JP4161382B2 - Process for producing two-layer structured particulate composition - Google Patents

Process for producing two-layer structured particulate composition Download PDF

Info

Publication number
JP4161382B2
JP4161382B2 JP08429397A JP8429397A JP4161382B2 JP 4161382 B2 JP4161382 B2 JP 4161382B2 JP 08429397 A JP08429397 A JP 08429397A JP 8429397 A JP8429397 A JP 8429397A JP 4161382 B2 JP4161382 B2 JP 4161382B2
Authority
JP
Japan
Prior art keywords
cobalt
nickel
lithium
powder
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08429397A
Other languages
Japanese (ja)
Other versions
JPH10236826A (en
Inventor
昌史 青木
清志 深井
日六士 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP08429397A priority Critical patent/JP4161382B2/en
Publication of JPH10236826A publication Critical patent/JPH10236826A/en
Application granted granted Critical
Publication of JP4161382B2 publication Critical patent/JP4161382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池における正極活物質として好適に用いることができる2層構造粒子状組成物の製造方法に関する。
【0002】
【従来の技術】
リチウムニッケル複合酸化物は、高出力、高エネルギー密度電池として、例えば、ノート型パソコン、PHS、携帯電話等に使用されているリチウムイオン二次電池における正極活物質として近年注目されている材料の1つである。このリチウムニッケル複合酸化物は、例えば、「超音波噴霧熱分解法による球状LiCoO微粉体の合成とリチウム二次電池用活物質への応用」(萩原隆、斉藤善彦、柳川昭明、小形信男、吉田幸吉、高島正之、米沢晋、水野泰晴、永田憲史、小川賢治、ジャーナル・オブ・ザ・セラミック・ソサイエティー・オブ・ジャパン(Journal of the Ceramic Society of Japan)、第101巻、第1159〜1163頁(1993年)に記載されているように、LiMO(式中、Mは、Cr、Mn、Ni、Fe、Co又はVである。)で表わされる一群の化合物の一つであって、LiCoOと同様に、特に、充放電電圧が高いので、正極活物質として非常に有用である。
【0003】
このようなリチウムニッケル複合酸化物をリチウムイオン二次電池の正極活物質として使用するに際して、その性能を高めるために、リチウムニッケル複合酸化物の組成を変化させたものや、リチウムニッケル複合酸化物の物理的性質を改善したものが提案されている。
【0004】
リチウムニッケル複合酸化物の組成を変化させたものとしては、特開平4−328278号公報に、LiMO(Mは遷移金属を示す。0.05≦x<1.10)で表わされ、LiCO含有量が0.5〜15重量%であるものが記載されている。
【0005】
また、特開平6−150929号公報には、Na、Kのうち少なくとも1種を含むLiNiOが記載されている。特開昭62−256371号公報、特開平5−36411号公報、特開平7−307150号公報には、Co、V、Cr、Fe、P、B、Si、Mo、W等の元素を含むLiNiOが記載されている。リチウムニッケル複合酸化物の物理的性質を改善したものとして、特開平7−10590号公報には、一次粒子が1μm以下の二次以上の集合粒子からなるLiNiO粒子が開示されている。このLiNiO粒子はリチウムイオン二次電池の正極活物質に用いた場合、再現性にすぐれ、高充放電量を得ることができることが記載されている。
【0006】
しかし、このようにして改善されたリチウムニッケル複合酸化物を用いて製作した電池であっても、これを高温の環境雰囲気に長時間放置した場合、例えば、真夏の日中、上記電池を搭載した携帯電話を停車している自動車に放置した場合、正極活物質のリチウムニッケル複合酸化物と非水電解液が反応して、非水電解液の一部が分解、ガス化し、電池容器内圧が上昇して、電池が破裂し、電池装着機器の破損等、火災を招き、また、環境を汚損する等の危険性がある。
【0007】
そこで、このような問題を解決するために、特開平8−138670号公報には、リチウムニッケル複合酸化物(LiNiO)粉末の表面層をコバルトのような異種の遷移元素の濃度の高い層としたものを二次電池の正極活物質として用いる非水溶媒二次電池が提案されている。しかし、上記公報の実施例に示されているリチウムニッケル複合酸化物粉末のように、粉末粒子の表面層に存在する異種元素、例えば、コバルトの濃度が低く、異種元素のニッケルに対する原子比が0.2以下であって、上述した問題の解決は、未だ十分ではない。
【0008】
【発明が解決しようとする課題】
本発明は、従来のリチウムニッケル複合酸化物における上述したような問題を解決するためになされたものであって、酸化物を構成する金属種が相互に相違するリチウム複合酸化物からなる2層構造を有する粒子状組成物の製造方法であって、この粒子状組成物を正極活物質として用いてなるリチウムイオン二次電池を構成すれば、この電池は、高温に保持した場合にも、非水電解液の分解を最小に抑えることができるようなリチウム複合酸化物粒子状組成物の製造方法を提供することを目的とする。
【0009】
より詳細には、リチウムニッケル複合酸化物粒子を正極活物質とするリチウムイオン二次電池を高温で保持した場合、その活物質の粒子と非水電解液との界面で非水電解液の分解反応が起こって、分解ガスが発生し、電池容器内の圧力が上昇して、電池が破裂するおそれが生じる。そこで、この非水電解液の分解を抑制するためには、活物質粒子と非水電解液の界面をできるだけ小さくすればよい、即ち、活物質粒子の比表面積をできるだけ小さくすればよい。しかし、一般に、活物質粒子の比表面積を小さくするときは、充放電容量が低下すると共に、充放電の応答性が低下するという不具合も生じる。従って、これらの特性のバランスのとれた電池特性が得られる比表面積を有する活物質粒子を用いることがリチウムイオン二次電池を製作するうえで重要な要件であった。
【0010】
しかし、本発明者らは、活物質粒子の比表面積に関係なく、高温安定性にすぐれたリチウムイオン二次電池用活物質用粒子状組成物の製造方法を見出して、本発明に至ったものである。
【0011】
【課題を解決するための手段】
本発明によれば、水酸化ニッケルの粉末を水に分散したスラリーに、アンモニウムイオンの存在下、コバルト塩水溶液と苛性アルカリ水溶液を連続的に添加して反応させることによって、水酸化ニッケルの粒子の表面に水酸化コバルトを被覆してなる粒子を調製し、これに水酸化リチウムを混合して、焼成することからなる、リチウムニッケル複合酸化物からなる中心層とリチウムコバルト複合酸化物からなる表面層とを備えると共に、粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比が0.2〜1の範囲にあるリチウムイオン二次電池用正極活物質用2層構造粒子状組成物の製造方法が提供される。
【0012】
また、本発明によれば、水酸化ニッケルの粉末を水に分散したスラリーに、アンモニウムイオンの存在下、コバルト塩水溶液と苛性アルカリ水溶液を連続的に添加して反応させることによって、水酸化ニッケルの粒子の表面に水酸化コバルトを被覆してなる粒子を調製し、これを酸化して、含水酸化ニッケルコバルトを調製し、次いで、これを水分散媒中、水酸化リチウムと水熱反応を行うことからなる、リチウムニッケル複合酸化物からなる中心層とリチウムコバルト複合酸化物からなる表面層とを備えると共に、粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比が0.2〜1の範囲にあるリチウムイオン二次電池用正極活物質用2層構造粒子状組成物の製造方法が提供される
【0014】
【発明の実施の形態】
以下に本発明による2層構造粒子状組成物について詳しく説明する。
本発明による粒子状組成物は、中心層と表面層の2層からなる粒子状組成物であって、中心層はリチウムニッケル複合酸化物からなり、表面層はリチウムコバルト複合酸化物からなる。しかし、電池特性に有害な影響を与えない範囲において、中心層と表面層は、それぞれその他の酸化物や複合酸化物を有していてもよい。
【0015】
本発明による2層構造粒子状組成物は、2層構造を有すれば、どのような形状であってもよく、例えば、リチウムニッケル複合酸化物からなる一次粒子である中心層をリチウムコバルト複合酸化物からなる表面層が被覆する構造を有するもののほか、上記中心層、表面層又はこれらの両方がそれぞれの複合酸化物からなる一次粒子の集合体でもよい。後述するように、その形状は、実質的に球状であることが好ましいが、しかし、実質的に立方体状であってもよいし、その他の形状でもよい。
【0016】
本発明による上記粒子状組成物の形状や大きさは、特に、限定されるものではないが、リチウムイオン二次電池の正極活物質として用いる場合、平均粒子径3〜100μmであって、実質的に球状であることが好ましい。このように、粒子状組成物が実質的に球状であるとき、充填性にすぐれる、即ち、充填密度を大きくすることができるので好ましい。また、その平均粒子径が3μm未満であるときは、リチウムイオン二次電池の正極活物質として用いた場合に、充填率が低いので、電池の単位容積当たりの電気容量が低くなり、他方、平均粒子径が100μmを越えるときには、その粒子が、例えば、ポリプロピレン等の重合体の多孔性フイルムからなるセパレータを貫通して、正極と負極との間に短絡を生じるおそれがあるので、好ましくない。特に、本発明による粒子状組成物の大きさは、好ましくは、3〜50μmの範囲であり、最も好ましくは、5〜30μmの範囲である。
【0017】
しかし、必要に応じて、球状以外の形状を有する上記粒子状組成物をリチウムイオン二次電池用正極活物質として用いてもよい。
本発明による粒子状組成物は、その中心層がリチウムニッケル複合酸化物からなり、好ましくは、一般式(I)
LiNi1−x
(式中、Aは、B、Mg、Al、Si、Sc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Y、Zr、Nb、Mo、Ru、Sn、Sb、La、Ce、Pr、Nb、Hf、Ta及びPbよりなる群から選ばれる少なくとも1種の元素を示す。pは0.90〜1.10の範囲の数を示し、xは0〜0.25の範囲の数を示し、yは1.825〜2.3の範囲の数を示す。)
で表わされるリチウムニッケル複合酸化物からなる。
【0018】
他方、本発明による粒子状組成物は、その表面層がリチウムコバルト複合酸化物からなり、好ましくは、一般式(II)
LiCo1−a
(式中、Zは、B、Mg、Al、Si、Sc、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Ga、Y、Zr、Nb、Mo、Ru、Sn、Sb、La、Ce、Pr、Nd、Hf、Ta及びPbよりなる群から選ばれる少なくとも1種の元素を示す。qは0.90〜1.10の範囲の数を示し、aは0〜0.25の範囲の数を示し、bは1.825〜2.3の範囲の数を示す。)
で表わされるリチウムコバルト複合酸化物からなる。
【0019】
上記一般式(I)及び(II)において、x又はaが0〜0.25の範囲にあるような粒子状組成物をリチウムイオン二次電池における正極活物質として用いることによって、電池の保存特性を一層高めることができる。しかし、x又はaが0.25を越えるときは、電池の充放電容量を大きく低下させるので好ましくない。
【0020】
本発明による2層構造粒子状組成物は、上述したように、リチウムニッケル複合酸化物からなる中心層とリチウムコバルト複合酸化物からなる表面層とからなり、ここに、リチウムニッケル複合酸化物は、190mAh/g以上の高い充放電容量を有するものの、高温で非水電解液を分解しやすく、他方、リチウムコバルト複合酸化物は、充放電容量がリチウムニッケル複合酸化物よりも低く、150mAh/g程度であるが、高温に保持されても、非水電解液を分解させ難い。かくして、本発明による粒子状組成物は、2つのリチウム複合酸化物の有する利点のみを利用し、欠点を補うように組合わせてなるものである。
【0021】
即ち、本発明による上記2層構造粒子状組成物をリチウムイオン二次電池の正極活物質として用いた場合、非水電解液に接触するのは表面積層のリチウムコバルト複合酸化物のみであり、このリチウムコバルト複合酸化物は、前述したように、高温に保持された場合にも、非水電解質を分解し難いので、電池の安定性に寄与し、更に、上記2層構造粒子状組成物は、充放電容量の大きいリチウムニッケル複合酸化物を中心層として有し、従って、全体として、高い充放電容量を有する。
【0022】
かくして、本発明による2層構造粒子状組成物をリチウムイオン二次電池の正極活物質として用いるとき、高温安定性にすぐれると共に、高い充放電容量を有する二次電池を得ることができる。
【0023】
本発明において、表面層と中心層の量的比率は、特に、限定されるものではなく、充放電容量を重視する場合は、中心層の比率を多くし、高温安定性を重視する場合には、表面層の比率を多くすればよく、目的の電池特性によって、任意の比率を用いることができる。しかしながら、本発明による2層構造粒子状組成物においては、表面層のコバルト原子とZ原子の原子数の和(Co+Z)と中心層のニッケル原子とA原子の原子数の和(Ni+A)、即ち、表面層の(Co+Z/中心層の(Ni+A)原子比は、通常、5/100〜50/100の範囲にあり、好ましくは、10/100〜30/100の範囲にある。
【0024】
本発明による2層構造粒子状組成物において、粒子の表面は、リチウムコバルト複合酸化物にて完全に被覆されていることが理想的であるが、しかし、実用上、粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比が0.2〜1の範囲にあるとき、このような組成物をリチウムイオン二次電池における正極活物質として用いることによって、目的とする電池の安定性を得ることができる。特に、本発明によれば、上記粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比は0.3〜1の範囲にあることが好ましく、更に、0.5〜1の範囲にあることが好ましい。
【0025】
更に、本発明による2層構造粒子状組成物においては、前記式(I)で表わされるリチウムニッケル複合酸化物は、通常、Ni原子とA原子の和に対するLi原子の比、即ち、Li/(Ni+A)原子比が1である化学量論的な複合酸化物である、即ち、p=1であるが、しかし、Li/(Ni+A)原子比が1でない非化学量論的な複合酸化物であってもよい。即ち、pは0.90〜1.10の範囲の数である。
【0026】
同様に、本発明による2層構造粒子状組成物においては、前記式(II)で表わされるリチウムコバルト複合酸化物は、通常、Co原子とZ原子の和に対するLi原子の比、即ち、Li/(Co+Z)原子比が1である化学量論的な複合酸化物である、即ち、q=1であるが、しかし、Li/(Co+Z)原子比が1でない非化学量論的な複合酸化物であってもよい。即ち、qは0.90〜1.10の範囲の数である。
【0027】
本発明による2層構造粒子状組成物は、例えば、次のような方法によって製造することができる。このような製造方法によれば、表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比が0.2〜1の範囲にある本発明による2層構造粒子状組成物を得ることができる。
【0028】
(1)水酸化ニッケルの粉末を水に分散したスラリーに、アンモニウムイオンの存在下、コバルト塩水溶液と苛性アルカリ水溶液を連続的に添加して反応させることによって、水酸化ニッケルの粒子の表面に水酸化コバルトを被覆してなる粒子を調製する。これに水酸化リチウムを混合し、焼成することによって、本発明による粒子状組成物を得ることができる。
【0029】
(2)上記と同様の方法にて、水酸化ニッケルの粒子の表面に水酸化コバルトを被覆してなる粒子を調製し、これを酸化して、含水酸化ニッケルコバルトを調製し、次いで、これを水分散媒中、高温高圧下に水酸化リチウムと水熱反応を行なうことによって、本発明による粒子状組成物を得ることができる。
【0030】
本発明によるリチウムイオン二次電池は、上述したような2層構造粒子状組成物を正極活物質として用いるものである。
【0031】
リチウムイオン二次電池の一例を図1に示す。正極1と負極2は、非水電解液を含浸させたセパレータ3を介して対向して電池容器4内に収容されており、上記正極1は正極集電体5を介して正極用リード線6に接続されており、また、負極2は負極集電体7を介して負極用リード線8に接続されて、電池内部で生じた化学エネルギーを上記リード線6及び8から電機エネルギーとして外部へ取り出し得るように構成されている。
【0032】
本発明による粒子状組成物は、これに導電剤、結着剤、充填剤等を配合し、混練して合剤とし、これを、例えば、ステンレスメッシュからなる正極集電体に塗布、圧着し、減圧下に加熱乾燥して、正極とする。また、上記合剤を円板状等、適宜形状に加圧成形し、必要に応じて、真空下に熱処理して、正極としてもよい。
【0033】
上記導電剤としては、リチウムイオン二次電池において化学変化を起こさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉、金属繊維、ポリフェニレン誘導体等を挙げることができる。これらは、単独で使用してもよく、2種以上を併用してもよい。
【0034】
上記合剤における上記導電剤の配合量は、特に、限定されるものではないが、通常、1〜50重量%が好ましく、特に、2〜30重量%の範囲が好ましい。また、結着剤も、特に、限定されず、例えば、デンプン、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリ塩化ビニル、ポリビニルピロリドン、テトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエン共重合体(EPDM)、スルホン化EPDM、スチレン−ブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキサイド等を挙げることができる。これらは、単独で使用してもよく、2種以上を併用してもよい。合剤における上記結着剤の配合量も、特に、限定されないが、通常、1〜50重量%の範囲であり、好ましくは、2〜30重量%の範囲である。
【0035】
充填剤は、必要に応じて、正極活物質にに配合される。充填剤としては、リチウムイオン二次電池において化学変化を起こさない繊維状材料であれば、特に限定されず、例えば、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、ガラス、炭素等の繊維等を挙げることができる。合剤におけるこれら充填剤の配合量も、特に限定されないが、通常、0〜30重量%の範囲が好ましい。
【0036】
本発明によるリチウムイオン二次電池において、負極としては、従来、リチウムイオン二次電池に用いられているものであれば、特に、限定されるものではないが、例えば、リチウム、リチウム合金、ステンレス鋼、ニッケル、銅、チタン、アルミニウム、焼成炭素等からなるシート状物や成形物を挙げることができる。
【0037】
正極及び負極、通常、集電体上に形成される。集電体としては、特に、限定されるものではないが、通常、ステンレス鋼やそのメッシュ等が用いられる。
【0038】
また、非水電解液も、従来より知られているものであれば、いずれでもよいが、例えば、プロピレンカーボネート等のようなカーボネート類、スルホラン類、ラクトン類、1,2−ジメトキシエタン等のようなエーテル類等の有機溶媒中に過塩素酸リチウムやヘキサフルオロリン酸リチウム等の解離性リチウム塩類を溶解させたものを挙げることができる。セパレータとしては、例えば、ポリプロピレン等のような合成高分子量重合体からなる多孔性フィルム等が用いられるが、これに限定されるものではない。
【0039】
【発明の効果】
本発明による2層構造粒子状組成物は、リチウムニッケル複合酸化物からなる中心層とリチウムコバルト複合酸化物からなる表面層とを備えていると共に、粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比が0.2〜1の範囲にあり、本発明によるリチウムイオン二次電池は、このような2層構造粒子状組成物を正極活物質として用いてなるものである。
【0040】
従って、本発明によるリチウムイオン二次電池によれば、非水電解液は、高温に保持された場合にも、非水電解質を分解し難い表面層のリチウムコバルト複合酸化物のみに接触し、他方、上記粒子状組成物は、充放電容量の大きいリチウムニッケル複合酸化物を中心層として有し、ここに、上記粒子状組成物は、全体として、高い充放電容量を有する。かくして、本発明によるリチウムイオン二次電池は、高温安定性にすぐれると共に、高い充放電容量を有する。
【0041】
本発明によるリチウムイオン二次電池は、例えば、ノート型パソコン、携帯電話、コードレスフォン子機、ビデオムービー、液晶テレビ、電気シェーバー、携帯ラジオ、ヘッドホンステレオ、バックアップ電源、メモリカード等の電子機器、ペースメーカー、補聴器等の医療機器等に好適に用いることができる。
【0042】
【実施例】
以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。以下の実施例において、中心層と表面層を調製するために用いたそれぞれの原料中の遷移元素の仕込み量(モル)と、それによる表面層元素量/中心層元素量モル比を表1及び表2にまとめて示す。
【0043】
実施例1
硝酸ニッケル水溶液に、アンモニウムイオン存在下、水酸化ナトリウム水溶液を連続的に添加、中和して、一次粒子が集合した実質的に球状の水酸化ニッケルからなる二次粒子粉末を得た。この粉末は、比表面積が148m/gであった。この粉末の走査型電子顕微鏡写真を図2に示す。
【0044】
この球状の水酸化ニッケル18.54gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)17.0mLを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.11モル/L)を定量ポンプにて1.0mL/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60℃で一日乾燥して、粉末約20gを得た。
【0045】
この粉末をX線回折分析したところ、図3に示すように、水酸化ニッケル(Ni(OH))のピークのみ確認された。また、この粉末の走査型電子顕微鏡写真を図4に示すように、実質的に球状の粒子からなるものであった。
【0046】
また、図5に示すように、粒子断面をEPMA(電子線プローブマイクロアナライザー)にて線分析したところ、粒子中心部にニッケルが、また、粒子表層部にコバルトがそれぞれ偏在していることが確認された。
【0047】
以上の分析結果から、上記粉末は、中心部が結晶性の水酸化ニッケル(Ni(OH))からなり、表層部が非晶質の水酸化コバルト(Co(OH))からなる実質的に球状の粒子であることが確認された。
【0048】
この粉末10.2gに水酸化リチウム一水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800℃で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物(LiNiO)からなり、表層部がリチウムコバルト複合酸化物(LiCoO)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。
【0049】
実施例2
実施例1にて調製した球状の水酸化ニッケル18.54gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)34.0mLを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.22モル/L)を定量ポンプにて1.0mL/分の割合にて8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60℃で一日乾燥して、粉末約20gを得た。
【0050】
この粉末をX線回折分析したところ、水酸化ニッケル(Ni(OH))のピークのみ確認され、また、この粉末は、走査型電子顕微鏡観察によれば、実質的に球状の粒子からなるものであった。更に、粒子断面をEPMA(電子線プローブマイクロアナライザー)にて線分析したところ、粒子中心部にニッケルが、また、粒子表層部にコバルトがそれぞれ偏在していることが確認された。
【0051】
以上の分析結果から、上記粒子は、中心部が結晶性の水酸化ニッケル(Ni(OH))からなり、表層部が非晶質の水酸化コバルト(Co(OH))からなる実質的に球状の粒子であることが確認された。
【0052】
この粉末13.37gに水酸化リチウム一水塩5.04gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、600℃で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物(LiNiO)からなり、表層部がリチウムコバルト複合酸化物(LiCoO)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。
【0053】
実施例3
実施例1にて調製した球状の水酸化ニッケル18.54gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)68.0mLを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.44モル/L)を定量ポンプにて1.0mL/分の割合にて8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60℃で一日乾燥して、粉末約20gを得た。
【0054】
この粉末をX線回折分析したところ、水酸化ニッケル(Ni(OH))のピークのみ確認され、また、この粉末は、走査型電子顕微鏡観察によれば、実質的に球状の粒子からなるものであった。更に、粒子断面をEPMA(電子線プローブマイクロアナライザー)にて線分析したところ、粒子中心部にニッケルが、また、粒子表層部にコバルトがそれぞれ偏在していることが確認された。
【0055】
以上の分析結果から、上記粒子は、中心部が結晶性の水酸化ニッケル(Ni(OH))からなり、表層部が非晶質の水酸化コバルト(Co(OH))からなる実質的に球状の粒子であることが確認された。
【0056】
この粉末9.28gに水酸化リチウム一水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800℃で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物(LiNiO)からなり、表層部がリチウムコバルト複合酸化物(LiCoO)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。
【0057】
実施例4
実施例1にて調製した球状の水酸化ニッケル18.54gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)61.2mLと硝酸鉄水溶液(1.2モル/L)6.8mLを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.44モル/L)を定量ポンプにて1.0mL/分の割合にて8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60℃で一日乾燥して、粉末約26gを得た。
【0058】
の粉末をX線回折分析したところ、水酸化ニッケル(Ni(OH))のピークのみ確認され、また、この粉末は、走査型電子顕微鏡観察によれば、実質的に球状の粒子からなるものであった。更に、粒子断面をEPMA(電子線プローブマイクロアナライザー)にて線分析したところ、粒子中心部にニッケルが、また、粒子表層部にコバルトと鉄がそれぞれ偏在していることが確認された。
【0059】
以上の分析結果から、上記粒子は、中心部が結晶性の水酸化ニッケル(Ni(OH))からなり、表層部が非晶質の水酸化コバルト(Co(OH))と水酸化第一鉄(Fe(OH))からなる実質的に球状の粒子であることが確認された。
【0060】
この粉末9.27gに水酸化リチウム一水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、700℃で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト、ニッケル及び鉄の線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物(LiNiO)からなり、表層部がリチウムコバルト鉄複合酸化物(LiCo0.9Fe0.1)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。
【0061】
実施例5
硝酸ニッケルと硝酸コバルトをモル比85:15の化学量論比で混合した水溶液に、アンモニウムイオン存在下、窒素雰囲気中で水酸化ナトリウム水溶液を連続的に添加、中和して、一次粒子が集合した実質的に球状の水酸化ニッケルコバルトからなる二次粒子粉末を得た。この粉末は、比表面積が160m/gであった。
【0062】
この球状の水酸化ニッケルコバルト18.54gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)68.0mLを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.44モル/L)を定量ポンプにて1.0mL/分の割合にて8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60℃で一日乾燥して、粉末約26gを得た。
【0063】
この粉末をX線回折分析したところ、水酸化ニッケルコバルト(Ni0.85Co0.15(OH))のピークのみ確認され、また、この粉末は、走査型電子顕微鏡観察によれば、実質的に球状の粒子からなるものであった。更に、粒子断面をEPMA(電子線プローブマイクロアナライザー)にて線分析したところ、粒子中心部にニッケルとコバルトとが、また、粒子表層部にコバルトがそれぞれ偏在していることが確認された。
【0064】
以上の分析結果から、上記粒子は、中心部が結晶性の水酸化ニッケルコバルト(Ni0.85Co0.15(OH))からなり、表層部が非晶質の水酸化コバルト(Co(OH))からなる実質的に球状の粒子であることが確認された。
【0065】
この粉末9.28gに水酸化リチウム一水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、700℃で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケルコバルト複合酸化物(LiNi0.85Co0.15)からなり、表層部がリチウムコバルト複合酸化物(LiCoO)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。
【0066】
実施例6
実施例1にて調製した球状の水酸化ニッケル粉末18.54gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)50.0mLを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.32モル/L)を定量ポンプにて1.0mL/分の割合にて8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60℃で一日乾燥して、粉末約24gを得た。
【0067】
この粉末をX線回折分析したところ、水酸化ニッケル(Ni(OH))のピークのみ確認され、また、この粉末は、走査型電子顕微鏡観察によれば、実質的に球状の粒子からなるものであった。更に、粒子断面をEPMA(電子線プローブマイクロアナライザー)にて線分析したところ、粒子中心部にニッケルが、また、粒子表層部にコバルトがそれぞれ偏在していることが確認された。
【0068】
以上の分析結果から、上記粒子は、中心部が結晶性の水酸化ニッケル(Ni(OH))からなり、表層部が非晶質の水酸化コバルト(Co(OH))からなる実質的に球状の粒子であることが確認された。
【0069】
この粉末9.28gに水酸化リチウム一水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、700℃で5時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物(LiNiO)からなり、表層部がリチウムコバルト複合酸化物(LiCoO)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。
【0070】
実施例7
実施例1にて調製した球状の水酸化ニッケル18.54gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)50.0mLを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.32モル/L)を定量ポンプにて1.0mL/分の割合にて8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60℃で一日乾燥して、粉末約24gを得た。
【0071】
この粉末をX線回折分析したところ、水酸化ニッケル(Ni(OH))のピークのみ確認され、また、この粉末は、走査型電子顕微鏡観察によれば、実質的に球状の粒子からなるものであった。更に、粒子断面をEPMA(電子線プローブマイクロアナライザー)にて線分析したところ、粒子中心部にニッケルが、また、粒子表層部にコバルトがそれぞれ偏在していることが確認された。
【0072】
以上の分析結果から、上記粒子は、中心部が結晶性の水酸化ニッケル(Ni(OH))からなり、表層部が非晶質の水酸化コバルト(Co(OH))からなる実質的に球状の粒子であることが確認された。
【0073】
この粉末24.1gを水スラリー中、過硫酸ナトリウムで酸化した後、濾過、水洗して、オキシ水酸化ニッケルコバルトのケーキを得た。このオキシ水酸化ニッケルコバルトの全量に水酸化リチウム一水塩25.2gを混合し、得られた混合物にイオン交換水を加えて全量を400mLとした。このスラリーをオートクレーブに仕込み、温度200℃にて4時間、加熱して、水熱処理を行なった。
【0074】
反応終了後、スラリーを濾過、水洗し、固形物を100℃に加熱、乾燥させた。このようにして得られた粉末をX線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物(LiNiO)からなり、表層部がリチウムコバルト複合酸化物(LiCoO)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。
【0075】
実施例8
実施例1にて得た実質的に球状の水酸化ニッケルからなる二次粒子粉末18.54gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)17.0mLを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.11モル/L)を定量ポンプにて1.0mL/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60℃で一日乾燥して、粉末約20gを得た。
【0076】
この粉末9.27gに水酸化リチウム一水塩3.8gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、700℃で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物(Li0.90NiO95)からなり、表層部がリチウムコバルト複合酸化物(Li0.90CoO1.95)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。
【0077】
実施例9
実施例1にて得た実質的に球状の水酸化ニッケルからなる二次粒子粉末18.54gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)17.0mLを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.11モル/L)を定量ポンプにて1.0mL/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60℃で一日乾燥して、粉末約20gを得た。
【0078】
この粉末9.27gに水酸化リチウム一水塩4.6gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、700℃で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物(Li1.1NiO2.05)からなり、表層部がリチウムコバルト複合酸化物(Li1.1CoO2.05)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。
【0079】
実施例10
実施例1にて得た実質的に球状の水酸化ニッケルからなる二次粒子粉末18.54gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)15.8mLと硝酸銅水溶液(1.0モル/L)1.0mLとを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.11モル/L)を定量ポンプにて1.0mL/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60℃で一日乾燥して、粉末約20gを得た。
【0080】
この粉末9.27gに水酸化リチウム一水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800℃で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物(LiNiO)からなり、表層部がリチウムコバルト複合酸化物(LiCo0.95Cu0.05)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。
【0081】
実施例11
実施例1にて得た実質的に球状の水酸化ニッケルからなる二次粒子粉末18.54gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)15.0mLと硝酸マグネシウム水溶液(1.0モル/L)2.0mLとを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.11モル/L)を定量ポンプにて1.0mL/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60℃で一日乾燥して、粉末約20gを得た。
【0082】
この粉末9.24gに水酸化リチウム一水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800℃で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物(LiNiO)からなり、表層部がリチウムコバルト複合酸化物(LiCo0.90Mg0.101.95)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。
【0083】
実施例12
実施例1にて得た実質的に球状の水酸化ニッケルからなる二次粒子粉末18.54gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)15.8mLと硝酸アルミニウム水溶液(1.0モル/L)1.0mLとを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.11モル/L)を定量ポンプにて1.0mL/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60℃で一日乾燥して、粉末約20gを得た。
【0084】
この粉末9.27gに水酸化リチウム一水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800℃で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物(LiNiO)からなり、表層部がリチウムコバルト複合酸化物(LiCo0.95Al0.05)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。
【0085】
実施例13
実施例1にて得た実質的に球状の水酸化ニッケルからなる二次粒子粉末18.54gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)13.3mLと硝酸チタン水溶液(1.0モル/L)4.0mLとを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.13モル/L)を定量ポンプにて1.0mL/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60℃で一日乾燥して、粉末約20gを得た。
【0086】
この粉末9.31gに水酸化リチウム一水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800℃で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト及びニッケルの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケル複合酸化物(LiNiO)からなり、表層部がリチウムコバルト複合酸化物(LiCo0.80Ti0.202.1)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。
【0087】
実施例14
硝酸ニッケルと硝酸バナジウムとを85:15の化学量論比で混合した水溶液に、アンモニウムイオン存在下、窒素雰囲気下に水酸化ナトリウム水溶液を連続的に添加、中和して、一次粒子が集合した実質的に球状の水酸化ニッケル−バナジウムからなる二次粒子粉末を得た。この粉末は、比表面積が150m/gであった。
【0088】
上記球状の水酸化ニッケル−バナジウムからなる二次粒子粉末18.31gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)66.7mLを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.43モル/L)を定量ポンプにて1.0mL/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60℃で一日乾燥して、粉末約25gを得た。
【0089】
この粉末9.20gに水酸化リチウム一水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800℃で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト、ニッケル及びバナジウムの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケルバナジウム複合酸化物(LiNi0.850.152.15)からなり、表層部がリチウムコバルト複合酸化物(LiCoO)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。
【0090】
実施例15
硝酸ニッケルと硝酸クロムとを85:15の化学量論比で混合した水溶液に、アンモニウムイオン存在下、窒素雰囲気下に水酸化ナトリウム水溶液を連続的に添加、中和して、一次粒子が集合した実質的に球状の水酸化ニッケル−クロムからなる二次粒子粉末を得た。この粉末は、比表面積が156m/gであった。
【0091】
上記球状の水酸化ニッケル−クロムからなる二次粒子粉末18.24gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)66.7mLを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.43モル/L)を定量ポンプにて1.0mL/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60℃で一日乾燥して、粉末約25gを得た。
【0092】
この粉末9.21gに水酸化リチウム一水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800℃で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト、ニッケル及びクロムの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケルクロム複合酸化物(LiNi0.85Cr0.15)からなり、表層部がリチウムコバルト複合酸化物(LiCoO)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。
【0093】
実施例16
硝酸ニッケルと硝酸マンガンとを85:15の化学量論比で混合した水溶液に、アンモニウムイオン存在下、窒素雰囲気下に水酸化ナトリウム水溶液を連続的に添加、中和して、一次粒子が集合した実質的に球状の水酸化ニッケル−マンガンからなる二次粒子粉末を得た。この粉末は、比表面積が145m/gであった。
【0094】
上記球状の水酸化ニッケル−マンガンからなる二次粒子粉末18.43gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)66.7mLを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.43モル/L)を定量ポンプにて1.0mL/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60℃で一日乾燥して、粉末約25gを得た。
【0095】
この粉末9.24gに水酸化リチウム一水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800℃で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト、ニッケル及びマンガンの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケルマンガン複合酸化物(LiNi0.85Mn0.15)からなり、表層部がリチウムコバルト複合酸化物(LiCoO)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。
【0096】
実施例17
硝酸ニッケルと硝酸ランタンとを85:15の化学量論比で混合した水溶液に、アンモニウムイオン存在下、窒素雰囲気下に水酸化ナトリウム水溶液を連続的に添加、中和して、一次粒子が集合した実質的に球状の水酸化ニッケルランタンからなる二次粒子粉末を得た。この粉末は、比表面積が170m/gであった。
【0097】
上記球状の水酸化ニッケルランタンからなる二次粒子粉末21.46gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)66.7mLを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.43モル/L)を定量ポンプにて1.0mL/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60℃で一日乾燥して、粉末約28gを得た。
【0098】
この粉末14.45gに水酸化リチウム一水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800℃で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト、ニッケル及びランタンの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケルマンガン複合酸化物(LiNi0.85La0.15)からなり、表層部がリチウムコバルト複合酸化物(LiCoO)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。
【0099】
実施例18
硝酸ニッケルと硝酸ガリウムとを85:15の化学量論比で混合した水溶液に、アンモニウムイオン存在下、窒素雰囲気下に水酸化ナトリウム水溶液を連続的に添加、中和して、一次粒子が集合した実質的に球状の水酸化ニッケルガリウムからなる二次粒子粉末を得た。この粉末は、比表面積が150m/gであった。
【0100】
上記球状の水酸化ニッケルガリウムからなる二次粒子粉末19.38gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)14.2mLと硝酸ニッケル水溶液(1.0モル/L)3.0mLとを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.11モル/L)を定量ポンプにて1.0mL/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60℃で一日乾燥して、粉末約21gを得た。
【0101】
この粉末9.65gに水酸化リチウム一水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800℃で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによるコバルト、ニッケル及びガリウムの線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケルガリウム複合酸化物(LiNi0.85Ga0.15)からなり、表層部がリチウムコバルトニッケル複合酸化物(LiCo0.85Ni0.15)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。
【0102】
実施例19
硝酸ニッケル、硝酸コバルト及び硝酸鉄とを80:15:5の化学量論比で混合した水溶液に、アンモニウムイオン存在下、窒素雰囲気下に水酸化ナトリウム水溶液を連続的に添加、中和して、一次粒子が集合した実質的に球状の水酸化ニッケルコバルト鉄からなる二次粒子粉末を得た。この粉末は、比表面積が160m/gであった。
【0103】
上記球状の水酸化ニッケルコバルト鉄からなる二次粒子粉末18.52gを1.0L容量のガラスビーカー中の水0.1Lに分散してスラリーを得た。このスラリーに、アンモニウムイオン存在下、硝酸コバルト水溶液(1.2モル/L)15.0mLと硝酸ジルコニウム水溶液(1.0モル/L)1.0mLと硝酸イットリウム水溶液(1.0モル/L)1.0mLとを加え、ビーカーを密閉した後、攪拌しながら、窒素ガスを0.5L/分の割合にてスラリーに導入して、窒素置換を行なった。30分後、水酸化ナトリウム水溶液(0.11モル/L)を定量ポンプにて1.0mL/分の割合で8時間加えた。このようにして得られた沈澱を濾過、水洗し、電気乾燥機中、60℃で一日乾燥して、粉末約20gを得た。
【0104】
この粉末9.31gに水酸化リチウム一水塩4.2gを混合した後、アルミナ製るつぼに入れ、酸素雰囲気中、800℃で10時間焼成して、黒色の粉末を得た。この粉末は、X線回折、EPMAによる線分析、走査型電子顕微鏡観察から、中心部がリチウムニッケルコバルト鉄複合酸化物(LiNi0.85Co0.15Fe0.05)からなり、表層部がリチウムコバルトジルコニウムイットリウム複合酸化物(LiCo0.90Zr0.050.052.025)からなる2層構造の球状粒子であることが確認された。更に、オージエ電子分光法にて粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比を測定したところ、0.2以上であった。
【0105】
【表1】

Figure 0004161382
【0106】
【表2】
Figure 0004161382
【0107】
実施例20
実施例2で調製した中心部がリチウムニッケル複合酸化物(LiNiO)からなり、表層部がリチウムコバルト複合酸化物(LiCoO)からなる2層構造粒子状組成物の粉末(正極活物質)、アセチレンブラック(導電剤)及びポリテトラフルオロエチレン(結着剤)を重量比87:6.5:6.5にてよく混練して、合剤を調製した。この合剤を正極集電体としての清浄なステンレスメッシュ(穴径20mm)に均一に塗布し、200kg/cmの圧力にて圧着した後、減圧下、150℃で17時間乾燥して、正極を作製した。負極として円板状の金属リチウム箔(直径20mm、厚さ0.2mm)を用いた。また、セパレーターとしてポリピロピレンからなる多孔質フィルムを用いた。
【0108】
また、非水電解液は、過塩素酸リチウム(LiClO)のプロピレンカーボネート溶液(1M)と1,2−ジメトキシエタンとの混合物(1:1)で、水分を20ppm以下としたものを用い、これを上記セパレーターに含浸させた。
これらの構成要素を用いて、図1に示すようなリチウムイオン二次電池を製作し、これを用いて、電流値を1.0mA/cmの一定電流とし、電池電圧4.2〜2.0Vの間で充放電を繰り返して、電池特性を調べた。その結果、本発明によるリチウム二次電池の初期容量は182mAh/gと高く、また、50サイクル目の充放電容量は1サイクル目の90%であって、サイクル特性にもすぐれる。
【0109】
また、この電池を80℃で長時間保持したときも、電解液は、リチウムコバルト複合酸化物(LiCoO)を正極材活物質として用いた場合と同様であって、殆ど分解しておらず、高温での安定性にすぐれることも確認された。
【図面の簡単な説明】
【図1】は、リチウムイオン二次電池の一例を示す断面図である。
【図2】は、実施例1において得られた水酸化ニッケルの二次粒子粉末の走査型電子顕微鏡写真(倍率500倍)である。
【図3】は、上記水酸化ニッケルの粒子に水酸化コバルトを被覆してなる水酸化ニッケルコバルトのX線回折図である。
【図4】は、上記水酸化ニッケルコバルトの走査型電子顕微鏡写真(倍率500倍)である。
【図5】は、上記水酸化ニッケルコバルトの粒子断面のEPMA(電子線プローブマイクロアナライザー)による線分析を示す写真(倍率1000倍)である。
【図6】は、実施例1において得られた中心部がニッケル酸リチウム(LiNiO)からなり、表層部がコバルト酸リチウム(LiCoO)からなる2層構造の球状粒子の断面のEPMA(電子線プローブマイクロアナライザー)による線分析を示す写真(倍率1000倍)である。
【符号の説明】
1…正極、2…負極、3…セパレータ、4…電池容器、5…正極集電体、6…正極用リード線、7…負極集電体、8…負極用リード線。[0001]
BACKGROUND OF THE INVENTION
  The present invention is a two-layer structure particulate composition that can be suitably used as a positive electrode active material in a lithium ion secondary battery.Manufacturing methodAbout.
[0002]
[Prior art]
Lithium-nickel composite oxide is one of materials that have recently attracted attention as a positive electrode active material in lithium-ion secondary batteries used as high-power, high-energy density batteries, for example, notebook personal computers, PHS, and mobile phones. One. This lithium nickel composite oxide is, for example, “spherical LiCoO by ultrasonic spray pyrolysis.2Synthesis of Fine Powder and Application to Active Materials for Lithium Rechargeable Batteries "(Takashi Sugawara, Yoshihiko Saito, Akiaki Yanagawa, Nobuo Ogata, Kokiyoshi Yoshida, Masayuki Takashima, Satoshi Yonezawa, Yasuharu Mizuno, Kenji Nagata, Kenji Ogawa, Journal of LiMO as described in Journal of the Ceramic Society of Japan, Volume 101, pages 1159 to 1163 (1993)2(Wherein M is Cr, Mn, Ni, Fe, Co or V), which is one of a group of compounds represented by LiCoO2Similarly, since the charge / discharge voltage is particularly high, it is very useful as a positive electrode active material.
[0003]
When such a lithium nickel composite oxide is used as a positive electrode active material of a lithium ion secondary battery, in order to improve its performance, a lithium nickel composite oxide having a changed composition or a lithium nickel composite oxide Improvements in physical properties have been proposed.
[0004]
Japanese Patent Application Laid-Open No. 4-328278 discloses that the composition of the lithium nickel composite oxide is changed.xMO2(M represents a transition metal. 0.05 ≦ x <1.10)3A content of 0.5 to 15% by weight is described.
[0005]
JP-A-6-150929 discloses LiNiO containing at least one of Na and K.2Is described. JP-A-62-256371, JP-A-5-36411, and JP-A-7-307150 disclose LiNiO containing elements such as Co, V, Cr, Fe, P, B, Si, Mo, and W.2Is described. As an improvement of the physical properties of a lithium nickel composite oxide, Japanese Patent Application Laid-Open No. 7-10590 discloses LiNiO composed of secondary and aggregated particles whose primary particles are 1 μm or less.2Particles are disclosed. This LiNiO2It is described that the particles are excellent in reproducibility and can obtain a high charge / discharge amount when used as a positive electrode active material of a lithium ion secondary battery.
[0006]
However, even if the battery is manufactured using the lithium nickel composite oxide thus improved, when the battery is left in a high-temperature environment for a long time, for example, the battery is mounted during midsummer day. When left in an automobile where a mobile phone is stopped, the lithium-nickel composite oxide of the positive electrode active material reacts with the non-aqueous electrolyte, and part of the non-aqueous electrolyte decomposes and gasifies, increasing the internal pressure of the battery container. As a result, the battery may explode, causing damage such as damage to the battery-equipped device, causing a fire, and causing environmental hazards.
[0007]
In order to solve such problems, Japanese Patent Laid-Open No. 8-138670 discloses a lithium nickel composite oxide (LiNiO2) Non-aqueous solvent secondary batteries have been proposed in which the surface layer of the powder is a layer having a high concentration of different kinds of transition elements such as cobalt as the positive electrode active material of the secondary battery. However, like the lithium nickel composite oxide powder shown in the examples of the above publication, the concentration of a different element, such as cobalt, present in the surface layer of the powder particles is low, and the atomic ratio of the different element to nickel is 0. The solution to the above-mentioned problem is still not sufficient.
[0008]
[Problems to be solved by the invention]
  The present invention has been made in order to solve the above-described problems in conventional lithium nickel composite oxides, and has a two-layer structure composed of lithium composite oxides having different metal species constituting the oxides. Particulate composition havingManufacturing methodBecauseThis particulate compositionLithium composite oxide particles that can suppress decomposition of the non-aqueous electrolyte to a minimum even when kept at a high temperature by constituting a lithium ion secondary battery using a positive electrode active material as a positive electrode active material CompositionManufacturing methodThe purpose is to provide.
[0009]
More specifically, when a lithium ion secondary battery using lithium nickel composite oxide particles as a positive electrode active material is held at a high temperature, the decomposition reaction of the nonaqueous electrolyte at the interface between the active material particles and the nonaqueous electrolyte Occurs, decomposition gas is generated, the pressure in the battery container rises, and the battery may burst. Therefore, in order to suppress the decomposition of the non-aqueous electrolyte, the interface between the active material particles and the non-aqueous electrolyte should be made as small as possible, that is, the specific surface area of the active material particles should be made as small as possible. However, in general, when the specific surface area of the active material particles is reduced, the charge / discharge capacity is lowered and the charge / discharge response is also lowered. Therefore, the use of active material particles having a specific surface area capable of obtaining battery characteristics in which these characteristics are balanced has been an important requirement for manufacturing a lithium ion secondary battery.
[0010]
  However, the present inventors have disclosed a particulate composition for an active material for a lithium ion secondary battery having excellent high-temperature stability regardless of the specific surface area of the active material particles.Manufacturing methodAs a result, the present invention has been achieved.
[0011]
[Means for Solving the Problems]
  According to the present invention, a nickel hydroxide powder is dispersed in water, and in the presence of ammonium ions, a cobalt salt aqueous solution and a caustic aqueous solution are continuously added to cause a reaction. A center layer made of lithium nickel composite oxide and a surface layer made of lithium cobalt composite oxide are prepared by preparing particles formed by coating cobalt hydroxide on the surface, mixing this with lithium hydroxide and firing. And having a cobalt / (nickel + cobalt) atomic ratio in the range of 0.2 to 1 from the particle surface to a depth of 0.1 μm, a two-layered particulate composition for a positive electrode active material for a lithium ion secondary battery A method of manufacturing an article is provided.
[0012]
  Further, according to the present invention, nickel hydroxide powder is dispersed in water, and in the presence of ammonium ions, a cobalt salt aqueous solution and a caustic aqueous solution are continuously added to cause a reaction. Prepare particles by coating the surface of the particles with cobalt hydroxide, oxidize them to prepare nickel cobalt oxide, and then hydrothermally react with lithium hydroxide in an aqueous dispersion medium. A cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm is 0.2. A method for producing a two-layered particulate composition for a positive electrode active material for a lithium ion secondary battery in the range of ˜1 is provided..
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The two-layered particulate composition according to the present invention will be described in detail below.
The particulate composition according to the present invention is a particulate composition comprising a central layer and a surface layer. The central layer is made of a lithium nickel composite oxide, and the surface layer is made of a lithium cobalt composite oxide. However, the center layer and the surface layer may each contain other oxides or composite oxides as long as they do not adversely affect the battery characteristics.
[0015]
The two-layer structure particulate composition according to the present invention may have any shape as long as it has a two-layer structure. For example, the central layer, which is a primary particle composed of a lithium nickel composite oxide, is mixed with lithium cobalt composite oxide. In addition to those having a structure covered with a surface layer made of a material, the central layer, the surface layer, or both of them may be an aggregate of primary particles made of the respective complex oxides. As will be described later, the shape is preferably substantially spherical. However, the shape may be substantially cubic or other shapes.
[0016]
The shape and size of the particulate composition according to the present invention are not particularly limited, but when used as a positive electrode active material of a lithium ion secondary battery, the average particle diameter is 3 to 100 μm, It is preferably spherical. Thus, when the particulate composition is substantially spherical, it is preferable because it is excellent in filling property, that is, the packing density can be increased. Further, when the average particle size is less than 3 μm, when used as a positive electrode active material of a lithium ion secondary battery, the filling rate is low, so the electric capacity per unit volume of the battery is low, while the average When the particle diameter exceeds 100 μm, for example, the particles may pass through a separator made of a porous film of a polymer such as polypropylene, which may cause a short circuit between the positive electrode and the negative electrode. In particular, the size of the particulate composition according to the present invention is preferably in the range of 3-50 μm, most preferably in the range of 5-30 μm.
[0017]
However, the particulate composition having a shape other than spherical may be used as a positive electrode active material for a lithium ion secondary battery, if necessary.
In the particulate composition according to the present invention, the central layer is made of a lithium nickel composite oxide, and preferably has the general formula (I)
LipNi1-xAxOy
(In the formula, A is B, Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Y, Zr, Nb, Mo, Ru, Sn, Sb, La. And at least one element selected from the group consisting of Ce, Pr, Nb, Hf, Ta and Pb, p is a number in the range of 0.90 to 1.10, and x is 0 to 0.25. The number of the range is shown, and y is the number of the range of 1.825 to 2.3.)
It consists of lithium nickel complex oxide represented by these.
[0018]
On the other hand, in the particulate composition according to the present invention, the surface layer is composed of a lithium cobalt composite oxide, and preferably the general formula (II)
LiqCo1-aZaOb
(In the formula, Z is B, Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Ru, Sn, Sb, La. , Ce, Pr, Nd, Hf, Ta and Pb, at least one element selected from the group consisting of q, q represents a number in the range of 0.90 to 1.10, and a is 0 to 0.25. The number of the range is shown, and b is the number of the range of 1.825 to 2.3.)
It consists of lithium cobalt complex oxide represented by these.
[0019]
In the above general formulas (I) and (II), by using a particulate composition in which x or a is in the range of 0 to 0.25 as a positive electrode active material in a lithium ion secondary battery, storage characteristics of the battery Can be further enhanced. However, when x or a exceeds 0.25, the charge / discharge capacity of the battery is greatly reduced, which is not preferable.
[0020]
As described above, the two-layer structure particulate composition according to the present invention comprises a central layer made of a lithium nickel composite oxide and a surface layer made of a lithium cobalt composite oxide. Although it has a high charge / discharge capacity of 190 mAh / g or more, it is easy to decompose the non-aqueous electrolyte at a high temperature. On the other hand, the lithium cobalt composite oxide has a charge / discharge capacity lower than that of the lithium nickel composite oxide, about 150 mAh / g. However, it is difficult to decompose the non-aqueous electrolyte even when kept at a high temperature. Thus, the particulate composition according to the present invention uses only the advantages of the two lithium composite oxides and is combined so as to compensate for the drawbacks.
[0021]
That is, when the two-layer structured particulate composition according to the present invention is used as a positive electrode active material of a lithium ion secondary battery, only the surface-laminated lithium cobalt composite oxide comes into contact with the non-aqueous electrolyte. As described above, the lithium cobalt composite oxide is difficult to decompose the non-aqueous electrolyte even when kept at a high temperature, and thus contributes to the stability of the battery. It has a lithium nickel composite oxide having a large charge / discharge capacity as a central layer, and therefore has a high charge / discharge capacity as a whole.
[0022]
Thus, when the two-layered particulate composition according to the present invention is used as a positive electrode active material of a lithium ion secondary battery, a secondary battery having excellent high temperature stability and high charge / discharge capacity can be obtained.
[0023]
  In the present invention, the quantitative ratio between the surface layer and the center layer is not particularly limited, and when the charge / discharge capacity is emphasized, the ratio of the center layer is increased and the high temperature stability is emphasized. The ratio of the surface layer may be increased, and an arbitrary ratio can be used depending on the target battery characteristics. However, in the two-layered particulate composition according to the present invention, the sum of the number of cobalt atoms and Z atoms in the surface layer (Co + Z) and the sum of the number of nickel atoms and A atoms in the center layer (Ni + A), that is, Of the surface layer (Co + Z)/ (Ni + A) atomic ratio of the central layer is usually in the range of 5/100 to 50/100, and preferably in the range of 10/100 to 30/100.
[0024]
In the two-layer structure particulate composition according to the present invention, the surface of the particle is ideally completely covered with the lithium cobalt composite oxide. However, in practice, the particle surface is 0.1 μm from the particle surface. By using such a composition as a positive electrode active material in a lithium ion secondary battery when the cobalt / (nickel + cobalt) atomic ratio to the depth is in the range of 0.2 to 1, the stability of the target battery can be improved. Sex can be obtained. In particular, according to the present invention, the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm is preferably in the range of 0.3 to 1, more preferably 0.5 to 1. It is preferable to be in the range.
[0025]
Furthermore, in the two-layer structure particulate composition according to the present invention, the lithium nickel composite oxide represented by the formula (I) is usually the ratio of Li atoms to the sum of Ni atoms and A atoms, that is, Li / ( Ni + A) a stoichiometric composite oxide with an atomic ratio of 1, ie, p = 1, but a non-stoichiometric composite oxide with an Li / (Ni + A) atomic ratio of 1 There may be. That is, p is a number in the range of 0.90 to 1.10.
[0026]
Similarly, in the two-layer structure particulate composition according to the present invention, the lithium cobalt composite oxide represented by the formula (II) usually has a ratio of Li atoms to the sum of Co atoms and Z atoms, that is, Li / A stoichiometric composite oxide having a (Co + Z) atomic ratio of 1, that is, q = 1, but a non-stoichiometric composite oxide having an Li / (Co + Z) atomic ratio of 1 It may be. That is, q is a number in the range of 0.90 to 1.10.
[0027]
The two-layer structured particulate composition according to the present invention can be produced, for example, by the following method. According to such a production method, a two-layered particulate composition according to the present invention in which the cobalt / (nickel + cobalt) atomic ratio from the surface to a depth of 0.1 μm is in the range of 0.2 to 1 is obtained. Can do.
[0028]
(1) To a slurry in which nickel hydroxide powder is dispersed in water, a cobalt salt aqueous solution and a caustic aqueous solution are continuously added and reacted in the presence of ammonium ions, whereby water is added to the surface of the nickel hydroxide particles. Particles coated with cobalt oxide are prepared. The particulate composition according to the present invention can be obtained by mixing this with lithium hydroxide and baking it.
[0029]
(2) In the same manner as described above, particles obtained by coating the surface of nickel hydroxide particles with cobalt hydroxide are prepared and oxidized to prepare nickel hydroxide-containing cobalt. The particulate composition according to the present invention can be obtained by performing a hydrothermal reaction with lithium hydroxide in an aqueous dispersion medium at high temperature and pressure.
[0030]
The lithium ion secondary battery according to the present invention uses the two-layered particulate composition as described above as a positive electrode active material.
[0031]
An example of a lithium ion secondary battery is shown in FIG. The positive electrode 1 and the negative electrode 2 are accommodated in the battery container 4 so as to face each other via a separator 3 impregnated with a nonaqueous electrolyte solution. The positive electrode 1 is connected to a positive electrode lead wire 6 via a positive electrode current collector 5. The negative electrode 2 is connected to the negative electrode lead wire 8 via the negative electrode current collector 7, and chemical energy generated inside the battery is taken out from the lead wires 6 and 8 to the outside as electrical energy. Configured to get.
[0032]
The particulate composition according to the present invention is mixed with a conductive agent, a binder, a filler, and the like, kneaded to form a mixture, and this is applied to a positive electrode current collector made of, for example, a stainless mesh, and pressed. Then, heat drying under reduced pressure to obtain a positive electrode. Further, the mixture may be formed into an appropriate shape such as a disk, and may be heat treated under vacuum as necessary to form a positive electrode.
[0033]
The conductive agent is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in a lithium ion secondary battery. For example, natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, A metal powder, a metal fiber, a polyphenylene derivative, etc. can be mentioned. These may be used alone or in combination of two or more.
[0034]
Although the compounding quantity of the said electrically conductive agent in the said mixture is not specifically limited, Usually, 1 to 50 weight% is preferable and the range of 2 to 30 weight% is especially preferable. Also, the binder is not particularly limited. For example, starch, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinyl chloride, polyvinyl pyrrolidone, tetrafluoroethylene, polyvinylidene fluoride, polyethylene, Examples thereof include polypropylene, ethylene-propylene-diene copolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, polybutadiene, fluororubber, and polyethylene oxide. These may be used alone or in combination of two or more. The blending amount of the binder in the mixture is not particularly limited, but is usually in the range of 1 to 50% by weight, and preferably in the range of 2 to 30% by weight.
[0035]
A filler is mix | blended with a positive electrode active material as needed. The filler is not particularly limited as long as it is a fibrous material that does not cause a chemical change in a lithium ion secondary battery, and examples thereof include olefin polymers such as polypropylene and polyethylene, fibers such as glass and carbon, and the like. it can. The blending amount of these fillers in the mixture is not particularly limited, but is usually preferably in the range of 0 to 30% by weight.
[0036]
  In the lithium ion secondary battery according to the present invention, the negative electrode is not particularly limited as long as it is conventionally used in a lithium ion secondary battery. For example, lithium, lithium alloy, stainless steel , Nickel, copper, titanium, aluminum, baked carbon, and the like.
[0037]
  Positive electrode and negative electrodeIsUsually formed on a current collector. Although it does not specifically limit as a collector, Usually, stainless steel, its mesh, etc. are used.
[0038]
Further, the non-aqueous electrolyte solution may be any one as long as it is conventionally known. For example, carbonates such as propylene carbonate, sulfolanes, lactones, 1,2-dimethoxyethane, etc. Examples thereof include those obtained by dissolving dissociable lithium salts such as lithium perchlorate and lithium hexafluorophosphate in an organic solvent such as ethers. As the separator, for example, a porous film made of a synthetic high molecular weight polymer such as polypropylene is used, but the separator is not limited thereto.
[0039]
【The invention's effect】
The two-layer structure particulate composition according to the present invention comprises a central layer made of lithium nickel composite oxide and a surface layer made of lithium cobalt composite oxide, and has a cobalt / coating depth of 0.1 μm from the particle surface. The (nickel + cobalt) atomic ratio is in the range of 0.2 to 1, and the lithium ion secondary battery according to the present invention uses such a two-layered particulate composition as a positive electrode active material.
[0040]
Therefore, according to the lithium ion secondary battery of the present invention, the non-aqueous electrolyte contacts only the lithium cobalt composite oxide of the surface layer which is difficult to decompose the non-aqueous electrolyte even when kept at a high temperature, The particulate composition has a lithium nickel composite oxide having a large charge / discharge capacity as a central layer, and the particulate composition has a high charge / discharge capacity as a whole. Thus, the lithium ion secondary battery according to the present invention has high temperature stability and high charge / discharge capacity.
[0041]
The lithium ion secondary battery according to the present invention is, for example, a notebook computer, a mobile phone, a cordless phone, a video movie, a liquid crystal television, an electric shaver, a portable radio, a headphone stereo, a backup power supply, a memory card and other electronic devices, a pacemaker. It can be suitably used for medical devices such as hearing aids.
[0042]
【Example】
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In the following examples, the amount of transition elements (moles) in each raw material used for preparing the center layer and the surface layer, and the resulting surface layer element amount / center layer element amount molar ratio are shown in Table 1 and Table 2 summarizes the results.
[0043]
Example 1
A sodium hydroxide aqueous solution was continuously added to a nickel nitrate aqueous solution in the presence of ammonium ions and neutralized to obtain secondary particle powder made of substantially spherical nickel hydroxide in which primary particles were aggregated. This powder has a specific surface area of 148 m.2/ G. A scanning electron micrograph of this powder is shown in FIG.
[0044]
A slurry was obtained by dispersing 18.54 g of this spherical nickel hydroxide in 0.1 L of water in a 1.0 L glass beaker. To this slurry, 17.0 mL of cobalt nitrate aqueous solution (1.2 mol / L) was added in the presence of ammonium ions, and after sealing the beaker, nitrogen gas was added to the slurry at a rate of 0.5 L / min while stirring. Introduced and replaced with nitrogen. After 30 minutes, an aqueous sodium hydroxide solution (0.11 mol / L) was added at a rate of 1.0 mL / min for 8 hours using a metering pump. The precipitate thus obtained was filtered, washed with water, and dried for one day at 60 ° C. in an electric dryer to obtain about 20 g of powder.
[0045]
As a result of X-ray diffraction analysis of this powder, as shown in FIG. 3, nickel hydroxide (Ni (OH))2Only the peak of) was confirmed. Further, as shown in FIG. 4, a scanning electron micrograph of this powder was composed of substantially spherical particles.
[0046]
Further, as shown in FIG. 5, when the particle cross-section was analyzed by EPMA (electron beam probe microanalyzer), it was confirmed that nickel was unevenly distributed in the center of the particle and cobalt was unevenly distributed in the surface of the particle. It was done.
[0047]
From the above analysis results, the powder has a crystalline nickel hydroxide (Ni (OH)) at the center.2), And the surface layer is amorphous cobalt hydroxide (Co (OH))2) To be substantially spherical particles.
[0048]
After 10.2 g of this powder was mixed with 4.2 g of lithium hydroxide monohydrate, it was placed in an alumina crucible and baked at 800 ° C. for 10 hours in an oxygen atmosphere to obtain a black powder. The center of this powder was lithium nickel composite oxide (LiNiO) based on X-ray diffraction, line analysis of cobalt and nickel by EPMA, and observation with a scanning electron microscope.2And the surface layer portion is a lithium cobalt composite oxide (LiCoO).2) Was confirmed to be a spherical particle having a two-layer structure. Furthermore, when the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm was measured by Auger electron spectroscopy, it was 0.2 or more.
[0049]
Example 2
A slurry was obtained by dispersing 18.54 g of the spherical nickel hydroxide prepared in Example 1 in 0.1 L of water in a 1.0 L glass beaker. To this slurry, 34.0 mL of an aqueous cobalt nitrate solution (1.2 mol / L) was added in the presence of ammonium ions. After sealing the beaker, nitrogen gas was added to the slurry at a rate of 0.5 L / min while stirring. Introduced and replaced with nitrogen. After 30 minutes, an aqueous sodium hydroxide solution (0.22 mol / L) was added at a rate of 1.0 mL / min with a metering pump for 8 hours. The precipitate thus obtained was filtered, washed with water, and dried for one day at 60 ° C. in an electric dryer to obtain about 20 g of powder.
[0050]
When this powder was analyzed by X-ray diffraction, nickel hydroxide (Ni (OH))2) Was confirmed, and this powder consisted of substantially spherical particles according to observation with a scanning electron microscope. Further, when the cross section of the particle was analyzed by EPMA (electron probe microanalyzer), it was confirmed that nickel was unevenly distributed in the center of the particle and cobalt was unevenly distributed in the surface of the particle.
[0051]
From the above analysis results, the particles have a crystalline nickel hydroxide (Ni (OH)) at the center.2), And the surface layer is amorphous cobalt hydroxide (Co (OH))2) To be substantially spherical particles.
[0052]
After mixing lithium hydroxide monohydrate 5.04g with 13.37g of this powder, it put into the crucible made from an alumina, and baked at 600 degreeC for 10 hours in oxygen atmosphere, and obtained black powder. The center of this powder was lithium nickel composite oxide (LiNiO) based on X-ray diffraction, line analysis of cobalt and nickel by EPMA, and observation with a scanning electron microscope.2And the surface layer portion is a lithium cobalt composite oxide (LiCoO).2) Was confirmed to be a spherical particle having a two-layer structure. Furthermore, when the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm was measured by Auger electron spectroscopy, it was 0.2 or more.
[0053]
Example 3
A slurry was obtained by dispersing 18.54 g of the spherical nickel hydroxide prepared in Example 1 in 0.1 L of water in a 1.0 L glass beaker. To this slurry was added 68.0 mL of an aqueous cobalt nitrate solution (1.2 mol / L) in the presence of ammonium ions, and after sealing the beaker, nitrogen gas was added to the slurry at a rate of 0.5 L / min while stirring. Introduced and replaced with nitrogen. After 30 minutes, an aqueous sodium hydroxide solution (0.44 mol / L) was added at a rate of 1.0 mL / min with a metering pump for 8 hours. The precipitate thus obtained was filtered, washed with water, and dried for one day at 60 ° C. in an electric dryer to obtain about 20 g of powder.
[0054]
When this powder was analyzed by X-ray diffraction, nickel hydroxide (Ni (OH))2) Was confirmed, and this powder consisted of substantially spherical particles according to observation with a scanning electron microscope. Further, when the cross section of the particle was analyzed by EPMA (electron probe microanalyzer), it was confirmed that nickel was unevenly distributed in the center of the particle and cobalt was unevenly distributed in the surface of the particle.
[0055]
From the above analysis results, the particles have a crystalline nickel hydroxide (Ni (OH)) at the center.2), And the surface layer is amorphous cobalt hydroxide (Co (OH))2) To be substantially spherical particles.
[0056]
After 9.28 g of this powder was mixed with 4.2 g of lithium hydroxide monohydrate, it was placed in an alumina crucible and fired at 800 ° C. for 10 hours in an oxygen atmosphere to obtain a black powder. The center of this powder was lithium nickel composite oxide (LiNiO) based on X-ray diffraction, line analysis of cobalt and nickel by EPMA, and observation with a scanning electron microscope.2And the surface layer portion is a lithium cobalt composite oxide (LiCoO).2) Was confirmed to be a spherical particle having a two-layer structure. Furthermore, when the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm was measured by Auger electron spectroscopy, it was 0.2 or more.
[0057]
Example 4
A slurry was obtained by dispersing 18.54 g of the spherical nickel hydroxide prepared in Example 1 in 0.1 L of water in a 1.0 L glass beaker. To this slurry, 61.2 mL of an aqueous cobalt nitrate solution (1.2 mol / L) and 6.8 mL of an aqueous iron nitrate solution (1.2 mol / L) were added in the presence of ammonium ions, and the beaker was sealed and stirred. Nitrogen gas was introduced into the slurry at a rate of 0.5 L / min to perform nitrogen substitution. After 30 minutes, an aqueous sodium hydroxide solution (0.44 mol / L) was added at a rate of 1.0 mL / min with a metering pump for 8 hours. The precipitate thus obtained was filtered, washed with water, and dried for one day at 60 ° C. in an electric dryer to obtain about 26 g of powder.
[0058]
X-ray diffraction analysis of the powder of nickel hydroxide (Ni (OH)2) Was confirmed, and this powder consisted of substantially spherical particles according to observation with a scanning electron microscope. Further, when the cross section of the particle was subjected to a line analysis with an EPMA (electron probe microanalyzer), it was confirmed that nickel was localized in the center of the particle and cobalt and iron were unevenly distributed in the particle surface layer.
[0059]
From the above analysis results, the particles have a crystalline nickel hydroxide (Ni (OH)) at the center.2), And the surface layer is amorphous cobalt hydroxide (Co (OH))2) And ferrous hydroxide (Fe (OH)2) To be substantially spherical particles.
[0060]
After 9.27 g of this powder was mixed with 4.2 g of lithium hydroxide monohydrate, it was placed in an alumina crucible and baked in an oxygen atmosphere at 700 ° C. for 10 hours to obtain a black powder. This powder has a lithium nickel composite oxide (LiNiO) at the center from X-ray diffraction, line analysis of cobalt, nickel and iron by EPMA, and scanning electron microscope observation.2) And the surface layer portion is a lithium cobalt iron composite oxide (LiCo0.9Fe0.1O2) Was confirmed to be a spherical particle having a two-layer structure. Furthermore, when the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm was measured by Auger electron spectroscopy, it was 0.2 or more.
[0061]
Example 5
Primary particles are aggregated by adding and neutralizing an aqueous solution of sodium hydroxide in a nitrogen atmosphere in the presence of ammonium ions to an aqueous solution in which nickel nitrate and cobalt nitrate are mixed at a stoichiometric ratio of 85:15. As a result, secondary particle powder made of substantially spherical nickel cobalt hydroxide was obtained. This powder has a specific surface area of 160 m.2/ G.
[0062]
A slurry was obtained by dispersing 18.54 g of this spherical nickel cobalt hydroxide in 0.1 L of water in a 1.0 L glass beaker. To this slurry was added 68.0 mL of an aqueous cobalt nitrate solution (1.2 mol / L) in the presence of ammonium ions, and after sealing the beaker, nitrogen gas was added to the slurry at a rate of 0.5 L / min while stirring. Introduced and replaced with nitrogen. After 30 minutes, an aqueous sodium hydroxide solution (0.44 mol / L) was added at a rate of 1.0 mL / min with a metering pump for 8 hours. The precipitate thus obtained was filtered, washed with water, and dried for one day at 60 ° C. in an electric dryer to obtain about 26 g of powder.
[0063]
When this powder was analyzed by X-ray diffraction, nickel cobalt hydroxide (Ni0.85Co0.15(OH)2) Was confirmed, and this powder consisted of substantially spherical particles according to observation with a scanning electron microscope. Further, when the cross section of the particle was subjected to line analysis by EPMA (electron probe microanalyzer), it was confirmed that nickel and cobalt were unevenly distributed at the center of the particle and cobalt was unevenly distributed at the surface of the particle.
[0064]
From the above analysis results, the particles have a crystalline nickel cobalt hydroxide (Ni0.85Co0.15(OH)2), And the surface layer is amorphous cobalt hydroxide (Co (OH))2) To be substantially spherical particles.
[0065]
After 9.28 g of this powder was mixed with 4.2 g of lithium hydroxide monohydrate, it was placed in an alumina crucible and baked in an oxygen atmosphere at 700 ° C. for 10 hours to obtain a black powder. The center of this powder was lithium nickel cobalt composite oxide (LiNi) based on X-ray diffraction, line analysis of cobalt and nickel by EPMA, and observation with a scanning electron microscope.0.85Co0.15O2And the surface layer portion is a lithium cobalt composite oxide (LiCoO).2) Was confirmed to be a spherical particle having a two-layer structure. Furthermore, when the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm was measured by Auger electron spectroscopy, it was 0.2 or more.
[0066]
Example 6
A slurry was obtained by dispersing 18.54 g of the spherical nickel hydroxide powder prepared in Example 1 in 0.1 L of water in a 1.0 L glass beaker. To this slurry was added 50.0 mL of an aqueous cobalt nitrate solution (1.2 mol / L) in the presence of ammonium ions, and after sealing the beaker, nitrogen gas was added to the slurry at a rate of 0.5 L / min while stirring. Introduced and replaced with nitrogen. After 30 minutes, an aqueous sodium hydroxide solution (0.32 mol / L) was added at a rate of 1.0 mL / min with a metering pump for 8 hours. The precipitate thus obtained was filtered, washed with water, and dried for one day at 60 ° C. in an electric dryer to obtain about 24 g of powder.
[0067]
When this powder was analyzed by X-ray diffraction, nickel hydroxide (Ni (OH))2) Was confirmed, and this powder consisted of substantially spherical particles according to observation with a scanning electron microscope. Further, when the cross section of the particle was analyzed by EPMA (electron probe microanalyzer), it was confirmed that nickel was unevenly distributed in the center of the particle and cobalt was unevenly distributed in the surface of the particle.
[0068]
From the above analysis results, the particles have a crystalline nickel hydroxide (Ni (OH)) at the center.2), And the surface layer is amorphous cobalt hydroxide (Co (OH))2) To be substantially spherical particles.
[0069]
After 9.28 g of this powder was mixed with 4.2 g of lithium hydroxide monohydrate, it was placed in an alumina crucible and baked in an oxygen atmosphere at 700 ° C. for 5 hours to obtain a black powder. The center of this powder was lithium nickel composite oxide (LiNiO) based on X-ray diffraction, line analysis of cobalt and nickel by EPMA, and observation with a scanning electron microscope.2And the surface layer portion is a lithium cobalt composite oxide (LiCoO).2) Was confirmed to be a spherical particle having a two-layer structure. Furthermore, when the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm was measured by Auger electron spectroscopy, it was 0.2 or more.
[0070]
Example 7
A slurry was obtained by dispersing 18.54 g of the spherical nickel hydroxide prepared in Example 1 in 0.1 L of water in a 1.0 L glass beaker. To this slurry was added 50.0 mL of an aqueous cobalt nitrate solution (1.2 mol / L) in the presence of ammonium ions, and after sealing the beaker, nitrogen gas was added to the slurry at a rate of 0.5 L / min while stirring. Introduced and replaced with nitrogen. After 30 minutes, an aqueous sodium hydroxide solution (0.32 mol / L) was added at a rate of 1.0 mL / min with a metering pump for 8 hours. The precipitate thus obtained was filtered, washed with water, and dried for one day at 60 ° C. in an electric dryer to obtain about 24 g of powder.
[0071]
When this powder was analyzed by X-ray diffraction, nickel hydroxide (Ni (OH))2) Was confirmed, and this powder consisted of substantially spherical particles according to observation with a scanning electron microscope. Further, when the cross section of the particle was analyzed by EPMA (electron probe microanalyzer), it was confirmed that nickel was unevenly distributed in the center of the particle and cobalt was unevenly distributed in the surface of the particle.
[0072]
From the above analysis results, the particles have a crystalline nickel hydroxide (Ni (OH)) at the center.2), And the surface layer is amorphous cobalt hydroxide (Co (OH))2) To be substantially spherical particles.
[0073]
24.1 g of this powder was oxidized with sodium persulfate in an aqueous slurry, then filtered and washed with water to obtain a nickel cobalt oxyhydroxide cake. 25.2 g of lithium hydroxide monohydrate was mixed with the total amount of this nickel cobalt oxyhydroxide, and ion-exchanged water was added to the resulting mixture to make the total amount 400 mL. The slurry was charged into an autoclave and heated at a temperature of 200 ° C. for 4 hours to perform hydrothermal treatment.
[0074]
After completion of the reaction, the slurry was filtered and washed with water, and the solid was heated to 100 ° C. and dried. The powder thus obtained was subjected to X-ray diffraction, line analysis of cobalt and nickel by EPMA, and observation by a scanning electron microscope.2And the surface layer portion is a lithium cobalt composite oxide (LiCoO).2) Was confirmed to be a spherical particle having a two-layer structure. Furthermore, when the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm was measured by Auger electron spectroscopy, it was 0.2 or more.
[0075]
Example 8
18.54 g of the secondary particle powder made of substantially spherical nickel hydroxide obtained in Example 1 was dispersed in 0.1 L of water in a 1.0 L glass beaker to obtain a slurry. To this slurry, 17.0 mL of cobalt nitrate aqueous solution (1.2 mol / L) was added in the presence of ammonium ions, and after sealing the beaker, nitrogen gas was added to the slurry at a rate of 0.5 L / min while stirring. Introduced and replaced with nitrogen. After 30 minutes, an aqueous sodium hydroxide solution (0.11 mol / L) was added at a rate of 1.0 mL / min for 8 hours using a metering pump. The precipitate thus obtained was filtered, washed with water, and dried for one day at 60 ° C. in an electric dryer to obtain about 20 g of powder.
[0076]
After 9.38 g of this powder was mixed with 3.8 g of lithium hydroxide monohydrate, it was placed in an alumina crucible and baked in an oxygen atmosphere at 700 ° C. for 10 hours to obtain a black powder. From the X-ray diffraction, EPMA cobalt and nickel line analysis, and scanning electron microscope observation, this powder has a lithium nickel composite oxide (Li0.90NiO1.95), And the surface layer portion is a lithium cobalt composite oxide (Li0.90CoO1.95) Was confirmed to be a spherical particle having a two-layer structure. Furthermore, when the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm was measured by Auger electron spectroscopy, it was 0.2 or more.
[0077]
Example 9
18.54 g of the secondary particle powder made of substantially spherical nickel hydroxide obtained in Example 1 was dispersed in 0.1 L of water in a 1.0 L glass beaker to obtain a slurry. To this slurry, 17.0 mL of cobalt nitrate aqueous solution (1.2 mol / L) was added in the presence of ammonium ions, and after sealing the beaker, nitrogen gas was added to the slurry at a rate of 0.5 L / min while stirring. Introduced and replaced with nitrogen. After 30 minutes, an aqueous sodium hydroxide solution (0.11 mol / L) was added at a rate of 1.0 mL / min for 8 hours using a metering pump. The precipitate thus obtained was filtered, washed with water, and dried for one day at 60 ° C. in an electric dryer to obtain about 20 g of powder.
[0078]
After mixing 9.27 g of this powder with 4.6 g of lithium hydroxide monohydrate, it was placed in an alumina crucible and baked in an oxygen atmosphere at 700 ° C. for 10 hours to obtain a black powder. From the X-ray diffraction, EPMA cobalt and nickel line analysis, and scanning electron microscope observation, this powder has a lithium nickel composite oxide (Li1.1NiO2.05), And the surface layer portion is a lithium cobalt composite oxide (Li1.1CoO2.05) Was confirmed to be a spherical particle having a two-layer structure. Furthermore, when the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm was measured by Auger electron spectroscopy, it was 0.2 or more.
[0079]
Example 10
18.54 g of the secondary particle powder made of substantially spherical nickel hydroxide obtained in Example 1 was dispersed in 0.1 L of water in a 1.0 L glass beaker to obtain a slurry. To this slurry, 15.8 mL of cobalt nitrate aqueous solution (1.2 mol / L) and 1.0 mL of copper nitrate aqueous solution (1.0 mol / L) were added in the presence of ammonium ions, and the beaker was sealed and stirred. However, nitrogen gas was introduced into the slurry at a rate of 0.5 L / min to perform nitrogen substitution. After 30 minutes, an aqueous sodium hydroxide solution (0.11 mol / L) was added at a rate of 1.0 mL / min for 8 hours using a metering pump. The precipitate thus obtained was filtered, washed with water, and dried for one day at 60 ° C. in an electric dryer to obtain about 20 g of powder.
[0080]
After 9.27 g of this powder was mixed with 4.2 g of lithium hydroxide monohydrate, it was placed in an alumina crucible and baked in an oxygen atmosphere at 800 ° C. for 10 hours to obtain a black powder. The center of this powder was lithium nickel composite oxide (LiNiO) based on X-ray diffraction, line analysis of cobalt and nickel by EPMA, and observation with a scanning electron microscope.2The surface layer portion is a lithium cobalt composite oxide (LiCo0.95Cu0.05O2) Was confirmed to be a spherical particle having a two-layer structure. Furthermore, when the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm was measured by Auger electron spectroscopy, it was 0.2 or more.
[0081]
Example 11
18.54 g of the secondary particle powder made of substantially spherical nickel hydroxide obtained in Example 1 was dispersed in 0.1 L of water in a 1.0 L glass beaker to obtain a slurry. To this slurry, 15.0 mL of an aqueous cobalt nitrate solution (1.2 mol / L) and 2.0 mL of an aqueous magnesium nitrate solution (1.0 mol / L) were added in the presence of ammonium ions, and the beaker was sealed and stirred. However, nitrogen gas was introduced into the slurry at a rate of 0.5 L / min to perform nitrogen substitution. After 30 minutes, an aqueous sodium hydroxide solution (0.11 mol / L) was added at a rate of 1.0 mL / min for 8 hours using a metering pump. The precipitate thus obtained was filtered, washed with water, and dried for one day at 60 ° C. in an electric dryer to obtain about 20 g of powder.
[0082]
After 9.24 g of this powder was mixed with 4.2 g of lithium hydroxide monohydrate, it was placed in an alumina crucible and baked in an oxygen atmosphere at 800 ° C. for 10 hours to obtain a black powder. The center of this powder was lithium nickel composite oxide (LiNiO) based on X-ray diffraction, line analysis of cobalt and nickel by EPMA, and observation with a scanning electron microscope.2The surface layer portion is a lithium cobalt composite oxide (LiCo0.90Mg0.10O1.95) Was confirmed to be a spherical particle having a two-layer structure. Furthermore, when the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm was measured by Auger electron spectroscopy, it was 0.2 or more.
[0083]
Example 12
18.54 g of the secondary particle powder made of substantially spherical nickel hydroxide obtained in Example 1 was dispersed in 0.1 L of water in a 1.0 L glass beaker to obtain a slurry. To this slurry, 15.8 mL of a cobalt nitrate aqueous solution (1.2 mol / L) and 1.0 mL of an aluminum nitrate aqueous solution (1.0 mol / L) were added in the presence of ammonium ions, and the beaker was sealed and stirred. However, nitrogen gas was introduced into the slurry at a rate of 0.5 L / min to perform nitrogen substitution. After 30 minutes, an aqueous sodium hydroxide solution (0.11 mol / L) was added at a rate of 1.0 mL / min for 8 hours using a metering pump. The precipitate thus obtained was filtered, washed with water, and dried for one day at 60 ° C. in an electric dryer to obtain about 20 g of powder.
[0084]
After 9.27 g of this powder was mixed with 4.2 g of lithium hydroxide monohydrate, it was placed in an alumina crucible and baked in an oxygen atmosphere at 800 ° C. for 10 hours to obtain a black powder. The center of this powder was lithium nickel composite oxide (LiNiO) based on X-ray diffraction, line analysis of cobalt and nickel by EPMA, and observation with a scanning electron microscope.2The surface layer portion is a lithium cobalt composite oxide (LiCo0.95Al0.05O2) Was confirmed to be a spherical particle having a two-layer structure. Furthermore, when the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm was measured by Auger electron spectroscopy, it was 0.2 or more.
[0085]
Example 13
18.54 g of the secondary particle powder made of substantially spherical nickel hydroxide obtained in Example 1 was dispersed in 0.1 L of water in a 1.0 L glass beaker to obtain a slurry. To this slurry, 13.3 mL of cobalt nitrate aqueous solution (1.2 mol / L) and 4.0 mL of titanium nitrate aqueous solution (1.0 mol / L) were added in the presence of ammonium ions, and the beaker was sealed and stirred. However, nitrogen gas was introduced into the slurry at a rate of 0.5 L / min to perform nitrogen substitution. After 30 minutes, an aqueous sodium hydroxide solution (0.13 mol / L) was added at a rate of 1.0 mL / min for 8 hours using a metering pump. The precipitate thus obtained was filtered, washed with water, and dried for one day at 60 ° C. in an electric dryer to obtain about 20 g of powder.
[0086]
After mixing lithium hydroxide monohydrate 4.2g with this powder 9.31g, it put into the crucible made from an alumina, and baked at 800 degreeC in oxygen atmosphere for 10 hours, and obtained black powder. The center of this powder was lithium nickel composite oxide (LiNiO) based on X-ray diffraction, line analysis of cobalt and nickel by EPMA, and observation with a scanning electron microscope.2The surface layer portion is a lithium cobalt composite oxide (LiCo0.80Ti0.20O2.1) Was confirmed to be a spherical particle having a two-layer structure. Furthermore, when the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm was measured by Auger electron spectroscopy, it was 0.2 or more.
[0087]
Example 14
Primary particles were assembled by adding and neutralizing an aqueous solution of sodium hydroxide continuously in a nitrogen atmosphere in the presence of ammonium ions to an aqueous solution in which nickel nitrate and vanadium nitrate were mixed at a stoichiometric ratio of 85:15. A secondary particle powder consisting of substantially spherical nickel hydroxide-vanadium was obtained. This powder has a specific surface area of 150 m.2/ G.
[0088]
A slurry was obtained by dispersing 18.31 g of the secondary particle powder made of spherical nickel hydroxide-vanadium in 0.1 L of water in a 1.0 L glass beaker. To this slurry, 66.7 mL of an aqueous cobalt nitrate solution (1.2 mol / L) was added in the presence of ammonium ions. After sealing the beaker, nitrogen gas was added to the slurry at a rate of 0.5 L / min while stirring. Introduced and replaced with nitrogen. After 30 minutes, an aqueous sodium hydroxide solution (0.43 mol / L) was added at a rate of 1.0 mL / min for 8 hours using a metering pump. The precipitate thus obtained was filtered, washed with water, and dried for one day at 60 ° C. in an electric dryer to obtain about 25 g of powder.
[0089]
After 9.20 g of this powder was mixed with 4.2 g of lithium hydroxide monohydrate, it was placed in an alumina crucible and baked at 800 ° C. for 10 hours in an oxygen atmosphere to obtain a black powder. This powder has a lithium nickel vanadium complex oxide (LiNi) at the center from X-ray diffraction, line analysis of cobalt, nickel and vanadium by EPMA, and observation by a scanning electron microscope.0.85V0.15O2.15And the surface layer portion is a lithium cobalt composite oxide (LiCoO).2) Was confirmed to be a spherical particle having a two-layer structure. Furthermore, when the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm was measured by Auger electron spectroscopy, it was 0.2 or more.
[0090]
Example 15
Primary particles were assembled by adding and neutralizing an aqueous solution of sodium hydroxide in a nitrogen atmosphere in the presence of ammonium ions in a nitrogen atmosphere in which nickel nitrate and chromium nitrate were mixed at a stoichiometric ratio of 85:15. Secondary particle powder consisting of substantially spherical nickel hydroxide-chromium was obtained. This powder has a specific surface area of 156 m.2/ G.
[0091]
A slurry was obtained by dispersing 18.24 g of the above-mentioned spherical nickel hydroxide-chromium secondary particle powder in 0.1 L of water in a 1.0 L glass beaker. To this slurry, 66.7 mL of an aqueous cobalt nitrate solution (1.2 mol / L) was added in the presence of ammonium ions. After sealing the beaker, nitrogen gas was added to the slurry at a rate of 0.5 L / min while stirring. Introduced and replaced with nitrogen. After 30 minutes, an aqueous sodium hydroxide solution (0.43 mol / L) was added at a rate of 1.0 mL / min for 8 hours using a metering pump. The precipitate thus obtained was filtered, washed with water, and dried for one day at 60 ° C. in an electric dryer to obtain about 25 g of powder.
[0092]
After 9.21 g of this powder was mixed with 4.2 g of lithium hydroxide monohydrate, it was placed in an alumina crucible and baked at 800 ° C. for 10 hours in an oxygen atmosphere to obtain a black powder. This powder has a lithium nickel chromium composite oxide (LiNi) at the center from X-ray diffraction, line analysis of cobalt, nickel and chromium by EPMA, and observation by a scanning electron microscope.0.85Cr0.15O2And the surface layer portion is a lithium cobalt composite oxide (LiCoO).2) Was confirmed to be a spherical particle having a two-layer structure. Furthermore, when the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm was measured by Auger electron spectroscopy, it was 0.2 or more.
[0093]
Example 16
Primary particles were aggregated by adding and neutralizing an aqueous solution of sodium hydroxide in a nitrogen atmosphere in the presence of ammonium ions and neutralizing it in an aqueous solution in which nickel nitrate and manganese nitrate were mixed at a stoichiometric ratio of 85:15. A secondary particle powder consisting of substantially spherical nickel hydroxide-manganese was obtained. This powder has a specific surface area of 145 m.2/ G.
[0094]
A slurry was obtained by dispersing 18.43 g of the above-mentioned spherical nickel hydroxide-manganese secondary particle powder in 0.1 L of water in a 1.0 L glass beaker. To this slurry, 66.7 mL of an aqueous cobalt nitrate solution (1.2 mol / L) was added in the presence of ammonium ions. After sealing the beaker, nitrogen gas was added to the slurry at a rate of 0.5 L / min while stirring. Introduced and replaced with nitrogen. After 30 minutes, an aqueous sodium hydroxide solution (0.43 mol / L) was added at a rate of 1.0 mL / min for 8 hours using a metering pump. The precipitate thus obtained was filtered, washed with water, and dried for one day at 60 ° C. in an electric dryer to obtain about 25 g of powder.
[0095]
After 9.24 g of this powder was mixed with 4.2 g of lithium hydroxide monohydrate, it was placed in an alumina crucible and baked in an oxygen atmosphere at 800 ° C. for 10 hours to obtain a black powder. This powder is based on X-ray diffraction, line analysis of cobalt, nickel and manganese by EPMA, and observation by scanning electron microscope.0.85Mn0.15O2And the surface layer portion is a lithium cobalt composite oxide (LiCoO).2) Was confirmed to be a spherical particle having a two-layer structure. Furthermore, when the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm was measured by Auger electron spectroscopy, it was 0.2 or more.
[0096]
Example 17
Primary particles were aggregated by adding and neutralizing an aqueous solution of sodium hydroxide and an aqueous solution of nickel nitrate and lanthanum nitrate in a stoichiometric ratio of 85:15 in the presence of ammonium ions in a nitrogen atmosphere. A secondary particle powder consisting of substantially spherical nickel lanthanum hydroxide was obtained. This powder has a specific surface area of 170 m.2/ G.
[0097]
A slurry was obtained by dispersing 21.46 g of the above-mentioned spherical nickel hydroxide lanthanum powder in 0.1 L of water in a 1.0 L glass beaker. To this slurry, 66.7 mL of an aqueous cobalt nitrate solution (1.2 mol / L) was added in the presence of ammonium ions. After sealing the beaker, nitrogen gas was added to the slurry at a rate of 0.5 L / min while stirring. Introduced and replaced with nitrogen. After 30 minutes, an aqueous sodium hydroxide solution (0.43 mol / L) was added at a rate of 1.0 mL / min for 8 hours using a metering pump. The precipitate thus obtained was filtered, washed with water, and dried for one day at 60 ° C. in an electric dryer to obtain about 28 g of powder.
[0098]
14.45 g of this powder was mixed with 4.2 g of lithium hydroxide monohydrate, then placed in an alumina crucible and baked in an oxygen atmosphere at 800 ° C. for 10 hours to obtain a black powder. This powder is based on X-ray diffraction, line analysis of cobalt, nickel and lanthanum by EPMA, and observation with a scanning electron microscope.0.85La0.15O2And the surface layer portion is a lithium cobalt composite oxide (LiCoO).2) Was confirmed to be a spherical particle having a two-layer structure. Furthermore, when the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm was measured by Auger electron spectroscopy, it was 0.2 or more.
[0099]
Example 18
Primary particles were assembled by adding and neutralizing an aqueous solution of sodium hydroxide continuously in a nitrogen atmosphere in the presence of ammonium ions to an aqueous solution in which nickel nitrate and gallium nitrate were mixed at a stoichiometric ratio of 85:15. A secondary particle powder made of substantially spherical nickel gallium hydroxide was obtained. This powder has a specific surface area of 150 m.2/ G.
[0100]
A slurry was obtained by dispersing 19.38 g of the above secondary particle powder made of spherical nickel gallium hydroxide in 0.1 L of water in a 1.0 L glass beaker. To this slurry, in the presence of ammonium ions, 14.2 mL of cobalt nitrate aqueous solution (1.2 mol / L) and 3.0 mL of nickel nitrate aqueous solution (1.0 mol / L) were added, and the beaker was sealed and stirred. However, nitrogen gas was introduced into the slurry at a rate of 0.5 L / min to perform nitrogen substitution. After 30 minutes, an aqueous sodium hydroxide solution (0.11 mol / L) was added at a rate of 1.0 mL / min for 8 hours using a metering pump. The precipitate thus obtained was filtered, washed with water, and dried for one day at 60 ° C. in an electric dryer to obtain about 21 g of powder.
[0101]
After 9.65 g of this powder was mixed with 4.2 g of lithium hydroxide monohydrate, it was placed in an alumina crucible and baked in an oxygen atmosphere at 800 ° C. for 10 hours to obtain a black powder. This powder has a lithium nickel gallium complex oxide (LiNi) at the center from X-ray diffraction, line analysis of cobalt, nickel and gallium by EPMA, and observation by a scanning electron microscope.0.85Ga0.15O2And the surface layer portion is a lithium cobalt nickel composite oxide (LiCo0.85Ni0.15O2) Was confirmed to be a spherical particle having a two-layer structure. Furthermore, when the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm was measured by Auger electron spectroscopy, it was 0.2 or more.
[0102]
Example 19
To an aqueous solution in which nickel nitrate, cobalt nitrate and iron nitrate are mixed at a stoichiometric ratio of 80: 15: 5, an aqueous solution of sodium hydroxide is continuously added and neutralized in a nitrogen atmosphere in the presence of ammonium ions. A secondary particle powder made of substantially spherical nickel cobalt iron hydroxide in which primary particles were aggregated was obtained. This powder has a specific surface area of 160 m.2/ G.
[0103]
A slurry was obtained by dispersing 18.52 g of the secondary particle powder made of spherical nickel cobalt iron hydroxide in 0.1 L of water in a 1.0 L glass beaker. In this slurry, in the presence of ammonium ions, 15.0 mL of an aqueous cobalt nitrate solution (1.2 mol / L), 1.0 mL of an aqueous zirconium nitrate solution (1.0 mol / L), and an aqueous yttrium nitrate solution (1.0 mol / L) After adding 1.0 mL and sealing the beaker, nitrogen gas was introduced into the slurry at a rate of 0.5 L / min while stirring to perform nitrogen substitution. After 30 minutes, an aqueous sodium hydroxide solution (0.11 mol / L) was added at a rate of 1.0 mL / min for 8 hours using a metering pump. The precipitate thus obtained was filtered, washed with water, and dried for one day at 60 ° C. in an electric dryer to obtain about 20 g of powder.
[0104]
After mixing lithium hydroxide monohydrate 4.2g with this powder 9.31g, it put into the crucible made from an alumina, and baked at 800 degreeC in oxygen atmosphere for 10 hours, and obtained black powder. From the X-ray diffraction, EPMA line analysis, and scanning electron microscope observation, this powder has a lithium nickel cobalt iron composite oxide (LiNi0.85Co0.15Fe0.05O2) And the surface layer portion is lithium cobalt zirconium yttrium composite oxide (LiCo0.90Zr0.05Y0.05O2.025) Was confirmed to be a spherical particle having a two-layer structure. Furthermore, when the cobalt / (nickel + cobalt) atomic ratio from the particle surface to a depth of 0.1 μm was measured by Auger electron spectroscopy, it was 0.2 or more.
[0105]
[Table 1]
Figure 0004161382
[0106]
[Table 2]
Figure 0004161382
[0107]
Example 20
The central part prepared in Example 2 is a lithium nickel composite oxide (LiNiO2And the surface layer portion is a lithium cobalt composite oxide (LiCoO).2) Powder (positive electrode active material), acetylene black (conductive agent) and polytetrafluoroethylene (binder) in a weight ratio of 87: 6.5: 6.5. Thus, a mixture was prepared. This mixture was uniformly applied to a clean stainless steel mesh (hole diameter: 20 mm) as a positive electrode current collector, 200 kg / cm2After press-bonding at a pressure of 1, a positive electrode was produced by drying at 150 ° C. under reduced pressure for 17 hours. A disk-shaped metal lithium foil (diameter 20 mm, thickness 0.2 mm) was used as the negative electrode. In addition, a porous film made of polypropylene was used as a separator.
[0108]
The non-aqueous electrolyte is lithium perchlorate (LiClO).4) Of propylene carbonate solution (1M) and 1,2-dimethoxyethane (1: 1) having a water content of 20 ppm or less was impregnated into the separator.
Using these components, a lithium ion secondary battery as shown in FIG. 1 is manufactured, and using this, the current value is 1.0 mA / cm.2The battery characteristics were examined by repeating charge and discharge at a battery voltage of 4.2 to 2.0 V. As a result, the initial capacity of the lithium secondary battery according to the present invention is as high as 182 mAh / g, and the charge / discharge capacity at the 50th cycle is 90% at the first cycle, which is excellent in cycle characteristics.
[0109]
In addition, when this battery is held at 80 ° C. for a long time, the electrolyte solution is lithium cobalt composite oxide (LiCoO2) Was the same as when the positive electrode active material was used, and it was confirmed that it was hardly decomposed and had excellent stability at high temperatures.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a lithium ion secondary battery.
2 is a scanning electron micrograph (magnification 500 times) of the nickel hydroxide secondary particle powder obtained in Example 1. FIG.
FIG. 3 is an X-ray diffraction diagram of nickel cobalt hydroxide formed by coating the nickel hydroxide particles with cobalt hydroxide.
FIG. 4 is a scanning electron micrograph (magnification 500 times) of the nickel cobalt hydroxide.
FIG. 5 is a photograph (magnification 1000 times) showing a line analysis by EPMA (electron probe microanalyzer) of the cross section of the nickel cobalt hydroxide particles.
FIG. 6 shows that the central part obtained in Example 1 is lithium nickelate (LiNiO).2And the surface layer portion is lithium cobalt oxide (LiCoO).2Is a photograph (magnification 1000 times) showing a line analysis by EPMA (electron beam probe microanalyzer) of a cross section of a spherical particle having a two-layer structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator, 4 ... Battery container, 5 ... Positive electrode collector, 6 ... Positive electrode lead wire, 7 ... Negative electrode collector, 8 ... Negative electrode lead wire.

Claims (5)

水酸化ニッケルの粉末を水に分散したスラリーに、アンモニウムイオンの存在下、コバルト塩水溶液と苛性アルカリ水溶液を連続的に添加して反応させることによって、水酸化ニッケルの粒子の表面に水酸化コバルトを被覆してなる粒子を調製し、これに水酸化リチウムを混合して、焼成することからなる、リチウムニッケル複合酸化物からなる中心層とリチウムコバルト複合酸化物からなる表面層とを備えると共に、粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比が0.2〜1の範囲にあるリチウムイオン二次電池用正極活物質用2層構造粒子状組成物の製造方法。  In a slurry of nickel hydroxide powder dispersed in water, cobalt hydroxide aqueous solution and caustic alkaline aqueous solution are continuously added and reacted in the presence of ammonium ions, thereby reacting cobalt hydroxide on the surface of nickel hydroxide particles. A coated particle is prepared, mixed with lithium hydroxide, and calcined, and provided with a central layer made of a lithium nickel composite oxide and a surface layer made of a lithium cobalt composite oxide. The manufacturing method of the two-layer structure particulate composition for positive electrode active materials for lithium ion secondary batteries whose cobalt / (nickel + cobalt) atomic ratio to the depth of 0.1 micrometer from the surface is the range of 0.2-1. 水酸化ニッケルの粉末を水に分散したスラリーに、アンモニウムイオンの存在下、コバルト塩水溶液と苛性アルカリ水溶液を連続的に添加して反応させることによって、水酸化ニッケルの粒子の表面に水酸化コバルトを被覆してなる粒子を調製し、これを酸化して、含水酸化ニッケルコバルトを調製し、次いで、これを水分散媒中、水酸化リチウムと水熱反応を行うことからなる、リチウムニッケル複合酸化物からなる中心層とリチウムコバルト複合酸化物からなる表面層とを備えると共に、粒子表面から0.1μmの深さまでのコバルト/(ニッケル+コバルト)原子比が0.2〜1の範囲にあるリチウムイオン二次電池用正極活物質用2層構造粒子状組成物の製造方法。  In a slurry of nickel hydroxide powder dispersed in water, cobalt hydroxide aqueous solution and caustic alkaline aqueous solution are continuously added and reacted in the presence of ammonium ions, thereby reacting cobalt hydroxide on the surface of nickel hydroxide particles. Lithium-nickel composite oxide comprising preparing coated particles, oxidizing them to prepare hydrous nickel-cobalt, and then performing hydrothermal reaction with lithium hydroxide in an aqueous dispersion medium And a lithium ion having a cobalt / (nickel + cobalt) atomic ratio in the range of 0.2 to 1 from the particle surface to a depth of 0.1 μm. The manufacturing method of the two-layer structure particulate composition for positive electrode active materials for secondary batteries. 中心層が一般式(I)
LiNi1−x
(式中、Aは、B、Mg、Al、Si、Sc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Y、Zr、Nb、Mo、Ru、Sn、Sb、La、Ce、Pr、Nb、Hf、Ta及びPbよりなる群から選ばれる少なくとも1種の元素を示す。pは0.90〜1.10の範囲の数を示し、xは0〜0.25の範囲の数を示し、yは1.825〜2.3の範囲の数を示す。)で表わされるリチウムニッケル複合酸化物からなる請求項又はに記載の2層構造粒子状組成物の製造方法。
The central layer is the general formula (I)
Li p Ni 1-x A x O y
(In the formula, A is B, Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Y, Zr, Nb, Mo, Ru, Sn, Sb, La. And at least one element selected from the group consisting of Ce, Pr, Nb, Hf, Ta and Pb, p is a number in the range of 0.90 to 1.10, and x is 0 to 0.25. The number of ranges is shown, y shows the number of the range of 1.825-2.3.) Production of the two-layer structure particulate composition of Claim 1 or 2 which consists of lithium nickel complex oxide represented by these Method.
表面層が一般式(II)
LiCo1−a
(式中、Zは、B、Mg、Al、Si、Sc、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Ga、Y、Zr、Nb、Mo、Ru、Sn、Sb、La、Ce、Pr、Nd、Hf、Ta及びPbよりなる群から選ばれる少なくとも1種の元素を示す。qは0.90〜1.10の範囲の数を示し、aは0〜0.25の範囲の数を示し、bは1.825〜2.3の範囲の数を示す。)で表わされるリチウムコバルト複合酸化物からなることを特徴とする請求項又はに記載の2層構造粒子状組成物の製造方法。
Surface layer is general formula (II)
Li q Co 1-a Z a O b
(In the formula, Z is B, Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Ru, Sn, Sb, La. , Ce, Pr, Nd, Hf, Ta and Pb, at least one element selected from the group consisting of q, q represents a number in the range of 0.90 to 1.10, and a is 0 to 0.25. indicates the number of ranges, b is two-layer structure particle according to claim 1 or 2, characterized in that a lithium cobalt composite oxide represented by the indicating.) the number in the range of 1.825 to 2.3 A method for producing a composition.
平均粒子径が3〜100μmであり、実質的に球状である請求項からのいずれかに記載の2層構造粒子状組成物の製造方法。The method for producing a two-layered particulate composition according to any one of claims 1 to 4 , wherein the average particle size is 3 to 100 µm and the shape is substantially spherical.
JP08429397A 1997-02-25 1997-02-25 Process for producing two-layer structured particulate composition Expired - Fee Related JP4161382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08429397A JP4161382B2 (en) 1997-02-25 1997-02-25 Process for producing two-layer structured particulate composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08429397A JP4161382B2 (en) 1997-02-25 1997-02-25 Process for producing two-layer structured particulate composition

Publications (2)

Publication Number Publication Date
JPH10236826A JPH10236826A (en) 1998-09-08
JP4161382B2 true JP4161382B2 (en) 2008-10-08

Family

ID=13826431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08429397A Expired - Fee Related JP4161382B2 (en) 1997-02-25 1997-02-25 Process for producing two-layer structured particulate composition

Country Status (1)

Country Link
JP (1) JP4161382B2 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4872150B2 (en) * 1999-10-26 2012-02-08 住友化学株式会社 Non-aqueous secondary battery active material and non-aqueous secondary battery using the same
JP4383681B2 (en) 2000-02-28 2009-12-16 三星エスディアイ株式会社 Positive electrode active material for lithium secondary battery and method for producing the same
WO2001077023A1 (en) * 2000-04-07 2001-10-18 Ishihara Sangyo Kaisha, Ltd. Lithium/manganese complex oxide and method for producing the same, and lithium cell using the same
JP4910243B2 (en) * 2001-04-20 2012-04-04 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP4556377B2 (en) * 2001-04-20 2010-10-06 株式会社Gsユアサ Positive electrode active material and manufacturing method thereof, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US6921609B2 (en) 2001-06-15 2005-07-26 Kureha Chemical Industry Co., Ltd. Gradient cathode material for lithium rechargeable batteries
US6855461B2 (en) 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries
JP5002872B2 (en) * 2001-08-09 2012-08-15 トヨタ自動車株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
KR100420034B1 (en) * 2001-10-17 2004-02-25 삼성에스디아이 주식회사 A method of preparing a positive active material for a lithium secondary battery
KR20030083476A (en) * 2002-04-23 2003-10-30 주식회사 엘지화학 Lithium metal oxides with enhanced cycle life and safety and a process for preparation thereof
NZ520452A (en) * 2002-10-31 2005-03-24 Lg Chemical Ltd Anion containing mixed hydroxide and lithium transition metal oxide with gradient of metal composition
JP4245562B2 (en) * 2002-11-01 2009-03-25 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4095499B2 (en) * 2003-06-24 2008-06-04 キヤノン株式会社 Electrode material for lithium secondary battery, electrode structure, and lithium secondary battery
JPWO2005008812A1 (en) * 2003-07-17 2006-09-07 株式会社ユアサコーポレーション Positive electrode active material, method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery using the same
CN100442577C (en) * 2003-07-17 2008-12-10 株式会社杰士汤浅 Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
KR100578877B1 (en) * 2004-03-12 2006-05-11 삼성에스디아이 주식회사 Rechargeable lithium battery
US7381496B2 (en) * 2004-05-21 2008-06-03 Tiax Llc Lithium metal oxide materials and methods of synthesis and use
JP4954451B2 (en) * 2004-07-05 2012-06-13 株式会社クレハ Positive electrode material for lithium secondary battery and method for producing the same
KR100635741B1 (en) 2004-11-29 2006-10-17 삼성에스디아이 주식회사 Positive active material for lithium secondary battery and thereof method
EP1831943B1 (en) * 2004-12-31 2014-12-10 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Method for preparing double-layer cathode active materials for lithium secondary batteries
JP4868381B2 (en) * 2005-03-02 2012-02-01 日立マクセルエナジー株式会社 Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN1855587B (en) 2005-04-28 2010-05-05 比亚迪股份有限公司 Battery anode preparation method and preparation method of lithium ion batteries using the battery anode
US8445129B2 (en) 2005-05-27 2013-05-21 Sony Corporation Cathode active material, method of manufacturing it, cathode, and battery
US8911903B2 (en) 2006-07-03 2014-12-16 Sony Corporation Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery
WO2009063613A1 (en) 2007-11-12 2009-05-22 Toda Kogyo Corporation Li-ni-based composite oxide particle powder for rechargeable battery with nonaqueous elctrolyte, process for producing the powder, and rechargeable battery with nonaqueous electrolyte
JP5087790B2 (en) * 2008-06-17 2012-12-05 住友金属鉱山株式会社 Method for producing aluminum-containing nickel hydroxide particles
JP2010080231A (en) * 2008-09-25 2010-04-08 Sanyo Electric Co Ltd Precursor for positive electrode active material, method of manufacturing the same, positive electrode active material, method of manufacturing positive electrode active material, and nonaqueous electrolyte secondary battery
JP2011140430A (en) * 2010-01-08 2011-07-21 Sharp Corp Multiple inorganic compound system and utilization thereof and method for producing the multiple inorganic compound system
US8911902B2 (en) 2010-07-06 2014-12-16 Samsung Sdi Co., Ltd. Nickel-based positive electrode active material, method of preparing the same, and lithium battery using the nickel-based positive electrode active material
JP5549437B2 (en) * 2010-07-08 2014-07-16 ソニー株式会社 Positive electrode active material, non-aqueous electrolyte battery, and method for producing positive electrode active material
KR101215829B1 (en) * 2010-07-22 2012-12-27 주식회사 에코프로 Manufacturing method of positive active material for lithium secondary battery, positive active material manufactured by the same and lithium secondary battery using positive active material
JP5658058B2 (en) * 2011-02-28 2015-01-21 株式会社日立製作所 Lithium ion secondary battery
CN103702942B (en) * 2011-08-16 2016-08-17 蒂艾克思股份有限公司 Polycrystalline metal oxide, its preparation method and include the goods of this polycrystalline metal oxide
JP2015037069A (en) * 2013-08-16 2015-02-23 輔仁大學學校財團法人輔仁大學 Lithium nickel cobalt positive electrode material powder
CN103606671B (en) * 2013-12-09 2015-09-09 湖南杉杉新材料有限公司 A kind of positive electrode material of high-capacity dynamic-type nickel-rich lithium ion battery and preparation method thereof
CN103794774A (en) * 2013-12-16 2014-05-14 广西科技大学 Battery positive material and high-temperature solid phase synthesis method thereof
KR101982790B1 (en) * 2015-10-20 2019-05-27 주식회사 엘지화학 Positive Electrode Active Material Comprising Layered Lithium Metal Oxides and Positive Electrode having the Same
KR102065716B1 (en) * 2015-10-20 2020-02-11 주식회사 엘지화학 Precursor for Preparation of Positive Electrode Active Material Comprising Layered Metal Oxides and Electrode Active Material Prepared with the Same
JP6922672B2 (en) * 2017-11-09 2021-08-18 株式会社豊田自動織機 Carbon coated Li5FeO4
CN107946547A (en) * 2017-11-16 2018-04-20 燕山大学 A kind of in-situ preparation method of high-energy-density cobalt hydroxide film electrode
KR102159243B1 (en) * 2017-11-22 2020-09-23 주식회사 에코프로비엠 Cathode active material of lithium secondary battery
WO2020145639A1 (en) * 2019-01-07 2020-07-16 주식회사 엘지화학 Positive electrode active material, method for manufacturing positive electrode active material, and positive electrode and lithium secondary battery comprising positive electrode active material
CN113597692B (en) * 2019-04-26 2024-01-05 松下知识产权经营株式会社 Positive electrode active material for secondary battery and secondary battery
GB201913817D0 (en) * 2019-09-25 2019-11-06 Johnson Matthey Plc Process

Also Published As

Publication number Publication date
JPH10236826A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
JP4161382B2 (en) Process for producing two-layer structured particulate composition
KR100822012B1 (en) Cathode active materials for lithium batteries, Method of preparing thereof and lithium secondary batteries comprising same
TWI487178B (en) Methode for making cathode composite material of lithium ion battery
JP2870741B2 (en) Lithium manganate particulate composition, method for producing the same, and lithium ion secondary battery
US7018741B2 (en) Particulate positive electrode active material for a lithium secondary cell
US20050058588A1 (en) Method and apparatus for preparation of spherical metal carbonates and lithium metal oxides for lithium rechargeable batteries
KR20200125443A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20070117827A (en) Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
JPH101316A (en) Lithium-cobalt multiple oxide and production thereof, and lithium ion secondary battery
JPH11185753A (en) Nonaqueous electrolyte lithium secondary battery
JP5884084B2 (en) Negative electrode active material, power storage device, and method of manufacturing negative electrode active material
CN110890525B (en) Positive active material for lithium secondary battery and lithium secondary battery including the same
CN113677624B (en) Octahedral lithium manganese-based positive electrode active material, positive electrode comprising same, and lithium secondary battery
CN111864195B (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
CN112447948A (en) Sulfide-coated positive electrode material, preparation method thereof and lithium ion battery
JP2003173775A (en) Nonaqueous electrolyte secondary battery
JP4441678B2 (en) Method for producing orthorhombic lithium manganese composite oxide particulate composition represented by LiMnO 2
JP4013327B2 (en) Non-aqueous secondary battery
JP4156358B2 (en) Lithium cobaltate composite compound, method for producing the same, and nonaqueous electrolyte secondary battery
CN113748541A (en) Positive electrode active material precursor for secondary battery, method for preparing same, and method for preparing positive electrode active material
CN116799201A (en) Halide-based positive electrode active material, and synthesis method and application thereof
JP4114918B2 (en) Lithium cobaltate, method for producing the same, and nonaqueous electrolyte secondary battery
JP4273568B2 (en) Lithium manganese composite oxide particulate composition and its production and application to lithium ion secondary battery
KR20220057209A (en) Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
KR20220040933A (en) Positive electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees