JP2004355824A - Cathode active substance for nonaqueous secondary battery and cathode - Google Patents

Cathode active substance for nonaqueous secondary battery and cathode Download PDF

Info

Publication number
JP2004355824A
JP2004355824A JP2003148762A JP2003148762A JP2004355824A JP 2004355824 A JP2004355824 A JP 2004355824A JP 2003148762 A JP2003148762 A JP 2003148762A JP 2003148762 A JP2003148762 A JP 2003148762A JP 2004355824 A JP2004355824 A JP 2004355824A
Authority
JP
Japan
Prior art keywords
particles
positive electrode
cathode
lithium
primary particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003148762A
Other languages
Japanese (ja)
Inventor
Satoru Matsumoto
哲 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003148762A priority Critical patent/JP2004355824A/en
Publication of JP2004355824A publication Critical patent/JP2004355824A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cathode active substance for a nonaqueous secondary battery consisting of primary particles and a cathode with high bulk density and battery characteristics maintained without fear of a crack. <P>SOLUTION: The cathode active substance of a lithium complex compound of monodisperse primary particles in fine particle shapes with lithium and one kind of element selected from a group of Co, Ni, and Mn as main components with an average particle size (D50) of 3 to 12 μm, a specific surface area of 0.2 to 1.0 m<SP>2</SP>/g, a bulk density of 2.1 g/cm<SP>3</SP>or more, and having characteristics of not showing an inflection point of a volume decrease rate by Cooper Plot method up to 3 ton/cm<SP>2</SP>is used, to manufacture the cathode without grain boundaries and having characteristics of not generating cracks of particles by pressing at cathode molding or by expansion and contraction at charging and discharging. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、非水系二次電池用正極活物質および正極に関する。
【0002】
【従来の技術】
近年の高度情報化時代に伴う携帯電子機器の発展により、二次電池が高機能化しており、その結果、正極活物質の高電圧および高エネルギー密度への傾向も高まっている。
【0003】
非水系二次電池に用いられる正極活物質としては、リチウムイオンを可逆的に挿入および脱離が可能な化合物、たとえば、LiCoOやLiNiOに代表されるリチウムと遷移金属を主体とする複合酸化物であるリチウム複合酸化物がある。これらのリチウム複合酸化物は、酸化物としては比較的高い電子伝導性を有するが、二次電池として機能するにはまだ不足であるため、単分散の一次粒子よりも、小さい一次粒子の集合体で、空隙を持った二次粒子の方が、二次粒子内部に電解液が染込むことで、リチウムイオンの挿入および脱離が容易になり、高負荷電流やサイクル特性を向上させると考えられてきた。
【0004】
しかし、近年では粒子内部でのリチウムイオンの固相内拡散が律速ではなく、粒子界面の変質あるいは一次粒子同士の粒界の多さによる抵抗上昇によって、二次粒子の方が、逆に電池特性が低下する傾向があるという問題点が出てきている。
【0005】
また、以前は500kg/cm程度の弱い加圧圧力に耐えられれば十分であると考えられ、特開2000−323123号公報に代表されるように、強度の弱い球状の二次粒子でも、加圧後の体積密度が3.0g/cm以上という当時の目安とされた条件を達成でき、採用された。
【0006】
しかし、近年ではさらに多くの活物質であるリチウム複合酸化物を充填して、電池一個あたりの容量を上げる傾向にあり、3ton/cm以下の領域で形骸を維持することが要求されている。その結果、一次粒子の集合体である二次粒子は、正極シートのプレス成型過程を経て、電池として製造され、充放電をするが、この時点ですでに変形されたり、破壊されてしまっている。また、充放電時の膨張収縮過程で、さらに変形されたり、破壊されるため、その粉体特性が発揮できなくなる。また、導電剤と接触していないで、導電性を持たない孤立粒子が、破壊等により発生し、電池特性が大きく低下するといった問題が生ずる。
【0007】
したがって、現在のリチウムイオン二次電池用正極活物質に対するニーズは、球状で二次粒子の粉体から、凝集や焼結のない単分散の一次粒子の粉体へと、完全に移っている。
【0008】
単分散の一次粒子の粉体であれば、前述のような粒子の変形や破壊等の問題を解決することが可能であるが、その特性を発揮するには、嵩密度が球状二次粒子以上であることが必要である。しかし、一次粒子の粒子が小さすぎると、負荷電流特性あるいはサイクル特性は良いが、嵩密度の低下や、ペースト作製時の粘度上昇や、ゲル化を起こし、一方、一次粒子の粒子が大きすぎると、正反対の傾向を示す。このため、一次粒子の粒子径や比表面積を最適な範囲に制御することも、重要な課題とされている。
【0009】
このように、一次粒子であるリチウム複合酸化物を正極活物質とした非水系二次電池において、高いサイクル特性および負荷電流特性を維持し、かつ、電極としてのプレス成形や膨張収縮による粒子の割れが起きずに、高い充填密度を具備させる制御因子および制御範囲を見つけることは困難であった。
【0010】
【特許文献1】
特開2000−323123号公報
【0011】
【発明が解決しようとする課題】
本発明の目的は、従来技術のような問題を解決すべく、高い嵩密度や電池特性を維持し、割れが起きる心配のない一次粒子からなる非水系二次電池用正極活物質および正極を提供することにある。
【0012】
【課題を解決するための手段】
本発明の非水系二次電池用正極活物質は、Co、Ni、Mnの群から選ばれる1種の元素とリチウムとを主成分とする単分散の一次粒子の粉体状のリチウム複合酸化物であって、平均粒子径(D50)が3〜12μm、比表面積が0.2〜1.0m/g、嵩密度が2.1g/cm以上であり、かつ、クーパープロット法による体積減少率の変曲点が3ton/cmまで現れないという特性を有する。ここで、平均粒子径の算出は、レーザー回折・散乱法による粒度分布測定装置によって行う。
【0013】
本発明の非水系二次電池用正極は、前記正極活物質を使用し、粒界がなく、かつ、正極成型時のプレスや充放電時の膨張収縮による粒子の割れが起こらないという特性を有する。
【0014】
【発明の実施の形態】
本発明では、Co、Ni、Mnの群から選ばれる1種の元素とリチウムとを主成分とする単分散の一次粒子の粉体状のリチウム複合酸化物であって、平均粒子径(D50)が3〜12μm、比表面積が0.2〜1.0m/g、嵩密度が2.1g/cm以上であり、かつ、クーパープロット法による体積減少率の変曲点が3ton/cmまで現れないという特性を有する正極活物質を使用し、粒界がなく、かつ、正極成型時のプレスや充放電時の膨張収縮による粒子の割れが起こらないという特性を有する正極を製造する。
【0015】
得られるリチウム複合酸化物の形状には様々なものがあるが、一般的には球状の二次粒子と、単分散している一次粒子との2種類に大別される。
【0016】
球状の二次粒子は、その球状性から嵩密度が高く、電極作製時の充填量を増やすことができるほか、二次粒子内に空隙を持つため、大きな比表面積を確保でき、かつ、一次粒子径が小さくて済むことから、電池のサイクル特性や負荷電流特性を高くすることが可能と思われる。しかし、一次粒子同士の焼結による粒界が非常に多いため、内部抵抗が上昇して、放電容量が低下する。さらに、電池の正極製造時、すなわち正極シート作製時に、一定体積内に活物質であるリチウム複合酸化物をより多く充填したいため、3ton/cm以下の領域で形骸を維持することが要求されるが、二次粒子の内部に空隙も持つことから、変形あるいは潰れて破壊されるという問題や、一次粒子同士の焼結面の接触面積が小さいため、充放電時の膨張収縮に伴い、割れや変形または破壊が生じ、集電の取れていない孤立した一次粒子などが発生して、電池特性を低下させるという問題がある。
【0017】
これに対し、単分散した一次粒子のリチウム複合酸化物は、前述のような正極シート成型時の圧力である3ton/cm以下の範囲での変形や破壊が起きず、かつ、充放電の膨張収縮に耐えることができ、活物質の変形や破壊による孤立粒子の発生等を起因とする、膨張収縮回数を示すサイクル特性や、膨張収縮の変化速度を示す負荷電流特性における電池性能の低下が、生じにくくなる。
【0018】
そこで、本発明では、粉体の測定・評価方法として、粉体の圧縮過程での体積減少率(式1の左項)を、加圧圧力(自然対数目盛)でプロットするクーパー(Cooper)プロット法を用いることとした。
【0019】
【式1】

Figure 2004355824
【0020】
粉体の圧縮過程での体積減少率を、クーパープロットした際に、直線回帰できない場合、すなわち2本の直線が交差するような折れ線を示す場合がある。この場合は、凝集粒子あるいは焼結した粒子が、加圧によって破壊されて、圧縮挙動が変化したことを意味する。
【0021】
本発明では、凝集または焼結のない単分散の一次粒子であることの確認のため、粒子強度の規定として、正極活物質粉末を圧縮した際の体積減少率を、クーパープロット法で解析したときの体積減少率の変曲点の加圧圧力値を指標とする。なお、測定条件として、加圧圧力範囲は0〜3ton/cmとし、式1におけるVは、3ton/cmでの充填体積として体積減少率を算出した。クーパープロット法において体積減少率の変曲点がなければ、通常の正極製造工程において、また、充放電に伴う膨張収縮において、粒子の破壊が生じることはない。
【0022】
さらに、その粉体特性を十分に発揮するには、嵩密度が高いことと、電池特性を維持するために一次粒子径や比表面積を制御することが、非常に重要である。具体的には、最適な一次粒子径の範囲として、レーザー回折・散乱法による粒度分布測定装置で算出した平均粒子径(D50)で3〜12μmが好ましく、5μm付近に制御するとなお良い。また、同時にこのときの比表面積の範囲は0.2〜1.0m/gが好ましく、0.3〜0.5m/gに制御するとなお良い。さらに、前記範囲を満たしつつ、嵩密度が2.1g/cm以上であることが望ましい。
【0023】
以下にその理由を説明する。一次粒子径がD50で3μm未満で、かつ、比表面積が1.0m/gを超えると、反応面積が増えるためサイクル特性や負荷電流特性は非常に良いが、粒子が小さいため嵩密度が2.1g/cm未満となり、現在、市販されている電池一個あたりの活物質充填量に比べて少なくなるほか、流動性の悪化や、有機溶剤と混合してペースト化する際に、スラリーの粘度が上昇し、最悪の場合にはゲル化して固化するといった不利益または不具合が生じるため、好ましくない。
【0024】
また、反対に一次粒子径がD50で12μmを超え、かつ、比表面積が0.2m/g未満になると、粒子が大きいため嵩密度は2.1g/cm以上を十分満たし、流動性が向上し、ペースト化の際に粘度が高くなりすぎる心配がないが、電池の特性としては反応面積が非常に小さいため、粒子内部のリチウムイオンの拡散距離があまりにも長すぎて、粒子内部の固相内拡散律速となり、サイクル特性や負荷電流特性の低下が起こり始めるため、好ましくない。
【0025】
【実施例】
(実施例1)
一次粒子からなり、一次粒子径が平均粒子径(D50)で4μmの市販の酸化ニッケルと、ボールミルにより粉砕した市販の水酸化リチウム一水和物とを、リチウムとニッケルのモル比が1.05になるように秤量した後、混合造粒装置でバインダーに純水を用いて混合造粒した。
【0026】
得られた混合粉末を、電気炉にて酸素雰囲気中で、3時間500℃で仮焼した後、20時間730℃で焼成し、室温まで炉冷することで、D50が5μm、比表面積が0.3m/gの一次粒子のニッケル酸リチウムを製造した。
【0027】
得られたニッケル酸リチウムについて、嵩密度(単位:g/cm)および、クーパープロット法による体積減少率を測定した際に、圧力3ton/cmまでに変曲点が現れるか否か、また、現れた場合はそのときの圧力値を測定した。その測定結果を、表1および図1に示す。
【0028】
また、得られた粉体(活物質)を用いて、以下のように電池を作製し、充放電容量を測定した。活物質粉末90質量%に、アセチレンブラック5質量%およびPVDF(ポリ沸化ビニリデン)5質量%を混合し、NMP(n−メチルピロリドン)を加えペースト化した。これを20μm厚のアルミニウム箔に、乾燥後の活物質重量が0.05g/cmになるように塗布し、120℃で真空乾燥を行い、1cmφの円板状に打ち抜いて正極とした。負極としてリチウム金属を、電解液には1MのLiClOを支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液を用いた。ポリエチレンからなるセパレータに、電解液を染み込ませ、露点が−80℃に管理されたAr雰囲気のグローブボックス中で、2032型のコイン電池を作製した。
【0029】
作製した電池は、24時間程度放置し、OCVが安定した後、サイクル特性を調べる場合には、正極に対する電流密度を0.5mA/cmとし、負荷電流特性を調べる場合には、電流密度を0.5、1.0、2.0mA/cmと変化させ、カットオフ電圧4.3−3.0Vで充放電試験を行った。
【0030】
得られた1サイクル目の放電容量に対する20サイクル目の放電容量の比(容量維持率)、および電流密度0.5mA/cm時の1サイクル目の放電容量に対する1.0、2.0mA/cm時の1サイクル目の放電容量の比(容量保持率)を測定した。その測定結果を、表2に示す。
【0031】
(実施例2)
酸化ニッケルを、D50が2μmの粉体とした以外は、実施例1と同様にして、一次粒子のニッケル酸リチウムを製造した。得られた一次粒子のニッケル酸リチウムは、D50が3μm、比表面積が0.8m/gであった。
【0032】
得られたニッケル酸リチウムについて、嵩密度(単位:g/cm)およびクーパープロット法による測定結果を、表1および図1に示す。また、得られた粉体(活物質)を用いて、実施例1と同様に電池を作製し、容量維持率および容量保持率を測定した。その測定結果を表2に示す。
【0033】
(実施例3)
市販の水酸化ニッケルを、窒素雰囲気下で5時間400℃で焼成し、一次粒子径を粒成長させた後、再度、大気中で5時間400℃で焼成することにより製造したD50が6μmの酸化ニッケルを用いた以外は、実施例1と同様にして、一次粒子のニッケル酸リチウムを製造した。得られた一次粒子のニッケル酸リチウムは、D50が8μm、比表面積が0.2m/gであった。
【0034】
得られたニッケル酸リチウムについて、嵩密度(単位:g/cm)およびクーパープロット法による測定結果を、表1に示す。また、得られた粉体(活物質)を用いて、実施例1と同様に電池を作製し、容量維持率および容量保持率を測定した。その測定結果を表2に示す。
【0035】
(比較例1)
酸化ニッケルを、D50が12μmの市販品とした以外は、実施例1と同様にして、一次粒子のニッケル酸リチウムを製造した。得られた一次粒子のニッケル酸リチウムは、D50が13μm、比表面積が0.1m/gであった。
【0036】
得られたニッケル酸リチウムについて、嵩密度(単位:g/cm)およびクローパープロット法による測定結果は、表1および図1に示す。また、得られた粉体(活物質)を用いて、実施例1と同様に電池を作製し、容量維持率および容量保持率を測定した。その測定結果を表2に示す。
【0037】
(比較例2)
酸化ニッケルを、D50が0.8μmの市販品とした以外は、実施例1と同様にして、一次粒子のニッケル酸リチウムを製造した。得られた一次粒子のニッケル酸リチウムは、D50が2μm、比表面積が1.8m/gであった。
【0038】
得られたニッケル酸リチウムについて、嵩密度(単位:g/cm)およびクローパープロット法による測定結果は、表1に示す。また、得られた粉体(活物質)を用いて、実施例1と同様に電池を作製し、容量維持率および容量保持率を測定した。その測定結果を表2に示す。
【0039】
(比較例3)
酸化ニッケルを、球状で、かつ、一次粒子の集合体であり、D50が7μmの市販品とした以外は、実施例1と同様にして、一次粒子のニッケル酸リチウムを製造した。得られた一次粒子のニッケル酸リチウムは、D50が8μm、比表面積が0.5m/gであった。
【0040】
得られたニッケル酸リチウムについて、嵩密度(単位:g/cm)およびクローパープロット法による測定結果は、表1に示す。また、得られた粉体(活物質)を用いて、実施例1と同様に電池を作製し、容量維持率および容量保持率を測定した。その測定結果を表2に示す。
【0041】
【表1】
Figure 2004355824
【0042】
【表2】
Figure 2004355824
【0043】
実施例1〜3に係る非水系二次電池用正極活物質は、クーパープロット法による体積減少率の変曲点が0〜3ton/cm まで現れず、凝集粒子あるいは焼結した粒子が存在していない。さらに、表2より、かかる正極活物質を用いて作製した電池では、サイクル特性および負荷電流特性はいずれも良好であるといえる。
【0044】
一方、比較例1に係る正極活物質は、粒子が大きいため、これを用いて作製した電池のサイクル特性、負荷電流特性はいずれも劣っていた。また、比較例2に係る正極活物質は、粒子が小さすぎるため、これを用いて作製した電池のサイクル特性、負荷電流特性はいずれも良好であったが、平均粒子径が非常に小さく嵩密度が低すぎるという問題があった。一方、比較例3に係る正極活物質は、平均粒子径、比表面積、嵩密度に問題はないが、クーパープロット法による体積減少率の変曲点が1700kg/cm で現れたため、凝集粒子ないしは焼結した粒子が存在している。そのため、かかる正極活物質を用いて作製した電池では、サイクル特性および負荷電流特性の低下が見られた。
【0045】
【発明の効果】
本発明による制御因子および制御範囲により一次粒子であるリチウム複合酸化物を制御することにより、高い嵩密度や電池特性を維持し、割れが起きる心配のない、一次粒子からなる非水系二次電池用正極活物質および正極を提供することが可能となった。
【図面の簡単な説明】
【図1】加圧圧力に対する体積減少率の関係を示す片対数グラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a positive electrode active material for a non-aqueous secondary battery and a positive electrode.
[0002]
[Prior art]
With the development of portable electronic devices accompanying the recent era of advanced information technology, secondary batteries have become more sophisticated, and as a result, the trend toward higher voltages and higher energy densities of positive electrode active materials has been increasing.
[0003]
As a positive electrode active material used in a nonaqueous secondary battery, a compound capable of reversibly inserting and removing lithium ions, for example, a composite oxide mainly composed of lithium and a transition metal represented by LiCoO 2 and LiNiO 2 is used. There is a lithium composite oxide that is a product. Although these lithium composite oxides have relatively high electron conductivity as oxides, they are still insufficient to function as a secondary battery, and thus are aggregates of primary particles smaller than monodispersed primary particles. Therefore, secondary particles with voids are thought to improve the high load current and cycle characteristics by facilitating lithium ion insertion and desorption by infiltration of electrolyte into the secondary particles. Have been.
[0004]
However, in recent years, the diffusion of lithium ions in the solid phase inside the particles is not rate-limiting, and the secondary particles have the opposite characteristics due to the deterioration of the particle interface or the increase in resistance due to the large number of grain boundaries between the primary particles. However, there is a problem that the temperature tends to decrease.
[0005]
In the past, it was considered sufficient to withstand a weak pressurizing pressure of about 500 kg / cm 2 , and as shown in JP-A-2000-323123, even spherical secondary particles having low strength were added. The condition of the time when the volume density after compression was 3.0 g / cm 3 or more was achieved and adopted.
[0006]
However, in recent years, there has been a tendency to increase the capacity per battery by filling more and more lithium composite oxides as active materials, and it has been required to maintain the form in a region of 3 ton / cm 2 or less. As a result, the secondary particles, which are aggregates of the primary particles, are manufactured as a battery through the positive electrode sheet press molding process, and are charged and discharged, but have already been deformed or destroyed at this point. . Further, in the process of expansion and contraction at the time of charging and discharging, the powder is further deformed or broken, so that its powder characteristics cannot be exhibited. In addition, there is a problem in that isolated particles having no conductivity and not contacting the conductive agent are generated due to destruction or the like, and battery characteristics are greatly reduced.
[0007]
Therefore, the current need for a positive electrode active material for a lithium ion secondary battery has completely shifted from spherical secondary particle powder to monodispersed primary particle powder without aggregation or sintering.
[0008]
If the powder is monodispersed primary particles, it is possible to solve the above-mentioned problems such as deformation and destruction of the particles, but in order to exhibit the characteristics, the bulk density is more than spherical secondary particles It is necessary to be. However, if the particles of the primary particles are too small, the load current characteristics or cycle characteristics are good, but a decrease in bulk density, an increase in viscosity during paste production, and gelation occur, while if the particles of the primary particles are too large, Show the opposite trend. For this reason, controlling the particle diameter and specific surface area of the primary particles in an optimum range is also an important issue.
[0009]
As described above, in a nonaqueous secondary battery using a lithium composite oxide as a primary particle as a positive electrode active material, high cycle characteristics and load current characteristics are maintained, and particles are cracked due to press molding as an electrode or expansion and contraction. It was difficult to find a control factor and a control range that provided a high packing density without the occurrence of cracking.
[0010]
[Patent Document 1]
JP 2000-323123 A
[Problems to be solved by the invention]
An object of the present invention is to provide a positive electrode active material and a positive electrode for a non-aqueous secondary battery comprising primary particles which maintain high bulk density and battery characteristics and are free from cracking, in order to solve problems such as the prior art. Is to do.
[0012]
[Means for Solving the Problems]
The positive electrode active material for a non-aqueous secondary battery according to the present invention is a powdery lithium composite oxide of monodispersed primary particles containing lithium and one element selected from the group consisting of Co, Ni, and Mn as main components. Having an average particle diameter (D50) of 3 to 12 μm, a specific surface area of 0.2 to 1.0 m 2 / g, a bulk density of 2.1 g / cm 3 or more, and a volume decrease by a Cooper plot method. It has the characteristic that the inflection point of the rate does not appear up to 3 ton / cm 2 . Here, the calculation of the average particle size is performed by a particle size distribution measuring device using a laser diffraction / scattering method.
[0013]
The positive electrode for a non-aqueous secondary battery of the present invention uses the positive electrode active material, has no grain boundaries, and has the property that cracking of particles due to expansion and contraction during pressing and charging and discharging during positive electrode molding does not occur. .
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the powdery lithium composite oxide of monodispersed primary particles containing lithium as the main component and one element selected from the group consisting of Co, Ni, and Mn has an average particle diameter (D50). Is 3 to 12 μm, the specific surface area is 0.2 to 1.0 m 2 / g, the bulk density is 2.1 g / cm 3 or more, and the inflection point of the volume reduction rate by the Cooper plot method is 3 ton / cm 2. A positive electrode is produced using a positive electrode active material having a characteristic that the particles do not appear to the extent that there is no grain boundary, and a characteristic that particles are not cracked due to expansion and contraction at the time of forming the positive electrode or at the time of charging and discharging.
[0015]
There are various shapes of the obtained lithium composite oxide, and generally, it is roughly classified into two types: spherical secondary particles and monodispersed primary particles.
[0016]
Spherical secondary particles have a high bulk density due to their spherical properties and can increase the filling amount during electrode preparation.Because there are voids in the secondary particles, a large specific surface area can be secured, and the primary particles Since the diameter may be small, it is considered that the cycle characteristics and the load current characteristics of the battery can be improved. However, since there are very many grain boundaries due to sintering of the primary particles, the internal resistance increases and the discharge capacity decreases. Furthermore, at the time of manufacturing the positive electrode of the battery, that is, at the time of manufacturing the positive electrode sheet, it is required to maintain the form in a region of 3 ton / cm 2 or less because it is desired to fill the lithium composite oxide as the active material in a certain volume. However, the secondary particles also have voids inside, so they are deformed or crushed and destroyed, and because the contact area of the sintered surfaces of the primary particles is small, cracks and There is a problem in that deformation or destruction occurs, and isolated primary particles or the like from which current is not collected are generated, thereby deteriorating battery characteristics.
[0017]
On the other hand, the lithium composite oxide of the monodispersed primary particles does not undergo deformation or destruction in the range of 3 ton / cm 2 or less, which is the pressure at the time of forming the positive electrode sheet, and expansion of charge and discharge. Deterioration of battery performance in cycle characteristics indicating the number of times of expansion and contraction and load current characteristics indicating the rate of change of expansion and contraction, due to the generation of isolated particles due to deformation or destruction of the active material, which can withstand contraction, Less likely to occur.
[0018]
Therefore, in the present invention, as a method of measuring and evaluating the powder, a Cooper plot in which the volume reduction rate in the compression process of the powder (the left term of Equation 1) is plotted by the pressurized pressure (natural logarithmic scale). Method was used.
[0019]
(Equation 1)
Figure 2004355824
[0020]
When the volume reduction rate during the powder compression process is Cooper-plotted, linear regression may not be possible, that is, a broken line where two straight lines intersect may be shown. In this case, it means that the agglomerated particles or the sintered particles are broken by the pressure, and the compression behavior has changed.
[0021]
In the present invention, in order to confirm that the primary particles are monodisperse particles without aggregation or sintering, as a definition of particle strength, the volume reduction rate when the positive electrode active material powder is compressed, when analyzed by Cooper plot method The pressurized pressure value at the inflection point of the volume reduction rate is used as an index. As measurement conditions, the applied pressure range was set 0~3ton / cm 2, V F in Equation 1, to calculate the volume reduction rate as the filling volume at 3 ton / cm 2. If there is no inflection point of the volume reduction rate in the Cooper plot method, no destruction of particles occurs in a normal positive electrode manufacturing process and in expansion and contraction due to charge and discharge.
[0022]
Further, in order to sufficiently exhibit the powder characteristics, it is very important to have a high bulk density and to control the primary particle diameter and the specific surface area in order to maintain the battery characteristics. Specifically, as the range of the optimal primary particle diameter, the average particle diameter (D50) calculated by a particle size distribution measuring device by a laser diffraction / scattering method is preferably 3 to 12 μm, and more preferably, is controlled to around 5 μm. At the same time the range of the specific surface area at this time is preferably 0.2~1.0m 2 / g, it is more preferable to control the 0.3~0.5m 2 / g. Furthermore, it is desirable that the bulk density is 2.1 g / cm 3 or more while satisfying the above range.
[0023]
The reason will be described below. When the primary particle diameter is less than 3 μm in D50 and the specific surface area exceeds 1.0 m 2 / g, the cycle area and the load current characteristic are very good because the reaction area increases, but the bulk density is 2 because the particles are small. 0.1 g / cm 3 , which is smaller than the amount of active material charged per battery currently on the market, and also deteriorates fluidity and viscosity of slurry when mixed with an organic solvent to form a paste. Is increased, and in the worst case, disadvantages or inconveniences such as gelation and solidification occur, which is not preferable.
[0024]
On the other hand, when the primary particle diameter exceeds 12 μm in D50 and the specific surface area is less than 0.2 m 2 / g, the bulk density is 2.1 g / cm 3 or more because the particles are large, and the fluidity is low. There is no fear that the viscosity will be too high when the paste is formed.However, the reaction area of the battery is very small, so the diffusion distance of lithium ions inside the particles is too long, and the solidification inside the particles is difficult. It is not preferable because the diffusion control is performed in the phase and the cycle characteristics and the load current characteristics start to decrease.
[0025]
【Example】
(Example 1)
A commercially available nickel oxide consisting of primary particles and having a primary particle diameter of 4 μm in average particle diameter (D50) and a commercially available lithium hydroxide monohydrate pulverized by a ball mill were prepared by mixing a lithium-nickel molar ratio of 1.05. Then, the mixture was granulated using pure water as a binder in a mixing granulator.
[0026]
The obtained mixed powder is calcined at 500 ° C. for 3 hours in an oxygen atmosphere in an electric furnace, and then calcined at 730 ° C. for 20 hours, and cooled to room temperature to have a D50 of 5 μm and a specific surface area of 0. 0.3 m 2 / g of primary particles of lithium nickelate were produced.
[0027]
When the bulk density (unit: g / cm 3 ) and the volume reduction rate by the Cooper plot method are measured for the obtained lithium nickelate, whether an inflection point appears up to a pressure of 3 ton / cm 2 or not, When it appeared, the pressure value at that time was measured. The measurement results are shown in Table 1 and FIG.
[0028]
Using the obtained powder (active material), a battery was prepared as follows, and the charge / discharge capacity was measured. To 90% by mass of the active material powder, 5% by mass of acetylene black and 5% by mass of PVDF (polyvinylidene fluoride) were mixed, and NMP (n-methylpyrrolidone) was added to form a paste. This was applied to an aluminum foil having a thickness of 20 μm so that the weight of the active material after drying was 0.05 g / cm 2 , vacuum-dried at 120 ° C., and punched into a 1 cmφ disk to obtain a positive electrode. Lithium metal was used as the negative electrode, and an electrolytic solution was a mixed solution of equivalent amounts of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiClO 4 as a supporting salt. An electrolytic solution was impregnated into a separator made of polyethylene, and a 2032 type coin battery was manufactured in a glove box in an Ar atmosphere where the dew point was controlled at -80 ° C.
[0029]
The fabricated battery was left for about 24 hours. After the OCV was stabilized, the current density with respect to the positive electrode was set to 0.5 mA / cm 2 when examining the cycle characteristics, and the current density was determined when examining the load current characteristics. The charge / discharge test was performed at a cutoff voltage of 4.3 to 3.0 V while changing to 0.5, 1.0, and 2.0 mA / cm 2 .
[0030]
The obtained ratio of the discharge capacity at the 20th cycle to the discharge capacity at the 1st cycle (capacity retention), and 1.0 and 2.0 mA / discharge capacity at the current density of 0.5 mA / cm 2 for the first cycle. The ratio (capacity retention) of the discharge capacity in the first cycle at cm 2 was measured. Table 2 shows the measurement results.
[0031]
(Example 2)
Lithium nickel oxide as primary particles was produced in the same manner as in Example 1 except that the nickel oxide was a powder having a D50 of 2 μm. The obtained primary particles of lithium nickelate had a D50 of 3 μm and a specific surface area of 0.8 m 2 / g.
[0032]
Table 1 and FIG. 1 show the bulk density (unit: g / cm 3 ) and the result of measurement by the Cooper plot method for the obtained lithium nickelate. Using the obtained powder (active material), a battery was produced in the same manner as in Example 1, and the capacity retention and the capacity retention were measured. Table 2 shows the measurement results.
[0033]
(Example 3)
A commercially available nickel hydroxide is calcined at 400 ° C. for 5 hours in a nitrogen atmosphere to grow the primary particle diameter, and then calcined again at 400 ° C. for 5 hours in the air to obtain an oxide having a D50 of 6 μm. Lithium nickelate as primary particles was produced in the same manner as in Example 1 except that nickel was used. The obtained primary particles of lithium nickelate had a D50 of 8 μm and a specific surface area of 0.2 m 2 / g.
[0034]
Table 1 shows the bulk density (unit: g / cm 3 ) of the obtained lithium nickelate and the measurement results by the Cooper plot method. Using the obtained powder (active material), a battery was produced in the same manner as in Example 1, and the capacity retention and the capacity retention were measured. Table 2 shows the measurement results.
[0035]
(Comparative Example 1)
Lithium nickel oxide as primary particles was produced in the same manner as in Example 1 except that nickel oxide was a commercial product having a D50 of 12 μm. The obtained primary particles of lithium nickelate had a D50 of 13 μm and a specific surface area of 0.1 m 2 / g.
[0036]
About the obtained lithium nickelate, the bulk density (unit: g / cm < 3 >) and the measurement result by the chopper plot method are shown in Table 1 and FIG. Using the obtained powder (active material), a battery was produced in the same manner as in Example 1, and the capacity retention and the capacity retention were measured. Table 2 shows the measurement results.
[0037]
(Comparative Example 2)
Lithium nickel oxide as primary particles was produced in the same manner as in Example 1 except that nickel oxide was a commercial product having a D50 of 0.8 μm. The resulting primary particles of lithium nickelate had a D50 of 2 μm and a specific surface area of 1.8 m 2 / g.
[0038]
Table 1 shows the bulk density (unit: g / cm 3 ) of the obtained lithium nickelate and the measurement results by the chopper plot method. Using the obtained powder (active material), a battery was produced in the same manner as in Example 1, and the capacity retention and the capacity retention were measured. Table 2 shows the measurement results.
[0039]
(Comparative Example 3)
Lithium nickel oxide of primary particles was produced in the same manner as in Example 1 except that nickel oxide was a spherical, aggregate of primary particles and was a commercially available product having a D50 of 7 μm. The resulting primary particles of lithium nickelate had a D50 of 8 μm and a specific surface area of 0.5 m 2 / g.
[0040]
Table 1 shows the bulk density (unit: g / cm 3 ) of the obtained lithium nickelate and the measurement results by the chopper plot method. Using the obtained powder (active material), a battery was produced in the same manner as in Example 1, and the capacity retention and the capacity retention were measured. Table 2 shows the measurement results.
[0041]
[Table 1]
Figure 2004355824
[0042]
[Table 2]
Figure 2004355824
[0043]
In the positive electrode active materials for non-aqueous secondary batteries according to Examples 1 to 3, the inflection point of the volume reduction rate according to the Cooper plot method does not appear to 0 to 3 ton / cm 2, and there are aggregated particles or sintered particles. Not. Furthermore, from Table 2, it can be said that the battery manufactured using such a positive electrode active material has good cycle characteristics and load current characteristics.
[0044]
On the other hand, since the positive electrode active material according to Comparative Example 1 had large particles, both the cycle characteristics and the load current characteristics of the battery manufactured using the same were inferior. Further, since the particles of the positive electrode active material according to Comparative Example 2 were too small, both the cycle characteristics and the load current characteristics of the battery manufactured using the same were good, but the average particle diameter was very small and the bulk density was low. Was too low. On the other hand, the positive electrode active material according to Comparative Example 3 has no problem in the average particle diameter, the specific surface area, and the bulk density, but since the inflection point of the volume reduction rate by the Cooper plot method appeared at 1700 kg / cm 2 , the aggregated particles or There are sintered particles. Therefore, in the battery manufactured using such a positive electrode active material, deterioration in cycle characteristics and load current characteristics was observed.
[0045]
【The invention's effect】
By controlling the lithium composite oxide, which is the primary particle, by the control factor and the control range according to the present invention, the high bulk density and the battery characteristics are maintained, and there is no fear of cracking, for non-aqueous secondary batteries composed of primary particles. It has become possible to provide a positive electrode active material and a positive electrode.
[Brief description of the drawings]
FIG. 1 is a semilogarithmic graph showing a relationship between a pressure reduction pressure and a volume reduction rate.

Claims (2)

Co、Ni、Mnの群から選ばれる1種の元素とリチウムとを主成分とする単分散の一次粒子の粉体状のリチウム複合酸化物であって、平均粒子径(D50)が3〜12μm、比表面積が0.2〜1.0m/g、嵩密度が2.1g/cm以上であり、かつ、クーパープロット法による体積減少率の変曲点が3ton/cmまで現れないことを特徴とする非水系二次電池用正極活物質。A powdery lithium composite oxide of monodispersed primary particles mainly composed of lithium and one element selected from the group consisting of Co, Ni and Mn, having an average particle diameter (D50) of 3 to 12 μm The specific surface area is 0.2 to 1.0 m 2 / g, the bulk density is 2.1 g / cm 3 or more, and the inflection point of the volume reduction rate by the Cooper plot method does not appear up to 3 ton / cm 2. A positive electrode active material for a non-aqueous secondary battery, comprising: 請求項1に記載の正極活物質を使用し、粒界がなく、かつ、正極成型時のプレスや充放電時の膨張収縮による粒子の割れが起こらないことを特徴とする非水系二次電池用正極。A non-aqueous secondary battery using the positive electrode active material according to claim 1, wherein there is no grain boundary, and no cracking of particles occurs due to expansion and shrinkage during pressing or charging and discharging during molding of the positive electrode. Positive electrode.
JP2003148762A 2003-05-27 2003-05-27 Cathode active substance for nonaqueous secondary battery and cathode Pending JP2004355824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003148762A JP2004355824A (en) 2003-05-27 2003-05-27 Cathode active substance for nonaqueous secondary battery and cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003148762A JP2004355824A (en) 2003-05-27 2003-05-27 Cathode active substance for nonaqueous secondary battery and cathode

Publications (1)

Publication Number Publication Date
JP2004355824A true JP2004355824A (en) 2004-12-16

Family

ID=34045046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003148762A Pending JP2004355824A (en) 2003-05-27 2003-05-27 Cathode active substance for nonaqueous secondary battery and cathode

Country Status (1)

Country Link
JP (1) JP2004355824A (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278265A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Positive electrode plate for lithium secondary battery and manufacturing method thereof
WO2008068905A1 (en) * 2006-12-06 2008-06-12 Toda Kogyo Corporation Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP2008152923A (en) * 2006-11-22 2008-07-03 Matsushita Electric Ind Co Ltd Cathode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and nonaqueous secondary battery using this cathode active material
WO2008091028A1 (en) 2007-01-26 2008-07-31 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure
JP2008226515A (en) * 2007-03-09 2008-09-25 Matsushita Electric Ind Co Ltd Manufacturing method of lithium-ion secondary battery and its cathode plate
WO2008120442A1 (en) * 2007-03-29 2008-10-09 Panasonic Corporation Positive electrode for rechargeable battery with nonaqueous electrolyte, and rechargeable battery with nonaqueous electrolyte
JP2010030808A (en) * 2008-07-25 2010-02-12 Mitsui Mining & Smelting Co Ltd Lithium transition metal oxide having layer structure
JP2010070431A (en) * 2008-09-22 2010-04-02 Sumitomo Metal Mining Co Ltd Nickel-containing hydroxide, nickel-containing oxide, lithium-mixed nickel oxide and methods for manufacturing them
JP2011009203A (en) * 2009-05-26 2011-01-13 Nissan Motor Co Ltd Electrode structure, battery, and method for manufacturing electrode structure
WO2011108355A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JPWO2011108389A1 (en) * 2010-03-04 2013-06-24 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2014010730A1 (en) * 2012-07-12 2014-01-16 三井金属鉱業株式会社 Lithium metal complex oxide
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
JP2014199778A (en) * 2013-03-29 2014-10-23 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
WO2015045719A1 (en) * 2013-09-26 2015-04-02 Necエナジーデバイス株式会社 Positive electrode for stacked lithium ion secondary batteries
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
KR20150103103A (en) 2013-03-04 2015-09-09 미쓰이금속광업주식회사 Lithium metal composite oxide powder
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9640794B2 (en) 2012-04-27 2017-05-02 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure
EP3225592A1 (en) 2016-03-31 2017-10-04 Honda Motor Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
WO2018088320A1 (en) * 2016-11-08 2018-05-17 本田技研工業株式会社 Electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery provided with same
JP2018098173A (en) * 2016-12-16 2018-06-21 貴州振華新材料有限公司 Spherical or pseudo-spherical lithium battery positive electrode material, battery, manufacturing method, and application
US10115967B2 (en) 2016-03-31 2018-10-30 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US10224547B2 (en) 2016-03-31 2019-03-05 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US10263244B2 (en) 2011-11-25 2019-04-16 Mitsui Mining & Smelting Co., Ltd. Lithium metal composite oxide having layered structure
WO2019177032A1 (en) 2018-03-13 2019-09-19 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode, and lithium secondary battery
WO2019177014A1 (en) 2018-03-13 2019-09-19 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode, and lithium secondary battery
WO2021040033A1 (en) 2019-08-30 2021-03-04 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2021514524A (en) * 2018-06-07 2021-06-10 エルジー・ケム・リミテッド Positive electrode active material for secondary batteries, their manufacturing methods, and lithium secondary batteries containing them
US11233238B2 (en) 2016-03-31 2022-01-25 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US11239464B2 (en) 2016-03-31 2022-02-01 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
CN114467196A (en) * 2019-10-04 2022-05-10 三洋电机株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN115004415A (en) * 2020-01-31 2022-09-02 三洋电机株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US11447399B2 (en) * 2016-05-27 2022-09-20 Umicore Method for producing nickel lithium metal complex oxide powder of small particle size
WO2023026482A1 (en) 2021-08-27 2023-03-02 株式会社 東芝 Electrode, battery, and battery pack
DE112021003066T5 (en) 2020-06-01 2023-03-16 Gs Yuasa International Ltd. POSITIVE ELECTRODE AND ENERGY STORAGE DEVICE
US11804600B2 (en) 2016-03-31 2023-10-31 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery
JP7464735B2 (en) 2020-05-25 2024-04-09 蜂巣能源科技股▲ふん▼有限公司 Cobalt-free composite positive electrode material and its manufacturing method
DE112022003424T5 (en) 2021-07-06 2024-04-18 Gs Yuasa International Ltd. POSITIVE ELECTRODE, ENERGY STORAGE DEVICE, AND ENERGY STORAGE APPARATUS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323123A (en) * 1999-05-06 2000-11-24 Dowa Mining Co Ltd Positive electrode active material and positive electrode for non-aqueous secondary battery
JP2003123748A (en) * 2001-10-05 2003-04-25 Toda Kogyo Corp Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323123A (en) * 1999-05-06 2000-11-24 Dowa Mining Co Ltd Positive electrode active material and positive electrode for non-aqueous secondary battery
JP2003123748A (en) * 2001-10-05 2003-04-25 Toda Kogyo Corp Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278265A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Positive electrode plate for lithium secondary battery and manufacturing method thereof
JP2008152923A (en) * 2006-11-22 2008-07-03 Matsushita Electric Ind Co Ltd Cathode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and nonaqueous secondary battery using this cathode active material
KR101369658B1 (en) 2006-12-06 2014-03-04 도다 고교 가부시끼가이샤 Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
WO2008068905A1 (en) * 2006-12-06 2008-06-12 Toda Kogyo Corporation Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
US8066913B2 (en) 2006-12-06 2011-11-29 Toda Kogyo Corporation Li-Ni composite oxide particles for non-aqueous electrolyte secondary cell, process for producing the same, and non-aqueous electrolyte secondary cell
US7927741B2 (en) 2007-01-26 2011-04-19 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure
WO2008091028A1 (en) 2007-01-26 2008-07-31 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure
JP2008226515A (en) * 2007-03-09 2008-09-25 Matsushita Electric Ind Co Ltd Manufacturing method of lithium-ion secondary battery and its cathode plate
WO2008120442A1 (en) * 2007-03-29 2008-10-09 Panasonic Corporation Positive electrode for rechargeable battery with nonaqueous electrolyte, and rechargeable battery with nonaqueous electrolyte
JP2010030808A (en) * 2008-07-25 2010-02-12 Mitsui Mining & Smelting Co Ltd Lithium transition metal oxide having layer structure
JP2010070431A (en) * 2008-09-22 2010-04-02 Sumitomo Metal Mining Co Ltd Nickel-containing hydroxide, nickel-containing oxide, lithium-mixed nickel oxide and methods for manufacturing them
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
JP2011009203A (en) * 2009-05-26 2011-01-13 Nissan Motor Co Ltd Electrode structure, battery, and method for manufacturing electrode structure
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5843753B2 (en) * 2010-03-04 2016-01-13 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JPWO2011108355A1 (en) * 2010-03-04 2013-06-24 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR101411790B1 (en) 2010-03-04 2014-06-24 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
KR101430843B1 (en) 2010-03-04 2014-08-18 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
TWI453983B (en) * 2010-03-04 2014-09-21 Jx Nippon Mining & Metals Corp A lithium ion battery positive electrode active material, positive electrode for a lithium ion battery, and a lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JPWO2011108389A1 (en) * 2010-03-04 2013-06-24 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN102770992A (en) * 2010-03-04 2012-11-07 Jx日矿日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP5313392B2 (en) * 2010-03-04 2013-10-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
WO2011108355A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US10263244B2 (en) 2011-11-25 2019-04-16 Mitsui Mining & Smelting Co., Ltd. Lithium metal composite oxide having layered structure
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9640794B2 (en) 2012-04-27 2017-05-02 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure
WO2014010730A1 (en) * 2012-07-12 2014-01-16 三井金属鉱業株式会社 Lithium metal complex oxide
GB2520642A (en) * 2012-07-12 2015-05-27 Mitsui Mining & Smelting Co Lithium metal complex oxide
JP5606654B2 (en) * 2012-07-12 2014-10-15 三井金属鉱業株式会社 Lithium metal composite oxide
JPWO2014010730A1 (en) * 2012-07-12 2016-06-23 三井金属鉱業株式会社 Lithium metal composite oxide
GB2520642B (en) * 2012-07-12 2017-01-11 Mitsui Mining & Smelting Co Lithium metal oxide
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
US9391313B2 (en) 2013-03-04 2016-07-12 Mitsui Mining & Smelting Co., Ltd. Lithium metal composite oxide powder
KR20150103103A (en) 2013-03-04 2015-09-09 미쓰이금속광업주식회사 Lithium metal composite oxide powder
JP2014199778A (en) * 2013-03-29 2014-10-23 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2015045719A1 (en) * 2013-09-26 2015-04-02 Necエナジーデバイス株式会社 Positive electrode for stacked lithium ion secondary batteries
US10115967B2 (en) 2016-03-31 2018-10-30 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US10700353B2 (en) 2016-03-31 2020-06-30 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US11804600B2 (en) 2016-03-31 2023-10-31 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery
US10224547B2 (en) 2016-03-31 2019-03-05 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
EP3225592A1 (en) 2016-03-31 2017-10-04 Honda Motor Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery
US10326132B2 (en) 2016-03-31 2019-06-18 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US11728481B2 (en) 2016-03-31 2023-08-15 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US11728483B2 (en) 2016-03-31 2023-08-15 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US11380892B2 (en) 2016-03-31 2022-07-05 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery
US11239464B2 (en) 2016-03-31 2022-02-01 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US11233238B2 (en) 2016-03-31 2022-01-25 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US10529986B2 (en) 2016-03-31 2020-01-07 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
EP3594182A1 (en) 2016-03-31 2020-01-15 Honda Motor Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery
US10622629B2 (en) 2016-03-31 2020-04-14 Honda Motor Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery
US11447399B2 (en) * 2016-05-27 2022-09-20 Umicore Method for producing nickel lithium metal complex oxide powder of small particle size
JPWO2018088320A1 (en) * 2016-11-08 2019-10-03 本田技研工業株式会社 Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery comprising the same
JP7348329B2 (en) 2016-11-08 2023-09-20 本田技研工業株式会社 Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery equipped with the same
KR102462060B1 (en) 2016-11-08 2022-11-01 혼다 기켄 고교 가부시키가이샤 Electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery provided with same
US11978885B2 (en) 2016-11-08 2024-05-07 Honda Motor Co., Ltd. Electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery provided with same
CN109923702A (en) * 2016-11-08 2019-06-21 本田技研工业株式会社 Non-aqueous electrolyte secondary battery electrode and the non-aqueous electrolyte secondary battery for having it
JP2021048134A (en) * 2016-11-08 2021-03-25 本田技研工業株式会社 Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery including the same
KR102235758B1 (en) 2016-11-08 2021-04-05 혼다 기켄 고교 가부시키가이샤 Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery having the same
JP7025514B2 (en) 2016-11-08 2022-02-24 本田技研工業株式会社 Electrodes for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries equipped with these electrodes
KR20190070353A (en) * 2016-11-08 2019-06-20 혼다 기켄 고교 가부시키가이샤 Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery having the same
US11165051B2 (en) 2016-11-08 2021-11-02 Honda Motor Co., Ltd. Electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery provided with same
KR102352108B1 (en) 2016-11-08 2022-01-18 혼다 기켄 고교 가부시키가이샤 Electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery provided with same
KR20220010584A (en) * 2016-11-08 2022-01-25 혼다 기켄 고교 가부시키가이샤 Electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery provided with same
WO2018088320A1 (en) * 2016-11-08 2018-05-17 本田技研工業株式会社 Electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery provided with same
JP2022065072A (en) * 2016-11-08 2022-04-26 本田技研工業株式会社 Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery including the same
KR20210037753A (en) * 2016-11-08 2021-04-06 혼다 기켄 고교 가부시키가이샤 Electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery provided with same
CN109923702B (en) * 2016-11-08 2022-03-11 本田技研工业株式会社 Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery provided with same
JP2018098173A (en) * 2016-12-16 2018-06-21 貴州振華新材料有限公司 Spherical or pseudo-spherical lithium battery positive electrode material, battery, manufacturing method, and application
US11990617B2 (en) 2018-03-13 2024-05-21 Sumitomo Chemical Company, Limited Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode, and lithium secondary battery
KR20200130819A (en) 2018-03-13 2020-11-20 스미또모 가가꾸 가부시끼가이샤 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode, and lithium secondary battery
KR20200131237A (en) 2018-03-13 2020-11-23 스미또모 가가꾸 가부시끼가이샤 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode, and lithium secondary battery
WO2019177032A1 (en) 2018-03-13 2019-09-19 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode, and lithium secondary battery
WO2019177014A1 (en) 2018-03-13 2019-09-19 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode, and lithium secondary battery
US11973209B2 (en) 2018-06-07 2024-04-30 Lg Chem, Ltd. Positive electrode active material including single particles of lithium nickel composite transition metal oxide, method of preparing the same, and lithium secondary battery including the same
JP2021514524A (en) * 2018-06-07 2021-06-10 エルジー・ケム・リミテッド Positive electrode active material for secondary batteries, their manufacturing methods, and lithium secondary batteries containing them
JP7191342B2 (en) 2018-06-07 2022-12-19 エルジー・ケム・リミテッド Positive electrode active material for secondary battery, manufacturing method thereof, and lithium secondary battery including the same
KR20220057538A (en) 2019-08-30 2022-05-09 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
KR20220057539A (en) 2019-08-30 2022-05-09 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
KR20220054804A (en) 2019-08-30 2022-05-03 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
WO2021040032A1 (en) 2019-08-30 2021-03-04 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
WO2021040031A1 (en) 2019-08-30 2021-03-04 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
WO2021040033A1 (en) 2019-08-30 2021-03-04 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
CN114467196A (en) * 2019-10-04 2022-05-10 三洋电机株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN115004415A (en) * 2020-01-31 2022-09-02 三洋电机株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP7464735B2 (en) 2020-05-25 2024-04-09 蜂巣能源科技股▲ふん▼有限公司 Cobalt-free composite positive electrode material and its manufacturing method
DE112021003066T5 (en) 2020-06-01 2023-03-16 Gs Yuasa International Ltd. POSITIVE ELECTRODE AND ENERGY STORAGE DEVICE
DE112022003424T5 (en) 2021-07-06 2024-04-18 Gs Yuasa International Ltd. POSITIVE ELECTRODE, ENERGY STORAGE DEVICE, AND ENERGY STORAGE APPARATUS
WO2023026482A1 (en) 2021-08-27 2023-03-02 株式会社 東芝 Electrode, battery, and battery pack

Similar Documents

Publication Publication Date Title
JP2004355824A (en) Cathode active substance for nonaqueous secondary battery and cathode
JP5822708B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5035712B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
KR101211072B1 (en) Powdered graphite and nonaqueous electrolyte secondary battery
WO2009141991A1 (en) Electrode for non-aqueous electrolyte secondary battery, manufacturing method therefor, and non-aqueous electrolyte secondary battery
KR102521605B1 (en) Cathode Materials for Rechargeable Lithium Ion Batteries
US8758941B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
EP2264815A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP2012079464A5 (en)
KR20000029812A (en) Graphite particles and lithium secondary battery using them as cathode material
JP2003323895A (en) Nonaqueous electrolyte battery
JP3991359B2 (en) Cathode active material for non-aqueous lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery using the cathode active material
JP2012146590A (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery
JP5002872B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
JP2004281253A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method and nonaqueous system lithium secondary battery using the material
JP2001076727A (en) Positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2007179917A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery using it
JP3951715B2 (en) Cathode active material for lithium ion secondary battery and method for producing the same
JP3605256B2 (en) Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery using the carbon material for negative electrode
JP2008235157A (en) Positive electrode active material for lithium secondary battery
JP3709446B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP2007242282A (en) Battery
JP2007095534A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP2006286336A (en) Nonaqueous electrolyte secondary battery and its charging method
JP4743804B2 (en) Cathode active material for non-aqueous lithium secondary battery and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111