JP3605256B2 - Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery using the carbon material for negative electrode - Google Patents

Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery using the carbon material for negative electrode Download PDF

Info

Publication number
JP3605256B2
JP3605256B2 JP10584497A JP10584497A JP3605256B2 JP 3605256 B2 JP3605256 B2 JP 3605256B2 JP 10584497 A JP10584497 A JP 10584497A JP 10584497 A JP10584497 A JP 10584497A JP 3605256 B2 JP3605256 B2 JP 3605256B2
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
carbon material
lithium ion
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10584497A
Other languages
Japanese (ja)
Other versions
JPH10302774A (en
Inventor
治雄 阪越
章人 佐々木
宇大 田中
正之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP10584497A priority Critical patent/JP3605256B2/en
Publication of JPH10302774A publication Critical patent/JPH10302774A/en
Application granted granted Critical
Publication of JP3605256B2 publication Critical patent/JP3605256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオンをドープ、脱ドープするリチウムイオン二次電池負極用炭素材料及びその負極用炭素材料を用いたリチウムイオン二次電池に関するものである。
【0002】
【従来の技術】
電子機器の軽量化に伴い、小型軽量で高密度の二次電池の要求が高まっている。この観点から非水電解液二次電池、特にLiCoO等を正極活物質とし、負極に炭素材を用いたリチウムイオン二次電池(以下単に「リチウム二次電池」という。)が脚光を浴びつつある。
【0003】
この負極に使用される炭素材料としては、千数百℃以下の温度で熱処理された黒鉛構造が未発達の「非晶質系」と呼ばれるものと、黒鉛構造が発達した「黒鉛系」のものとに大別され、それぞれに特徴を有している。しかし、初期サイクルにおける充放電効率の高さ、電位平坦性等から、実際の電池においては黒鉛系の方が有利との見方が一般的である。
【0004】
【発明が解決しようとする課題】
ところで、このような黒鉛材料を使用した実際のリチウム二次電池の構造としては、例えば、円筒型リチウム二次電池の場合について製法の概略を踏まえて簡単に説明すると、正極は活物質であるLiCo0を導電材等と共にペースト状とし、20μm程度の厚みのアルミ箔の両面に塗布した後、乾燥して用いる。負極も同様に、20μm程度の厚みの銅箔にペースト状の黒鉛粉末を塗布した後、乾燥する。このようにして得た電極を負極、セパレータ、正極、セパレータの順で重ね合わせ、これを円筒形に巻き上げて作った電極素子を缶に挿入し、電解液、ポリスイッチ素子、電流遮断弁などを組み込んで電池としている。
【0005】
従って、負極に黒鉛材料を使用したリチウム二次電池の性能向上を企図する場合、放電容量が大きく、初期サイクルにおける不可逆容量が小さく、サイクル特性等に優れた黒鉛材料を見い出すことが重要となるが、これだけでは不十分である。即ち、かかる黒鉛材料と銅箔との間の密着性をいかに良好に保持して製作できるかということも非常に重要な事項である。
【0006】
なぜならば、集電体である銅箔との密着性が良くなければ、いかに特性的に優れた黒鉛材料でも、その特性が生かされず、リチウム二次電池の性能向上には結びつかないからである。また当然ながら、高性能のリチウム二次電池の製造時の歩留り低下につながり、そればかりか製作後の電池セル内で剥離が発生すると、種々予測し得ない安全面での問題が発生し得るからである。従って、リチウム二次電池の負極に用いる黒鉛材料としては、材料自体の特性に優れると共に集電体である銅箔との密着性にも優れたものでなければならない。しかしながら、天然黒鉛等に見られるように、一般に黒鉛材料はバインダーとの濡れ性に劣り、故に銅箔との密着性に劣るのが実状である。
【0007】
本発明は上記の事情に鑑みてなされたものであり、その目的とするところは、粉体自体の導電性能等に優れながら、銅箔との間の良好な密着性に優れ、かつ放電容量の大きく、初期サイクルにおける不可逆容量が小さく、サイクル特性等に優れたリチウム二次電池負極用炭素材料及びその負極用炭素材料を用いたリチウム二次電池を提供する点にある。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、吸油量、粉体嵩密度、粒度分布や固有抵抗が特定の範囲にある高密度等方性黒鉛粉末であれば、目的とする高性能のリチウム二次電池負極用炭素材料及びその負極用炭素材料を用いたリチウム二次電池が得られることを見い出し、本発明を完成させるに至ったものである。
【0009】
即ち、冷間静水圧成形法にて成形体を成形した後、還元性雰囲気又は不活性ガス雰囲気下で前記成形体を熱処理して得られた本発明のうち請求項1記載の発明のリチウム二次電池負極用炭素材料は、高密度等方性黒鉛ブロックを粉砕、分級して得られた黒鉛粉末であって、該黒鉛粉末の粉体嵩密度が0.5g/cm3 以上で吸油量が65ml/100g以下であることを特徴とする。このような炭素材料であれば、シート化時の充填活物質量を増加することができると共に、集電体である銅箔との密着性に優れたものとすることができる。
【0010】
また、請求項2記載の発明は、請求項1記載の発明の構成のうち、黒鉛粉末の特性としてさらに、5μm≦10%D≦20μm、10μm≦50%D≦35μm、および30μm≦90%D≦65μmからなる粒度分布を有することを特徴とする。このような炭素材料であれば、請求項1記載の発明の効果(シート化時の活物質充填量の増大効果)をより顕著なものとすることができると共に、安全面でも優れたものとすることができる。
【0011】
また、請求項3記載の発明は、請求項1又は請求項2に記載の発明の構成のうち、高密度等方性黒鉛ブロックとして、固有抵抗が20μΩm以下であり、かつ該固有抵抗から求めた異方比が0.9〜1.1であることを特徴とする。このような高密度等方性黒鉛ブロックを使用して得られた炭素材料によれば、請求項1又は請求項2記載の発明の効果に加えて、さらに導電性に優れ、かつシート化時に黒鉛の配向が起こらないため急速充放電特性に優れたものとすることができる。
【0013】
さらに、請求項記載の発明のリチウム二次電池は、請求項1乃至請求項のいずれか一項に記載の負極用炭素材料を負極活物質として用いてなることを特徴とする。このようなリチウム二次電池であれば、容量が大きく、そしてサイクル特性や安全性等に優れたものとすることができる。
【0014】
以下、本発明を詳細に説明する。
まず、炭素材料の基本的製法としては、以下に従えばよい。即ち、必要に応じて粒度調製したコークス等を骨材とし、これにピッチ等のバインダーを添加した後、混練する。得られた混練物を冷間静水圧成形法(CIP成形法)により適当なブロックに成形し、このブロックを還元性雰囲気又は不活性ガス雰囲気の下で2400℃以上の温度で熱処理する。得られた熱処理済の黒鉛化炭素材ブロックに対し、所定の粉砕、分級等により必要な粒度に調整して、所望のリチウム二次電池負極用炭素材料を得る。
【0015】
上記製法において、使用可能な骨材としては、ピッチコークス、石油系コークス、生ピッチコークス、生石油コークス、カーボンブラック等を例示することができる。また、バインダーとしては、タールピッチ、合成樹脂等を例示できる。また、一旦黒鉛化炭素材ブロックとした後粉末化するのは、より均質な黒鉛が効率的に得られるからである。
【0016】
得られた黒鉛粉末は所定の条件(物性)に適合するように選別してリチウム二次電池負極用材料とすることにより、リチウム二次電池の性能面、生産面、安全面に種々の効果をもたらすことができる。具体的には、まず黒鉛粉末として、粉体嵩密度が0.5g/cm以上で吸油量が65ml/100g以下のものを選定すれば、シート化時の充填密度が高くなるため、同一容器内に充填できる活物質の重量を増すことができ、従って容量の大きな電池の作製が可能となる。また、黒鉛でありながらバインダーとの濡れ性に優れ、従ってスラリーとした後の銅箔との密着性に優れたものとすることができる。
【0017】
また、黒鉛粉末として、10%Dが5〜20μm、50%Dが10〜35μm、および90%Dが30〜65μmの粒度分布を有するものを選定すれば、黒鉛粉体しての比表面積をより小さくおさえることができ、安全性に優れたものとすることができると共に、シート化時の充填密度をより高いものとすることができる。
【0018】
さらに、固有抵抗が20μΩm以下であり、かつ該固有抵抗から求めた異方比が0.9〜1.1であるような高密度等方性黒鉛ブロックを粉砕して得られた黒鉛粉末を選定すれば、導電性に優れ、かつ異方比が小さいことによりシート化時に黒鉛の配向が起こらないため、あらゆる方向からのリチウムイオンの出入りが可能となり、従って、急速充放電特性に優れたものとすることができる。
【0020】
【実施例】
以下、実施例及び比較例により、本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0021】
(実施例1)
平均粒径10μmに粒度調整したピッチコークス100重量部に50重量部のコールタールピッチを加えて200℃にて混練を行った。これを平均粒径100μmに粒度調整した後、CIP成形した。得られた成形物を1000℃で熱処理(焼成)した後、さらに2800℃で熱処理(黒鉛化)を行った。この得られた物の固有抵抗は11μΩmで、固有抵抗から求めた異方比は1.03であった。これをさらに粉砕、粒度調整を行い、(a)〜(c)の3種の粉体を得た。
【0022】
(実施例2)
骨材として平均粒径10μmに粒度調整したピッチコークス75重量部、同じく10μmに粒度調整した人造黒鉛25重量部を混合したものを使用した。これにバインダーとして50重量部のコールタールピッチを加えて200℃にて混練を行い、その後平均粒径100μmに粒度調整を行い、以下(実施例1)と同様に成形、焼成、黒鉛化を行った。得られた黒鉛ブロックの固有抵抗は8μΩmであり、また固有抵抗から求めた異方比は1.08であった。この黒鉛ブロックを(実施例1)と同様に粉砕、粒度調整を行い、(a)〜(c)の3種の粉体を得た。
【0024】
(比較例1)
平均粒径10μmに粒度調整したニードルコークス100重量部に、バインダーとして50重量部のコールタールピッチを加えて200℃にて混練を行った。これを平均粒径100μmに粒度調整した後、1000(kgf/cm)の圧力にて金型成型し、以下(実施例1)と同様に焼成、黒鉛化を行った。得られた黒鉛ブロックの固有抵抗は7μΩmであり、また固有抵抗から求めた異方比は1.20であった。この黒鉛ブロックを(実施例1)と同様に粉砕、粒度調整を行い、(a)〜(c)の3種の粉体を得た。
【0025】
〔銅箔との密着度合い試験〕
厚み20μmの銅箔上に、上記(実施例1、2)及び(比較例1)で得られた各黒鉛粉末90重量部とバインダーとしてのポリフッ化ビニリデン10重量部とを混合し、N−メチルピロリデン(NMP)を適宜加えてペースト上に調整したものを塗布、乾燥することにより負極板を作製した。得られた負極板を机の端に当てて15回擦り、その後、黒鉛粉末と銅箔との密着度合いを目視にて観察した。この結果を、各黒鉛粉体の粒度分布、粉体嵩密度及び吸油量の測定結果と共に表1に併せて示す。なお、吸油量は、JISK6221「ゴム用カーボンブラックの試験方法」6.1.1項で規定されているA法(機械法)により測定された値を指す。
【0026】
【表1】

Figure 0003605256
【0027】
表1から明らかなように、黒鉛粉末として、少なくとも粉体嵩密度及び吸油量が本発明の要件(特定範囲)を満たす場合は、良好かやや良好(ごく一部剥離した場合を含めて)という結果が得られ、特に粒度分布も本発明の要件を満たす場合は、すべて良好な結果が得られることが分かる
【0028】
一方、比較例1(a)〜(c)の黒鉛粉末はいずれも、粉体嵩密度,吸油量及び粒度分布のいずれかの特性の点で本発明の要件を外れているため、全てが完全に剥離又はほとんど剥離した。
【0029】
〔実施例電池の作製〕
図1に、本発明に係るリチウム二次電池の分解斜視図を示した。図1において、1はリチウム二次電池、2は電極群、3は正極板、4は負極板、5はセパレータ、6は電池ケース、7はケース蓋、8は安全弁、10は正極端子、11は正極リードである。
【0030】
リチウム二次電池1の構成は、正極板3、負極板4、セパレータ5及び非水系の電解液からなる渦巻き状の電極群2が電池ケース6に収納された角形リチウム二次電池である。電池ケース6は、厚さ0.3mm、内寸33.1×46.5×7.5mmの鉄製本体の表面に厚さ5μmのニッケルメッキを施したものであり、側部上部には電解液注入用の孔100が設けられている。
【0031】
正極板3は、その集電体が厚み20μmのアルミ箔であり、それに活物質としてリチウムコバルト複号酸化物を保持したものである。正極板3は、結着剤であるポリフッ化ビニリデン8部と導電剤であるアセチレンブラック5部とを活物質87部と共に混合してペースト状に調整した後、集電体材料の両面に塗布、乾燥することによって作製した。
【0032】
負極板4は2種類作製した。一つは、厚み20μmの銅箔からなる集電体の両面に、上記の炭素材(上記実施例1(c)の黒鉛粉末)90重量部と結着剤としてのポリフッ化ビニリデン10重量部とを混合し、NMPを加えてペースト状に調整したものを塗布、乾燥することにより作製した。他の一つは、炭素材として上記比較例1(c)の黒鉛粉末を使用する以外、同じ条件で負極板4を作製した。
【0033】
セパレータ5は、ポリエチレン微多孔膜、また電解液は、LiPFを1mol/l含むエチレンカーボネート:ジエチルカーボネート=1:1(体積比)の混合液を使用した。なお、正極板3は、安全弁8と正極端子10を設けたケース蓋7の端子10と正極リード11を介して接続されている。負極板4は電池ケース6の内壁との接触により接続されている。そして、この電池は、ケース6に蓋7をレーザー溶接して封口される。このようにして、最終的に上記構成に係る設計容量900mAhの電池A(使用炭素材は実施例1(c)の黒鉛粉末)と電池B(使用炭素材は比較例1(c)の黒鉛粉末)を作製した。但し、電解液量を25mlとした。
【0034】
〔電池の性能試験〕
実施例電池A,Bについて、0.5Cの電流で5時間、4.1Vまで定電流定電圧充電を行って満充電状態とした。そして、各電池を1Cで2.75Vまで放電し、クーロン効率、放電容量を測定した。この結果、電池Aの放電容量は、890mAhと設計容量とほぼ等しい容量を示したのに対して、電池Bの放電容量は、805mAhと設計容量に対して著しく低かった。また、両電池のクーロン効率は85%であった。さらに、同様の充放電条件で100サイクルまで実施した結果、100サイクル後の放電容量は、電池Aが880mAh、電池Bが600mAhであり、電池Bは劣化していることが分かった。
【0035】
なお、本発明に係るリチウム二次電池においては、その構成として正極、負極及びセパレータと非水電解液との組み合わせ、あるいは正極、負極及びセパレータとしての有機また無機固体電解質と非水電解液との組み合わせとしてもよく、またこれに限定されるものでもない。
【0036】
また、上記では、正極の活物質としてリチウムコバルト複号酸化物を用いる場合について説明したが、リチウムコバルト系複合酸化物、リチウムニッケル又はリチウムニッケル系複合酸化物、二硫化チタンをはじめとしてスピネル型リチウムマンガン酸化物などのマンガン系活物質、あるいは五酸化バナジウム及び三酸化モリブデンなどリチウムを吸蔵放出するようなホスト物質であれば種々のものを用いることができる。
【0037】
加えて、前記の実施例に係る電池は角形であるが、円筒形、コイン形又はペーパー形など形状はどんなものであってもよい。さらに、有機溶媒も基本的に限定されるものではない。従来、リチウム二次電池に用いられているものであれば本発明と同様の効果を得ることができる。例えば、溶媒としては、プロピレンカーボネ−ト、エチレンカーボネ−ト、γ−プチロラクトン、スルホランなどの高誘電率溶媒に1,2−ジメトキシエタン、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルフォルメートなどの低粘度溶媒を混合したものを用いることができる。あるいは、リチウムイオン伝導性の固体電解質、例えばPANなどの有機系固体電解質もしくはリチウムタイタネートなどの無機系固体電解質を単独でもしくは有機溶媒と組み合わせて用いてもよい。
【0038】
【発明の効果】
以上説明したように、本発明によれば、粉体自体の導電性能等に優れながら、銅箔との間の良好な密着性に優れ、かつ放電容量が大きく、初期サイクルにおける不可逆容量が小さく、サイクル特性等に優れたリチウム二次電池負極用炭素材料及びその負極用炭素材料を用いたリチウム二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明に係るリチウム二次電池の一実施形態を示す分解斜視図である。
【符号の説明】
1 リチウムイオン二次電池
2 電極群
3 正極板
4 負極板
5 セパレータ
6 ケース
7 蓋
8 安全弁
9 正極端子
10 正極リ−ド[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a carbon material for a negative electrode of a lithium ion secondary battery which is doped and dedoped with lithium ions, and a lithium ion secondary battery using the carbon material for a negative electrode.
[0002]
[Prior art]
With the reduction in the weight of electronic devices, the demand for small, lightweight and high-density secondary batteries is increasing. From this viewpoint, a non-aqueous electrolyte secondary battery, particularly a lithium ion secondary battery using LiCoO 2 or the like as a positive electrode active material and a carbon material for a negative electrode (hereinafter, simply referred to as a “lithium secondary battery”) is in the limelight. is there.
[0003]
The carbon materials used for this negative electrode are those called "amorphous", in which the graphite structure that has been heat-treated at a temperature of less than 1,000 hundreds degrees Celsius is undeveloped, and those in which the graphite structure has been developed, "graphite". And each has its own characteristics. However, in view of the high charge / discharge efficiency in the initial cycle, the flatness of the potential, and the like, it is generally considered that graphite is more advantageous in an actual battery.
[0004]
[Problems to be solved by the invention]
By the way, as for the structure of an actual lithium secondary battery using such a graphite material, for example, the case of a cylindrical lithium secondary battery will be briefly described based on the outline of the manufacturing method. 2 is made into a paste together with a conductive material or the like, applied to both surfaces of an aluminum foil having a thickness of about 20 μm, and dried. Similarly, the negative electrode is dried by applying paste-like graphite powder to a copper foil having a thickness of about 20 μm. The electrodes thus obtained are superposed in the order of a negative electrode, a separator, a positive electrode and a separator, and an electrode element made by winding this into a cylindrical shape is inserted into a can, and an electrolytic solution, a polyswitch element, a current cutoff valve and the like are inserted. The battery is incorporated.
[0005]
Therefore, when attempting to improve the performance of a lithium secondary battery using a graphite material for the negative electrode, it is important to find a graphite material having a large discharge capacity, a small irreversible capacity in the initial cycle, and excellent cycle characteristics. This is not enough. That is, it is also very important how to maintain the adhesion between the graphite material and the copper foil in a good condition.
[0006]
This is because if the adhesion to the copper foil as the current collector is not good, even if the graphite material is excellent in characteristics, the characteristics cannot be utilized and the performance of the lithium secondary battery cannot be improved. Naturally, this leads to a decrease in yield during the production of a high-performance lithium secondary battery, and in addition, if peeling occurs in a battery cell after fabrication, various unpredictable safety problems may occur. It is. Therefore, the graphite material used for the negative electrode of the lithium secondary battery must have excellent characteristics of the material itself and also have excellent adhesion to the copper foil as the current collector. However, as seen in natural graphite and the like, graphite materials are generally inferior in wettability with a binder and therefore inferior in adhesion to a copper foil.
[0007]
The present invention has been made in view of the above-described circumstances, and the object thereof is to have excellent adhesion to a copper foil, while having excellent conductivity performance of the powder itself, and discharge capacity. An object of the present invention is to provide a carbon material for a negative electrode of a lithium secondary battery, which is large, has a small irreversible capacity in an initial cycle, and is excellent in cycle characteristics and the like, and a lithium secondary battery using the carbon material for a negative electrode.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above-mentioned object, and as a result, the oil absorption, the powder bulk density, the particle size distribution and the specific resistance of the high-density isotropic graphite powder in a specific range, It has been found that a high-performance carbon material for a negative electrode of a lithium secondary battery and a lithium secondary battery using the carbon material for a negative electrode can be obtained, and the present invention has been completed.
[0009]
That is, after forming a compact by cold isostatic pressing, the lithium compact according to claim 1 of the present invention obtained by heat-treating the compact in a reducing atmosphere or an inert gas atmosphere. The carbon material for the negative electrode of a secondary battery is a graphite powder obtained by pulverizing and classifying a high-density isotropic graphite block, and has a powder bulk density of 0.5 g / cm 3 or more and an oil absorption. It is not more than 65 ml / 100 g. With such a carbon material, it is possible to increase the amount of the filled active material at the time of forming the sheet and to have excellent adhesion with the copper foil as the current collector.
[0010]
According to the second aspect of the present invention, in the configuration of the first aspect, the graphite powder further has a characteristic of 5 μm ≦ 10% D ≦ 20 μm, 10 μm ≦ 50% D ≦ 35 μm, and 30 μm ≦ 90% D It has a particle size distribution of ≦ 65 μm. With such a carbon material, the effect of the invention described in claim 1 (the effect of increasing the active material filling amount during sheeting) can be made more remarkable, and safety is also excellent. be able to.
[0011]
According to a third aspect of the present invention, in the configuration of the first or second aspect of the present invention, the high-density isotropic graphite block has a specific resistance of 20 μΩm or less and is determined from the specific resistance. The anisotropic ratio is 0.9 to 1.1. According to the carbon material obtained by using such a high-density isotropic graphite block, in addition to the effects of the invention described in claim 1 or claim 2, graphite is further excellent in conductivity and formed into a sheet. Since no orientation occurs, rapid charge / discharge characteristics can be excellent.
[0013]
Furthermore, a lithium secondary battery according to a fourth aspect of the present invention is characterized in that the carbon material for a negative electrode according to any one of the first to third aspects is used as a negative electrode active material. Such a lithium secondary battery can have a large capacity and excellent cycle characteristics and safety.
[0014]
Hereinafter, the present invention will be described in detail.
First, the basic method of producing a carbon material may be as follows. That is, if necessary, coke or the like whose particle size is adjusted is used as an aggregate, and after adding a binder such as pitch to the aggregate, kneading is performed. The obtained kneaded material is formed into a suitable block by cold isostatic pressing (CIP forming), and this block is heat-treated at a temperature of 2400 ° C. or more in a reducing atmosphere or an inert gas atmosphere. The obtained heat-treated graphitized carbon material block is adjusted to a required particle size by predetermined pulverization, classification, and the like to obtain a desired carbon material for a lithium secondary battery negative electrode.
[0015]
In the above-mentioned production method, examples of usable aggregates include pitch coke, petroleum-based coke, raw pitch coke, raw petroleum coke, and carbon black. Examples of the binder include tar pitch and synthetic resin . Also, once for powdered after a graphitized carbon material block is because more homogeneous graphite can be efficiently obtained.
[0016]
The obtained graphite powder is selected so as to conform to predetermined conditions (physical properties) and used as a material for a negative electrode of a lithium secondary battery, thereby providing various effects on the performance, production and safety aspects of the lithium secondary battery. Can bring. More specifically, if graphite powder having a powder bulk density of 0.5 g / cm 3 or more and an oil absorption of 65 ml / 100 g or less is selected as the graphite powder, the packing density at the time of sheeting becomes high. The weight of the active material that can be filled therein can be increased, and thus a battery with a large capacity can be manufactured. In addition, although it is graphite, it has excellent wettability with a binder, and therefore can have excellent adhesiveness with a copper foil after being made into a slurry.
[0017]
If the graphite powder has a particle size distribution of 10% D of 5 to 20 μm, 50% D of 10 to 35 μm, and 90% D of 30 to 65 μm, the specific surface area of the graphite powder is reduced. It is possible to reduce the size of the sheet, to improve the safety, and to increase the packing density at the time of forming the sheet.
[0018]
Further, a graphite powder obtained by pulverizing a high-density isotropic graphite block having a specific resistance of 20 μΩm or less and an anisotropic ratio determined from the specific resistance of 0.9 to 1.1 is selected. If this is the case, the conductivity is excellent, and the anisotropic ratio is small, so that the orientation of graphite does not occur at the time of sheeting, so that lithium ions can enter and exit from all directions, and therefore, it has excellent rapid charge and discharge characteristics. can do.
[0020]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0021]
(Example 1)
50 parts by weight of coal tar pitch was added to 100 parts by weight of pitch coke whose particle size was adjusted to an average particle size of 10 μm, and kneaded at 200 ° C. After this was adjusted to an average particle size of 100 μm, it was subjected to CIP molding. The obtained molded product was heat-treated (fired) at 1000 ° C., and then heat-treated (graphitization) at 2800 ° C. The specific resistance of the obtained product was 11 μΩm, and the anisotropic ratio determined from the specific resistance was 1.03. This was further pulverized and adjusted for particle size to obtain three types of powders (a) to (c).
[0022]
(Example 2)
As an aggregate, a mixture of 75 parts by weight of pitch coke whose particle size was adjusted to 10 μm and 25 parts by weight of artificial graphite whose particle size was adjusted to 10 μm was used. To this, 50 parts by weight of coal tar pitch as a binder was added and kneaded at 200 ° C., and then the particle size was adjusted to an average particle size of 100 μm, followed by molding, firing and graphitization in the same manner as in (Example 1). Was. The specific resistance of the obtained graphite block was 8 μΩm, and the anisotropic ratio determined from the specific resistance was 1.08. This graphite block was pulverized and adjusted for particle size in the same manner as in (Example 1) to obtain three types of powders (a) to (c).
[0024]
(Comparative Example 1)
To 100 parts by weight of needle coke whose particle diameter was adjusted to an average particle diameter of 10 μm, 50 parts by weight of coal tar pitch as a binder was added, and kneaded at 200 ° C. After adjusting the particle size to an average particle size of 100 μm, a metal mold was formed under a pressure of 1000 (kgf / cm 2 ), followed by firing and graphitization in the same manner as in the following (Example 1). The specific resistance of the obtained graphite block was 7 μΩm, and the anisotropic ratio calculated from the specific resistance was 1.20. This graphite block was pulverized and adjusted for particle size in the same manner as in (Example 1) to obtain three types of powders (a) to (c).
[0025]
(Adhesion test with copper foil)
On a copper foil having a thickness of 20 μm, 90 parts by weight of each of the graphite powders obtained in the above (Examples 1 and 2 ) and (Comparative Example 1) and 10 parts by weight of polyvinylidene fluoride as a binder were mixed, and N-methyl was added. A negative electrode plate was produced by applying and drying a paste prepared by appropriately adding pyrrolidene (NMP) to the paste. The obtained negative electrode plate was rubbed 15 times against the edge of a desk, and thereafter, the degree of adhesion between the graphite powder and the copper foil was visually observed. The results are shown in Table 1 together with the measurement results of the particle size distribution, powder bulk density, and oil absorption of each graphite powder. The oil absorption refers to a value measured by the method A (mechanical method) defined in JIS K6221 “Test method for carbon black for rubber”, section 6.1.1.
[0026]
[Table 1]
Figure 0003605256
[0027]
As is evident from Table 1, when at least the powder bulk density and the oil absorption amount of the graphite powder satisfy the requirements (specific range) of the present invention, the graphite powder is considered to be good or slightly good (including the case where it is very partially exfoliated). It can be seen that good results are obtained, especially when the particle size distribution also satisfies the requirements of the present invention .
[0028]
On the other hand, all of the graphite powders of Comparative Examples 1 (a) to (c) are out of the requirements of the present invention in any of the properties of the powder bulk density, the oil absorption, and the particle size distribution. Or almost peeled off.
[0029]
(Preparation of Example Battery)
FIG. 1 shows an exploded perspective view of a lithium secondary battery according to the present invention. In FIG. 1, 1 is a lithium secondary battery, 2 is an electrode group, 3 is a positive electrode plate, 4 is a negative electrode plate, 5 is a separator, 6 is a battery case, 7 is a case cover, 8 is a safety valve, 10 is a positive electrode terminal, 11 Is a positive electrode lead.
[0030]
The configuration of the lithium secondary battery 1 is a prismatic lithium secondary battery in which a spiral electrode group 2 composed of a positive electrode plate 3, a negative electrode plate 4, a separator 5 and a non-aqueous electrolytic solution is housed in a battery case 6. The battery case 6 is made of an iron body having a thickness of 0.3 mm and an inner dimension of 33.1 × 46.5 × 7.5 mm plated with nickel having a thickness of 5 μm. An injection hole 100 is provided.
[0031]
The current collector of the positive electrode plate 3 is an aluminum foil having a thickness of 20 μm, and a lithium cobalt compound oxide is held as an active material on the current collector. The positive electrode plate 3 is prepared by mixing 8 parts of polyvinylidene fluoride as a binder and 5 parts of acetylene black as a conductive agent together with 87 parts of an active material to prepare a paste, and then applying the paste on both surfaces of a current collector material. It was prepared by drying.
[0032]
Two types of negative electrode plates 4 were produced. One is that 90 parts by weight of the above carbon material (the graphite powder of Example 1 (c)) and 10 parts by weight of polyvinylidene fluoride as a binder are provided on both sides of a current collector made of a copper foil having a thickness of 20 μm. Were mixed, NMP was added thereto, and the mixture was adjusted to a paste state, and then applied and dried. In the other, a negative electrode plate 4 was produced under the same conditions except that the graphite powder of Comparative Example 1 (c) was used as a carbon material.
[0033]
As the separator 5, a microporous polyethylene membrane was used, and as the electrolytic solution, a mixed solution of ethylene carbonate and diethyl carbonate = 1: 1 (volume ratio) containing 1 mol / l of LiPF 6 was used. The positive electrode plate 3 is connected via a positive electrode lead 11 to a terminal 10 of a case lid 7 provided with a safety valve 8 and a positive electrode terminal 10. The negative electrode plate 4 is connected by contact with the inner wall of the battery case 6. Then, the battery is sealed by laser welding the lid 7 to the case 6. Thus, the battery A (the carbon material used was the graphite powder of Example 1 (c)) and the battery B (the carbon material used was the graphite powder of the comparative example 1 (c)) having a design capacity of 900 mAh. ) Was prepared. However, the amount of the electrolyte was 25 ml.
[0034]
[Battery performance test]
The batteries A and B of Example were charged at a constant current and a constant voltage up to 4.1 V with a current of 0.5 C for 5 hours to be fully charged. Then, each battery was discharged to 2.75 V at 1 C, and Coulomb efficiency and discharge capacity were measured. As a result, the discharge capacity of the battery A was 890 mAh, which was almost equal to the design capacity, whereas the discharge capacity of the battery B was 805 mAh, which was significantly lower than the design capacity. The Coulomb efficiency of both batteries was 85%. Furthermore, as a result of performing up to 100 cycles under the same charge / discharge conditions, the discharge capacity after 100 cycles was 880 mAh for Battery A and 600 mAh for Battery B, indicating that Battery B was deteriorated.
[0035]
In the lithium secondary battery according to the present invention, as a configuration thereof, a combination of a positive electrode, a negative electrode and a separator with a nonaqueous electrolyte, or a positive electrode, an organic or inorganic solid electrolyte and a nonaqueous electrolyte as a negative electrode and a separator. A combination may be used, and the present invention is not limited to this.
[0036]
Further, in the above, the case where a lithium-cobalt compound oxide is used as the active material of the positive electrode is described. Various materials can be used as long as they are manganese-based active materials such as manganese oxides, or host materials that occlude and release lithium, such as vanadium pentoxide and molybdenum trioxide.
[0037]
In addition, although the batteries according to the above embodiments are square, any shape such as cylindrical, coin, or paper may be used. Further, the organic solvent is not fundamentally limited. Conventionally, the same effects as those of the present invention can be obtained as long as they are used in lithium secondary batteries. For example, as a solvent, 1,2-dimethoxyethane, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, diethyl carbonate, methyl formate may be used in a high dielectric constant solvent such as propylene carbonate, ethylene carbonate, γ-butyrolactone, and sulfolane. For example, a mixture of a low-viscosity solvent such as Alternatively, a lithium ion conductive solid electrolyte, for example, an organic solid electrolyte such as PAN or an inorganic solid electrolyte such as lithium titanate may be used alone or in combination with an organic solvent.
[0038]
【The invention's effect】
As described above, according to the present invention, while having excellent electrical conductivity and the like of the powder itself, excellent adhesiveness with the copper foil, excellent and large discharge capacity, small irreversible capacity in the initial cycle, A carbon material for a negative electrode of a lithium secondary battery having excellent cycle characteristics and the like and a lithium secondary battery using the carbon material for a negative electrode can be provided.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing an embodiment of a lithium secondary battery according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Lithium ion secondary battery 2 Electrode group 3 Positive electrode plate 4 Negative electrode plate 5 Separator 6 Case 7 Cover 8 Safety valve 9 Positive electrode terminal 10 Positive lead

Claims (4)

冷間静水圧成形法にて成形体を成形した後、還元性雰囲気又は不活性ガス雰囲気下で前記成形体を熱処理して得られた高密度等方性黒鉛ブロックを粉砕、分級して得られた黒鉛粉末であって、該黒鉛粉末の粉体嵩密度が0.5g/cm3以上で吸油量が65ml/100g以下であることを特徴とするリチウムイオン二次電池負極用炭素材料。 After forming the compact by cold isostatic pressing, the high-density isotropic graphite block obtained by heat-treating the compact under a reducing atmosphere or an inert gas atmosphere is obtained by pulverization and classification. A carbon material for a negative electrode of a lithium ion secondary battery, characterized in that the graphite powder has a powder bulk density of 0.5 g / cm 3 or more and an oil absorption of 65 ml / 100 g or less. 前記黒鉛粉末の特性として、さらに下記(イ)〜(ハ)の粒度分布を有することを特徴とする請求項1記載のリチウムイオン二次電池用炭素材料。
(イ)累積度数分布における10体積%粒径D(以下「10%D」と表記する)が、5μm≦10%D≦20μm、
(ロ)累積度数分布における50体積%粒径D(以下「50%D」と表記する)が、10μm≦50%D≦35μm、および
(ハ)累積度数分布における90体積%粒径D(以下「90%D」と表記する)が、30μm≦90%D≦65μm。
The carbon material for a lithium ion secondary battery according to claim 1, wherein the graphite powder further has the following particle size distribution as characteristics (a) to (c).
(A) 10 volume% particle size D (hereinafter referred to as “10% D”) in the cumulative frequency distribution is 5 μm ≦ 10% D ≦ 20 μm;
(B) 50 volume% particle size D (hereinafter referred to as “50% D”) in the cumulative frequency distribution is 10 μm ≦ 50% D ≦ 35 μm, and (c) 90 volume% particle size D in the cumulative frequency distribution (hereinafter “50% D”). 30%) ≦ 90% D ≦ 65 μm.
前記高密度等方性黒鉛ブロックは、固有抵抗が20μΩm以下であり、かつ該固有抵抗から求めた異方比が0.9〜1.1である請求項1又は請求項2に記載のリチウムイオン二次電池負極用炭素材料。3. The lithium ion according to claim 1, wherein the high-density isotropic graphite block has a specific resistance of 20 μΩm or less, and an anisotropic ratio obtained from the specific resistance is 0.9 to 1.1. 4. Carbon material for secondary battery negative electrode. 請求項1乃至請求項のいずれか一項に記載の負極用炭素材料を負極活物質として用いてなることを特徴とするリチウムイオン二次電池。A lithium ion secondary battery comprising the negative electrode carbon material according to any one of claims 1 to 3 as a negative electrode active material.
JP10584497A 1997-04-23 1997-04-23 Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery using the carbon material for negative electrode Expired - Fee Related JP3605256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10584497A JP3605256B2 (en) 1997-04-23 1997-04-23 Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery using the carbon material for negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10584497A JP3605256B2 (en) 1997-04-23 1997-04-23 Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery using the carbon material for negative electrode

Publications (2)

Publication Number Publication Date
JPH10302774A JPH10302774A (en) 1998-11-13
JP3605256B2 true JP3605256B2 (en) 2004-12-22

Family

ID=14418335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10584497A Expired - Fee Related JP3605256B2 (en) 1997-04-23 1997-04-23 Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery using the carbon material for negative electrode

Country Status (1)

Country Link
JP (1) JP3605256B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026380A1 (en) * 2006-08-31 2008-03-06 Toyo Tanso Co., Ltd. Carbon material for negative electrode for lithium ion rechargeable battery, carbon material for negative electrode for low crystalline carbon-impregnated lithium ion rechargeable battery, negative electrode plate, and lithium ion rechargeable battery
WO2012133788A1 (en) * 2011-03-30 2012-10-04 三菱化学株式会社 Graphite particles for nonaqueous secondary battery and method for producing same, negative electrode and nonaqueous secondary battery

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204886A (en) * 2007-02-22 2008-09-04 Matsushita Electric Ind Co Ltd Negative electrode active material, its evaluation method, negative electrode plate for nonaqueous electrolyte secondary battery using it, and nonaqueous electrolyte secondary battery
KR100945619B1 (en) 2008-04-23 2010-03-04 엘에스엠트론 주식회사 Negative active material used for secondary battery, secondary battery including the same, and method thereof
JP2009200048A (en) * 2009-04-06 2009-09-03 Toyo Tanso Kk Graphite member for ion implanting device
KR20140041883A (en) 2011-07-29 2014-04-04 도요타지도샤가부시키가이샤 Lithium ion secondary battery
JP5783432B2 (en) 2011-07-29 2015-09-24 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method thereof
WO2013057826A1 (en) 2011-10-20 2013-04-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and use of same
JP5854267B2 (en) * 2012-01-06 2016-02-09 トヨタ自動車株式会社 Non-aqueous secondary battery
JP5937438B2 (en) * 2012-06-29 2016-06-22 トヨタ自動車株式会社 Method for producing non-aqueous electrolyte secondary battery
JP5939438B2 (en) * 2012-08-01 2016-06-22 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
US10096864B2 (en) 2013-07-01 2018-10-09 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
CN113380983A (en) * 2021-04-07 2021-09-10 万向一二三股份公司 High-compaction negative pole piece, preparation method thereof and lithium ion battery comprising pole piece

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026380A1 (en) * 2006-08-31 2008-03-06 Toyo Tanso Co., Ltd. Carbon material for negative electrode for lithium ion rechargeable battery, carbon material for negative electrode for low crystalline carbon-impregnated lithium ion rechargeable battery, negative electrode plate, and lithium ion rechargeable battery
JP2008059903A (en) * 2006-08-31 2008-03-13 Toyo Tanso Kk Carbon material for lithium-ion secondary battery anode, carbon material for low crystallinity carbon-impregnation lithium-ion secondary battery anode, anode electrode plate, and lithium-ion secondary battery
CN101512798B (en) * 2006-08-31 2011-09-07 东洋炭素株式会社 Carbon material for negative electrode for lithium ion rechargeable battery, carbon material for negative electrode for low crystalline carbon-impregnated lithium ion rechargeable battery, negative el
KR101433976B1 (en) * 2006-08-31 2014-08-25 도요탄소 가부시키가이샤 Carbon material for negative electrode for lithium ion rechargeable battery, carbon material for negative electrode for low crystalline carbon-impregnated lithium ion rechargeable battery, negative electrode plate, and lithium ion rechargeable battery
WO2012133788A1 (en) * 2011-03-30 2012-10-04 三菱化学株式会社 Graphite particles for nonaqueous secondary battery and method for producing same, negative electrode and nonaqueous secondary battery

Also Published As

Publication number Publication date
JPH10302774A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
EP2374176B1 (en) Core-shell type anode active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries comprising the same
EP1720211B1 (en) Negative electrode for lithium secondary battery and lithium secondary battery
KR20000029812A (en) Graphite particles and lithium secondary battery using them as cathode material
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
KR20060091486A (en) Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
JP2007035358A (en) Positive electrode active substance, its manufacturing method and lithium ion secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP4595145B2 (en) Non-aqueous electrolyte battery
KR101579700B1 (en) Nonaqueous electrolyte secondary battery and use of same
KR100975875B1 (en) Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
JP2012028225A (en) Nonaqueous electrolyte secondary battery and method for manufacturing positive electrode mixture
JP3605256B2 (en) Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery using the carbon material for negative electrode
CN112335076A (en) Electrode, battery and battery pack
JP2001076727A (en) Positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP5002872B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
KR20110100301A (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP4543618B2 (en) Non-aqueous electrolyte battery
JP2001089118A (en) Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery
JP4150087B2 (en) Non-aqueous electrolyte secondary battery
JP2001006730A (en) Nonaqueous electrolyte battery
CN113711382A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP3732654B2 (en) Graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP5418828B2 (en) Lithium secondary battery and manufacturing method thereof
JP2001085009A (en) Positive electrode active material and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees