに、本発明者はリチウム二次電池用正極活物質について、その粒子若しくはその粒子を構成する1次粒子の表面近傍部位のコバルト濃度を内部のコバルト濃度と比較して高濃度とすることができるリチウム二次電池用正極活物質の製造方法を探求した結果、少なくともリチウム、ニッケル及びコバルトを含む原料を含酸素雰囲気下100〜300℃の温度範囲内で保持する第1焼成物とする第1焼成工程と、該第1焼成物を含酸素雰囲気下400〜700℃の温度範囲内で保持し第2焼成物とする第2焼成工程と、該第2焼成物を解砕した後に、造粒し粉粒体とする造粒工程と、該粉粒体を含酸素雰囲気下600〜900℃で保持し第3焼成物とする第3焼成工程とを有することを特徴とするリチウム二次電池用正極活物質の製造方法を発明した。
【0014】
つまり、第1焼成工程及び第2焼成工程と2つの焼成工程により、原料を少なくとも2段階の温度に変化させて焼成することで、生成する第2焼成物の粒子の表面近傍部位のコバルト濃度を内部よりも高濃度にすることができる。この第2焼成物をもとに第3焼成工程でリチウム二次電池用正極活物質を焼成することで、製造されたリチウム二次電池用正極活物質についても、表面近傍部位のコバルト濃度を内部よりも高濃度とすることができる。
なお、上述のリチウム二次電池用正極活物質及びその製造方法におけるリチウム二次電池用正極活物質は、1次粒子の粒子径が100〜1000nmであり、粒子径が1〜50μmである。
【0015】
【発明の実施の形態】
(リチウム二次電池用正極活物質)
本発明のリチウム二次電池用正極活物質(以下、単に「正極活物質」と称す)は、リチウム、ニッケル及びコバルトを少なくとも含む層状岩塩構造リチウム複合酸化物を含む1次粒子を複数有する2次粒子である。
【0016】
正極活物質の大きさは特に限定しないが、サイクル特性向上の観点から1μm以上とし、さらに好ましくは5μm以上であり、容量・出力特性向上の観点から50μm以下とし、さらに好ましくは30μm以下である。正極活物質の形状としても特に限定しないが、高容量の観点からは球状が好ましい。
【0017】
1次粒子の大きさとしても特に限定しないが、サイクル特性向上の観点から1000nm以下とし、さらに好ましくは700nm以下であり、サイクル特性向上の観点から100nm以上とし、さらに好ましくは300nm以上である。1次粒子の形状としても特に限定しないが、サイクル特性向上の観点からは球状が好ましい。
【0018】
層状岩塩構造リチウム複合酸化物の平均組成を表す一般式を示すと、LiNi1-X-YCoXY2(0<X<1;Y≧0;MはFe、Mn、Alから選択される1以上の元素)である。なお、Xは0.01以上、0.5以下が好ましく、さらに0.3以下がより好ましい。コバルトを添加することで、充放電時の結晶構造が安定化でき、サイクル特性を向上できるからである。そして、Yは0.01以上、0.2以下が好ましい。Mとして前記元素を添加することで正極活物質の熱的安定性等が改善できる。なお、本発明の正極活物質には、Mで示した元素の他に不純物としていかなる元素が含まれていてもよいことはいうまでもない。また、本発明の正極活物質を構成する1次粒子の一部には、ここに示した層状岩塩構造リチウム複合酸化物以外のリチウム二次電池に使用できる正極活物質(たとえば、その他のリチウム−遷移金属複合酸化物等)を含有することも必要に応じて可能である。
【0019】
本発明の正極活物質の粒子自身及びその正極活物質を構成する一次粒子の少なくとも一方は、表面近傍部位のコバルト濃度が内部よりも高い。特に1次粒子の表面近傍部位のコバルト濃度を高濃度とすることで、1次粒子の接合界面での割れの発生を抑制することができるので好ましい。
【0020】
なお、1次粒子の表面近傍部位のコバルト濃度を高濃度とすると、通常はその1次粒子から形成される正極活物質の表面近傍部位のコバルト濃度も高濃度となる。ここで、コバルトは、リチウム複合酸化物内に存在することが好ましいが、特に限定しない。たとえば、コバルト元素はCoO、Co34のような形態で存在してもよい。
【0021】
なお、本正極活物質は、コバルト濃度が正極活物質内において表面に行くに従って単純増加するものに限られない。たとえば、最表面でコバルト濃度が局所的に低下するものや、コバルト濃度が増加・減少を繰り返すものであっても、表面近傍の一定の領域(つまり表面近傍部位)においてその内部よりもコバルト濃度が高いものであれば本発明の正極活物質に含まれる。
【0022】
コバルト濃度の測定方法はどのような方法を用いてもよい。たとえば、測定時の正極活物質の形態としては、そのまま乃至は圧縮等により凝集させた状態で測定することができる。また、正極活物質を用いて、リチウム二次電池用正極を製造した状態で測定することも可能である。コバルト濃度の測定においては、正極活物質等における表面近傍部位と内部とのコバルト濃度の相対的な比が重要である。
【0023】
コバルト濃度の測定は、オージェ電子分光法、X線光電子分光法等の通常用いられる一般的な方法が適用できる。徐々に表面をエッチング(たとえば、Ar等の希ガス元素によるスパッタリング)しながらコバルト濃度を測定することでコバルト濃度のプロファイルを作成できる。本発明の正極活物質は得られたプロファイルにおいてコバルト濃度が内部よりも表面近傍部位のほうが高くなっている。ここで、表面近傍部位として、最表面からおよそ200nmまでの部位を選択してコバルト濃度を測定することで、本発明の正極活物質を従来の正極活物質とよく峻別することができる。
【0024】
以上説明した本発明の正極活物質は、そのコバルト元素の一部を適宜、亜鉛元素に置換しても本発明は成立する。したがって、本明細書における「発明の実施の形態」欄の(本発明のリチウム二次電池用正極活物質)及び(本発明のリチウム二次電池用正極活物質の製造方法)における「コバルト」との記載はすべて「コバルト又は亜鉛」と読み替えても成立する。「コバルト」との記載をすべて「コバルト又は亜鉛」と読み替えたときの説明は、読替部分以外の記載の大部分は同じであるのでさらなる説明は省略する。
【0025】
(リチウム二次電池用正極活物質の製造方法)
本発明のリチウム二次電池用正極活物質の製造方法(以下、単に「正極活物質の製造方法」と称す)は、上述した正極活物質を効率よく製造する方法である。本発明の正極活物質の製造方法は、第1焼成工程と第2焼成工程と造粒工程と第3焼成工程とをもつ。
【0026】
本製造方法適用される原料としては、少なくともリチウム、ニッケル及びコバルトを含む。たとえば、それぞれの元素の酸化物や水酸化物の混合物である。さらに、目的とするリチウム金属複合酸化物の組成に応じて必要な元素を含む化合物を加える(たとえば、最終的なリチウム金属複合酸化物がFeを含有する場合にはFe(OH)2等を加える)。
【0027】
第1焼成工程は、含酸素雰囲気下100〜300℃の温度範囲内で保持する工程であり、第2焼成工程は第1焼成工程で生成した第1焼成物を含酸素雰囲気下400〜700℃の温度範囲内で保持し第2焼成物とする工程である。第1焼成工程におけるさらに好ましい温度範囲としては、150〜300℃、さらに好ましくは150〜250℃を挙げられる。第2焼成工程におけるさらに好ましい温度範囲としては、450〜600℃、さらに好ましくは450〜550℃を挙げられる。本第1焼成工程及び第2焼成工程により表面近傍部位のコバルト濃度が高く1次粒子が微細な焼成物が得られる。ここで第1焼成工程で100〜300℃の温度範囲内で保持する時間としては特に限定されないが、好ましい範囲としては1時間以上、より好ましくは1〜5時間程度を挙げることができる。そして第2焼成工程で400〜700℃の温度範囲内で保持する時間としても特に限定されないが、好ましい範囲としては3時間以上、より好ましくは3〜10時間程度を挙げることができる。
【0028】
造粒工程は、第2焼成工程で生成した第2焼成物を粒子径や、嵩密度等の性質が好ましい粉粒体とする工程である。具体的には第1焼成工程で生成した焼成物を焼成物を構成する1次粒子程度にまで解砕した後に、好ましい粉粒体となるように造粒する。解砕する方法としては、ボールミル等の公知の方法が適用できる。さらに、水を加えて行うことで、後の造粒操作への移行が容易となる。造粒は公知の方法が適用できる。たとえば、噴霧造粒法、押出造粒法、転動造粒法、撹拌造粒法等が例示できる。造粒条件を適正とすることで、目的の性状をもつ粉粒体が得られる。
【0029】
第3焼成工程は、造粒工程で得られた粉粒体を含酸素雰囲気下600〜900℃で焼成する工程である。本工程により、粉粒体を構成する1次粒子間で焼結される。好ましい温度範囲としては600〜800℃が挙げられる。本工程を行う時間としては限定しないが、好ましい範囲としては2時間以上、より好ましくは2〜5時間程度である。
【0030】
(リチウム二次電池用正極)
本発明のリチウム二次電池用正極(以下、単に「正極」と称す)は、リチウムイオンを吸蔵・脱離できる正極活物質に導電材および結着剤を混合し、必要に応じ適当な溶媒を加えて、ペースト状の正極合材としたものを、アルミニウム等の金属箔製の集電体表面に塗布、乾燥し、その後プレス等によって活物質密度を高めることによって形成する。
【0031】
正極活物質には、上述した本発明の正極活物質を用いる。説明は上欄で行ったのでここでは省略する。正極活物質にはリチウム遷移金属複合酸化物等の公知の正極活物質を必要に応じてさらに加えて用いることもできる。リチウム遷移金属複合酸化物は、その電気抵抗が低く、リチウムイオンの拡散性能に優れ、高い充放電効率と良好な充放電サイクル特性とが得られるため、本正極活物質に好ましい材料である。たとえばリチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物や、各々にLi、Al、そしてCr等の遷移金属を添加または置換した材料等である。なお、これらのリチウム複合酸化物を複数種類混合して用いることもできる。
【0032】
導電材は、正極の電気伝導性を確保するためのものであり、カーボンブラック、アセチレンブラック、黒鉛等の炭素物質粉状体の1種または2種以上を混合したものを用いることができる。結着剤は、活物質粒子および導電材粒子を繋ぎ止める役割を果たすものでポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂を用いることができる。これら活物質、導電材、結着剤を分散させる溶剤としては、N−メチル−2−ピロリドン等の有機溶剤を用いることができる。
【0033】
(リチウム二次電池)
本発明のリチウム二次電池は、コイン型電池、ボタン型電池、円筒型電池及び角型電池等の公知の電池構造をとることができる。いずれの形状を採る場合であっても、正極および負極をセパレータを介して重畳あるいは捲回等して電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を集電用リード等を用いて接続した後、この電極体を非水電解液とともに電池ケース内に挿設し、これを密閉してリチウム電池を完成することができる。
【0034】
正極は前述の本発明の正極を用いる。詳細は前欄において説明したのでここでの説明は省略する。
【0035】
負極については、リチウムイオンを充電時には吸蔵し、かつ放電時には放出する負極活物質を用いることができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そのなかでも特に炭素材料を用いることが好ましい。比表面積が比較的大きくでき、リチウムの吸蔵、放出速度が速いため大電流での充放電特性、出力・回生密度に対して良好となる。特に、出力・回生密度のバランスを考慮すると、充放電に伴ない電圧変化の比較的大きい炭素材料を使用することが好ましい。中でも結晶性の高い天然黒鉛や人造黒鉛などからなるものを用いることが好ましい。このような結晶性の高い炭素材を用いることにより、負極のリチウムイオンの受け渡し効率を向上させることができる。
【0036】
このように負極活物質として炭素材料を用いた場合には、これに必要に応じて正極で説明したような導電材および結着材を混合して得られた負極合材が集電体に塗布されてなるものを用いることが好ましい。
【0037】
非水電解液は、有機溶媒に電解質を溶解させたものである。
【0038】
有機溶媒は、通常リチウム二次電池の非水電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。特に、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、テトラヒドロフラン等及びそれらの混合溶媒が適当である。例えば、エチレンカーボネート、プロピレンカーボネートなどの高誘電率の主溶媒と、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの低粘性の副溶媒との混合有機溶媒が好ましい。また、副溶媒として、ジメトキシエタン、テトラヒドロフラン及びブチルラクトンなどを用いてもよい。
【0039】
電解質は、その種類が特に限定されるものではないが、LiPF6、LiBF4、LiClO4およびLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32、LiN(SO3CF32、LiN(SO2252およびLiN(SO2CF3)(SO249)から選ばれる有機塩、並びにその有機塩の誘導体の少なくとも1種であることが好ましい。
【0040】
これらの電解質の使用により、電池性能をさらに優れたものとすることができ、かつその電池性能を室温以外の温度域においてもさらに高く維持することができる。電解質の濃度についても特に限定されるものではなく、用途に応じ、電解質および有機溶媒の種類を考慮して適切に選択することが好ましい。
【0041】
セパレータは、正極および負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。なおセパレータは、正極と負極との絶縁を担保するため、正極および負極の大きさよりもさらに大きいものとするのが好ましい。
【0042】
ケースは、特に限定されるものではなく、公知の材料、形態で作成することができる。
【0043】
ガスケットは、ケースと正負の両端子部の間の電気的な絶縁と、ケース内の密閉性とを担保するものである。たとえば、電解液にたいして、化学的、電気的に安定であるポリプロピレンのような高分子等から構成できる。
【0044】
【実施例】
(実施例1〜5及び比較例1〜3の各正極活物質の製造)
水酸化ニッケル、水酸化リチウム及び水酸化コバルトをモル比で1:1:0.05となるように混合させた後に、酸素気流下、表1のA欄に示す温度及び時間で焼成した後(第1焼成工程)、連続して酸素気流下、表1のB欄に示す温度及び時間で焼成して焼成物を得た(第2焼成工程)。
【0045】
得られた焼成物とイオン交換水とを30:70の質量比で混合した後に、湿式ビーズミルで1時間解粒分散してスラリーとし、、噴霧造粒法で造粒し粉粒体としての造粒物を得た(造粒工程)。
【0046】
得られた造粒物を酸素気流下、表1のC欄に示す温度及び時間で焼成し(第3焼成工程)実施例1〜5及び比較例1〜3の各正極活物質を得た。
【0047】
【表1】

Figure 0005002872
【0048】
(比較例4の正極活物質の製造)
水酸化ニッケル、水酸化リチウム及び水酸化コバルトをモル比で1:1:0.05となるように混合させた後に、酸素気流下で700℃で8時間で焼成して焼成物を得た。
【0049】
得られた焼成物を実施例1等と同様の方法で解砕した後に、噴霧造粒法で造粒し造粒物を得た。
【0050】
得られた造粒物を酸素気流下で800℃で3時間で焼成し、比較例4の正極活物質を得た。
【0051】
(コバルト濃度の測定)
各実施例及び比較例の正極活物質について、粉末のそのままを測定用資料とした。この試料について、アルゴンイオンを照射して表面を削りながらオージェ電子分光法により元素組成を測定し、コバルト濃度のプロファイルを作成した。コバルト濃度のプロファイルは深さ方向に250nm程度まで作成した。
【0052】
結果を図1に示す。図1から明らかなように、各実施例及び比較例2、3の正極活物質はすべて表面から50nm付近まで(表面近傍部位)内において表面に近づくにつれてコバルト濃度が高くなっていた。それに対して比較例1、4の正極活物質は反対にコバルト濃度が表面に近づくにつれて減少していた。これは製造工程の第1焼成工程における加熱温度が適正な範囲から外れたことに起因すると考えられる。
【0053】
(顕微鏡観察)
各実施例及び比較例の正極活物質を走査型電子顕微鏡(SEM)で観察した。粒子径の測定方法は、正極活物質そのものの粒子径については、視野内の粒子の平均径を算出した。各粒子を構成する1次粒子の粒子径については、各実施例及び比較例の正極活物質の断面をSEMで観察し、SEMの視野内における1次粒子の大きさの平均径を算出した。観察に係る正極粒子の断面は、FIB法(Gaイオンの照射によるエッチング)で調製した。
【0054】
その結果、実施例1〜5及び比較例1、4の各正極活物質がほぼ同様の粒子径(5μm程度))とその粒子を構成する1次粒子の粒子径(500nm程度)とをもつことがわかった。
【0055】
それに対して、比較例2の正極活物質は、粒子径はほぼ同じであるが粒子を構成する1次粒子の粒子径が大きかった(1200nm程度)。これは、第2焼成工程に相当する工程での加熱温度が高かったので1次粒子の成長が著しかったものと考えられる。
【0056】
比較例3の正極活物質は、粒子を構成する1次粒子の粒子径は、500nm程度と実施例の正極活物質と同程度であったが、その粒子自体の大きさが800nm程度と小さかった。これは製造工程の第3焼成工程に相当する工程での加熱温度が低かったので2次粒子(正極活物質)の成長が充分でなかったと考えられる。
【0057】
(リチウム二次電池の製造)
実施例1〜5及び比較例1〜4の各正極活物質を90質量部に、導電材としてグラファイトを5質量部、結着剤としてポリフッ化ビニリデンを5質量部混合し、適量のN−メチル−2−ピロリドンを添加して混練することでペースト状の正極合材を得、この正極合材を厚さ30μmのAl箔製正極集電体の両面に塗布、乾燥した後にプレス加工を行って、シート状正極を作製した。
【0058】
負極活物質としてのグラファイトを95質量部、結着剤としてポリフッ化ビニリデンを5質量部混合し、適量のN−メチル−2−ピロリドンを添加して混練することでペースト状の負極合材を得、この負極合材を厚さ35μmのCu箔製負極集電体の両面に塗布、乾燥した後にプレス加工して、シート状負極を作製した。
【0059】
これらの正極と、負極とをそれぞれ所定の大きさに裁断し、裁断した正極と負極とを、その間に厚さ20μmのポリエチレン製セパレータを挟装して捲回し、ロール状の電極体を形成した。この電極体に集電用リードを付設し、18650型電池ケースに挿設し、その後その電池ケース内に非水電解液を注入した。非水電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比で30:70に混合した混合溶媒にLiPF6を1mol/Lの濃度で溶解させたものを用いた。最後に電池ケースを密閉して、実施例1〜5及び比較例1〜4の各試験例のリチウム二次電池を完成させた。
【0060】
(サイクル耐久性試験)
4.1Vまで2C充電を行った後に、10分間休止する。その後、3.0Vまで2C放電を行った後に、10分間休止する。これを1サイクルとして各実施例及び比較例の電池についてそれぞれ1000サイクル充放電を行った。1000サイクル充放電の前後の電池容量を測定し、1000サイクル充放電前の容量に対する1000サイクル充放電後の容量を百分率で求めた。なお、サイクル充放電前の各実施例及び比較例の電池の電池容量はどれもほぼ同じで誤差範囲内あった。結果を表2に示す。
【0061】
【表2】
Figure 0005002872
【0062】
表2から明らかなように、実施例の電池は、すべて70%以上であった。それに対して、比較例の電池は50%程度と17〜20%程度低かった。その原因として、比較例2では、正極活物質を構成する1次粒子の粒子径が大きかったことに起因すると考えられる。比較例3では、正極活物質の粒子の成長が充分でないことに起因すると考えられる。比較例1及び4では、正極活物質及び1次粒子の粒子径は好ましいものであったが、表面近傍部位のコバルト濃度が内部よりも低いことに起因すると考えられる。
【0063】
以上の結果より、ニッケル及びコバルトを含むリチウム複合酸化物からなる正極活物質は、表面近傍部位のコバルト濃度が内部よりも高いこと方がサイクル特性の観点から好ましいことが明らかとなった。さらに、正極活物質の粒子径、及び粒子を構成する1次粒子の粒子径についても適正値が存在することが明らかとなった。
【0064】
また、そのような、表面近傍部位のコバルト濃度が内部よりも高く、適正な正極活物質の粒子径、及び粒子を構成する1次粒子の粒子径をもつ正極活物質を製造する方法としては、前述した正極活物質の製造方法で説明したように、第1焼成工程、第2焼成工程、造粒工程そして第3焼成工程を経て製造する方法が優れていることが、製造された正極活物質(リチウム二次電池)の性能からも、判明した。
【0065】
【発明の効果】
以上説明したように、本発明のリチウム二次電池用正極活物質及びリチウム二次電池用正極は、リチウム二次電池用正極活物質及びそれを構成する1次粒子の表面近傍部位のコバルト濃度が内部よりも高濃度としているので、リチウム二次電池に適用したときに低コストでサイクル特性に優れた性能を発揮する。本発明のリチウム二次電池は、本発明のリチウム二次電池用正極を用いているので、低コストでサイクル特性に優れた性能を発揮する。
【0066】
さらに本発明のリチウム二次電池用正極活物質の製造方法は、リチウム二次電池に適用したときに低コストでサイクル特性に優れたリチウム二次電池用正極活物質を製造する方法を提供できる。
【図面の簡単な説明】
【図1】各実施例及び比較例の正極活物質のコバルト濃度の表面プロファイルを示した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery using the positive electrode active material, a lithium secondary battery using the positive electrode, and a method for producing a positive electrode active material for a lithium secondary battery.
[0002]
[Prior art]
With the miniaturization of personal computers, video cameras, mobile phones, etc., in the fields of information-related equipment and communication equipment, lithium secondary batteries have been put into practical use because of their high energy density as the power source used for these equipment. It has become widespread. On the other hand, in the field of automobiles, the development of electric vehicles has been urgently caused by environmental problems and resource problems, and lithium secondary batteries have been studied as power sources for the electric vehicles.
[0003]
Lithium secondary batteries have a layered rock salt structure of LiCoO, which can achieve a 4V operating voltage.2, LiNiO2Spinel structure LiMn2OFourIn addition, positive electrode active materials such as lithium composite oxides in which some of them are substituted with other elements are well known. Among these, as a positive electrode active material for lithium secondary batteries put into practical use, LiCoO2Type lithium composite oxide. However, since cobalt is rare and expensive in terms of resources, it is cheaper and LiNiO can achieve high energy density when applied to lithium secondary batteries.2, LiNi1-XCoXO2The development of lithium composite oxides mainly composed of nickel has been conducted. In particular, LiNi1-XCoXO2In addition, a lithium composite oxide in which some elements are replaced with other elements contains LiCoO by containing cobalt.2It is expected to be used as a preferred positive electrode active material for lithium secondary batteries.
[0004]
LiNi1-XCoXO2It was difficult to obtain a positive electrode active material for a lithium secondary battery having sufficient performance by a general production method. Therefore, conventionally, LiNi1-XCoXO2JP-A-11-219706 discloses a method for producing a positive electrode active material for a lithium secondary battery comprising, for example, a mixture of compounds containing lithium, nickel, cobalt, etc. at 500 to 800 ° C. for 5 to 20 hours. After firing, the obtained fired product is pulverized and dispersed in water until the average particle size becomes 1 μm or less, and then granulated by a spray drying method, followed by 30 ° C. or more higher than the primary firing temperature as secondary firing. And the method of baking at the temperature of 900 degrees C or less is disclosed.
[0005]
Japanese Patent Laid-Open No. 9-251854 discloses a step of firing at 300 to 650 ° C. for 2 to 20 hours as a primary firing of a mixture of compounds containing lithium, nickel, cobalt, etc., and pulverization and mixing after cooling to 100 ° C. or lower And a method of firing at a temperature of 700 to 900 ° C. as secondary firing.
[0006]
[Problems to be solved by the invention]
However, the positive electrode active material for a lithium secondary battery manufactured by a conventional manufacturing method is cracked at the bonding interface due to repeated charge / discharge cycles in the lithium secondary battery, and sufficient performance cannot be obtained.
[0007]
Accordingly, in the present invention, when applied to a lithium secondary battery, the positive electrode active material for lithium secondary battery and the positive electrode for lithium secondary battery excellent in cycle characteristics at low cost and the lithium secondary battery excellent in cycle characteristics at low cost. Providing is a problem to be solved.
[0008]
Furthermore, it is an object to be solved by the present invention to provide a method for producing a positive electrode active material for a lithium secondary battery that is low in cost and excellent in cycle characteristics when applied to a lithium secondary battery.
[0009]
[Means for Solving the Problems]
As a result of intensive studies conducted by the present inventors for the purpose of solving the above-described problems, the conventional positive electrode active material for lithium secondary batteries has an internal cobalt concentration in the vicinity of the surface of the particles or the primary particles constituting the particles. The crystal structure cannot be stabilized due to its low concentration compared to the cobalt concentration of the material, and cracking occurs from the surface vicinity (bonding interface), which degrades the performance of the positive electrode active material for lithium secondary batteries and affects the cycle characteristics. The present invention was conceived and the present invention was conceived.
[0010]
That is, the positive electrode active material for a lithium secondary battery of the present invention is a lithium secondary battery having a plurality of primary particles containing a layered rock salt structure lithium composite oxide containing at least lithium and nickel and an element selected from cobalt and zinc. A positive electrode active material for a battery, wherein at least one of the positive electrode active material for a lithium secondary battery and the primary particles has a higher cobalt concentration in the vicinity of the surface than in the interior.
[0011]
That is, by setting the cobalt concentration in the vicinity of the surface of the particles of the positive electrode active material for the lithium secondary battery or the primary particles constituting the particles to a higher concentration compared to the internal cobalt concentration, As a result of stabilization of the structure, cycle characteristics are improved. As a result, it is possible to effectively use expensive cobalt, leading to cost reduction.
[0012]
And the positive electrode for lithium secondary batteries and the lithium secondary battery of this invention which solve the said subject use the positive electrode active material for lithium secondary batteries of this invention mentioned above, It is characterized by the above-mentioned.
[0013]
Further, the present inventor can increase the cobalt concentration in the vicinity of the surface of the particles or the primary particles constituting the particles of the positive electrode active material for a lithium secondary battery compared to the internal cobalt concentration. As a result of searching for a method for producing a positive electrode active material for a lithium secondary battery, the first firing is a first fired product that retains at least a raw material containing lithium, nickel, and cobalt within a temperature range of 100 to 300 ° C. in an oxygen-containing atmosphere. A step, a second firing step in which the first fired product is held in a temperature range of 400 to 700 ° C. in an oxygen-containing atmosphere to form a second fired product, and the second fired product is crushed and then granulated. A positive electrode for a lithium secondary battery, comprising: a granulating step for forming a granular material; and a third baking step for maintaining the granular material at 600 to 900 ° C. in an oxygen-containing atmosphere to obtain a third fired product. How to make active materials And Akira.
[0014]
  That is, by changing the raw material to at least two stages of temperature in the first and second baking steps and the two baking steps, the cobalt concentration in the vicinity of the surface of the particles of the second fired product to be generated is set. The concentration can be higher than the inside. Based on this second baked product, the positive electrode active material for lithium secondary battery is baked in the third baking step, so that the cobalt concentration in the vicinity of the surface of the manufactured positive electrode active material for lithium secondary battery is also internal. Higher concentration.
In addition, the positive electrode active material for lithium secondary batteries and the positive electrode active material for lithium secondary batteries in the manufacturing method thereof described above have a primary particle diameter of 100 to 1000 nm and a particle diameter of 1 to 50 μm.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
(Positive electrode active material for lithium secondary battery)
The positive electrode active material for lithium secondary batteries of the present invention (hereinafter simply referred to as “positive electrode active material”) is a secondary having a plurality of primary particles containing a layered rock salt structure lithium composite oxide containing at least lithium, nickel, and cobalt. Particles.
[0016]
  The size of the positive electrode active material is not particularly limited.Et 1μm or moreageMore preferably, it is 5 μm or more from the viewpoint of improving capacity and output characteristics.Et al 50 μm or lessageMore preferably, it is 30 μm or less. The shape of the positive electrode active material is not particularly limited, but a spherical shape is preferable from the viewpoint of high capacity.
[0017]
  The size of the primary particles is not particularly limited, but is it from the viewpoint of improving cycle characteristics?Et 1000nm or lessageMore preferably, it is 700 nm or less, from the viewpoint of improving cycle characteristicsEt 100nm or moreageMore preferably, it is 300 nm or more. The shape of the primary particles is not particularly limited, but is preferably spherical from the viewpoint of improving cycle characteristics.
[0018]
A general formula representing the average composition of the layered rock salt structure lithium composite oxide is LiNi.1-XYCoXMYO2(0 <X <1; Y ≧ 0; M is one or more elements selected from Fe, Mn, and Al). X is preferably 0.01 or more and 0.5 or less, and more preferably 0.3 or less. This is because the addition of cobalt can stabilize the crystal structure during charge and discharge and improve cycle characteristics. And Y is preferably 0.01 or more and 0.2 or less. By adding the element as M, the thermal stability of the positive electrode active material can be improved. Needless to say, the positive electrode active material of the present invention may contain any element as an impurity in addition to the element represented by M. In addition, some of the primary particles constituting the positive electrode active material of the present invention include a positive electrode active material that can be used for lithium secondary batteries other than the layered rock salt structure lithium composite oxide shown here (for example, other lithium- It is also possible to contain a transition metal composite oxide or the like, if necessary.
[0019]
At least one of the particles of the positive electrode active material of the present invention and the primary particles constituting the positive electrode active material has a higher cobalt concentration in the vicinity of the surface than in the interior. In particular, it is preferable to increase the cobalt concentration in the vicinity of the surface of the primary particles because the occurrence of cracks at the bonding interface of the primary particles can be suppressed.
[0020]
If the cobalt concentration in the vicinity of the surface of the primary particles is set to a high concentration, the cobalt concentration in the vicinity of the surface of the positive electrode active material formed from the primary particles is usually high. Here, cobalt is preferably present in the lithium composite oxide, but is not particularly limited. For example, cobalt element is CoO, CoThreeOFourIt may exist in the form of
[0021]
In addition, this positive electrode active material is not restricted to what a cobalt concentration increases simply as it goes to the surface in a positive electrode active material. For example, even if the cobalt concentration locally decreases on the outermost surface or the cobalt concentration repeatedly increases / decreases, the cobalt concentration in a certain region near the surface (that is, a portion near the surface) is higher than that inside. If it is high, it is included in the positive electrode active material of the present invention.
[0022]
Any method for measuring the cobalt concentration may be used. For example, the form of the positive electrode active material at the time of measurement can be measured as it is or in a state of being aggregated by compression or the like. Moreover, it is also possible to measure in the state which manufactured the positive electrode for lithium secondary batteries using the positive electrode active material. In the measurement of the cobalt concentration, the relative ratio of the cobalt concentration between the vicinity of the surface and the inside of the positive electrode active material or the like is important.
[0023]
For the measurement of the cobalt concentration, a commonly used general method such as Auger electron spectroscopy or X-ray photoelectron spectroscopy can be applied. A profile of cobalt concentration can be created by measuring the cobalt concentration while gradually etching the surface (for example, sputtering with a rare gas element such as Ar). In the obtained profile of the positive electrode active material of the present invention, the cobalt concentration is higher in the vicinity of the surface than in the interior. Here, the positive electrode active material of the present invention can be well distinguished from the conventional positive electrode active material by selecting a site from the outermost surface to approximately 200 nm as the surface vicinity site and measuring the cobalt concentration.
[0024]
  The positive electrode active material of the present invention described above is one of the cobalt elements.PartThe present invention can be realized even if the zinc element is appropriately substituted. Therefore, “cobalt” in “the positive electrode active material for lithium secondary battery of the present invention” and “the method for producing the positive electrode active material for lithium secondary battery of the present invention” in the “Embodiments of the Invention” column in this specification All the descriptions are valid even if they are read as “cobalt or zinc”. The description when all the descriptions of “cobalt” are read as “cobalt or zinc” are the same except for the replacement portion, and further description is omitted.
[0025]
(Method for producing positive electrode active material for lithium secondary battery)
The method for producing a positive electrode active material for a lithium secondary battery of the present invention (hereinafter simply referred to as “a method for producing a positive electrode active material”) is a method for efficiently producing the above-described positive electrode active material. The manufacturing method of the positive electrode active material of this invention has a 1st baking process, a 2nd baking process, a granulation process, and a 3rd baking process.
[0026]
The raw material to which this production method is applied includes at least lithium, nickel, and cobalt. For example, it is a mixture of oxides and hydroxides of the respective elements. Further, a compound containing a necessary element is added according to the composition of the target lithium metal composite oxide (for example, Fe (OH) when the final lithium metal composite oxide contains Fe2Etc.).
[0027]
The first firing step is a step of maintaining the temperature within a temperature range of 100 to 300 ° C. in an oxygen-containing atmosphere, and the second firing step is a first firing product generated in the first firing step at 400 to 700 ° C. in an oxygen-containing atmosphere. It is the process of hold | maintaining within this temperature range, and setting it as the 2nd baked product. A more preferable temperature range in the first firing step is 150 to 300 ° C, more preferably 150 to 250 ° C. A more preferable temperature range in the second baking step is 450 to 600 ° C, and more preferably 450 to 550 ° C. A fired product having a high cobalt concentration in the vicinity of the surface and fine primary particles can be obtained by the first firing step and the second firing step. Although it does not specifically limit as time to hold | maintain within the temperature range of 100-300 degreeC at a 1st baking process here, As a preferable range, about 1 hour or more, More preferably, about 1 to 5 hours can be mentioned. And although it does not specifically limit as time to hold | maintain within the temperature range of 400-700 degreeC at a 2nd baking process, As a preferable range, 3 hours or more, More preferably, about 3 to 10 hours can be mentioned.
[0028]
The granulation step is a step in which the second fired product produced in the second firing step is used as a granular material having properties such as particle size and bulk density. Specifically, the fired product produced in the first firing step is pulverized to about the primary particles constituting the fired product, and then granulated so as to obtain a preferable granular material. As a method for crushing, a known method such as a ball mill can be applied. Furthermore, the transition to the subsequent granulation operation is facilitated by adding water. A known method can be applied for granulation. For example, spray granulation method, extrusion granulation method, rolling granulation method, stirring granulation method and the like can be exemplified. By making the granulation conditions appropriate, a granular material having the desired properties can be obtained.
[0029]
A 3rd baking process is a process of baking the granular material obtained at the granulation process at 600-900 degreeC by oxygen-containing atmosphere. By this process, it sinters between the primary particles which comprise a granular material. A preferable temperature range is 600 to 800 ° C. Although it does not limit as time to perform this process, As a preferable range, it is 2 hours or more, More preferably, it is about 2 to 5 hours.
[0030]
(Positive electrode for lithium secondary battery)
The positive electrode for a lithium secondary battery of the present invention (hereinafter simply referred to as “positive electrode”) is obtained by mixing a positive electrode active material capable of inserting and extracting lithium ions with a conductive material and a binder, and adding an appropriate solvent as necessary. In addition, a paste-like positive electrode mixture is applied to the surface of a current collector made of a metal foil such as aluminum and dried, and then the active material density is increased by pressing or the like.
[0031]
The positive electrode active material of the present invention described above is used as the positive electrode active material. The explanation is given in the upper column, so it is omitted here. As the positive electrode active material, a known positive electrode active material such as a lithium transition metal composite oxide can be further added as necessary. The lithium transition metal composite oxide is a preferable material for the positive electrode active material because of its low electric resistance, excellent lithium ion diffusion performance, high charge / discharge efficiency, and good charge / discharge cycle characteristics. Examples thereof include lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, and materials obtained by adding or replacing transition metals such as Li, Al, and Cr. A mixture of a plurality of these lithium composite oxides can also be used.
[0032]
The conductive material is for ensuring the electrical conductivity of the positive electrode, and a mixture of one or two or more carbon material powders such as carbon black, acetylene black, and graphite can be used. The binder plays a role of connecting the active material particles and the conductive material particles, and a fluororesin such as polytetrafluoroethylene, polyvinylidene fluoride, and fluororubber, and a thermoplastic resin such as polypropylene and polyethylene can be used. . An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent for dispersing these active material, conductive material, and binder.
[0033]
(Lithium secondary battery)
The lithium secondary battery of the present invention can have a known battery structure such as a coin-type battery, a button-type battery, a cylindrical battery, and a prismatic battery. In any case, the positive electrode and the negative electrode are overlapped or wound via a separator to form an electrode body, and from the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal connected to the outside. After connecting the electrodes using a current collecting lead or the like, the electrode body can be inserted into a battery case together with a non-aqueous electrolyte, and the battery can be sealed to complete a lithium battery.
[0034]
The positive electrode of the present invention described above is used as the positive electrode. Details have been described in the previous column, and a description thereof will be omitted here.
[0035]
The negative electrode is not particularly limited as long as it can use a negative electrode active material that occludes lithium ions during charging and releases lithium ions during discharging, and may be one having a known material configuration. For example, a carbon material such as lithium metal, graphite, or amorphous carbon. Among these, it is particularly preferable to use a carbon material. Since the specific surface area can be made relatively large and the lithium occlusion and release speed is fast, the charge / discharge characteristics at a large current and the output / regeneration density are good. In particular, in consideration of the balance between output and regenerative density, it is preferable to use a carbon material having a relatively large voltage change accompanying charging / discharging. Among them, it is preferable to use those made of natural graphite or artificial graphite having high crystallinity. By using such a highly crystalline carbon material, it is possible to improve the lithium ion delivery efficiency of the negative electrode.
[0036]
Thus, when a carbon material is used as the negative electrode active material, a negative electrode mixture obtained by mixing a conductive material and a binder as described for the positive electrode is applied to the current collector as necessary. It is preferable to use what is formed.
[0037]
The nonaqueous electrolytic solution is obtained by dissolving an electrolyte in an organic solvent.
[0038]
The organic solvent is not particularly limited as long as it is an organic solvent that is usually used for a non-aqueous electrolyte of a lithium secondary battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones And oxolane compounds can be used. In particular, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, tetrahydrofuran and the like, and mixed solvents thereof are suitable. For example, a mixed organic solvent of a main solvent having a high dielectric constant such as ethylene carbonate or propylene carbonate and a low-viscosity auxiliary solvent such as dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate is preferable. Further, dimethoxyethane, tetrahydrofuran, butyl lactone, or the like may be used as a co-solvent.
[0039]
The type of the electrolyte is not particularly limited, but LiPF6, LiBFFourLiClOFourAnd LiAsF6An inorganic salt selected from: a derivative of the inorganic salt, LiSOThreeCFThree, LiC (SOThreeCFThree)2, LiN (SOThreeCFThree)2, LiN (SO2C2FFive)2And LiN (SO2CFThree) (SO2CFourF9It is preferable that the organic salt is at least one of an organic salt selected from
[0040]
By using these electrolytes, the battery performance can be further improved, and the battery performance can be maintained even higher in a temperature range other than room temperature. The concentration of the electrolyte is not particularly limited, and it is preferable to appropriately select the electrolyte and the organic solvent in consideration of the use.
[0041]
The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used. The separator is preferably larger than the positive electrode and the negative electrode in order to ensure insulation between the positive electrode and the negative electrode.
[0042]
The case is not particularly limited and can be made of a known material and form.
[0043]
The gasket secures electrical insulation between the case and both the positive and negative terminal portions and airtightness in the case. For example, it can be composed of a polymer such as polypropylene that is chemically and electrically stable to the electrolyte.
[0044]
【Example】
(Manufacture of each positive electrode active material of Examples 1-5 and Comparative Examples 1-3)
After mixing nickel hydroxide, lithium hydroxide and cobalt hydroxide in a molar ratio of 1: 1: 0.05, after firing at a temperature and time shown in column A of Table 1 in an oxygen stream ( 1st baking process), it baked by the temperature and time which are continuously shown in the B column of Table 1 under oxygen stream, and obtained the baked product (2nd baking process).
[0045]
The obtained fired product and ion-exchanged water are mixed at a mass ratio of 30:70, and then pulverized and dispersed in a wet bead mill for 1 hour to form a slurry. Granules were obtained (granulation process).
[0046]
The obtained granulated material was fired under an oxygen stream at the temperature and time shown in column C of Table 1 (third firing step) to obtain positive electrode active materials of Examples 1 to 5 and Comparative Examples 1 to 3.
[0047]
[Table 1]
Figure 0005002872
[0048]
(Production of positive electrode active material of Comparative Example 4)
Nickel hydroxide, lithium hydroxide and cobalt hydroxide were mixed at a molar ratio of 1: 1: 0.05, and then calcined at 700 ° C. for 8 hours in an oxygen stream to obtain a calcined product.
[0049]
The obtained fired product was pulverized by the same method as in Example 1 and then granulated by spray granulation to obtain a granulated product.
[0050]
The obtained granulated material was fired at 800 ° C. for 3 hours under an oxygen stream to obtain a positive electrode active material of Comparative Example 4.
[0051]
(Measurement of cobalt concentration)
About the positive electrode active material of each Example and a comparative example, the powder as it was was used as the data for a measurement. About this sample, the elemental composition was measured by Auger electron spectroscopy while irradiating with argon ions and scraping the surface to create a profile of cobalt concentration. The cobalt concentration profile was created up to about 250 nm in the depth direction.
[0052]
The results are shown in FIG. As is clear from FIG. 1, all of the positive electrode active materials in Examples and Comparative Examples 2 and 3 had higher cobalt concentrations as they approached the surface from the surface to near 50 nm (surface vicinity). On the contrary, the positive electrode active materials of Comparative Examples 1 and 4 decreased as the cobalt concentration approached the surface. This is considered to be due to the fact that the heating temperature in the first firing step of the manufacturing process is out of the proper range.
[0053]
(Microscopic observation)
The positive electrode active materials of the examples and comparative examples were observed with a scanning electron microscope (SEM). The particle diameter was measured by calculating the average diameter of the particles in the field of view for the particle diameter of the positive electrode active material itself. About the particle diameter of the primary particle which comprises each particle | grain, the cross section of the positive electrode active material of each Example and a comparative example was observed by SEM, and the average diameter of the magnitude | size of the primary particle in the visual field of SEM was computed. The cross section of the positive electrode particles for observation was prepared by the FIB method (etching by irradiation with Ga ions).
[0054]
As a result, the positive electrode active materials of Examples 1 to 5 and Comparative Examples 1 and 4 have substantially the same particle size (about 5 μm) and the particle size of primary particles (about 500 nm) constituting the particles. I understood.
[0055]
On the other hand, in the positive electrode active material of Comparative Example 2, the particle diameter of the primary particles constituting the particles was large (about 1200 nm) although the particle diameter was almost the same. This is probably because the growth of primary particles was remarkable because the heating temperature in the process corresponding to the second baking process was high.
[0056]
In the positive electrode active material of Comparative Example 3, the particle diameter of the primary particles constituting the particles was about 500 nm, which was about the same as the positive electrode active material of the example, but the size of the particles themselves was as small as about 800 nm. . This is thought to be because the growth of secondary particles (positive electrode active material) was not sufficient because the heating temperature in the process corresponding to the third baking process of the manufacturing process was low.
[0057]
(Manufacture of lithium secondary batteries)
90 parts by mass of each positive electrode active material of Examples 1 to 5 and Comparative Examples 1 to 4, 5 parts by mass of graphite as a conductive material, and 5 parts by mass of polyvinylidene fluoride as a binder were mixed, and an appropriate amount of N-methyl was mixed. -2-pyrrolidone was added and kneaded to obtain a paste-like positive electrode mixture. This positive electrode mixture was applied to both sides of a 30 μm thick Al foil positive electrode current collector, dried, and then pressed. A sheet-like positive electrode was produced.
[0058]
A paste-like negative electrode mixture is obtained by mixing 95 parts by mass of graphite as a negative electrode active material and 5 parts by mass of polyvinylidene fluoride as a binder, adding an appropriate amount of N-methyl-2-pyrrolidone and kneading. The negative electrode mixture was applied to both surfaces of a 35-μm thick Cu foil negative electrode current collector, dried and then pressed to prepare a sheet-like negative electrode.
[0059]
These positive electrode and negative electrode were each cut into a predetermined size, and the cut positive electrode and negative electrode were wound with a polyethylene separator having a thickness of 20 μm interposed therebetween to form a roll-shaped electrode body. . A current collecting lead was attached to this electrode body, inserted into a 18650 type battery case, and then a non-aqueous electrolyte was injected into the battery case. The non-aqueous electrolyte includes LiPF in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 30:70.6Was dissolved at a concentration of 1 mol / L. Finally, the battery case was sealed to complete the lithium secondary batteries of the test examples of Examples 1 to 5 and Comparative Examples 1 to 4.
[0060]
(Cycle durability test)
4. After 2C charge to 1V, pause for 10 minutes. Then, after performing 2C discharge to 3.0V, it rests for 10 minutes. With this as one cycle, the batteries of each of the examples and comparative examples were charged and discharged for 1000 cycles. The battery capacity before and after 1000 cycle charge / discharge was measured, and the capacity after 1000 cycle charge / discharge relative to the capacity before 1000 cycle charge / discharge was determined as a percentage. In addition, the battery capacities of the batteries of the examples and comparative examples before cycle charge / discharge were almost the same and were within the error range. The results are shown in Table 2.
[0061]
[Table 2]
Figure 0005002872
[0062]
As is apparent from Table 2, all the batteries of the examples were 70% or more. On the other hand, the battery of the comparative example was about 50% and about 17-20% lower. The reason for this is considered to be that in Comparative Example 2, the primary particles constituting the positive electrode active material had a large particle size. In Comparative Example 3, it is considered that the positive electrode active material particles are not sufficiently grown. In Comparative Examples 1 and 4, the particle diameters of the positive electrode active material and the primary particles were preferable, but it is considered that the cobalt concentration in the vicinity of the surface was lower than the inside.
[0063]
From the above results, it has been clarified that the positive electrode active material made of a lithium composite oxide containing nickel and cobalt preferably has a higher cobalt concentration in the vicinity of the surface than in the interior from the viewpoint of cycle characteristics. Furthermore, it has been clarified that appropriate values exist for the particle diameter of the positive electrode active material and the particle diameter of the primary particles constituting the particles.
[0064]
In addition, as a method for producing such a positive electrode active material having a cobalt concentration in the vicinity of the surface higher than that inside, an appropriate particle size of the positive electrode active material, and a particle size of the primary particles constituting the particle, As explained in the above-described method for producing a positive electrode active material, the produced positive electrode active material is superior in that it is produced through the first firing step, the second firing step, the granulation step, and the third firing step. It was also found from the performance of (lithium secondary battery).
[0065]
【The invention's effect】
As described above, the positive electrode active material for lithium secondary battery and the positive electrode for lithium secondary battery of the present invention have a cobalt concentration in the vicinity of the surface of the positive electrode active material for lithium secondary battery and the primary particles constituting the positive electrode active material. Since the concentration is higher than that in the interior, when it is applied to a lithium secondary battery, it exhibits low cost and excellent cycle characteristics. Since the lithium secondary battery of the present invention uses the positive electrode for a lithium secondary battery of the present invention, the lithium secondary battery exhibits performance excellent in cycle characteristics at low cost.
[0066]
Furthermore, the manufacturing method of the positive electrode active material for lithium secondary batteries of this invention can provide the method of manufacturing the positive electrode active material for lithium secondary batteries excellent in cycling characteristics at low cost when applied to a lithium secondary battery.
[Brief description of the drawings]
FIG. 1 is a view showing a surface profile of cobalt concentration of positive electrode active materials of Examples and Comparative Examples.

Claims (7)

リチウムニッケル、及びコバルトを少なくとも含む層状岩塩構造リチウム複合酸化物を含む1次粒子を複数有するリチウム二次電池用正極活物質であって、
前記リチウム二次電池用正極活物質及び前記一次粒子の少なくとも一方は、表面近傍部位のコバルト濃度が内部よりも高く、
前記1次粒子の粒子径は、100〜1000nmであり、
前記リチウム二次電池用正極活物質の粒子径は、1〜50μmであることを特徴とするリチウム二次電池用正極活物質。
Lithium, nickel, and a positive electrode active material for a lithium secondary battery having plural primary particles comprising at least comprising a layered rock-salt type lithium composite oxide cobalt,
At least one of the lithium secondary battery positive electrode active material and the primary particles, cobalt concentration near the surface sites rather higher than the internal,
The primary particles have a particle size of 100 to 1000 nm,
The positive electrode active material for lithium secondary batteries, wherein the positive electrode active material for lithium secondary batteries has a particle size of 1 to 50 µm .
前記層状岩塩構造リチウム複合酸化物は、ニッケルとコバルトとを原子数比で99:1〜50:50の含有割合で含む請求項1に記載のリチウム二次電池用正極活物質。2. The positive electrode active material for a lithium secondary battery according to claim 1, wherein the layered rock-salt structure lithium composite oxide includes nickel and cobalt in an atomic ratio of 99: 1 to 50:50. 前記層状岩塩構造リチウム複合酸化物は、Fe、Cr、Al及びMnから選択される1以上の元素を含有する請求項1又は2に記載のリチウム二次電池用正極活物質。The positive electrode active material for a lithium secondary battery according to claim 1 or 2 , wherein the layered rock salt structure lithium composite oxide contains one or more elements selected from Fe, Cr, Al, and Mn. 前記表面近傍部位は、前記リチウム二次電池用正極活物質の表面から50nmまでの部位である請求項1〜のいずれかに記載のリチウム二次電池用正極活物質。The said surface vicinity site | part is a site | part from the surface of the said positive electrode active material for lithium secondary batteries to 50 nm, The positive electrode active material for lithium secondary batteries in any one of Claims 1-3 . 集電体と、該集電体の表面に形成された請求項1〜のいずれかに記載のリチウム二次電池用正極活物質を含む正極活物質層と、を有することを特徴とするリチウム二次電池用正極。A lithium comprising: a current collector; and a positive electrode active material layer containing the positive electrode active material for a lithium secondary battery according to any one of claims 1 to 4 formed on a surface of the current collector. Secondary battery positive electrode. 請求項に記載のリチウム二次電池用正極を有することを特徴とするリチウム二次電池A lithium secondary battery comprising the positive electrode for a lithium secondary battery according to claim 5. 少なくともリチウム、ニッケル及びコバルトを含む原料を含酸素雰囲気下100〜300℃の温度範囲内で保持する第1焼成物とする第1焼成工程と、該第1焼成物を含酸素雰囲気下400〜700℃の温度範囲内で保持し第2焼成物とする第2焼成工程と、該第2焼成物を解砕した後に、造粒し粉粒体とする造粒工程と、該粉粒体を含酸素雰囲気下600〜900℃で焼成する第3焼成工程とを有し、
1次粒子の粒子径が100〜1000nmであり、粒子径が1〜50μmであるリチウム二次電池用正極活物質を製造することを特徴とするリチウム二次電池用正極活物質の製造方法。
A first firing step in which a raw material containing at least lithium, nickel, and cobalt is held in an oxygen-containing atmosphere within a temperature range of 100 to 300 ° C., and the first fired product is used in an oxygen-containing atmosphere; A second firing step that is held within a temperature range of ° C. to be a second fired product, a granulation step that is granulated and granulated after the second fired product is crushed, and includes the powder product have a third firing step of firing under an oxygen atmosphere 600 to 900 ° C.,
A method for producing a positive electrode active material for a lithium secondary battery, comprising producing a positive electrode active material for a lithium secondary battery having a primary particle size of 100 to 1000 nm and a particle size of 1 to 50 µm .
JP2001242132A 2001-08-09 2001-08-09 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery Expired - Fee Related JP5002872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001242132A JP5002872B2 (en) 2001-08-09 2001-08-09 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001242132A JP5002872B2 (en) 2001-08-09 2001-08-09 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2003059489A JP2003059489A (en) 2003-02-28
JP5002872B2 true JP5002872B2 (en) 2012-08-15

Family

ID=19072459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001242132A Expired - Fee Related JP5002872B2 (en) 2001-08-09 2001-08-09 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5002872B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10501335B1 (en) 2019-01-17 2019-12-10 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
US10950857B2 (en) 2019-01-17 2021-03-16 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
US11158853B2 (en) 2016-04-27 2021-10-26 Camx Power Llc Nanocrystals of polycrystalline layered lithium nickel metal oxides
US11424449B2 (en) 2019-01-25 2022-08-23 Camx Power Llc Stable cathode materials

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1667260A4 (en) * 2003-09-26 2007-10-03 Mitsubishi Chem Corp Lithium composite oxide particle for lithium secondary battery positive electrode material and containing the same, positive electrode for lithium secondary battery and lithium secondary battery
JP5109619B2 (en) 2007-11-21 2012-12-26 トヨタ自動車株式会社 Battery pack system and charge / discharge control method
JP2010211925A (en) * 2009-03-06 2010-09-24 Panasonic Corp Positive electrode active material for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
KR101971442B1 (en) * 2011-08-16 2019-04-23 티악스 엘엘씨 Polycrystalline metal oxide, methods of manufacture thereof, and articles comprising the same
JP5871187B2 (en) * 2012-03-01 2016-03-01 株式会社Gsユアサ Non-aqueous electrolyte secondary battery active material, method for producing the active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP5871186B2 (en) * 2012-03-01 2016-03-01 株式会社Gsユアサ Non-aqueous electrolyte secondary battery active material, method for producing the active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP2015103306A (en) 2013-11-21 2015-06-04 トヨタ自動車株式会社 Positive electrode active material and nonaqueous electrolyte secondary battery including the same
JP6287771B2 (en) * 2014-11-18 2018-03-07 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP6485232B2 (en) * 2014-11-27 2019-03-20 日立金属株式会社 Method for producing positive electrode active material
KR102460961B1 (en) 2015-11-06 2022-10-31 삼성에스디아이 주식회사 Positive electrode active material for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising positive electrode including the same
JP6835087B2 (en) 2016-06-23 2021-02-24 日立金属株式会社 Method for manufacturing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
EP3279977B1 (en) * 2016-08-02 2020-03-11 Ecopro Bm Co., Ltd. Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
JPWO2020218136A1 (en) * 2019-04-26 2020-10-29

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3195175B2 (en) * 1994-11-11 2001-08-06 株式会社東芝 Non-aqueous solvent secondary battery
JP3582161B2 (en) * 1995-08-11 2004-10-27 ソニー株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery using the same
JP4161382B2 (en) * 1997-02-25 2008-10-08 堺化学工業株式会社 Process for producing two-layer structured particulate composition
JP4872150B2 (en) * 1999-10-26 2012-02-08 住友化学株式会社 Non-aqueous secondary battery active material and non-aqueous secondary battery using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11158853B2 (en) 2016-04-27 2021-10-26 Camx Power Llc Nanocrystals of polycrystalline layered lithium nickel metal oxides
US11682762B2 (en) 2016-04-27 2023-06-20 Camx Power Llc Nanocrystals of polycrystalline layered lithium nickel metal oxides
US10501335B1 (en) 2019-01-17 2019-12-10 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
US10793445B2 (en) 2019-01-17 2020-10-06 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
US10843936B2 (en) 2019-01-17 2020-11-24 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
US10950857B2 (en) 2019-01-17 2021-03-16 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
US11424449B2 (en) 2019-01-25 2022-08-23 Camx Power Llc Stable cathode materials

Also Published As

Publication number Publication date
JP2003059489A (en) 2003-02-28

Similar Documents

Publication Publication Date Title
KR101116764B1 (en) Cathode material, preparing method thereof and lithium secondary battery
JP4644895B2 (en) Lithium secondary battery
JP4207230B2 (en) Graphite powder suitable for anode material of lithium ion secondary battery
JP4237074B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5002872B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
WO2012001845A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and production method for same
JP2003323895A (en) Nonaqueous electrolyte battery
KR20150090751A (en) Positive active material and manufacturing method thereof, positive electrode and lithium battery containing the material
TW201417380A (en) Electrode material for lithium ion secondary batteries, method for producing electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2017520892A (en) Positive electrode for lithium battery
KR102321261B1 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
JP2003034534A (en) Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same
JP2008060033A (en) Positive-electrode active material, positive electrode using the same, nonaqueous electrolyte secondary battery, and positive-electrode active material manufacturing method
JP7029680B2 (en) Negative electrode material and non-aqueous electrolyte secondary battery
JP2000113889A (en) Lithium secondary battery
JP4994628B2 (en) Nonaqueous electrolyte secondary battery
EP3683872A2 (en) Silicon-carbon composite and lithium secondary battery comprising same
JP2001345101A (en) Secondary battery
JP6493408B2 (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2004234977A (en) Positive electrode material for lithium secondary battery, manufacturing method of same, and lithium secondary battery using same
JP3734145B2 (en) Lithium secondary battery
JP5176317B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4678457B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
WO2020110942A1 (en) Lithium ion secondary battery negative electrode and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5002872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees