JP6922672B2 - Carbon coated Li5FeO4 - Google Patents

Carbon coated Li5FeO4 Download PDF

Info

Publication number
JP6922672B2
JP6922672B2 JP2017216262A JP2017216262A JP6922672B2 JP 6922672 B2 JP6922672 B2 JP 6922672B2 JP 2017216262 A JP2017216262 A JP 2017216262A JP 2017216262 A JP2017216262 A JP 2017216262A JP 6922672 B2 JP6922672 B2 JP 6922672B2
Authority
JP
Japan
Prior art keywords
feo
carbon
positive electrode
coated
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017216262A
Other languages
Japanese (ja)
Other versions
JP2019085315A (en
Inventor
達哉 江口
達哉 江口
友邦 阿部
友邦 阿部
浩平 間瀬
浩平 間瀬
健之 君島
健之 君島
和寛 新村
和寛 新村
智之 田崎
智之 田崎
侑久 大川
侑久 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2017216262A priority Critical patent/JP6922672B2/en
Priority to PCT/JP2018/038913 priority patent/WO2019093094A1/en
Publication of JP2019085315A publication Critical patent/JP2019085315A/en
Application granted granted Critical
Publication of JP6922672B2 publication Critical patent/JP6922672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compounds Of Iron (AREA)

Description

本発明は、リチウムイオン二次電池の正極材料等に用いられる炭素被覆LiFeOに関するものである。 The present invention relates to a carbon-coated Li 5 FeO 4 used as a positive electrode material for a lithium ion secondary battery or the like.

リチウムイオン二次電池は小型で大容量であるため、携帯電話やノート型パソコンなどの種々の機器の電池として用いられている。リチウムイオン二次電池は、主な構成要素として、正極、負極及び電解液を備える。正極は、集電体と、該集電体の表面に形成され、正極活物質を含有する正極活物質層とを有する。 Since lithium-ion secondary batteries are small and have a large capacity, they are used as batteries for various devices such as mobile phones and notebook computers. The lithium ion secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution as main components. The positive electrode has a current collector and a positive electrode active material layer formed on the surface of the current collector and containing a positive electrode active material.

リチウムイオン二次電池の正極活物質として、種々のリチウム金属複合酸化物が用いられることが知られており、その一種として、LiFeOが知られている。また、LiFeOは可逆容量が小さいことや、充電に伴いガスを発生することも知られており、負極の不可逆容量を補うためのリチウムイオン供給剤としての用途や、正極の添加剤としての用途で用いられることも知られている。 It is known that various lithium metal composite oxides are used as the positive electrode active material of the lithium ion secondary battery, and Li 5 FeO 4 is known as one of them. It is also known that Li 5 FeO 4 has a small reversible capacity and generates gas during charging, and is used as a lithium ion feeder for supplementing the irreversible capacity of the negative electrode and as an additive for the positive electrode. It is also known to be used in the above applications.

例えば、特許文献1には、LiMnとLiFeOとを質量比95:5で用いた正極を具備するリチウムイオン二次電池が具体的に記載されており、LiFeOの添加により、負極活物質の初期容量ロスを補うことができた旨が記載されている。 For example, Patent Document 1, LiMn 2 O 4 and Li 5 FeO 4 and a mass ratio of 95: lithium ion secondary battery comprising a positive electrode using 5 have been specifically described, the Li 5 FeO 4 It is stated that the addition was able to compensate for the initial capacity loss of the negative electrode active material.

特許文献2には、正極活物質としてLiFeOのみを具備するリチウムイオン二次電池、及び、正極活物質としてLiFeO及びLiを含まない金属酸化物を具備するリチウムイオン二次電池が、具体的に記載されている。 Patent Document 2 describes a lithium ion secondary battery having only Li 5 FeO 4 as a positive electrode active material, and a lithium ion secondary battery having a metal oxide containing Li 5 FeO 4 and Li as a positive electrode active material. However, it is specifically described.

特許文献3には、正極活物質としてLiCoOとLiFeOとを質量比91:9〜97:3で用いた正極を具備するリチウムイオン二次電池が具体的に記載されており、LiFeOの添加により、初期充電容量を向上させることができた旨が記載されている。 Patent Document 3 specifically describes a lithium ion secondary battery having a positive electrode using LiCoO 2 and Li 5 FeO 4 as positive electrode active materials at a mass ratio of 91: 9 to 97: 3. It is described that the initial charge capacity could be improved by adding 5 FeO 4.

特許文献4には、初回充電時にガス発生する正極添加剤としてLiFeOを正極活物質層に添加することが記載されており、初回充電時のガス発生により、正極活物質層内に空孔を形成し得ることが記載されている。 Patent Document 4 describes that Li 5 FeO 4 is added to the positive electrode active material layer as a positive electrode additive that generates gas during the initial charging, and the gas is generated during the initial charging to empty the positive electrode active material layer. It is stated that holes can be formed.

特開2007−287446号公報Japanese Unexamined Patent Publication No. 2007-287446 特開2012−99316号公報Japanese Unexamined Patent Publication No. 2012-99316 特開2014−157653号公報Japanese Unexamined Patent Publication No. 2014-157653 国際公開第2014/118834号International Publication No. 2014/118834

近年、産業界からは、電池特性に優れるリチウムイオン二次電池や、リチウムイオン二次電池を製造する際の優れた材料が求められており、それを実現するための新たな技術が求められている。 In recent years, the industrial world has been demanding lithium-ion secondary batteries having excellent battery characteristics and excellent materials for manufacturing lithium-ion secondary batteries, and new technologies for realizing them have been demanded. There is.

本発明は、かかる事情に鑑みて為されたものであり、新たなLiFeO関連材料を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a new Li 5 FeO 4 related material.

本発明者が、LiFeOについての検討を行ったところ、LiFeOを具備する電池が、十分に容量を発現しない現象を知見した。本発明者は、かかる現象は、LiFeOの低導電性、すなわち高抵抗との性質に因ると推定した。そして、LiFeOの導電性を増加させる目的で、LiFeOの表面を炭素膜で被覆させた炭素被覆LiFeOを製造し、これを試験したところ、炭素被覆LiFeOであっても、必ずしも容量を十分に発現しない場合があることを知見した。 When the present inventor examined Li 5 FeO 4, it was found that the battery provided with Li 5 FeO 4 does not sufficiently develop the capacity. The present inventor presumed that such a phenomenon was due to the low conductivity, that is, the high resistance property of Li 5 FeO 4. Then, Li 5 purpose of increasing the conductivity of FeO 4, where the produced carbon-coated Li 5 FeO 4 to the surface of the Li 5 FeO 4 was coated with carbon film, and test this, carbon-coated Li 5 FeO 4 However, it was found that the volume may not always be sufficiently expressed.

また、LiFeOを合成する際の混合装置や合成装置に対する粉末の付着を抑制する目的で、有機添加剤を添加したところ、有機添加剤の添加を経て合成されたLiFeOを炭素膜で被覆した炭素被覆LiFeOが特性に優れることを、本発明者は知見した。さらに、炭素被覆LiFeOの特性と炭素被覆LiFeOの比表面積とに関連があること、及び、炭素被覆LiFeOの比表面積は、有機添加剤の添加量に影響されることを、本発明者は知見した。
本発明は、本発明者のかかる知見に基づき、完成されたものである。
Moreover, carbon deposition of the powder in order to suppress against mixing device or synthesizer in synthesizing the Li 5 FeO 4, where the addition of the organic additive, the Li 5 FeO 4 was synthesized through the addition of the organic additive The present inventor has found that the carbon-coated Li 5 FeO 4 coated with a film has excellent properties. Furthermore, it is related to the specific surface area of the carbon-coated Li 5 Characteristics of FeO 4 carbon coated Li 5 FeO 4, and a specific surface area of the carbon-coated Li 5 FeO 4 is influenced by the amount of the organic additive The present inventor has found that.
The present invention has been completed based on such findings of the present inventor.

本発明の炭素被覆LiFeOは、LiFeOと前記LiFeOの表面を被覆する炭素膜とを含有する炭素被覆LiFeOであって、BET比表面積が1〜12m/gの範囲内であることを特徴とする。 Carbon-coated Li 5 FeO 4 of the present invention is a carbon-coated Li 5 FeO 4 containing a carbon film covering the surface of the the Li 5 FeO 4 Li 5 FeO 4 , BET specific surface area 1~12M 2 It is characterized in that it is within the range of / g.

本発明の炭素被覆LiFeOは、正極材料として十分な容量を発現する。 The carbon-coated Li 5 FeO 4 of the present invention develops a sufficient capacity as a positive electrode material.

評価例2の結果を示すグラフである。It is a graph which shows the result of evaluation example 2.

以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a〜b」は、下限a及び上限bをその範囲に含む。そして、これらの上限値及び下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに、これらの数値範囲内から任意に選択した数値を、新たな上限や下限の数値とすることができる。 Hereinafter, embodiments for carrying out the present invention will be described. Unless otherwise specified, the numerical range "a to b" described in the present specification includes the lower limit a and the upper limit b in the range. Then, a numerical range can be constructed by arbitrarily combining these upper and lower limit values and the numerical values listed in the examples. Further, a numerical value arbitrarily selected from these numerical values can be set as a new upper limit value or lower limit value.

本発明の炭素被覆LiFeOは、LiFeOと前記LiFeOの表面を被覆する炭素膜とを含有する炭素被覆LiFeOであって、BET比表面積が1〜12m/gの範囲内であることを特徴とする。
BET比表面積が1〜12m/gの範囲内であることにより、正極材料として十分な容量(リチウムイオン放出量)を発現する。
Carbon-coated Li 5 FeO 4 of the present invention is a carbon-coated Li 5 FeO 4 containing a carbon film covering the surface of the the Li 5 FeO 4 Li 5 FeO 4 , BET specific surface area 1~12M 2 It is characterized in that it is within the range of / g.
When the BET specific surface area is in the range of 1 to 12 m 2 / g, a sufficient capacity (lithium ion emission amount) as a positive electrode material is developed.

容量の点から、本発明の炭素被覆LiFeOのBET比表面積として、2〜10m/gの範囲内が好ましく、3〜7m/gの範囲内がより好ましい。
BET比表面積が過小であれば、容量に劣る場合がある。他方、BET比表面積が過大であれば、大気中の水分や二酸化炭素と反応して、LiFeOが劣化する場合や、正極製造時のスラリーの物性などに悪影響を及ぼす場合がある。容量及びスラリー物性の両者の観点からは、本発明の炭素被覆LiFeOのBET比表面積は、2〜5m/gの範囲内が特に好ましい。
In terms of volume, as BET specific surface area of the carbon-coated Li 5 FeO 4 of the present invention, preferably in the range of 2 to 10 m 2 / g, in the range of 3~7m 2 / g is more preferable.
If the BET specific surface area is too small, the capacity may be inferior. On the other hand, if the BET specific surface area is excessive, it may react with water or carbon dioxide in the atmosphere to deteriorate Li 5 FeO 4, or may adversely affect the physical characteristics of the slurry during the production of the positive electrode. From the viewpoint of both the capacity and the physical characteristics of the slurry, the BET specific surface area of the carbon-coated Li 5 FeO 4 of the present invention is particularly preferably in the range of 2 to 5 m 2 / g.

炭素膜は、LiFeOの粒子の表面全体を被覆しているのが好ましい。炭素膜の厚みとしては、1nm〜100nmの範囲内が好ましく、5nm〜50nmの範囲内がより好ましく、10nm〜40nmの範囲内がさらに好ましく、15nm〜35nmの範囲内が特に好ましい。 The carbon film preferably covers the entire surface of the Li 5 FeO 4 particles. The thickness of the carbon film is preferably in the range of 1 nm to 100 nm, more preferably in the range of 5 nm to 50 nm, further preferably in the range of 10 nm to 40 nm, and particularly preferably in the range of 15 nm to 35 nm.

炭素の質量%(Wc)としては、1≦Wc≦6の範囲内が好ましく、1.1≦Wc≦5.4の範囲内がより好ましく、1.3≦Wc≦4の範囲内がさらに好ましく、1.5≦Wc≦3.5の範囲内がさらにより好ましく、1.7≦Wc≦3の範囲内が特に好ましく、1.9≦Wc≦2.5の範囲内が最も好ましい。 The mass% (Wc) of carbon is preferably in the range of 1 ≦ Wc ≦ 6, more preferably in the range of 1.1 ≦ Wc ≦ 5.4, and further preferably in the range of 1.3 ≦ Wc ≦ 4. , 1.5 ≦ Wc ≦ 3.5 is even more preferable, 1.7 ≦ Wc ≦ 3 is particularly preferable, and 1.9 ≦ Wc ≦ 2.5 is most preferable.

本発明の炭素被覆LiFeOは、粉末状態であるものが好ましい。本発明の炭素被覆LiFeOの粉体抵抗値としては、0.5〜20Ωcm、1〜13Ωcm、1.5〜10Ωcm、2〜7Ωcmを例示できる。
なお、本明細書における粉体抵抗値とは、測定試料に4kNの荷重をかけた際の体積抵抗値を意味する。
The carbon-coated Li 5 FeO 4 of the present invention is preferably in a powder state. Examples of the powder resistance value of the carbon-coated Li 5 FeO 4 of the present invention include 0.5 to 20 Ωcm, 1 to 13 Ωcm, 1.5 to 10 Ω cm, and 2 to 7 Ω cm.
The powder resistance value in the present specification means the volume resistance value when a load of 4 kN is applied to the measurement sample.

本発明の炭素被覆LiFeOの製造方法について説明する。
本発明の炭素被覆LiFeOの製造方法は、LiFeOを準備する工程、及び、LiFeOを炭素で被覆する工程、を有する。
The method for producing the carbon-coated Li 5 FeO 4 of the present invention will be described.
The method for producing carbon-coated Li 5 FeO 4 of the present invention includes a step of preparing Li 5 FeO 4 and a step of coating Li 5 FeO 4 with carbon.

LiFeOを準備する方法としては、市販のLiFeOを購入してもよいし、また、Li源及びFe源を原料として、LiFeOを合成してもよい。 As a method for preparing Li 5 FeO 4 , commercially available Li 5 FeO 4 may be purchased, or Li 5 FeO 4 may be synthesized from the Li source and the Fe source as raw materials.

LiFeOの合成方法としては、Li源及びFe源を加熱条件下で反応させて合成すればよい。Li源としては、リチウム単体、酸化リチウム、水酸化リチウム、炭酸リチウム、炭酸水素リチウム、フッ化リチウムを例示できる。Fe源としては、鉄単体、酸化鉄、水酸化鉄、オキシ水酸化鉄、硫酸鉄、硝酸鉄、塩化鉄を例示できる。Li源及びFe源の組成において、理論量よりも酸素が少ない場合には、反応系内に酸素を導入してもよい。
生成物の純度の点から、リチウム単体と酸化鉄を反応させる、酸化リチウムと鉄単体を反応させる、又は、酸化リチウムと酸化鉄を反応させるのが好ましい。
As a method for synthesizing Li 5 FeO 4 , the Li source and the Fe source may be reacted under heating conditions for synthesis. Examples of the Li source include lithium alone, lithium oxide, lithium hydroxide, lithium carbonate, lithium hydrogencarbonate, and lithium fluoride. Examples of the Fe source include iron alone, iron oxide, iron hydroxide, iron oxyhydroxide, iron sulfate, iron nitrate, and iron chloride. When the composition of the Li source and the Fe source is less than the theoretical amount of oxygen, oxygen may be introduced into the reaction system.
From the viewpoint of product purity, it is preferable to react lithium alone with iron oxide, react lithium oxide with iron oxide alone, or react lithium oxide with iron oxide.

加熱前に、Li源及びFe源を粉砕及び混合しておくのが好ましい。さらには、加熱前に、Li源及びFe源を一体化しておくのが好ましい。 Prior to heating, it is preferable to pulverize and mix the Li source and the Fe source. Furthermore, it is preferable to integrate the Li source and the Fe source before heating.

加熱前のLi源及びFe源に対して、粉砕、混合又は一体化させる装置としては、ボールミル、遊星型ボールミル、株式会社奈良機械製作所のハイブリダイゼーションシステム(NHS)及びミラーロ(MIRALO)、ホソカワミクロン株式会社のメカノフュージョン及びノビルタ、株式会社徳寿工作所のシータ・コンポーザを挙げることができる。 As a device for crushing, mixing or integrating the Li source and Fe source before heating, a ball mill, a planetary ball mill, a hybridization system (NHS) and MIRALO of Nara Machinery Co., Ltd., Hosokawa Micron Co., Ltd. Mechanofusion and Nobilta, Theta Composer of Tokuju Kosakusho Co., Ltd. can be mentioned.

加熱温度としては、400〜1000℃が好ましく、450〜900℃がより好ましく、500〜800℃がさらに好ましく、550〜700℃が特に好ましい。なお、Li源として酸化リチウムを用い、Fe源として鉄単体を用いて、400℃での加熱でLiFeOを合成可能であることは、本発明者により確認済みである。
LiFeOの合成においては、特別な事情がある場合を除き、アルゴン、ヘリウム、窒素などの不活性ガス雰囲気下で加熱するのが好ましい。
The heating temperature is preferably 400 to 1000 ° C, more preferably 450 to 900 ° C, even more preferably 500 to 800 ° C, and particularly preferably 550 to 700 ° C. It has been confirmed by the present inventor that Li 5 FeO 4 can be synthesized by heating at 400 ° C. using lithium oxide as the Li source and iron alone as the Fe source.
In the synthesis of Li 5 FeO 4 , it is preferable to heat in an atmosphere of an inert gas such as argon, helium, or nitrogen, unless there are special circumstances.

LiFeOの合成方法としては、Li源及びFe源に、ショ糖脂肪酸エステル、脂肪酸、脂肪酸塩、脂肪酸アミド、N,N’−エチレンビス脂肪酸アミド、フマル酸アルキルエステルアルカリ金属塩及び硬化油から選択される有機添加剤を添加した上で、LiFeOを合成するのが特に好ましい。
有機添加剤の添加により、LiFeOの粒子が粗大化するのを抑制できる。なお、有機添加剤は、その添加量が少量であり、かつ、反応系内で気化又は分解するため、LiFeOの組成には大きな影響を与えない。
有機添加剤の添加量を制御することに因り、LiFeOの粒子サイズをコントロールできるため、LiFeO及び炭素被覆LiFeOのBET比表面積も、有機添加剤の添加量でコントロールできる。
有機添加剤の添加量としては、Li源及びFe源の全体に対して、0.1〜10質量%が好ましく、0.5〜5質量%がより好ましく、1〜3質量%がさらに好ましい。
As a method for synthesizing Li 5 FeO 4 , sucrose fatty acid ester, fatty acid, fatty acid salt, fatty acid amide, N, N'-ethylenebis fatty acid amide, fumarate alkyl ester alkali metal salt and hardened oil are used as the Li source and Fe source. It is particularly preferable to synthesize Li 5 FeO 4 after adding an organic additive selected from the above.
By adding the organic additive, it is possible to suppress the coarsening of the particles of Li 5 FeO 4. Since the amount of the organic additive added is small and the organic additive is vaporized or decomposed in the reaction system, the composition of Li 5 FeO 4 is not significantly affected.
Due to the fact that controlling the amount of the organic additive, because it can control the particle size of the Li 5 FeO 4, BET specific surface area of Li 5 FeO 4 and carbon-coated Li 5 FeO 4 is also controlled by the amount of the organic additive can.
The amount of the organic additive added is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass, still more preferably 1 to 3% by mass, based on the total of the Li source and the Fe source.

ショ糖脂肪酸エステルは、ショ糖と脂肪酸から製造されるエステルであって、リョートーシュガーエステルなどの商品名として知られる粉末状の非イオン型界面活性剤である。 The sucrose fatty acid ester is an ester produced from sucrose and fatty acid, and is a powdery nonionic surfactant known as a trade name such as Ryoto sugar ester.

ショ糖脂肪酸エステル、脂肪酸、脂肪酸塩、脂肪酸アミド、及び、N,N’−エチレンビス脂肪酸アミドにおける脂肪酸としては、炭素数12〜24の飽和又は不飽和脂肪酸が好ましく、炭素数16〜20の飽和又は不飽和脂肪酸がより好ましい。また、上記の脂肪酸としては、パルミチン酸、ステアリン酸、アラキジン酸、パルミトレイン酸、オレイン酸、リノール酸、アラキドン酸を例示できる。 As the fatty acid in the sucrose fatty acid ester, fatty acid, fatty acid salt, fatty acid amide, and N, N'-ethylenebis fatty acid amide, saturated or unsaturated fatty acid having 12 to 24 carbon atoms is preferable, and saturated fatty acid having 16 to 20 carbon atoms is preferable. Alternatively, unsaturated fatty acids are more preferable. Examples of the fatty acid include palmitic acid, stearic acid, arachidic acid, palmitoleic acid, oleic acid, linoleic acid, and arachidonic acid.

脂肪酸塩を形成するカチオンとしては、リチウム、ナトリウムなどのアルカリ金属、マグネシウム、カルシウムなどのアルカリ土類金属、亜鉛を例示できる。脂肪酸塩における塩を形成するカチオンとしては、リチウム、ナトリウムなどのアルカリ金属が、飛散しやすく装置を汚染しがたい点から好ましい。 Examples of the cation forming the fatty acid salt include alkali metals such as lithium and sodium, alkaline earth metals such as magnesium and calcium, and zinc. As the cation forming the salt in the fatty acid salt, an alkali metal such as lithium or sodium is preferable because it is easily scattered and does not easily contaminate the apparatus.

脂肪酸塩の具体例としては、パルミチン酸リチウム、ステアリン酸リチウム、アラキジン酸リチウム、パルミトレイン酸リチウム、オレイン酸リチウム、リノール酸リチウム、アラキドン酸リチウム、パルミチン酸ナトリウム、ステアリン酸ナトリウム、アラキジン酸ナトリウム、パルミトレイン酸ナトリウム、オレイン酸ナトリウム、リノール酸ナトリウム、アラキドン酸ナトリウム、パルミチン酸マグネシウム、ステアリン酸マグネシウム、アラキジン酸マグネシウム、パルミトレイン酸マグネシウム、オレイン酸マグネシウム、リノール酸マグネシウム、アラキドン酸マグネシウム、パルミチン酸、ステアリン酸カルシウム、アラキジン酸カルシウム、パルミトレイン酸カルシウム、オレイン酸カルシウム、リノール酸カルシウム、アラキドン酸カルシウム、パルミチン酸亜鉛、ステアリン酸亜鉛、アラキジン酸亜鉛、パルミトレイン酸亜鉛、オレイン酸亜鉛、リノール酸亜鉛、アラキドン酸亜鉛を例示できる。 Specific examples of fatty acid salts include lithium palmitate, lithium stearate, lithium arachidic acid, lithium palmitreate, lithium oleate, lithium linoleate, lithium arachidate, sodium palmitate, sodium stearate, sodium arachidic acid, and palmitic acid. Sodium, sodium oleate, sodium linoleate, sodium arachidic acid, magnesium palmitate, magnesium stearate, magnesium arachidic acid, magnesium palmitreate, magnesium oleate, magnesium linoleate, magnesium arachidic acid, palmitic acid, calcium stearate, arachidic acid Examples thereof include calcium, calcium palmitreate, calcium oleate, calcium linoleate, calcium arachidic acid, zinc palmitate, zinc stearate, zinc arachidic acid, zinc palmitate, zinc oleate, zinc linoleate, and zinc arachidic acid.

脂肪酸アミドの具体例としては、パルミチン酸アミド、ステアリン酸アミド、アラキジン酸アミド、パルミトレイン酸アミド、オレイン酸アミド、リノール酸アミド、アラキドン酸アミドを例示できる。 Specific examples of the fatty acid amide include palmitate amide, stearate amide, arachidic acid amide, palmitere acid amide, oleic acid amide, linoleic acid amide, and arachidonic acid amide.

N,N’−エチレンビス脂肪酸アミドの具体例としては、N,N’−エチレンビスパルミチン酸アミド、N,N’−エチレンビスステアリン酸アミド、N,N’−エチレンビスアラキジン酸アミド、N,N’−エチレンビスパルミトレイン酸アミド、N,N’−エチレンビスオレイン酸アミド、N,N’−エチレンビスリノール酸アミド、N,N’−エチレンビスアラキドン酸アミドを例示できる。 Specific examples of the N, N'-ethylenebis fatty acid amide include N, N'-ethylenebispalmitic acid amide, N, N'-ethylenebisstearic acid amide, N, N'-ethylenebisarachidic acid amide, N. , N'-ethylene bispalmitoleic acid amide, N, N'-ethylene bisoleic acid amide, N, N'-ethylene bislinoleic acid amide, N, N'-ethylene bisarachidonic acid amide can be exemplified.

フマル酸アルキルエステルアルカリ金属塩におけるアルキルとしては、炭素数12〜24のアルキル基が好ましく、炭素数16〜20のアルキル基がより好ましい。具体的なアルキル基としては、パルミチル、ステアリル、アラキジルを例示できる。アルカリ金属塩を形成するカチオンとしては、リチウム、ナトリウムを例示できる。 As the alkyl in the fumaric acid alkyl ester alkali metal salt, an alkyl group having 12 to 24 carbon atoms is preferable, and an alkyl group having 16 to 20 carbon atoms is more preferable. Specific examples of the alkyl group include palmityl, stearyl, and arachidil. Examples of the cation forming the alkali metal salt include lithium and sodium.

フマル酸アルキルエステルアルカリ金属塩の具体例としては、フマル酸パルミチルリチウム塩、フマル酸ステアリルリチウム塩、フマル酸アラキジルリチウム塩、フマル酸パルミチルナトリウム塩、フマル酸ステアリルナトリウム塩、フマル酸アラキジルナトリウム塩を例示できる。 Specific examples of the alkyl ester alkali metal salt fumarate include palmityl lithium fumarate, stearyl fumarate, lithium arachidyl fumarate, palmityl sodium fumarate, stearyl fumarate, and arachidyl fumarate. An example is a sodium salt.

また、脂肪酸塩及びフマル酸アルキルエステルアルカリ金属塩におけるカチオンとしては、リチウムが好ましい。 Lithium is preferable as the cation in the fatty acid salt and the alkyl metal fumaric acid ester alkali metal salt.

硬化油としては、ラブリワックス(登録商標)などとして知られる粉末状の水素添加硬化油を例示できる。 Examples of the hydrogenated oil include powdered hydrogenated hydrogenated oil known as love wax (registered trademark) and the like.

有機添加剤の添加により、LiFeOの粒子が粗大化するのを抑制できること、さらには、有機添加剤の添加量を制御することに因り、LiFeOの粒子サイズをコントロールできることの理由は、以下のメカニズムにあると考えられる。 The addition of the organic additive, Li 5 FeO 4 particles can be prevented from coarsening, furthermore, the reason for a more in controlling the amount of the organic additive, can control the particle size of the Li 5 FeO 4 Is considered to be due to the following mechanism.

加熱時にLi源及びFe源が反応してLiFeOが合成される。ここで、有機添加剤の非存在下においては、合成されたLiFeO粒子を核として、さらなるLiFeO合成反応が進行することが想定されるし、また、合成されたLiFeO粒子同士が固着することも想定される。これらの事項が、粗大なLiFeO粒子の形成を引き起こすと考えられる。 At the time of heating, the Li source and the Fe source react to synthesize Li 5 FeO 4. Here, in the absence of an organic additive, the synthesized Li 5 FeO 4 particles as nuclei, to it is envisioned that additional Li 5 FeO 4 synthesis reaction proceeds, also synthesized Li 5 FeO It is also assumed that the four particles stick to each other. It is considered that these matters cause the formation of coarse Li 5 FeO 4 particles.

他方、有機添加剤の存在下においては、有機添加剤又はその気化物若しくは分解物が、合成されたLiFeO粒子に対するLi源及びFe源の接触や他のLiFeO粒子の接触を抑制する。そのため、LiFeO粒子の粗大化を抑制できると考えられる。 On the other hand, in the presence of an organic additive, an organic additive or gas products or degradation products, the contact of the contact or other Li 5 FeO 4 particles Li source and Fe sources for synthesized Li 5 FeO 4 particles Suppress. Therefore, it is considered that the coarsening of Li 5 FeO 4 particles can be suppressed.

本発明者は、有機添加剤の添加により、LiFeOの粒子サイズをコントロール可能であるとの実験事実から、以下の技術思想を創作した。 The present inventor created the following technical idea from the experimental fact that the particle size of Li 5 FeO 4 can be controlled by adding an organic additive.

第1固体無機原料と前記第1固体無機原料とは異なる第2固体無機原料とを加熱して、無機化合物を合成する無機化合物の製造方法において、
ショ糖脂肪酸エステル、脂肪酸、脂肪酸塩、脂肪酸アミド、N,N’−エチレンビス脂肪酸アミド、フマル酸アルキルエステルアルカリ金属塩及び硬化油から選択される有機添加剤を添加することを特徴とする粉末状の無機化合物の製造方法。
In a method for producing an inorganic compound in which an inorganic compound is synthesized by heating a first solid inorganic raw material and a second solid inorganic raw material different from the first solid inorganic raw material.
Powdered by adding an organic additive selected from sucrose fatty acid ester, fatty acid, fatty acid salt, fatty acid amide, N, N'-ethylenebis fatty acid amide, fumarate alkyl ester alkali metal salt and cured oil. Method for producing inorganic compounds.

第1固体無機原料と第2固体無機原料とを加熱して無機化合物を合成する無機化合物の製造方法において、有機添加剤を添加することで、上述したメカニズムのとおり、粉末状の無機化合物の粒子サイズや比表面積を制御可能であるといえる。前段落の製造方法は、無機化合物の粒子サイズや比表面積を制御する方法であるともいえる。 In the method for producing an inorganic compound in which an inorganic compound is synthesized by heating a first solid inorganic raw material and a second solid inorganic raw material, by adding an organic additive, powdery inorganic compound particles are formed according to the mechanism described above. It can be said that the size and specific surface area can be controlled. It can be said that the production method in the previous paragraph is a method for controlling the particle size and specific surface area of the inorganic compound.

合成対象の無機化合物は、合成温度すなわち上記加熱の温度で固体であることを要する。合成対象の無機化合物としては、金属酸化物や金属窒化物を例示できる。また、合成温度は、有機添加剤が気化又は分解する温度以上であるのが好ましい。 The inorganic compound to be synthesized needs to be solid at the synthesis temperature, that is, the heating temperature. Examples of the inorganic compound to be synthesized include metal oxides and metal nitrides. The synthesis temperature is preferably equal to or higher than the temperature at which the organic additive vaporizes or decomposes.

第1固体無機原料及び第2固体無機原料は、室温で固体のものであるが、それぞれ、無機化合物の合成温度においても固体の無機物であるものが好ましい。また、第1固体無機原料及び第2固体無機原料としては、合成温度又はそれ以下の温度で分解して、その固体分解物が無機化合物の原料となるものでもよい。例えば、加熱して無水物となる水和物や、加熱して酸化物となる水酸化物や炭酸塩を、第1固体無機原料及び第2固体無機原料として採用してもよい。 The first solid inorganic raw material and the second solid inorganic raw material are solid at room temperature, but each is preferably a solid inorganic material even at the synthesis temperature of the inorganic compound. Further, the first solid inorganic raw material and the second solid inorganic raw material may be those which are decomposed at a synthetic temperature or lower and the solid decomposition product becomes a raw material of an inorganic compound. For example, a hydrate that becomes an anhydride by heating, a hydroxide or a carbonate that becomes an oxide by heating may be adopted as the first solid inorganic raw material and the second solid inorganic raw material.

第1固体無機原料及び第2固体無機原料としては、金属単体、合金、元素単体、酸化物、過酸化物、水酸化物、水素化物、ハロゲン化物、ホウ化物、シアン化物、アジ化物、窒化物、炭化物、炭酸塩、硫化物、硫酸塩、亜硫酸塩、二亜硫酸塩、チオ硫酸塩、硝酸塩、亜硝酸塩、リン酸塩、アンモニウム塩、ケイ酸塩、ホウ酸塩、過ハロゲン酸塩、次亜ハロゲン酸塩、ハロゲン酸塩、並びに、これらの水和物を例示できる。 The first solid inorganic raw material and the second solid inorganic raw material include metal alone, alloy, element alone, oxide, peroxide, hydroxide, hydride, halide, boride, cyanide, azide, and nitride. , Carbide, carbonate, sulfide, sulfate, sulfite, dihydrosulfate, thiosulfate, nitrate, nitrite, phosphate, ammonium salt, silicate, borate, perhalogenate, hypophalus Phosphates, halides, and hydrates thereof can be exemplified.

LiFeOを炭素で被覆する炭素被覆工程について説明する。
LiFeOと炭素源との共存下、炭素源の炭化温度以上の温度で加熱することにより、炭素源は分解及び炭化されて、LiFeOの表面に炭素膜を形成する。炭素被覆工程に供されるLiFeOは、解砕や分級された粉末状態のものが好ましい。
The carbon coating step of coating Li 5 FeO 4 with carbon will be described.
In the coexistence of Li 5 FeO 4 and the carbon source, by heating at a temperature equal to or higher than the carbonization temperature of the carbon source, the carbon source is decomposed and carbonized to form a carbon film on the surface of Li 5 FeO 4. The Li 5 FeO 4 used in the carbon coating step is preferably in a crushed or classified powder state.

炭素源は有機物である。有機物としては、固体、液体、気体のものがある。特に、気体状態の有機物を用いることで、LiFeOの表面に均一な炭素膜を形成できる。気体状態の有機物を用いて炭素膜を生成させる方法は、一般に熱CVD法と呼ばれている方法を応用したものである。熱CVD法を応用して炭素被覆工程を行う場合には、ホットウォール型、コールドウォール型、横型、縦型などの型式の、流動層反応炉、回転炉、トンネル炉、バッチ式焼成炉、ロータリーキルンなどの公知のCVD装置を用いればよい。 The carbon source is organic matter. Organic substances include solids, liquids, and gases. In particular, by using an organic substance in a gaseous state, a uniform carbon film can be formed on the surface of Li 5 FeO 4. The method of forming a carbon film using an organic substance in a gaseous state is an application of a method generally called a thermal CVD method. When the carbon coating process is performed by applying the thermal CVD method, hot wall type, cold wall type, horizontal type, vertical type, etc., flow layer reactor, rotary furnace, tunnel furnace, batch type firing furnace, rotary kiln A known CVD apparatus such as the above may be used.

有機物としては加熱によって熱分解して炭化し得るものが用いられ、例えば、メタン、エタン、プロパン、ブタン、イソブタン、ペンタン、ヘキサン、ヘプタン、オクタンなどの飽和脂肪族炭化水素、エチレン、プロピレン、アセチレンなどの不飽和脂肪族炭化水素、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、安息香酸、サリチル酸、ニトロベンゼン、クロルベンゼン、インデン、ベンゾフラン、ピリジン、アントラセン、フェナントレンなどの芳香族炭化水素、酢酸エチル、酢酸ブチル、酢酸アミルなどのエステル類、スクロースなどの炭水化物、クエン酸などの有機酸、ポリフッ化ビニリデンなどの樹脂から選択される一種又は混合物が挙げられる。
分解容易性、沸点、及び炭素膜の純度を考慮すると、有機物としては、炭素数5〜18の飽和脂肪族炭化水素が好ましく、炭素数5〜12の飽和脂肪族炭化水素がより好ましく、炭素数5〜8の飽和脂肪族炭化水素がさらに好ましい。
Organic substances that can be thermally decomposed and carbonized by heating are used, for example, saturated aliphatic hydrocarbons such as methane, ethane, propane, butane, isobutane, pentane, hexane, heptane, and octane, ethylene, propylene, acetylene, and the like. Unsaturated aliphatic hydrocarbons, alcohols such as methanol, ethanol, propanol, butanol, benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, benzoic acid, salicylic acid, nitrobenzene, chlorbenzene, inden, A type selected from aromatic hydrocarbons such as benzofuran, pyridine, anthracene, and phenanthrene, esters such as ethyl acetate, butyl acetate, and amyl acetate, carbohydrates such as sucrose, organic acids such as citric acid, and resins such as vinylidene fluoride. Alternatively, a mixture may be mentioned.
Considering the ease of decomposition, the boiling point, and the purity of the carbon film, as the organic substance, a saturated aliphatic hydrocarbon having 5 to 18 carbon atoms is preferable, a saturated aliphatic hydrocarbon having 5 to 12 carbon atoms is more preferable, and a saturated aliphatic hydrocarbon having 5 to 12 carbon atoms is more preferable. 5-8 saturated aliphatic hydrocarbons are more preferred.

炭素被覆工程は、LiFeOを流動状態にして行うことが望ましい。このようにすることで、LiFeOの全表面を有機物と接触させることができ、より均一な炭素膜を形成することができるし、炭素被覆LiFeO粒子同士の結着を抑制することもできる。LiFeOを流動状態にするには、流動床を用いるなど各種方法があるが、LiFeOを撹拌しながら有機物と接触させるのが好ましい。例えば、内部に邪魔板をもつ回転炉を用いれば、邪魔板に留まったLiFeOが回転炉の回転に伴って所定高さから落下することで撹拌され、その際に有機物と接触して炭素膜が形成されるので、LiFeOの全体にいっそう均一な炭素膜を形成することができる。 It is desirable that the carbon coating step be carried out with Li 5 FeO 4 in a fluid state. By doing so, the entire surface of Li 5 FeO 4 can be brought into contact with organic substances, a more uniform carbon film can be formed, and the binding of carbon-coated Li 5 FeO 4 particles is suppressed. You can also do it. There are various methods for bringing Li 5 FeO 4 into a fluidized state, such as using a fluidized bed, but it is preferable to bring Li 5 FeO 4 into contact with an organic substance while stirring. For example, if a rotary furnace having a baffle plate inside is used, Li 5 FeO 4 staying on the baffle plate is agitated by falling from a predetermined height as the rotary furnace rotates, and at that time, it comes into contact with organic substances. Since the carbon film is formed, a more uniform carbon film can be formed over the entire Li 5 FeO 4.

炭素被覆工程の温度としては、650〜800℃の範囲内が好ましく、700〜780℃の範囲内がより好ましく、720〜760℃の範囲内がさらに好ましい。また、炭素被覆工程は、アルゴン、ヘリウム、窒素などの不活性ガス雰囲気下で行われるのが好ましい。 The temperature of the carbon coating step is preferably in the range of 650 to 800 ° C, more preferably in the range of 700 to 780 ° C, and even more preferably in the range of 720 to 760 ° C. Further, the carbon coating step is preferably carried out in an atmosphere of an inert gas such as argon, helium or nitrogen.

本発明の炭素被覆LiFeOは、正極活物質として、リチウムイオン供給剤として、又は、各種の添加剤として機能し得る。特に、本発明の炭素被覆LiFeOは、リチウムイオン二次電池用正極材料であって、リチウムイオン二次電池の正極において、初回充電時のリチウムイオン供給剤として好適に機能する。以下、本発明の炭素被覆LiFeOを具備するリチウムイオン二次電池用正極を「本発明の正極」といい、本発明の正極を具備するリチウムイオン二次電池を「本発明のリチウムイオン二次電池」という。 The carbon-coated Li 5 FeO 4 of the present invention can function as a positive electrode active material, as a lithium ion feeder, or as various additives. In particular, the carbon-coated Li 5 FeO 4 of the present invention is a positive electrode material for a lithium ion secondary battery, and functions suitably as a lithium ion feeder at the time of initial charging in the positive electrode of a lithium ion secondary battery. Hereinafter, the positive electrode for a lithium ion secondary battery provided with the carbon-coated Li 5 FeO 4 of the present invention is referred to as "the positive electrode of the present invention", and the lithium ion secondary battery provided with the positive electrode of the present invention is referred to as "the lithium ion of the present invention". It is called "secondary battery".

本発明の正極において、本発明の炭素被覆LiFeOは、正極活物質が存在する正極活物質層に添加されるのが好ましい。本発明の正極の一態様は、本発明の炭素被覆LiFeOを含む正極活物質層、及び、集電体を具備する。正極活物質層は集電体上に形成される。本発明の炭素被覆LiFeOがリチウムイオン供給剤の場合は、正極活物質層における本発明の炭素被覆LiFeOの配合量は、負極の不可逆容量に応じて決定すればよい。 In the positive electrode of the present invention, the carbon-coated Li 5 FeO 4 of the present invention is preferably added to the positive electrode active material layer in which the positive electrode active material is present. One aspect of the positive electrode of the present invention includes a positive electrode active material layer containing the carbon-coated Li 5 FeO 4 of the present invention, and a current collector. The positive electrode active material layer is formed on the current collector. When the carbon-coated Li 5 FeO 4 of the present invention is a lithium ion feeder, the blending amount of the carbon-coated Li 5 FeO 4 of the present invention in the positive electrode active material layer may be determined according to the irreversible capacity of the negative electrode.

集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子伝導体をいう。集電体の材料は、使用する活物質に適した電圧に耐え得る金属であれば特に制限はない。集電体の材料としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。 A current collector is a chemically inert electron conductor that keeps current flowing through the electrodes during the discharge or charging of a lithium-ion secondary battery. The material of the current collector is not particularly limited as long as it is a metal that can withstand a voltage suitable for the active material to be used. As the material of the current collector, at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel. Metallic materials such as, etc. can be exemplified. The current collector may be coated with a known protective layer. A current collector whose surface is treated by a known method may be used as the current collector.

正極の電位をリチウム基準で4V以上とする場合には、正極用集電体としてアルミニウムを採用するのが好ましい。 When the potential of the positive electrode is 4 V or more based on lithium, it is preferable to use aluminum as the current collector for the positive electrode.

具体的には、正極用集電体として、アルミニウム又はアルミニウム合金からなるものを用いるのが好ましい。ここでアルミニウムは、純アルミニウムを指し、純度99.0%以上のアルミニウムを純アルミニウムと称する。純アルミニウムに種々の元素を添加して合金としたものをアルミニウム合金と称する。アルミニウム合金としては、Al−Cu系、Al−Mn系、Al−Fe系、Al−Si系、Al−Mg系、Al−Mg−Si系、Al−Zn−Mg系が挙げられる。 Specifically, it is preferable to use a current collector for the positive electrode made of aluminum or an aluminum alloy. Here, aluminum refers to pure aluminum, and aluminum having a purity of 99.0% or higher is referred to as pure aluminum. An alloy obtained by adding various elements to pure aluminum is called an aluminum alloy. Examples of the aluminum alloy include Al—Cu, Al—Mn, Al—Fe, Al—Si, Al—Mg, Al—Mg—Si, and Al—Zn—Mg.

また、アルミニウム又はアルミニウム合金として、具体的には、例えばJIS A1085、A1N30等のA1000系合金(純アルミニウム系)、JIS A3003、A3004等のA3000系合金(Al−Mn系)、JIS A8079、A8021等のA8000系合金(Al−Fe系)が挙げられる。 Further, as aluminum or an aluminum alloy, specifically, for example, A1000 series alloys such as JIS A1085 and A1N30 (pure aluminum series), A3000 series alloys such as JIS A3003 and A3004 (Al-Mn series), JIS A8079, A8021 and the like. A8000 series alloy (Al—Fe series) can be mentioned.

集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm〜100μmの範囲内であることが好ましい。 The current collector can take the form of foil, sheet, film, linear, rod, mesh or the like. Therefore, as the current collector, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, or a stainless steel foil can be preferably used. When the current collector is in the form of a foil, a sheet, or a film, the thickness thereof is preferably in the range of 1 μm to 100 μm.

正極活物質層には、本発明の炭素被覆LiFeO以外に公知の正極活物質が含まれるのが好ましい。
正極活物質としては、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはW、Mo、Re、Pd、Ba、Cr、B、Sb、Sr、Pb、Ga、Al、Nb、Mg、Ta、Ti、La、Zr、Cu、Ca、Ir、Hf、Rh、Fe、Ge、Zn、Ru、Sc、Sn、In、Y、Bi、S、Si、Na、K、P、Vから選ばれる少なくとも1の元素、1.7≦f≦3)で表されるリチウム複合金属酸化物、LiNiCoAl(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはW、Mo、Re、Pd、Ba、Cr、B、Sb、Sr、Pb、Ga、Nb、Mg、Ta、Ti、La、Zr、Cu、Ca、Ir、Hf、Rh、Fe、Ge、Zn、Ru、Sc、Sn、In、Y、Bi、S、Si、Na、K、P、Vから選ばれる少なくとも1の元素、1.7≦f≦3)で表されるリチウム複合金属酸化物、LiMnOを挙げることができる。また、正極活物質として、LiMn等のスピネル構造の金属酸化物、スピネル構造の金属酸化物と層状化合物の混合物で構成される固溶体、LiMPO、LiMVO又はLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)などで表されるポリアニオン系化合物を挙げることができる。さらに、正極活物質として、LiFePOFなどのLiMPOF(Mは遷移金属)で表されるタボライト系化合物、LiFeBOなどのLiMBO(Mは遷移金属)で表されるボレート系化合物を挙げることができる。正極活物質として用いられるいずれの金属酸化物も上記の組成式を基本組成とすればよく、基本組成に含まれる金属元素を他の金属元素で置換したものも使用可能である。また、正極活物質として、電荷担体(例えば充放電に寄与するリチウムイオン)を含まないものを用いても良い。例えば、硫黄単体、硫黄と炭素を複合化した化合物、TiSなどの金属硫化物、V、MnOなどの酸化物、ポリアニリン及びアントラキノン並びにこれら芳香族を化学構造に含む化合物、共役二酢酸系有機物などの共役系材料、その他公知の材料を用いることもできる。さらに、ニトロキシド、ニトロニルニトロキシド、ガルビノキシル、フェノキシルなどの安定なラジカルを有する化合物を正極活物質として採用してもよい。リチウム等の電荷担体を含まない正極活物質材料を用いる場合には、正極及び/又は負極に、公知の方法により、予め電荷担体を添加しておく必要がある。電荷担体は、イオンの状態で添加しても良いし、金属等の非イオンの状態で添加しても良い。例えば、電荷担体がリチウムである場合には、リチウム箔を正極及び/又は負極に貼り付けるなどして一体化しても良い。
The positive electrode active material layer preferably contains a known positive electrode active material in addition to the carbon-coated Li 5 FeO 4 of the present invention.
As the positive electrode active material, the general formula of the layered rock salt structure: Li a Ni b Co c Mn d D e O f (0.2 ≦ a ≦ 2, b + c + d + e = 1,0 ≦ e <1, D is W, Mo, Re, Pd, Ba, Cr, B, Sb, Sr, Pb, Ga, Al, Nb, Mg, Ta, Ti, La, Zr, Cu, Ca, Ir, Hf, Rh, Fe, Ge, Zn, Ru, Li a Ni, a lithium composite metal oxide represented by 1.7 ≦ f ≦ 3), which is at least one element selected from Sc, Sn, In, Y, Bi, S, Si, Na, K, P, and V. b Co c Al d D e O f (0.2 ≦ a ≦ 2, b + c + d + e = 1,0 ≦ e <1, D is W, Mo, Re, Pd, Ba, Cr, B, Sb, Sr, Pb, Ga, Nb, Mg, Ta, Ti, La, Zr, Cu, Ca, Ir, Hf, Rh, Fe, Ge, Zn, Ru, Sc, Sn, In, Y, Bi, S, Si, Na, K, Examples thereof include Li 2 MnO 3 , a lithium composite metal oxide represented by at least one element selected from P and V, 1.7 ≦ f ≦ 3). Further, as the positive electrode active material, a metal oxide having a spinel structure such as LiMn 2 O 4 , a solid solution composed of a mixture of a metal oxide having a spinel structure and a layered compound, LiMPO 4 , LiMVO 4 or Li 2 MSiO 4 (in the formula). M is selected from at least one of Co, Ni, Mn, and Fe) and the like. Furthermore, as the positive electrode active material, tavorite compound (the M a transition metal) LiMPO 4 F, such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal) include borate-based compound represented by be able to. Any metal oxide used as the positive electrode active material may have the above composition formula as the basic composition, and those in which the metal element contained in the basic composition is replaced with another metal element can also be used. Further, as the positive electrode active material, a material that does not contain a charge carrier (for example, lithium ions that contribute to charging / discharging) may be used. For example, elemental sulfur, compounds complexed with sulfur and carbon, metal sulfides such as TiS 2, oxides such as V 2 O 5, MnO 2, polyaniline and anthraquinone and compounds containing these aromatic in chemical structure, conjugated double Conjugated materials such as acetic acid-based organic substances and other known materials can also be used. Further, a compound having a stable radical such as nitroxide, nitronyl nitroxide, galbinoxyl, phenoxyl and the like may be adopted as the positive electrode active material. When a positive electrode active material that does not contain a charge carrier such as lithium is used, it is necessary to add a charge carrier to the positive electrode and / or the negative electrode in advance by a known method. The charge carrier may be added in an ionic state or may be added in a non-ionic state such as a metal. For example, when the charge carrier is lithium, a lithium foil may be attached to the positive electrode and / or the negative electrode to integrate them.

高容量及び耐久性などに優れる点から、正極活物質として、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはW、Mo、Re、Pd、Ba、Cr、B、Sb、Sr、Pb、Ga、Al、Nb、Mg、Ta、Ti、La、Zr、Cu、Ca、Ir、Hf、Rh、Fe、Ge、Zn、Ru、Sc、Sn、In、Y、Bi、S、Si、Na、K、P、Vから選ばれる少なくとも1の元素、1.7≦f≦3) で表されるリチウム複合金属酸化物、又は、LiNiCoAl(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはW、Mo、Re、Pd、Ba、Cr、B、Sb、Sr、Pb、Ga、Nb、Mg、Ta、Ti、La、Zr、Cu、Ca、Ir、Hf、Rh、Fe、Ge、Zn、Ru、Sc、Sn、In、Y、Bi、S、Si、Na、K、P、Vから選ばれる少なくとも1の元素、1.7≦f≦3)で表されるリチウム複合金属酸化物を採用することが好ましい。 From the viewpoint of excellent and high capacity, and durability, as the positive electrode active material, the general formula of the layered rock salt structure: Li a Ni b Co c Mn d D e O f (0.2 ≦ a ≦ 2, b + c + d + e = 1,0 ≦ e <1, D are W, Mo, Re, Pd, Ba, Cr, B, Sb, Sr, Pb, Ga, Al, Nb, Mg, Ta, Ti, La, Zr, Cu, Ca, Ir, Hf, It is represented by at least one element selected from Rh, Fe, Ge, Zn, Ru, Sc, Sn, In, Y, Bi, S, Si, Na, K, P, and V, 1.7 ≦ f ≦ 3). lithium mixed metal oxide that, or, Li a Ni b Co c Al d D e O f (0.2 ≦ a ≦ 2, b + c + d + e = 1,0 ≦ e <1, D is W, Mo, Re, Pd, Ba, Cr, B, Sb, Sr, Pb, Ga, Nb, Mg, Ta, Ti, La, Zr, Cu, Ca, Ir, Hf, Rh, Fe, Ge, Zn, Ru, Sc, Sn, In, It is preferable to use at least one element selected from Y, Bi, S, Si, Na, K, P, and V, and a lithium composite metal oxide represented by 1.7 ≦ f ≦ 3).

高容量及び耐久性などに優れる点から、正極活物質として、スピネル構造のLiMn2―y(Aは、Ca、Mg、S、Si、Na、K、Al、P、Ga、Geから選ばれる少なくとも1の元素、及び、Niなどの遷移金属元素から選ばれる少なくとも1種の金属元素から選択される。0<x≦2.2、0≦y≦1)を例示できる。xの値の範囲としては、0.5≦x≦1.8、0.7≦x≦1.5、0.9≦x≦1.2を例示でき、yの値の範囲としては、0≦y≦0.8、0≦y≦0.6を例示できる。具体的なスピネル構造の化合物として、LiMn、LiMn1.5Ni0.5を例示できる。 From the viewpoint of high capacity and excellent durability, Li x Mn 2-y Ay O 4 (A is Ca, Mg, S, Si, Na, K, Al, P, Ga) having a spinel structure as a positive electrode active material. , At least one element selected from Ge, and at least one metal element selected from transition metal elements such as Ni. 0 <x ≦ 2.2, 0 ≦ y ≦ 1) can be exemplified. Examples of the range of x values include 0.5 ≦ x ≦ 1.8, 0.7 ≦ x ≦ 1.5, and 0.9 ≦ x ≦ 1.2, and the range of y values is 0. Examples thereof include ≦ y ≦ 0.8 and 0 ≦ y ≦ 0.6. Examples of specific spinel-structured compounds include LiMn 2 O 4 and Limn 1.5 Ni 0.5 O 4.

具体的な正極活物質として、LiFePO、LiFeSiO、LiCoPO、LiCoPO、LiMnPO、LiMnSiO、LiCoPOFを例示できる。他の具体的な正極活物質として、LiMnO−LiCoOを例示できる。 Specific examples of the positive electrode active material include LiFePO 4 , Li 2 FeSiO 4 , LiCoPO 4 , Li 2 CoPO 4 , Li 2 MnPO 4 , Li 2 MnSiO 4 , and Li 2 CoPO 4 F. As another specific positive electrode active material, Li 2 MnO 3- LiCoO 2 can be exemplified.

正極活物質層には、結着剤及び導電助剤が含まれているのが好ましい。正極活物質層に含まれる結着剤及び導電助剤としては、後述の負極で説明するものを適宜適切に採用すればよい。 The positive electrode active material layer preferably contains a binder and a conductive auxiliary agent. As the binder and the conductive auxiliary agent contained in the positive electrode active material layer, those described in the negative electrode described later may be appropriately and appropriately adopted.

本発明のリチウムイオン二次電池は、具体的に、本発明の正極と、負極と、電解液と、セパレータとを具備する。負極は、集電体と集電体上に形成された負極活物質層を具備する。負極活物質層には負極活物質が含まれる。負極の集電体としては、本発明の正極で説明したものから適宜適切に選択すればよい。 Specifically, the lithium ion secondary battery of the present invention includes the positive electrode, the negative electrode, the electrolytic solution, and the separator of the present invention. The negative electrode includes a current collector and a negative electrode active material layer formed on the current collector. The negative electrode active material layer contains a negative electrode active material. The current collector of the negative electrode may be appropriately selected from those described in the positive electrode of the present invention.

負極活物質としては、電荷担体を吸蔵及び放出し得る材料が使用可能である。したがって、リチウムイオンなどの電荷担体を吸蔵及び放出可能である単体、合金又は化合物であれば特に限定はない。たとえば、負極活物質としてLiや、炭素、ケイ素、ゲルマニウム、錫などの14族元素、アルミニウム、インジウムなどの13族元素、亜鉛、カドミウムなどの12族元素、アンチモン、ビスマスなどの15族元素、マグネシウム、カルシウムなどのアルカリ土類金属、銀、金などの11族元素をそれぞれ単体で採用すればよい。合金又は化合物の具体例としては、Ag−Sn合金、Cu−Sn合金、Co−Sn合金等の錫系材料、各種黒鉛などの炭素系材料、ケイ素単体と二酸化ケイ素に不均化するSiO(0.3≦x≦1.6)などのケイ素系材料、ケイ素単体若しくはケイ素系材料と炭素系材料を組み合わせた複合体が挙げられる。また、負極活物質して、Nb、TiO、LiTi12、WO、MoO、Fe等の酸化物、又は、Li3−xN(M=Co、Ni、Cu)で表される窒化物を採用しても良い。負極活物質として、これらのものの一種以上を使用することができる。 As the negative electrode active material, a material capable of occluding and releasing charge carriers can be used. Therefore, there is no particular limitation as long as it is a simple substance, alloy or compound capable of occluding and releasing a charge carrier such as lithium ion. For example, Li, Group 14 elements such as carbon, silicon, germanium, and tin, Group 13 elements such as aluminum and indium, Group 12 elements such as zinc and cadmium, Group 15 elements such as antimony and bismuth, and magnesium as negative electrode active materials. , Alkaline earth metals such as calcium, and Group 11 elements such as silver and gold may be used alone. Specific examples of alloys or compounds include tin-based materials such as Ag-Sn alloys, Cu-Sn alloys, and Co-Sn alloys, carbon-based materials such as various graphites, and SiO x that disproportionates to elemental silicon and silicon dioxide. Examples thereof include a silicon-based material such as 0.3 ≦ x ≦ 1.6), a simple substance of silicon, or a composite of a silicon-based material and a carbon-based material. Further, the negative electrode active material is an oxide such as Nb 2 O 5 , TiO 2 , Li 4 Ti 5 O 12 , WO 2 , MoO 2 , Fe 2 O 3 , or Li 3-x M x N (M =). A nitride represented by Co, Ni, Cu) may be adopted. One or more of these can be used as the negative electrode active material.

高容量化の可能性の点から、好ましい負極活物質として、黒鉛、Si含有材料、Sn含有材料を挙げることができる。特に、負極活物質として、不可逆容量の存在が重要な問題となるSi含有材料を採用した場合に、本発明の炭素被覆LiFeOのリチウムイオン供給剤としての効果が顕著に発揮される。 From the viewpoint of the possibility of increasing the capacity, graphite, Si-containing material, and Sn-containing material can be mentioned as preferable negative electrode active materials. In particular, when a Si-containing material in which the existence of an irreversible capacity is an important issue is used as the negative electrode active material, the effect of the carbon-coated Li 5 FeO 4 of the present invention as a lithium ion feeder is remarkably exhibited.

Si含有材料の具体例として、Si単体や、Si相とケイ素酸化物相との2相に不均化されたSiO(0.3≦x≦1.6)を例示できる。SiOにおけるSi相は、リチウムイオンを吸蔵及び放出でき、二次電池の充放電に伴って体積変化する。ケイ素酸化物相はSi相に比べて充放電に伴う体積変化が少ない。つまり、負極活物質としてのSiOは、Si相により高容量を実現するとともに、ケイ素酸化物相を有することにより負極活物質全体の体積変化を抑制する。なお、xが下限値未満であると、Siの比率が過大になるため、充放電時の体積変化が大きくなりすぎて二次電池のサイクル特性が低下する。一方、xが上限値を超えると、Si比率が過小になってエネルギー密度が低下する。xの範囲は0.5≦x≦1.5であるのがより好ましく、0.7≦x≦1.2であるのがさらに好ましい。 Specific examples of the Si-containing material include Si alone and SiO x (0.3 ≦ x ≦ 1.6) disproportionated into two phases of a Si phase and a silicon oxide phase. The Si phase in SiO x can occlude and release lithium ions, and its volume changes with the charging and discharging of the secondary battery. The silicon oxide phase has less volume change due to charging and discharging than the Si phase. That is, SiO x as the negative electrode active material realizes a high capacity by the Si phase and suppresses the volume change of the entire negative electrode active material by having the silicon oxide phase. If x is less than the lower limit, the ratio of Si becomes excessive, so that the volume change during charging / discharging becomes too large, and the cycle characteristics of the secondary battery deteriorate. On the other hand, when x exceeds the upper limit value, the Si ratio becomes too small and the energy density decreases. The range of x is more preferably 0.5 ≦ x ≦ 1.5, and even more preferably 0.7 ≦ x ≦ 1.2.

なお、上記したSiOにおいては、リチウムイオン二次電池の充放電時にリチウムとSi相のケイ素とによる合金化反応が生じると考えられている。そして、この合金化反応がリチウムイオン二次電池の充放電に寄与すると考えられている。後述するSn含有材料についても、同様に、スズとリチウムとの合金化反応によって充放電できると考えられている。 In the above-mentioned SiO x , it is considered that an alloying reaction between lithium and silicon in the Si phase occurs during charging / discharging of the lithium ion secondary battery. It is believed that this alloying reaction contributes to the charging and discharging of the lithium ion secondary battery. Similarly, it is considered that the Sn-containing material described later can be charged and discharged by the alloying reaction of tin and lithium.

Sn含有材料の具体例として、Sn単体、Cu−SnやCo−Snなどのスズ合金、アモルファススズ酸化物、スズケイ素酸化物を例示できる。アモルファススズ酸化物としてはSnB0.40.63.1を例示でき、スズケイ素酸化物としてはSnSiOを例示できる。 Specific examples of the Sn-containing material include Sn alone, tin alloys such as Cu-Sn and Co-Sn, amorphous tin oxide, and tin silicon oxide. SnB 0.4 P 0.6 O 3.1 can be exemplified as the amorphous tin oxide, and SnSiO 3 can be exemplified as the tin silicon oxide.

Si含有材料、及び、Sn含有材料は、炭素材料と複合化して負極活物質とすることが好ましい。複合化に因り、特にケイ素及び/又はスズの構造が安定し、負極の耐久性が向上する。上記複合化は、既知の方法で行えば良い。複合化に用いられる炭素材料としては、黒鉛、ハードカーボン、ソフトカーボン等を採用すればよい。黒鉛は、天然黒鉛でもよく、人造黒鉛でもよい。 The Si-containing material and the Sn-containing material are preferably combined with a carbon material to form a negative electrode active material. Due to the compounding, the structure of silicon and / or tin is particularly stable, and the durability of the negative electrode is improved. The above compounding may be performed by a known method. As the carbon material used for the composite, graphite, hard carbon, soft carbon or the like may be adopted. The graphite may be natural graphite or artificial graphite.

Si含有材料の具体例として、国際公開第2014/080608号などに開示されるシリコン材料(以下、単に「シリコン材料」という。)を挙げることができる。 As a specific example of the Si-containing material, a silicon material disclosed in International Publication No. 2014/08608 or the like (hereinafter, simply referred to as “silicon material”) can be mentioned.

シリコン材料は、複数枚の板状シリコン体が厚さ方向に積層されてなる構造を有するものである。シリコン材料は、例えば、CaSiと酸とを反応させてポリシランを主成分とする層状シリコン化合物を合成する工程、さらに、当該層状シリコン化合物を300℃以上で加熱して水素を離脱させる工程を経て製造されるものである。 The silicon material has a structure in which a plurality of plate-shaped silicon bodies are laminated in the thickness direction. The silicon material undergoes, for example, a step of reacting CaSi 2 with an acid to synthesize a layered silicon compound containing polysilane as a main component, and a step of heating the layered silicon compound at 300 ° C. or higher to release hydrogen. It is manufactured.

シリコン材料の製造方法を、酸として塩化水素を用いた場合の理想的な反応式で示すと以下のとおりとなる。
3CaSi+6HCl → Si+3CaCl
Si → 6Si+3H
The ideal reaction formula when hydrogen chloride is used as the acid shows the method for producing the silicon material as follows.
3CaSi 2 + 6HCl → Si 6 H 6 + 3CaCl 2
Si 6 H 6 → 6Si + 3H 2 ↑

ただし、ポリシランであるSiを合成する上段の反応では、副生物や不純物除去の観点から、通常、反応溶媒として水が用いられる。そして、Siは水と反応し得るため、上段の反応を含む層状シリコン化合物を合成する工程において、層状シリコン化合物がSiのみを含むものとして製造されることはほとんどなく、層状シリコン化合物はSi(OH)(Xは酸のアニオン由来の元素若しくは基、s+t+u=6、0<s<6、0<t<6、0<u<6)で表されるものとして製造される。なお、上記の化学式においては、残存し得るCaなどの不可避不純物については、考慮していない。そして、当該層状シリコン化合物を加熱して得られるシリコン材料も、酸素や酸のアニオン由来の元素を含む。 However, in the upper reaction for synthesizing Si 6 H 6 which is polysilane, water is usually used as the reaction solvent from the viewpoint of removing by-products and impurities. Since Si 6 H 6 can react with water, the layered silicon compound is rarely produced as containing only Si 6 H 6 in the step of synthesizing the layered silicon compound including the reaction in the upper stage, and is layered. Silicon compounds are represented by Si 6 H s (OH) t X u (X is an element or group derived from an acid anion, s + t + u = 6, 0 <s <6, 0 <t <6, 0 <u <6). Manufactured as a compound. In the above chemical formula, unavoidable impurities such as Ca that may remain are not considered. The silicon material obtained by heating the layered silicon compound also contains an element derived from an anion of oxygen or acid.

既述のとおり、シリコン材料は、複数枚の板状シリコン体が厚さ方向に積層されてなる構造を有する。リチウムイオン等の電荷担体が効率的に吸蔵及び放出されるためには、板状シリコン体は厚さが10nm〜100nmの範囲内のものが好ましく、20nm〜50nmの範囲内のものがより好ましい。板状シリコン体の長手方向の長さは、0.1μm〜50μmの範囲内のものが好ましい。また、板状シリコン体は、(長手方向の長さ)/(厚さ)が2〜1000の範囲内であるのが好ましい。板状シリコン体の積層構造は走査型電子顕微鏡などによる観察で確認できる。また、この積層構造は、原料のCaSiにおけるSi層の名残りであると考えられる。 As described above, the silicon material has a structure in which a plurality of plate-shaped silicon bodies are laminated in the thickness direction. In order to efficiently occlude and release a charge carrier such as lithium ion, the plate-shaped silicon body preferably has a thickness in the range of 10 nm to 100 nm, and more preferably in the range of 20 nm to 50 nm. The length of the plate-shaped silicon body in the longitudinal direction is preferably in the range of 0.1 μm to 50 μm. Further, the plate-shaped silicon body preferably has a (length in the longitudinal direction) / (thickness) in the range of 2 to 1000. The laminated structure of the plate-shaped silicon body can be confirmed by observation with a scanning electron microscope or the like. Further, this laminated structure is considered to be a remnant of the Si layer in the raw material CaSi 2.

シリコン材料には、アモルファスシリコン及び/又はシリコン結晶子が含まれるのが好ましい。特に、上記板状シリコン体において、アモルファスシリコンをマトリックスとし、シリコン結晶子が当該マトリックス中に点在している状態が好ましい。シリコン結晶子のサイズは、0.5nm〜300nmの範囲内が好ましく、1nm〜100nmの範囲内がより好ましく、1nm〜50nmの範囲内がさらに好ましく、1nm〜10nmの範囲内が特に好ましい。なお、シリコン結晶子のサイズは、シリコン材料に対してX線回折測定を行い、得られたX線回折チャートのSi(111)面の回折ピークの半値幅を用いたシェラーの式から算出される。 The silicon material preferably contains amorphous silicon and / or silicon crystallites. In particular, in the plate-shaped silicon body, it is preferable that amorphous silicon is used as a matrix and silicon crystallites are scattered in the matrix. The size of the silicon crystallite is preferably in the range of 0.5 nm to 300 nm, more preferably in the range of 1 nm to 100 nm, further preferably in the range of 1 nm to 50 nm, and particularly preferably in the range of 1 nm to 10 nm. The size of the silicon crystallite is calculated from Scherrer's equation using the half width of the diffraction peak on the Si (111) plane of the obtained X-ray diffraction chart obtained by performing X-ray diffraction measurement on the silicon material. ..

シリコン材料に含まれる板状シリコン体、アモルファスシリコン及びシリコン結晶子の存在量や大きさは、主に加熱温度や加熱時間に左右される。加熱温度は、350℃〜950℃の範囲内が好ましく、400℃〜900℃の範囲内がより好ましい。 The abundance and size of the plate-shaped silicon body, amorphous silicon, and silicon crystallites contained in the silicon material mainly depend on the heating temperature and heating time. The heating temperature is preferably in the range of 350 ° C. to 950 ° C., more preferably in the range of 400 ° C. to 900 ° C.

シリコン材料は炭素で被覆されていてもよい。炭素で被覆されたシリコン材料は導電性に優れる。 The silicon material may be coated with carbon. The carbon-coated silicon material has excellent conductivity.

シリコン材料の平均粒子径は、2〜7μmの範囲内が好ましく、2.5〜6.5μmの範囲内がより好ましい。平均粒子径が小さすぎるシリコン材料を用いると、凝集性や濡れ性の観点から、負極製造が困難になる場合がある。具体的には、負極製造時に調製するスラリー中において、平均粒子径が小さすぎるシリコン材料が凝集する場合がある。他方、平均粒子径が大きすぎるシリコン材料を用いた負極を具備するリチウムイオン二次電池は、好適な充放電ができない場合がある。平均粒子径が大きすぎるシリコン材料においては、リチウムイオンが当該シリコン材料の内部まで十分に拡散し得ないことが原因と推測される。なお、本明細書における平均粒子径とは、一般的なレーザー回折式粒度分布測定装置で試料を測定した場合におけるD50を意味する。 The average particle size of the silicon material is preferably in the range of 2 to 7 μm, more preferably in the range of 2.5 to 6.5 μm. If a silicon material having an average particle size too small is used, it may be difficult to manufacture a negative electrode from the viewpoint of cohesiveness and wettability. Specifically, in the slurry prepared at the time of manufacturing the negative electrode, the silicon material having an average particle size too small may aggregate. On the other hand, a lithium ion secondary battery provided with a negative electrode using a silicon material having an average particle size too large may not be able to be charged and discharged appropriately. In a silicon material having an average particle size too large, it is presumed that the cause is that lithium ions cannot sufficiently diffuse into the inside of the silicon material. The average particle size in the present specification means D50 when the sample is measured by a general laser diffraction type particle size distribution measuring device.

結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、カルボキシメチルセルロース、スチレンブタジエンゴムなどの公知のものを採用すればよい。 Examples of the binder include fluororesins such as polyvinylidene fluoride, polytetrafluoroethylene and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, alkoxysilyl group-containing resins and carboxymethyl cellulose. , A known material such as styrene-butadiene rubber may be used.

また、国際公開第2016/063882号に開示される、ポリアクリル酸やポリメタクリル酸などのカルボキシル基含有ポリマーをジアミンなどのポリアミンで架橋した架橋ポリマーを、結着剤として用いてもよい。 Further, a crosslinked polymer obtained by cross-linking a carboxyl group-containing polymer such as polyacrylic acid or polymethacrylic acid with a polyamine such as diamine disclosed in International Publication No. 2016/06382 may be used as a binder.

架橋ポリマーに用いられるジアミンとしては、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン等のアルキレンジアミン、1,4−ジアミノシクロヘキサン、1,3−ジアミノシクロヘキサン、イソホロンジアミン、ビス(4−アミノシクロヘキシル)メタン等の含飽和炭素環ジアミン、m−フェニレンジアミン、p−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、ビス(4−アミノフェニル)スルホン、ベンジジン、o−トリジン、2,4−トリレンジアミン、2,6−トリレンジアミン、キシリレンジアミン、ナフタレンジアミン等の芳香族ジアミンが挙げられる。 Examples of the diamine used in the crosslinked polymer include alkylenediamines such as ethylenediamine, propylenediamine and hexamethylenediamine, 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, isophoronediamine and bis (4-aminocyclohexyl) methane. Saturated carbocyclic diamine, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, bis (4-aminophenyl) sulfone, benzidine, o-trizine, 2,4- Examples thereof include aromatic diamines such as tolylene diamine, 2,6-tolylene diamine, xylylene diamine and naphthalene diamine.

活物質層中の結着剤の配合割合は、0.5〜20質量%が好ましく、1〜15質量%がより好ましく、2〜10質量%がさらに好ましく、3〜5質量%が特に好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。 The blending ratio of the binder in the active material layer is preferably 0.5 to 20% by mass, more preferably 1 to 15% by mass, further preferably 2 to 10% by mass, and particularly preferably 3 to 5% by mass. This is because if the amount of the binder is too small, the moldability of the electrode is lowered, and if the amount of the binder is too large, the energy density of the electrode is lowered.

導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、気相法炭素繊維(Vapor Grown Carbon Fiber)、および各種金属粒子などが例示される。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラックなどが例示される。これらの導電助剤を単独又は二種以上組み合わせて活物質層に添加することができる。活物質層中の導電助剤の配合割合は、0.5〜20質量%が好ましく、1〜15質量%がより好ましく、2〜10質量%がさらに好ましく、2〜5質量%が特に好ましい。導電助剤が少なすぎると効率のよい導電パスを形成できず、また、導電助剤が多すぎると活物質層の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。 The conductive auxiliary agent is added to increase the conductivity of the electrode. Therefore, the conductive auxiliary agent may be arbitrarily added when the conductivity of the electrode is insufficient, and may not be added when the conductivity of the electrode is sufficiently excellent. The conductive auxiliary agent may be a chemically inert electron high conductor, and examples thereof include carbon black, graphite, vaporized carbon fiber (Vapor Grown Carbon Fiber), and various metal particles, which are carbonaceous fine particles. NS. Examples of carbon black include acetylene black, Ketjen black (registered trademark), furnace black, and channel black. These conductive auxiliary agents can be added to the active material layer alone or in combination of two or more. The blending ratio of the conductive auxiliary agent in the active material layer is preferably 0.5 to 20% by mass, more preferably 1 to 15% by mass, further preferably 2 to 10% by mass, and particularly preferably 2 to 5% by mass. This is because if the amount of the conductive auxiliary agent is too small, an efficient conductive path cannot be formed, and if the amount of the conductive auxiliary agent is too large, the moldability of the active material layer is deteriorated and the energy density of the electrode is lowered.

集電体の表面に活物質層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を塗布すればよい。具体的には、活物質層の成分及び溶剤を混合してスラリーにしてから、当該スラリーを集電体の表面に塗布後、乾燥する。溶剤としては、N−メチル−2−ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。電極密度を高めるべく、乾燥後のものを圧縮しても良い。 In order to form an active material layer on the surface of the current collector, a conventionally known method such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method is used to collect electricity. The active material may be applied to the surface of the body. Specifically, the components of the active material layer and the solvent are mixed to form a slurry, and then the slurry is applied to the surface of the current collector and then dried. Examples of the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water. The dried one may be compressed in order to increase the electrode density.

正極活物質層を製造するための、炭素被覆LiFeOと溶剤とを具備するスラリー状の正極活物質層製造用組成物においては、固形分の配合量は30〜90質量%の範囲内が好ましく、50〜75質量%の範囲内がより好ましい。ここで、固形分とは、正極活物質層製造用組成物に含まれる溶剤以外の成分を意味する。 In a slurry-like composition for producing a positive electrode active material layer containing a carbon-coated Li 5 FeO 4 and a solvent for producing a positive electrode active material layer, the amount of solid content is within the range of 30 to 90% by mass. Is preferable, and the range of 50 to 75% by mass is more preferable. Here, the solid content means a component other than the solvent contained in the composition for producing the positive electrode active material layer.

正極活物質層製造用組成物における、本発明の炭素被覆LiFeOの配合量は、本発明の炭素被覆LiFeOの用途に応じて適宜決定すればよい。
本発明の炭素被覆LiFeOを、負極の不可逆容量に相当するリチウムイオンを補填するためのリチウムイオン供給剤として用いる場合であれば、正極活物質層製造用組成物における本発明の炭素被覆LiFeOの配合量としては、固形分に対して、1〜10質量%の範囲内、3〜9質量%の範囲内、5〜8質量%の範囲内を例示できる。
The blending amount of the carbon-coated Li 5 FeO 4 of the present invention in the composition for producing a positive electrode active material layer may be appropriately determined according to the use of the carbon-coated Li 5 FeO 4 of the present invention.
When the carbon-coated Li 5 FeO 4 of the present invention is used as a lithium ion feeder for supplementing lithium ions corresponding to the irreversible capacity of the negative electrode, the carbon-coated Li 5 FeO 4 of the present invention in the composition for producing a positive electrode active material layer is used. Examples of the blending amount of Li 5 FeO 4 include a range of 1 to 10% by mass, a range of 3 to 9% by mass, and a range of 5 to 8% by mass with respect to the solid content.

また、正極活物質層製造用組成物における正極活物質の配合量としては、固形分に対して、80〜95質量%の範囲内、83〜93質量%の範囲内、85〜90質量%の範囲内を例示できる。正極活物質層製造用組成物における結着剤の配合量としては、固形分に対して、0.5〜10質量%の範囲内、1〜5質量%の範囲内、2〜4質量%の範囲内を例示できる。正極活物質層製造用組成物における導電助剤の配合量としては、固形分に対して、0.5〜5質量%の範囲内、1〜4質量%の範囲内、1〜3質量%の範囲内を例示できる。 The blending amount of the positive electrode active material in the composition for producing the positive electrode active material layer is in the range of 80 to 95% by mass, in the range of 83 to 93% by mass, and 85 to 90% by mass with respect to the solid content. The range can be illustrated. The blending amount of the binder in the composition for producing the positive electrode active material layer is in the range of 0.5 to 10% by mass, in the range of 1 to 5% by mass, and 2 to 4% by mass with respect to the solid content. The range can be exemplified. The blending amount of the conductive auxiliary agent in the composition for producing the positive electrode active material layer is in the range of 0.5 to 5% by mass, in the range of 1 to 4% by mass, and 1 to 3% by mass with respect to the solid content. The range can be illustrated.

セパレータは、正極と負極とを隔離し、両極の接触による短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、公知のものを採用すればよく、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などを挙げることができる。また、セパレータは多層構造としてもよい。 The separator separates the positive electrode and the negative electrode, and allows lithium ions to pass through while preventing a short circuit due to contact between the two electrodes. As the separator, a known one may be adopted, and synthetic resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic polyamide), polyester and polyacrylonitrile, polysaccharides such as cellulose and amylose, and fibroin , Natural polymers such as keratin, lignin, and suberin, porous materials using one or more electrically insulating materials such as ceramics, non-woven fabrics, and woven fabrics. Further, the separator may have a multi-layer structure.

電解液は、非水溶媒と非水溶媒に溶解した電解質とを含んでいる。 The electrolytic solution contains a non-aqueous solvent and an electrolyte dissolved in the non-aqueous solvent.

非水溶媒としては、環状カーボネート、環状エステル、鎖状カーボネート、鎖状エステル、エーテル類等が使用できる。環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートを例示でき、環状エステルとしては、ガンマブチロラクトン、2−メチル−ガンマブチロラクトン、アセチル−ガンマブチロラクトン、ガンマバレロラクトンを例示できる。鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネートを例示でき、鎖状エステルとしては、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を例示できる。エーテル類としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタンを例示できる。非水溶媒としては、上記具体的な溶媒の化学構造のうち一部又は全部の水素がフッ素に置換した化合物を採用しても良い。 As the non-aqueous solvent, cyclic carbonates, cyclic esters, chain carbonates, chain esters, ethers and the like can be used. Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, and examples of the cyclic ester include gamma-butyrolactone, 2-methyl-gamma-butyrolactone, acetyl-gamma-butyrolactone, and gamma-valerolactone. Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, and ethyl methyl carbonate, and examples of the chain ester include propionic acid alkyl ester, malonic acid dialkyl ester, and acetate alkyl ester. Examples of ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane. As the non-aqueous solvent, a compound in which some or all of the chemical structure of the specific solvent is replaced with fluorine may be adopted.

電解質としては、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を例示できる。 Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2.

電解液としては、フルオロエチレンカーボネート、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどの非水溶媒に、LiClO、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/Lから1.7mol/L程度の濃度で溶解させた溶液を例示できる。 As the electrolytic solution, 0.5 mol / mol of lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , and LiCF 3 SO 3 is added to a non-aqueous solvent such as fluoroethylene carbonate, ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate. An example of a solution dissolved at a concentration of about 1.7 mol / L from L can be exemplified.

本発明のリチウムイオン二次電池の具体的な製造方法について述べる。
例えば、正極と負極とでセパレータを挟持して電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極の積層体を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から外部に通ずる正極端子および負極端子までを、集電用リード等を用いて接続した後に、電極体に電解液を加えてリチウムイオン二次電池とするとよい。
A specific method for manufacturing the lithium ion secondary battery of the present invention will be described.
For example, the separator is sandwiched between the positive electrode and the negative electrode to form an electrode body. The electrode body may be either a laminated type in which a positive electrode, a separator and a negative electrode are stacked, or a wound type in which a laminated body of a positive electrode, a separator and a negative electrode is wound. After connecting the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside using a current collector lead or the like, an electrolytic solution is added to the electrode body to form a lithium ion secondary battery. good.

本発明のリチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。 The shape of the lithium ion secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical type, a square type, a coin type, and a laminated type can be adopted.

本発明のリチウムイオン二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であればよく、例えば、電気車両、ハイブリッド車両などであるとよい。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。リチウムイオン二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明のリチウムイオン二次電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。 The lithium ion secondary battery of the present invention may be mounted on a vehicle. The vehicle may be a vehicle that uses electric energy from a lithium ion secondary battery for all or part of its power source, and may be, for example, an electric vehicle or a hybrid vehicle. When a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form an assembled battery. In addition to vehicles, devices equipped with lithium-ion secondary batteries include various battery-powered home appliances such as personal computers and mobile communication devices, office devices, and industrial devices. Further, the lithium ion secondary battery of the present invention includes wind power generation, solar power generation, hydraulic power generation, other power storage devices and power smoothing devices for electric power systems, power supply sources for power and / or auxiliary machinery such as ships, aircraft, and so on. Power supply sources for spacecraft and / or auxiliary equipment, auxiliary power sources for vehicles that do not use electricity as power sources, power sources for mobile household robots, power sources for system backup, power sources for uninterruptible power supplies, It may be used as a power storage device that temporarily stores the electric power required for charging in a charging station for an electric vehicle or the like.

以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments. As long as it does not deviate from the gist of the present invention, it can be carried out in various forms with modifications, improvements, etc. that can be made by those skilled in the art.

以下に、各種の具体例を示し、本発明をより具体的に説明する。なお、本発明は、これらの具体例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to various specific examples. The present invention is not limited to these specific examples.

(実施例1)
Li源としてLiO及びFe源としてFeを、モル比で5:1となるように秤量し、遊星ボールミルに投入した。さらに、有機添加剤であるステアリン酸リチウムを、LiO及びFeの合計量に対して0.5質量%に相当する量を秤量して、遊星ボールミルに投入した。遊星ボールミルを自転速度800rpm及び公転速度800rpmで作動させて、LiO、Fe及びステアリン酸リチウムを、得られる粒子の径が10μm以下となるまで粉砕混合した。
(Example 1)
Li 2 O as a Li source and Fe 2 O 3 as an Fe source were weighed so as to have a molar ratio of 5: 1 and charged into a planetary ball mill. Further, lithium stearate, which is an organic additive, was weighed in an amount corresponding to 0.5% by mass with respect to the total amount of Li 2 O and Fe 2 O 3, and charged into a planetary ball mill. A planetary ball mill was operated at a rotation speed of 800 rpm and a revolution speed of 800 rpm to grind and mix Li 2 O, Fe 2 O 3 and lithium stearate until the diameter of the obtained particles was 10 μm or less.

粉砕混合されたLiO、Fe及びステアリン酸リチウムの混合物を、ロータリーキルン型の反応器に配置した。次いで、アルゴン雰囲気下、混合物を600℃で60分間加熱して、LiFeOを合成した。続いて、ヘキサン−アルゴン混合ガスの通気下にて、700℃、40分間の条件で熱CVDを行い、LiFeOの表面に炭素膜を形成させて、実施例1の炭素被覆LiFeOを製造した。
なお、LiFeOの合成及び炭素被覆LiFeOの製造の間は、ロータリーキルン型の反応器を回転状態とした。
A mixture of pulverized and mixed Li 2 O, Fe 2 O 3 and lithium stearate was placed in a rotary kiln type reactor. The mixture was then heated at 600 ° C. for 60 minutes under an argon atmosphere to synthesize Li 5 FeO 4. Subsequently, thermal CVD was performed at 700 ° C. for 40 minutes under the aeration of a hexane-argon mixed gas to form a carbon film on the surface of Li 5 FeO 4 , and the carbon-coated Li 5 FeO of Example 1 was formed. 4 was manufactured.
Incidentally, during the synthesis and production of carbon-coated Li 5 FeO 4 of Li 5 FeO 4 was a rotational state of the rotary kiln type reactor.

実施例1の炭素被覆LiFeOを90質量部、導電助剤としてアセチレンブラックを5質量部、結着剤としてポリフッ化ビニリデンを5質量部、及び、適量のN−メチル−2−ピロリドンを混合して、スラリーとした。集電体としてアルミニウム箔を準備し、これにスラリーを塗布して、乾燥することで実験例1の正極を得た。 90 parts by mass of carbon-coated Li 5 FeO 4 of Example 1, 5 parts by mass of acetylene black as a conductive auxiliary agent, 5 parts by mass of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl-2-pyrrolidone. It was mixed to obtain a slurry. An aluminum foil was prepared as a current collector, a slurry was applied thereto, and the foil was dried to obtain a positive electrode of Experimental Example 1.

リチウム箔を準備し、これを負極とした。セパレータとしてガラスフィルター(ヘキストセラニーズ社)及び単層ポリプロピレンであるcelgard2400(ポリポア株式会社)を準備した。また、エチレンカーボネート3体積部、エチルメチルカーボネート3体積部及びジメチルカーボネート4体積部を混合した溶媒に、LiPF6を1mol/Lの濃度で溶解した電解液を準備した。負極、ガラスフィルター、celgard2400、実施例1の正極の順に、2種のセパレータを、負極と実施例1の正極で挟持し電極体とした。この電極体をコイン型電池ケースCR2032(宝泉株式会社)に収容し、さらに電解液を注入して、密閉型のコイン型電池を得た。これを実施例1のリチウムイオン二次電池とした。 A lithium foil was prepared and used as the negative electrode. As a separator, a glass filter (Hoechst Celanese Co., Ltd.) and a single-layer polypropylene celgard 2400 (Polypore Co., Ltd.) were prepared. Further, an electrolytic solution prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent in which 3 parts by volume of ethylene carbonate, 3 parts by volume of ethylmethyl carbonate and 4 parts by volume of dimethyl carbonate were mixed. Two types of separators were sandwiched between the negative electrode and the positive electrode of Example 1 in the order of the negative electrode, the glass filter, the celgard 2400, and the positive electrode of Example 1 to form an electrode body. This electrode body was housed in a coin-type battery case CR2032 (Hosen Co., Ltd.), and an electrolytic solution was further injected to obtain a sealed coin-type battery. This was used as the lithium ion secondary battery of Example 1.

また、実施例1の炭素被覆LiFeOを6.7質量部、正極活物質としてLiNi82/100Co15/100Al3/100を69質量部、正極活物質としてLi(Fe1−x,Mn)POを19.3質量部、導電助剤としてアセチレンブラックを2質量部、結着剤としてポリフッ化ビニリデンを3質量部、及び、N−メチル−2−ピロリドンを混合して、固形分64質量%のスラリーとした。これを実施例1のスラリーとした。 Further, 6.7 parts by mass of the carbon-coated Li 5 FeO 4 of Example 1, 69 parts by mass of LiNi 82/100 Co 15/100 Al 3/100 O 2 as the positive electrode active material, and Li (Fe 1) as the positive electrode active material. -X , Mn x ) PO 4 was mixed by 19.3 parts by mass, acetylene black as a conductive auxiliary agent by 2 parts by mass, polyvinylidene fluoride as a binder by 3 parts by mass, and N-methyl-2-pyrrolidone. The slurry had a solid content of 64% by mass. This was used as the slurry of Example 1.

(実施例2)
ステアリン酸リチウムの添加量を、LiO及びFeの合計量に対して1質量%に相当する量とした以外は、実施例1と同様の方法で、実施例2の炭素被覆LiFeO、正極、リチウムイオン二次電池及びスラリーを製造した。
(Example 2)
The carbon-coated Li of Example 2 was carried out in the same manner as in Example 1 except that the amount of lithium stearate added was set to an amount corresponding to 1% by mass with respect to the total amount of Li 2 O and Fe 2 O 3. 5 FeO 4 , positive electrode, lithium ion secondary battery and slurry were manufactured.

(実施例3)
ステアリン酸リチウムの添加量を、LiO及びFeの合計量に対して2質量%に相当する量とした以外は、実施例1と同様の方法で、実施例3の炭素被覆LiFeO、正極、リチウムイオン二次電池及びスラリーを製造した。
なお、炭素・硫黄分析装置を用いて、実施例3の炭素被覆LiFeOに対して、炭素を対象とした元素分析を行ったところ、炭素の量は2.0質量%であった。また、粉体抵抗率測定システム(株式会社三菱アナリテック)を用いて、実施例3の炭素被覆LiFeOに対して、4kNの荷重をかけた上での体積抵抗値を測定したところ、4.3Ωcmであった。
(Example 3)
The carbon-coated Li of Example 3 was added in the same manner as in Example 1 except that the amount of lithium stearate added was set to an amount corresponding to 2% by mass with respect to the total amount of Li 2 O and Fe 2 O 3. 5 FeO 4 , positive electrode, lithium ion secondary battery and slurry were manufactured.
When an elemental analysis of carbon was performed on the carbon-coated Li 5 FeO 4 of Example 3 using a carbon / sulfur analyzer, the amount of carbon was 2.0% by mass. Further, when the volume resistivity value was measured by applying a load of 4 kN to the carbon-coated Li 5 FeO 4 of Example 3 using a powder resistivity measurement system (Mitsubishi Analytech Co., Ltd.). It was 4.3 Ωcm.

(実施例4)
ステアリン酸リチウムの添加量を、LiO及びFeの合計量に対して3質量%に相当する量とした以外は、実施例1と同様の方法で、実施例4の炭素被覆LiFeO、正極、リチウムイオン二次電池及びスラリーを製造した。
(Example 4)
The carbon-coated Li of Example 4 was carried out in the same manner as in Example 1 except that the amount of lithium stearate added was set to an amount corresponding to 3% by mass with respect to the total amount of Li 2 O and Fe 2 O 3. 5 FeO 4 , positive electrode, lithium ion secondary battery and slurry were manufactured.

(実施例5)
ステアリン酸リチウムの添加量を、LiO及びFeの合計量に対して7質量%に相当する量とした以外は、実施例1と同様の方法で、実施例5の炭素被覆LiFeO、正極、リチウムイオン二次電池及びスラリーを製造した。
(Example 5)
The carbon-coated Li of Example 5 was carried out in the same manner as in Example 1 except that the amount of lithium stearate added was 7% by mass with respect to the total amount of Li 2 O and Fe 2 O 3. 5 FeO 4 , positive electrode, lithium ion secondary battery and slurry were manufactured.

(実施例6)
ステアリン酸リチウムの添加量を、LiO及びFeの合計量に対して10質量%に相当する量とした以外は、実施例1と同様の方法で、実施例6の炭素被覆LiFeO、正極、リチウムイオン二次電池及びスラリーを製造した。
(Example 6)
The carbon-coated Li of Example 6 was carried out in the same manner as in Example 1 except that the amount of lithium stearate added was 10% by mass with respect to the total amount of Li 2 O and Fe 2 O 3. 5 FeO 4 , positive electrode, lithium ion secondary battery and slurry were manufactured.

(比較例1)
ステアリン酸リチウムを添加しなかった以外は、実施例1と同様の方法で、比較例1の炭素被覆LiFeO、正極、リチウムイオン二次電池及びスラリーを製造した。
(Comparative Example 1)
The carbon-coated Li 5 FeO 4 , positive electrode, lithium ion secondary battery, and slurry of Comparative Example 1 were produced in the same manner as in Example 1 except that lithium stearate was not added.

(評価例1)
BET法にて、実施例1〜実施例6及び比較例1の炭素被覆LiFeOの表面積を測定した。各炭素被覆LiFeOの比表面積の値を表1に示す。
(Evaluation example 1)
The surface area of the carbon-coated Li 5 FeO 4 of Examples 1 to 6 and Comparative Example 1 was measured by the BET method. Table 1 shows the values of the specific surface area of each carbon-coated Li 5 FeO 4.

(評価例2)
各リチウムイオン二次電池につき、電流0.1mAにて電圧が4.4Vとなるまで充電した。観測された充電容量を図1にグラフで示し、さらに、評価例1の結果と共に表1に示す。
(Evaluation example 2)
Each lithium ion secondary battery was charged at a current of 0.1 mA until the voltage reached 4.4 V. The observed charge capacity is shown in a graph in FIG. 1, and further shown in Table 1 together with the results of Evaluation Example 1.

Figure 0006922672
Figure 0006922672

表1から、有機添加剤の添加量と炭素被覆LiFeOの比表面積の値は相関関係にあり、有機添加剤の量が増加するに従い、炭素被覆LiFeOの比表面積の値が大きくなることがわかる。すなわち、有機添加剤の量が増加するに従い、炭素被覆LiFeOの粒子径が小さくなるといえる。
有機添加剤の添加に因り、合成される無機化合物の粒子径のコントロールが可能であることが裏付けられたといえる。
From Table 1, the amount of the organic additive added and the value of the specific surface area of the carbon-coated Li 5 FeO 4 are correlated, and as the amount of the organic additive increases, the value of the specific surface area of the carbon-coated Li 5 FeO 4 increases. You can see that it gets bigger. That is, it can be said that the particle size of the carbon-coated Li 5 FeO 4 decreases as the amount of the organic additive increases.
It can be said that it is possible to control the particle size of the synthesized inorganic compound by adding the organic additive.

また、表1及び図1から、比較例1と比較して、各実施例の充電容量が著しく高いことがわかる。BET比表面積が1〜12m/gの範囲内である本発明の炭素被覆LiFeOが、容量に優れることが裏付けられたといえる。 Further, from Table 1 and FIG. 1, it can be seen that the charging capacity of each example is remarkably high as compared with Comparative Example 1. It can be said that the carbon-coated Li 5 FeO 4 of the present invention, which has a BET specific surface area in the range of 1 to 12 m 2 / g, is proved to have excellent capacity.

(評価例3)
実施例1〜実施例6及び比較例1のスラリーにつき、室温密閉状態で製造から24時間経過後に、粘度を測定した。粘度は、ブルックフィールドB型粘度計DV−II +Proにて、スピンドル64を用い、スピンドル回転速度20rpm、室温の条件で測定した。評価例1及び評価例2の結果と共に粘度の値を表2に示す。
(Evaluation example 3)
The viscosities of the slurries of Examples 1 to 6 and Comparative Example 1 were measured 24 hours after the production in a closed state at room temperature. The viscosity was measured with a Brookfield B-type viscometer DV-II + Pro using a spindle 64 under the conditions of a spindle rotation speed of 20 rpm and room temperature. Table 2 shows the viscosity values together with the results of Evaluation Example 1 and Evaluation Example 2.

Figure 0006922672
Figure 0006922672

表2から、炭素被覆LiFeOの比表面積が大きくなるほど、スラリーの24時間後の粘度は増加するといえるし、スラリーの粘度の経時変化も増大するといえる。スラリーの物性の安定性の面からは、炭素被覆LiFeOの比表面積は小さい方が好ましいといえる。
評価例2及び評価例3の結果を総合すると、本発明の炭素被覆LiFeOのBET比表面積は、2〜5m/gの範囲内が特に好ましいといえる。
From Table 2, it can be said that as the specific surface area of the carbon-coated Li 5 FeO 4 increases, the viscosity of the slurry after 24 hours increases, and the change in viscosity of the slurry with time also increases. From the viewpoint of the stability of the physical properties of the slurry, it can be said that it is preferable that the specific surface area of the carbon-coated Li 5 FeO 4 is small.
Combining the results of Evaluation Example 2 and Evaluation Example 3, it can be said that the BET specific surface area of the carbon-coated Li 5 FeO 4 of the present invention is particularly preferably in the range of 2 to 5 m 2 / g.

Claims (5)

LiFeOと前記LiFeOの表面を被覆する炭素膜とを含有する炭素被覆LiFeOであって、BET比表面積が2〜5.4m /gの範囲内であることを特徴とする炭素被覆LiFeOA carbon-coated Li 5 FeO 4 containing a carbon film covering the surface of the Li 5 FeO 4 and the Li 5 FeO 4, a BET specific surface area in the range of 2~5.4m 2 / g Characterized carbon-coated Li 5 FeO 4 . BET比表面積が2.3〜5.4m BET specific surface area is 2.3 to 5.4 m 2 /gの範囲内である請求項1に記載の炭素被覆LiThe carbon-coated Li according to claim 1, which is within the range of / g. 5 FeOFeO 4 .. 請求項1または2に記載の炭素被覆LiFeOを具備する正極。 A positive electrode comprising the carbon-coated Li 5 FeO 4 according to claim 1 or 2. 請求項3に記載の正極を具備するリチウムイオン二次電池。 A lithium ion secondary battery comprising the positive electrode according to claim 3. 請求項1または2に記載の炭素被覆Li The carbon-coated Li according to claim 1 or 2. 5 FeOFeO 4 を製造する方法であって、Is a method of manufacturing
Li源としての酸化リチウムと、Fe源としての酸化鉄と、前記酸化リチウム及び前記酸化鉄の合計量に対して0.1〜10質量%のステアリン酸リチウムと、の混合物を、ステアリン酸リチウムが気化又は分解する温度以上で加熱する工程を含む、炭素被覆Li Lithium stearate is a mixture of lithium oxide as a Li source, iron oxide as an Fe source, and lithium stearate in an amount of 0.1 to 10% by mass based on the total amount of lithium oxide and iron oxide. Carbon-coated Li, including the step of heating above the temperature at which it vaporizes or decomposes 5 FeOFeO 4 の製造方法。Manufacturing method.
JP2017216262A 2017-11-09 2017-11-09 Carbon coated Li5FeO4 Active JP6922672B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017216262A JP6922672B2 (en) 2017-11-09 2017-11-09 Carbon coated Li5FeO4
PCT/JP2018/038913 WO2019093094A1 (en) 2017-11-09 2018-10-19 Carbon-coated li5feo4

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017216262A JP6922672B2 (en) 2017-11-09 2017-11-09 Carbon coated Li5FeO4

Publications (2)

Publication Number Publication Date
JP2019085315A JP2019085315A (en) 2019-06-06
JP6922672B2 true JP6922672B2 (en) 2021-08-18

Family

ID=66438014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017216262A Active JP6922672B2 (en) 2017-11-09 2017-11-09 Carbon coated Li5FeO4

Country Status (2)

Country Link
JP (1) JP6922672B2 (en)
WO (1) WO2019093094A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7074006B2 (en) * 2018-09-27 2022-05-24 株式会社豊田自動織機 Composite particles
JP7070296B2 (en) * 2018-09-27 2022-05-18 株式会社豊田自動織機 Composite particles that suppress gelation of the composition for producing the positive electrode active material layer
JP6813197B2 (en) 2019-04-26 2021-01-13 Necプラットフォームズ株式会社 Heat dissipation structure
CN112054166B (en) * 2019-06-06 2021-08-06 苏州第一元素纳米技术有限公司 Core-shell structure electrochemical active material, preparation method and battery
CN110498449A (en) * 2019-09-06 2019-11-26 湖北融通高科先进材料有限公司 A kind of ferrous acid lithium material and preparation method thereof
CN110867584B (en) * 2019-11-04 2021-09-21 宁德新能源科技有限公司 Lithium supplement material and positive electrode comprising same
CN111725576B (en) * 2020-07-09 2024-04-09 湖北融通高科先进材料集团股份有限公司 Carbon-coated lithium-rich oxide composite material and preparation method thereof
CN112164796B (en) * 2020-09-16 2022-05-06 合肥国轩高科动力能源有限公司 Pre-lithiation additive for positive electrode material of lithium ion battery and preparation method and application thereof
US20240145668A1 (en) * 2021-10-19 2024-05-02 Lg Chem, Ltd. Manufacturing Method of Cathode Additives for Lithium Secondary Battery
CN115312770A (en) * 2022-02-10 2022-11-08 深圳市德方创域新能源科技有限公司 Lithium supplement additive and preparation method and application thereof
CN115312885A (en) * 2022-02-25 2022-11-08 深圳市德方创域新能源科技有限公司 Positive electrode lithium supplement additive and preparation method and application thereof
CN114709383A (en) * 2022-03-18 2022-07-05 广东邦普循环科技有限公司 Modified lithium ion battery anode material and preparation method and application thereof
CN114702078B (en) * 2022-03-21 2023-06-20 湖北亿纬动力有限公司 Carbon-coated lithium ferrite material and preparation method thereof
CN117441243A (en) * 2022-04-18 2024-01-23 宁德时代新能源科技股份有限公司 Electrode active material, preparation method thereof, pole piece and battery
CN115332500A (en) * 2022-07-28 2022-11-11 广东邦普循环科技有限公司 Preparation method and application of high-capacity battery active material
CN115911357B (en) * 2022-11-18 2024-02-02 湖北万润新能源科技股份有限公司 Preparation method and application of carbon-coated lithium ferrite material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4161382B2 (en) * 1997-02-25 2008-10-08 堺化学工業株式会社 Process for producing two-layer structured particulate composition
JP4834901B2 (en) * 1999-08-27 2011-12-14 三菱化学株式会社 Positive electrode material for lithium secondary battery
JP2003007345A (en) * 2001-04-16 2003-01-10 Mitsubishi Chemicals Corp Lithium secondary battery
JP6247110B2 (en) * 2014-02-14 2017-12-13 信越化学工業株式会社 Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2017130359A (en) * 2016-01-20 2017-07-27 株式会社豊田自動織機 Method for manufacturing electrode material and method for manufacturing power storage device

Also Published As

Publication number Publication date
WO2019093094A1 (en) 2019-05-16
JP2019085315A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6922672B2 (en) Carbon coated Li5FeO4
Parekh et al. Encapsulation and networking of silicon nanoparticles using amorphous carbon and graphite for high performance Li-ion batteries
JP2019085314A (en) Carbon-coated Li5FeO4
JP5871543B2 (en) Modified vanadium phosphate lithium carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP7027824B2 (en) Carbon coated Li5FeO4
KR20100109483A (en) Composite for electrode active material and secondary battery comprising using the same
JP7087889B2 (en) Composite particles
JPWO2017081854A1 (en) Negative electrode active material
JP6743159B2 (en) Si particle bonded body and method for manufacturing the same
JP7074006B2 (en) Composite particles
WO2019053982A1 (en) Negative electrode material including al and o-containing silicon material
JP7135673B2 (en) Composite particle manufacturing method
JP7131258B2 (en) Composite particle manufacturing method
JP7070296B2 (en) Composite particles that suppress gelation of the composition for producing the positive electrode active material layer
JP2021077596A (en) Charging method of lithium ion secondary battery
JP2018032602A (en) Method of producing negative electrode material
JP2021061231A (en) Negative electrode active material containing Si phase and TiSi2 phase
JP2020158343A (en) Method for producing lithium metal complex oxide powder
JP2020181806A (en) Electrolyte solution and lithium ion secondary battery
JP2020177730A (en) Electrolyte solution and lithium ion secondary battery
JP2021044165A (en) Electrolyte and lithium ion secondary battery
JP2018058746A (en) Process for manufacturing silicon material coated with carbon
JP2018120839A (en) Composite material
JP7243511B2 (en) Electrolyte and lithium ion secondary battery
JP6881030B2 (en) Ion conductive material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R151 Written notification of patent or utility model registration

Ref document number: 6922672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151