JP2007242282A - Battery - Google Patents
Battery Download PDFInfo
- Publication number
- JP2007242282A JP2007242282A JP2006059661A JP2006059661A JP2007242282A JP 2007242282 A JP2007242282 A JP 2007242282A JP 2006059661 A JP2006059661 A JP 2006059661A JP 2006059661 A JP2006059661 A JP 2006059661A JP 2007242282 A JP2007242282 A JP 2007242282A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- negative electrode
- battery according
- granulated body
- natural graphite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、電池、特に黒鉛系材料を含む負極を有する非水電解質二次電池に関する。 The present invention relates to a battery, particularly a nonaqueous electrolyte secondary battery having a negative electrode containing a graphite-based material.
携帯型の電子機器、例えばパーソナルコンピュータ(Personal Computer;PC)や携帯電話などの開発及び普及に伴い、これらの電子機器の電源として、繰り返し充放電が可能で省資源化にも適した、所謂二次電池が広く利用されている。
この二次電池においては、黒鉛層間へのリチウム(Li)のインターカレーション反応を利用した黒鉛材料、あるいは細孔中へのリチウムの吸蔵・離脱作用を応用した炭素質材料を負極活物質として用いた所謂リチウムイオン2次電池が開発され、広く利用されている。
With the development and widespread use of portable electronic devices such as personal computers (PCs) and mobile phones, the so-called two power sources of these electronic devices can be repeatedly charged and discharged and are suitable for resource saving. Secondary batteries are widely used.
In this secondary battery, a graphite material that uses an intercalation reaction of lithium (Li) between graphite layers, or a carbonaceous material that applies lithium insertion / extraction to pores is used as the negative electrode active material. So-called lithium ion secondary batteries have been developed and widely used.
近年、電子機器の高性能化による消費電力の増加や使用時間の長期化に伴って、2次電池の容量に対する要求は従来におけるよりも強いものとなっているが、特に、電子機器の小型軽量化に対応するため、高エネルギー密度化に対する要求が高まっている。このような要求に答えることを目的として、非水電解質二次電池の研究が進められ、中でも高性能の非水電解質二次電池としてリチウムイオン二次電池が提案されている。
従来、このリチウムイオン二次電池においては、負極を構成する活物質層が鱗片状の形状を有する天然黒鉛で構成されていた。この天然黒鉛は、その高い結晶性により、理論容量(372mAh/g)に近い360〜370mAh/gもの容量を有する。したがって、通常330〜350 mAh/g程度の容量と考えられる人造黒鉛を用いるよりも、天然黒鉛を高体積密度で充填した構成とすることが好ましいと考えられている。
In recent years, the demand for the capacity of the secondary battery has become stronger than before due to the increase in power consumption and the prolonged usage time due to the high performance of the electronic device. In order to cope with this trend, demand for higher energy density is increasing. In order to meet these requirements, research on non-aqueous electrolyte secondary batteries has been promoted, and among them, lithium ion secondary batteries have been proposed as high-performance non-aqueous electrolyte secondary batteries.
Conventionally, in this lithium ion secondary battery, the active material layer constituting the negative electrode has been composed of natural graphite having a scaly shape. This natural graphite has a capacity of 360 to 370 mAh / g which is close to the theoretical capacity (372 mAh / g) due to its high crystallinity. Therefore, it is considered preferable to use a structure filled with natural graphite at a high volume density, rather than using artificial graphite, which is generally considered to have a capacity of about 330 to 350 mAh / g.
天然黒鉛においては、炭素原子が網目構造を形成して平面状に広がる複数の層が積層されることにより、厚さ方向の形状が規定されて塊状に成長したものであり、その積層方向に対する側面、つまり層間が露出している面はエッジ面と呼称される。この天然黒鉛を電池の負極に用いると、充電時にはエッジからリチウムイオンがインターカレートされて積層された複数の面の間に拡散し、放電時にはそのリチウムイオンがデインターカレートされエッジから放出される。
しかし、天然黒鉛はその結晶性の高さにより、明確なエッジ面が存在しない人造黒鉛に比べて負荷特性及びサイクル特性が低いという問題がある。これは、人造黒鉛が、低結晶性で明確なエッジ面を持たないためにインターカレート/デインターカレート時にも黒鉛粒子の全面が均一に作用するのに対し、天然黒鉛は、エッジ面からしかインターカレート/デインターカレートがなされず、更に前述の網目構造を有する層の積層方向が電極面に垂直になって所謂寝た状態となりやすいためにエッジ面が外側(正極側)に向き難いことなどによる。
In natural graphite, a plurality of layers in which carbon atoms form a network structure and spread in a planar shape are laminated, so that the shape in the thickness direction is defined and grown in a lump shape. That is, the surface where the interlayer is exposed is called an edge surface. When this natural graphite is used for the negative electrode of a battery, lithium ions are intercalated from the edge during charging and diffused between the stacked surfaces, and during discharge, the lithium ions are deintercalated and released from the edge. The
However, natural graphite has a problem that load characteristics and cycle characteristics are lower than artificial graphite which does not have a clear edge surface due to its high crystallinity. This is because artificial graphite has low crystallinity and does not have a clear edge surface, so the entire surface of the graphite particles acts even during intercalation / deintercalation, whereas natural graphite However, intercalation / deintercalation is not performed, and the layered direction of the layer having the above-described network structure is perpendicular to the electrode surface so that it is likely to be in a so-called sleeping state, so that the edge surface faces outward (positive electrode side). Due to difficult things.
この、負極を構成する天然黒鉛の負荷特性及びサイクル特性を向上させる構成として、エッジ面を磁場配向や黒鉛粒子の球形化等によって電極と平行な面とは異なる方向に向け、例えば垂直に立てる手法や、等方性を高める手法が提案されている(例えば特許文献1参照)。
負極電極面に対してエッジ面を異なる方向に向けた構成によれば、充電時つまりインターカレート時に正極側から放出されるリチウムイオンが網目状の平面を避けてエッジ面にまで回り込む必要がなくなり、エッジ面からリチウムイオンを受け取りやすい構造となるため、受け入れ性は向上する。
As a configuration for improving the load characteristics and cycle characteristics of natural graphite constituting the negative electrode, the edge surface is directed in a different direction from the plane parallel to the electrode by, for example, magnetic field orientation or spheroidization of the graphite particles, for example, standing vertically In addition, a method for improving isotropicity has been proposed (see, for example, Patent Document 1).
According to the configuration in which the edge surface is directed in a different direction with respect to the negative electrode surface, it is not necessary for lithium ions released from the positive electrode side during charging, that is, intercalation, to wrap around the edge surface avoiding a mesh-like plane. Since the structure easily receives lithium ions from the edge surface, the acceptability is improved.
しかしながら、このような手段を用いても、天然黒鉛は元々有するエッジ面の数が少ないため、リチウムイオン受け入れ性が充分に高いとは言い難く、よりリチウムイオンの受け入れ性が高い電池が求められている。
本発明はこのような問題に鑑みてなされたものであって、その目的は、高エネルギー密度を有するとともに、負荷特性及びサイクル特性の向上が図られた電池を提供することにある。 The present invention has been made in view of such problems, and an object of the present invention is to provide a battery having high energy density and improved load characteristics and cycle characteristics.
本発明に係る電池は、正極及び負極と共に電解質を備えた電池であって、前記負極が、複数の天然黒鉛の造粒体を含有し、前記造粒体のかさ密度が、0.20g/cm3以上0.70g/cm3以下であることを特徴とする。 The battery according to the present invention is a battery provided with an electrolyte together with a positive electrode and a negative electrode, wherein the negative electrode contains a plurality of natural graphite granules, and the bulk density of the granules is 0.20 g / cm. 3 or more and 0.70 g / cm 3 or less.
本発明に係る電池によれば、負極が、複数の天然黒鉛の造粒体を含有し、前記造粒体のかさ密度が、0.20g/cm3以上0.70g/cm3以下であることから、エネルギー密度が高く、負荷特性及びサイクル特性が向上した電池を構成することが可能となる。 According to the battery of the present invention, the negative electrode contains a plurality of natural graphite granules, and the bulk density of the granules is 0.20 g / cm 3 or more and 0.70 g / cm 3 or less. Therefore, a battery having a high energy density and improved load characteristics and cycle characteristics can be configured.
本発明者らは、鱗片状天然黒鉛を粉砕、微粉化し、複数の天然黒鉛を接着して造粒体を形成することにより、負荷特性及びサイクル特性に優れた負極を形成することができることを見出し、本発明に至ったものである。
特に、一度粉砕されることにより単位体積あたりのエッジの割合を増やす事が出来、従来品の天然黒鉛よりも単位体積当たりのエッジが多い負極活物質となり、リチウムイオンのインターカレーション、デインターカレーションに適した構造となる。
The present inventors have found that a negative electrode having excellent load characteristics and cycle characteristics can be formed by pulverizing and pulverizing scaly natural graphite and bonding a plurality of natural graphites to form a granulated body. This has led to the present invention.
In particular, once pulverized, the ratio of edges per unit volume can be increased, resulting in a negative electrode active material having more edges per unit volume than conventional natural graphite, and lithium ion intercalation and deintercalation. The structure is suitable for the
以下、図面を参照して本発明の実施の形態を説明する。
本実施形態では、図1Aに一部を切開した斜視図で示すような、所謂素子巻回式の円筒型電池を例として説明する。
Embodiments of the present invention will be described below with reference to the drawings.
In the present embodiment, a so-called element-wound cylindrical battery as shown in a perspective view with a part cut in FIG. 1A will be described as an example.
本実施形態に係る電池1は、上面が開放された円柱状の電池缶2の内部に、巻回体3がセンターピン4(図示せず)を中心として配置され、電池蓋5によって封止された構成を有する。
電池缶2は、例えばニッケルめっきされた鉄缶により構成されており、巻回体3は、電解質を含む巻回されたセパレータ7及び8を介して、同様に巻回された正極9及び負極10が対向配置された構成を有する。
In the battery 1 according to this embodiment, a wound body 3 is disposed around a center pin 4 (not shown) inside a cylindrical battery can 2 having an open upper surface, and is sealed by a battery lid 5. Have a configuration.
The battery can 2 is composed of, for example, a nickel-plated iron can, and the wound body 3 is wound in the same manner through the wound separators 7 and 8 containing the electrolyte, and the positive electrode 9 and the negative electrode 10. Are arranged opposite to each other.
電池蓋5は、内側に熱感抵抗素子(Positive Temperature Coefficient;PTC素子)とともに安全弁機構8が設けられており、電池缶2に対して、ガスケット等を介してかしめられることにより取着されている。すなわち、電池缶2及び電池蓋5によって、電池缶1の内部は密閉された構成とされる。
安全弁機構18は、熱感抵抗素子を介して電池蓋5と電気的に接続されており、内部短絡あるいは外部からの加熱などにより電池の内圧が一定以上となった場合には、例えば内蔵するディスク板が反転して電池蓋5と巻回体3との電気的接続が切断される。ここで、熱感抵抗素子は、温度が上昇すると抵抗値の増大により電流を制限して大電流による異常な発熱を防止するものである。
The battery lid 5 is provided with a safety valve mechanism 8 together with a thermal resistance element (Positive Temperature Coefficient; PTC element) inside, and is attached to the battery can 2 by caulking through a gasket or the like. . That is, the inside of the battery can 1 is sealed by the battery can 2 and the battery lid 5.
The safety valve mechanism 18 is electrically connected to the battery lid 5 via a heat-sensitive resistor element. When the internal pressure of the battery becomes a certain level or more due to an internal short circuit or external heating, for example, a built-in disk The plate is reversed and the electrical connection between the battery lid 5 and the wound body 3 is cut. Here, the heat-sensitive resistance element is to prevent abnormal heat generation due to a large current by limiting the current by increasing the resistance value when the temperature rises.
図1Bに、本実施形態における巻回体3の、巻回面の断面構造を模式的に示す。
本実施形態において、巻回体3は、帯状(薄板状)の正極9及び負極10が、電解質を含むセパレータ7及び8を介して対向配置され、これらが巻回された構成を有する。
巻回体3の正極9及び負極10には、例えばアルミニウムによる正極リード及び例えばニッケルなどによる負極リード(図示せず)がそれぞれ接続されており、正極リードは安全弁機構18に溶接されて電池蓋5と電気的に接続され、負極リードは電池缶2に直接溶接されて電気的に接続されている。
FIG. 1B schematically shows a cross-sectional structure of the wound surface of the wound body 3 in the present embodiment.
In the present embodiment, the wound body 3 has a configuration in which a strip-like (thin plate-like) positive electrode 9 and a negative electrode 10 are arranged to face each other via separators 7 and 8 containing an electrolyte, and these are wound.
For example, a positive electrode lead made of aluminum and a negative electrode lead (not shown) made of nickel, for example, are connected to the positive electrode 9 and the negative electrode 10 of the wound body 3, and the positive electrode lead is welded to the safety valve mechanism 18 to be connected to the battery lid 5. The negative electrode lead is directly welded and electrically connected to the battery can 2.
ここで、正極9は、例えば、巻回構造における内面となる第1主面11aと外面となる第2主面11bとを有する正極集電体11において、第1主面11a側に内面正極活物質層12が、第2主面11b側に外面正極活物質層13が、それぞれ形成されている。
内面正極活物質層12及び外面正極活物質層13は必ずしも両方設けられなくともよく、目的とする電池構成や特性に応じて選定して構成されることが好ましい。正極集電体11は、例えば、アルミニウム,ニッケルあるいはステンレスなどによることができる。
Here, the positive electrode 9 is, for example, a positive electrode current collector 11 having a first main surface 11a serving as an inner surface and a second main surface 11b serving as an outer surface in a winding structure. The material layer 12 and the outer-surface positive electrode active material layer 13 are formed on the second main surface 11b side, respectively.
Both the inner surface positive electrode active material layer 12 and the outer surface positive electrode active material layer 13 do not necessarily have to be provided, but are preferably selected and configured according to the intended battery configuration and characteristics. The positive electrode current collector 11 can be made of, for example, aluminum, nickel, stainless steel, or the like.
また、内面正極極活物質層12及び外面正極活物質層13は、正極活物質を含み、必要に応じて炭素質材料などの導電助剤及びポリフッ化ビニリデンなどの結着剤を含んでいてもよい。正極活物質としては、例えば、十分な量のリチウム(Li)を含んだ例えば一般式LixMO2で表されるリチウムと遷移金属からなるリチウム含有金属複合酸化物が好ましい。リチウム含有金属複合酸化物は、高電圧を発生可能であると共に、高密度であるため、二次電池の更なる高容量化を図ることが可能だからである。なお、Mは1種類以上の遷移金属であり、例えばコバルト,ニッケル及びマンガンからなる群のうちの少なくとも1種が好ましい。xは電池の充放電状態によって異なり、通常0.05≦x≦1.10の範囲内の値である。このようなリチウム含有金属複合酸化物の具体例としては、LiCoO2あるいはLiNiO2などが挙げられる。なお、正極活物質には、いずれか1種を用いてもよいが、2種以上を混合して用いてもよい。 The inner surface positive electrode active material layer 12 and the outer surface positive electrode active material layer 13 include a positive electrode active material, and may include a conductive agent such as a carbonaceous material and a binder such as polyvinylidene fluoride as necessary. Good. As the positive electrode active material, for example, a lithium-containing metal composite oxide composed of lithium and a transition metal, for example, represented by the general formula LixMO 2 containing a sufficient amount of lithium (Li) is preferable. This is because the lithium-containing metal composite oxide can generate a high voltage and has a high density, so that it is possible to further increase the capacity of the secondary battery. M is one or more transition metals, and for example, at least one of the group consisting of cobalt, nickel, and manganese is preferable. x varies depending on the charge / discharge state of the battery and is usually a value in the range of 0.05 ≦ x ≦ 1.10. Specific examples of such a lithium-containing metal composite oxide include LiCoO 2 and LiNiO 2 . In addition, any 1 type may be used for a positive electrode active material, and 2 or more types may be mixed and used for it.
また、本実施形態に係る電池1においては、高容量を達成することを目的としたものであるので、正極9の正極活物質層12及び13は、定常状態(例えば5回程度充放電を繰り返した後)で負極炭素質材料1g当たり250mAh以上の充放電容量相当分のLiを含むことが必要で、300mAh以上の充放電容量相当分のLiを含むことが望ましく、330mAh以上の充放電容量相当分のLiを含むことがより好ましい。
なお、Liは必ずしも正極活物質層12及び13から全て供給される必要はなく、例えば後述する溶媒中など、電池系内に炭素質材料1g当たり250mAh以上の充放電容量相当分のLiが存在すれば良い。また、このLiの量は、電池の放電容量を測定に応じて適宜選定されるものである。
In addition, since the battery 1 according to this embodiment is intended to achieve a high capacity, the positive electrode active material layers 12 and 13 of the positive electrode 9 are repeatedly charged and discharged in a steady state (for example, about 5 times charging / discharging). In addition, it is necessary to include Li corresponding to a charge / discharge capacity of 250 mAh or more per 1 g of the negative electrode carbonaceous material, and it is desirable to include Li corresponding to a charge / discharge capacity of 300 mAh or more. More preferably, it contains a minute amount of Li.
Note that it is not always necessary to supply Li from the positive electrode active material layers 12 and 13. For example, in a solvent described later, Li corresponding to a charge / discharge capacity of 250 mAh or more per 1 g of carbonaceous material exists in the battery system. It ’s fine. The amount of Li is appropriately selected according to the measurement of the discharge capacity of the battery.
一方、負極10は、例えば、巻回構造における内面となる第1主面14aと外面となる第2主面14bとを有する負極集電体14において、第1主面14a側に内面負極活物質層15が、第2主面14b側に外面負極活物質層16が、それぞれ形成されている。 On the other hand, the negative electrode 10 is, for example, a negative electrode current collector 14 having a first main surface 14a that is an inner surface and a second main surface 14b that is an outer surface in a winding structure, and an inner surface negative electrode active material on the first main surface 14a side. The layer 15 is formed with the outer-surface negative electrode active material layer 16 on the second main surface 14b side.
セパレータ7及び8は、リチウムイオンを通過させつつ、正極9と負極10との物理的接触による短絡を防止すためのものであり、例えば、ポリエチレンフィルムあるいはポリプロピレンフィルムなどの微孔性ポリオレフィンフィルムなどにより構成されている。このセパレータ7及び8は、安全性確保のために所定の温度(例えば120℃)以上で熱溶融により孔を閉塞して抵抗を上げ、電流を遮断する機能を有することが好ましい。 The separators 7 and 8 are for preventing a short circuit due to physical contact between the positive electrode 9 and the negative electrode 10 while allowing lithium ions to pass. For example, the separators 7 and 8 are made of a microporous polyolefin film such as a polyethylene film or a polypropylene film. It is configured. In order to ensure safety, the separators 7 and 8 preferably have a function of blocking the current by closing the holes by heat melting at a predetermined temperature (for example, 120 ° C.) or higher to cut off the current.
また、セパレータ7及び8には、電解液(図示せず)が含浸されている。本実施形態における電解液は、例えば、非水溶媒と、この溶媒に溶解された電解質塩であるリチウム塩とを含んでおり、必要に応じて各種添加剤を含んでいてもよい。 Further, the separators 7 and 8 are impregnated with an electrolytic solution (not shown). The electrolytic solution in the present embodiment includes, for example, a nonaqueous solvent and a lithium salt that is an electrolyte salt dissolved in the solvent, and may include various additives as necessary.
非水溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピルニトリル、アニソール、酢酸エステルあるいはプロピオン酸エステルが挙げられる。 Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3. -Dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propylnitrile, anisole, acetate or propionate.
なお、溶媒には、これらのいずれか1種を用いてもよいが、2種類以上を混合して用いてもよい。
混合して用いる場合は特に、エチレンカーボネートを主溶媒として、メチルエチルカーボネートやメチルプロピルカーボネート等の非対称鎖状炭酸エステルを第2成分として添加した構成が好適である。さらに、メチルエチルカーボネートとジメチルカーボネートとの混合溶媒とすることもできる。この場合、混合する体積比率は、エチレンカーボネート:第2成分溶媒=7:3〜3:7の範囲とすることが好ましい。また、第2成分溶媒として前述の混合溶媒を用いる場合、体積比率はメチルエチルカーボネート:ジメチルカーボネート=2:8〜9:1の範囲とすることが好ましい。
第2成分の添加により、主溶媒の分解が抑制されるとともに、導電率が向上して電流特性が改良される、電解液の凝固点が低下して低温特性が改善される、リチウム金属との反応性が低下して安全性が改善されるなどの効果が得られる。
In addition, any 1 type of these may be used for a solvent, and 2 or more types may be mixed and used for it.
When mixing and using, the structure which added asymmetrical chain carbonates, such as methyl ethyl carbonate and methyl propyl carbonate, as a 2nd component especially using ethylene carbonate as a main solvent is suitable. Furthermore, a mixed solvent of methyl ethyl carbonate and dimethyl carbonate can be used. In this case, the volume ratio to be mixed is preferably in the range of ethylene carbonate: second component solvent = 7: 3 to 3: 7. Moreover, when using the above-mentioned mixed solvent as a 2nd component solvent, it is preferable to make a volume ratio into the range of methyl ethyl carbonate: dimethyl carbonate = 2: 8-9: 1.
Addition of the second component suppresses decomposition of the main solvent, improves conductivity and improves current characteristics, reduces freezing point of electrolyte and improves low temperature characteristics, reaction with lithium metal The effect that safety | security falls and safety is improved is acquired.
電解質としてはLiPF6が好適であるが、この種の電池に用いられるものであればいずれも使用可能であり、例えば、リチウム塩として、LiClO4、LiAsF6、LiPF6、LiBF4、LiCH3SO3、LiCF3SO3、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiN(C4F9SO2)(CF3SO2)、LiClあるいはLiBrが挙げられる。このうち、LiClO4、LiAsF6、LiPF6、LiBF4、LiCH3SO3、LiCF3SO3、LiN(CF3SO2)2、LiN(C2F5SO2)2あるいはLiN(C4F9SO2)(CF3SO2)が好ましく、中でも、LiPF6あるいはLiBF4は特に好ましい。リチウム塩には、いずれか1種を用いてもよいが、2種以上を混合して用いてもよい。 As the electrolyte, LiPF 6 is suitable, but any of those used in this type of battery can be used. For example, as a lithium salt, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (C 4 F 9 SO 2 ) (CF 3 SO 2 ), LiCl or LiBr. Among these, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 or LiN (C 4 F 9 SO 2 ) (CF 3 SO 2 ) is preferable, and LiPF 6 or LiBF 4 is particularly preferable. Any one of the lithium salts may be used, or a mixture of two or more may be used.
次に、本実施形態に係る電池の製造方法として、まず、負極10の製造方法の一例について説明する。
まず、ハンマーミル、ピンミル、ボールミル、ジェットミル等を使用して天然黒鉛の粉砕加工を行う。例えばハンマーミルを用いる場合、回転速度は4000〜5000rpmで20分以上粉砕加工を行うことが好ましい。なお、黒鉛粒子を供給、排出する方法としては、黒鉛粒子を気流に同伴させて行うことが望ましい。また、粉砕によって微粉状黒鉛粒子を得るためにはこのように比較的大きな衝撃力をあたえる必要があることから、粉砕の度合いはこの処理時間にほぼ比例すると考えられる。
続いて、粉砕処理された黒鉛粒子に、バインダー溶液を加える。用いるバインダー溶液としては、バインダーとして、C6H10O5を基本構造とする澱粉の誘導体、C6H10O5を基本構造とする粘性多糖類、C6H10O5を基本構造とする水溶性セルロース誘導体、ポリウロニドおよび水溶性合成樹脂からなる群から選ばれる1つ以上、またはポリビニルアルコール、スチレンブタジエンゴムなどを所定の濃度に調整して溶液として用いる。溶液濃度は0.02〜2%程度が好ましい。
続いて、粉砕処理された黒鉛粒子を含むバインダー溶液を低速攪拌にかけ、造粒処理を行う。この処理には、例えばスプレードライヤー付き攪拌混合機を使用することができ、バインダー溶液と黒鉛粒子の造粒を所定時間行い、球状の造粒黒鉛粒子を得る。その後、スプレードライヤーにより、そのまま攪拌されながら乾燥されるため、出来上がった粒子は球状の形状を保持した形で排出される。ドライヤー温度は80℃〜110℃が好ましい。更に、この造粒黒鉛粒子に対し、窒素または不活性ガス下で焼成処理を行い、バインダーを焼き飛ばして本実施形態における造粒体を得る。なお、この焼成処理は、焼成温度500℃〜1000℃程度、焼成時間1〜12時間程度で行うことが好ましい。
このようにして略球状として得られた造粒体に、バインダーとしてスチレンブタジエンゴム(SBR)を加え、増粘材としてカルボキシルメチルセルロース(CMC)を混合して負極合剤を調製し、水分散させてペースト状のスラリーとする。このスラリーを薄板状(帯状)の銅箔集電体上に塗布し、例えば80℃で乾燥後、目的とする体積密度に応じてプレス成型することにより、本実施形態に係る電池を構成する本発明の負極10を得る。
Next, as a battery manufacturing method according to this embodiment, first, an example of a manufacturing method of the negative electrode 10 will be described.
First, natural graphite is pulverized using a hammer mill, pin mill, ball mill, jet mill or the like. For example, when a hammer mill is used, it is preferable to perform pulverization for 20 minutes or more at a rotational speed of 4000 to 5000 rpm. In addition, as a method for supplying and discharging graphite particles, it is desirable to carry out by bringing the graphite particles into the air stream. Further, in order to obtain fine powdery graphite particles by pulverization, it is necessary to apply such a relatively large impact force. Therefore, the degree of pulverization is considered to be substantially proportional to the treatment time.
Subsequently, a binder solution is added to the pulverized graphite particles. The binder solution used, as a binder, derivatives of starch and C 6 H 10 O 5 as a basic structure, C 6 H 10 O 5 a basic structure to viscous polysaccharide, a C 6 H 10 O 5 as a basic structure One or more selected from the group consisting of water-soluble cellulose derivatives, polyuronides, and water-soluble synthetic resins, or polyvinyl alcohol, styrene butadiene rubber, etc. are adjusted to a predetermined concentration and used as a solution. The solution concentration is preferably about 0.02 to 2%.
Subsequently, the binder solution containing the pulverized graphite particles is subjected to low-speed stirring to perform granulation. For this treatment, for example, a stirring mixer with a spray dryer can be used, and the binder solution and the graphite particles are granulated for a predetermined time to obtain spherical granulated graphite particles. Thereafter, the particles are dried while being stirred as they are by a spray dryer, and thus the finished particles are discharged in a shape maintaining a spherical shape. The dryer temperature is preferably 80 ° C to 110 ° C. Further, the granulated graphite particles in this embodiment are obtained by subjecting the granulated graphite particles to a firing treatment under nitrogen or an inert gas to burn off the binder. In addition, it is preferable to perform this baking process for the baking temperature of about 500 to 1000 degreeC, and the baking time of about 1 to 12 hours.
In this way, styrene butadiene rubber (SBR) is added as a binder to the granulate obtained as a substantially spherical shape, and carboxymethyl cellulose (CMC) is mixed as a thickener to prepare a negative electrode mixture, which is dispersed in water. A paste slurry is obtained. The slurry constituting the battery according to the present embodiment is obtained by applying the slurry onto a thin plate (band-shaped) copper foil current collector, drying at, for example, 80 ° C., and press-molding according to the target volume density. The negative electrode 10 of the invention is obtained.
得られた負極のSEM観察結果を、図2A〜図2Dに示す。
図2Aに示すように、本実施形態に係る電池1を構成する負極10の表面では、複数の天然黒鉛の接着によって形成された略球状の造粒体が、多数設けられて活物質層を形成していることが確認できる。
これらの造粒体は、図2Bに示すように、表面に凹凸が形成されて比表面積の増大が図られているほか、図2C及び図2Dに示すように、これらの凹凸よりも更に小さい細孔が表面に多数形成されて、リチウムイオンのインターカレートの促進に寄与できる構成を有していることがわかる。
The SEM observation results of the obtained negative electrode are shown in FIGS. 2A to 2D.
As shown in FIG. 2A, on the surface of the negative electrode 10 constituting the battery 1 according to this embodiment, a large number of substantially spherical granules formed by adhesion of a plurality of natural graphites are provided to form an active material layer. You can confirm that
As shown in FIG. 2B, these granulated bodies have irregularities formed on the surface to increase the specific surface area, and, as shown in FIGS. 2C and 2D, finer particles that are smaller than these irregularities. It can be seen that a large number of pores are formed on the surface and the structure can contribute to the promotion of lithium ion intercalation.
<実施例>
本発明に係る電池の実施例について、以下、説明する。
<Example>
Examples of the battery according to the present invention will be described below.
まず、第1の実施例について説明する。
天然黒鉛として中国産天然黒鉛試料粉末を用意し、この試料粉末を、ハンマーミルを用いて粉砕処理した。
粉砕の度合いはこの粉砕処理をした時間で規定した。〔表1〕に、試料の粉砕による粉砕処理時間と比表面積及び粒径(体積平均粒径;D50)との関係を示す。比表面積測定はBET法により測定した。この際、吸着質を窒素とし、脱気温度を120℃脱気時間を30分とした。〔表1〕の結果より、粉砕の時間が長いほど、より細かく粉砕されることが確認できた。
なお、処理時間が20分から40分の場合には、比表面積が8.9m2/g以上15.2m2/g以下となり、特に好ましい。なお、比表面積が8.9m2/g未満では粒度が大きすぎるため、増粒接着に好ましくなく、比表面積が15.2m2/gを超えると比表面積が大きすぎて、増粒の際、接着強度が低下するため好ましくないと考えられる。すなわち、D50の数値についても、8.0μm以上15.0μm以下とすることが好ましい。天然黒鉛の平均粒径をこの数値範囲内とすれば、最終的に得る造粒体の平均粒径を18μm以上30μm以下とすることができると考えられるためである。なお、造粒体の平均粒径が18μmより小さいと、比表面積が大きいため、作製した電池の初期充電の際に効率が低下してしまうと考えられる。一方、造粒体の平均粒径が30μmより大きいと、作製した電池において黒鉛中のリチウム(Li)拡散が律速になり、Li受け入れ性が低下してしまうと考えられる。
First, the first embodiment will be described.
Chinese natural graphite sample powder was prepared as natural graphite, and this sample powder was pulverized using a hammer mill.
The degree of pulverization was defined by the time of this pulverization treatment. [Table 1] shows the relationship between the pulverization time by pulverization of the sample, the specific surface area and the particle size (volume average particle size; D50). The specific surface area was measured by the BET method. At this time, the adsorbate was nitrogen, the degassing temperature was 120 ° C., and the degassing time was 30 minutes. From the results of [Table 1], it was confirmed that the longer the pulverization time, the more finely pulverized.
Note that when the processing time is 20 minutes to 40 minutes, the specific surface area becomes 8.9 m 2 / g or more 15.2 m 2 / g or less, particularly preferably. In addition, since the particle size is too large if the specific surface area is less than 8.9 m 2 / g, the specific surface area is too large if the specific surface area exceeds 15.2 m 2 / g. It is considered undesirable because the adhesive strength decreases. That is, the numerical value of D50 is preferably 8.0 μm or more and 15.0 μm or less. This is because if the average particle diameter of natural graphite is within this numerical range, the average particle diameter of the finally obtained granulated body can be 18 μm or more and 30 μm or less. In addition, when the average particle diameter of a granulated body is smaller than 18 micrometers, since a specific surface area is large, it is thought that efficiency falls in the initial charge of the produced battery. On the other hand, when the average particle diameter of the granulated body is larger than 30 μm, it is considered that lithium (Li) diffusion in graphite becomes rate-limiting in the produced battery, and Li acceptability is lowered.
次に、第2の実施例について説明する。
前述の第1実施例で説明した粉砕処理に30分間かけた天然黒鉛を、スプレードライヤー付き攪拌混合機を用いて造粒処理した。造粒処理は、黒鉛微粉50gに対し、カルボキシルメチルセルロース(CMC)1.0%水溶液を30g投入し、攪拌混合により造粒を行った。ドライヤー乾燥温度は110℃とした。
この造粒処理によって得られた造粒体を、比表面積測定、粒度分布測定、球形度測定によって評価した。
比表面積測定はBET法により測定した。この際、吸着質を窒素とし、脱気温度を120℃脱気時間を30分とした。
粒度分布測定は、堀場製レーザ回折/散乱式粒度分布測定装置により行った。
球状度測定は、SYSMEX(株)製フロー製粒子像分析装置 FPIA3000を用いた。黒鉛粒子をビーカーに入れ、精製水50ml、分散媒ポリ(オキシエチレン)−オクチルフェニルエーテル(和光製薬製)を加え、超音波に300W、3秒かけたものをサンプルとし、機器吸引により測定を開始した。画像解析は天然黒鉛粒子の個々の投影画像の面積を同等の円に置き換えた時の円周径をLとし、実際の周囲長をlとし、L/lを円形度と規定した。ここでは、円形度が0.85以下の粒子(個数基準)が少なく、円形度(体積基準)も高い値であれば、形状が球形に近いと判断する。
Next, a second embodiment will be described.
The natural graphite subjected to the pulverization treatment described in the first embodiment for 30 minutes was granulated using a stirring mixer with a spray dryer. In the granulation treatment, 30 g of a 1.0% aqueous solution of carboxymethyl cellulose (CMC) was added to 50 g of graphite fine powder, and granulation was performed by stirring and mixing. The dryer drying temperature was 110 ° C.
The granules obtained by this granulation treatment were evaluated by specific surface area measurement, particle size distribution measurement, and sphericity measurement.
The specific surface area was measured by the BET method. At this time, the adsorbate was nitrogen, the degassing temperature was 120 ° C., and the degassing time was 30 minutes.
The particle size distribution was measured with a Horiba laser diffraction / scattering particle size distribution measuring apparatus.
The sphericity measurement was performed using a particle image analyzer FPIA3000 manufactured by SYSMEX CORPORATION. Put graphite particles in a beaker, add 50 ml of purified water, dispersion medium poly (oxyethylene) -octylphenyl ether (manufactured by Wako Pharmaceutical Co., Ltd.), use ultrasonic wave at 300 W for 3 seconds as a sample, and start measurement by instrument suction did. In the image analysis, when the area of each projected image of natural graphite particles was replaced with an equivalent circle, the circumferential diameter was defined as L, the actual perimeter was defined as 1, and L / l was defined as the circularity. Here, if the number of particles having a circularity of 0.85 or less (number basis) is small and the circularity (volume basis) is also a high value, it is determined that the shape is close to a sphere.
本実施例における評価結果を、〔表2〕〜〔表4〕に示す。
攪拌装置回転速度1000rpmでは、〔表2〕に示すように、全てのパラメータに対して変化は確認されなかった。
攪拌装置回転速度2000rpmでは、〔表3〕に示すように、時間を追うごとに比表面積が減少し、D50が増加した。このことから、微粉同士が接着し、造粒されていると考えられる。
また、時間を追うごとに、球状化度が高くなって行く様子が確認され、攪拌に伴う凝集体同士の摩擦により形状は球形化されることがわかった。
また、各処理時間ごとの造粒体のかさ密度を測定したところ、比表面積,体積平均粒径,円形度の各数値から、かさ密度は0.20g/cm3以上0.70g/cm3以下が好ましいことが確認できた。この数値範囲内でかさ密度を選定することにより、円形度が0.85以下の粒子を個数基準で20%以下とすることができ、特にかさ密度を0.52g/cm3以上0.70g/cm3以下とすれば、更に比表面積を、6.5m2/g以上8.7m2/g以下にもすることができる。比表面積が10m2/gを超える場合、初回充放電効率が低下するため、好ましくない。
なお、この造粒体は、実際の電池の製造においては、後述する第3の実施例で一例を示すような焼成などの他の工程を経て活物質層を形成するに至るものであるが、少なくとも焼成によっては、かさ密度の変化を殆ど生じないものであることが確認できた。
また、攪拌装置回転速度4000rpmでは、〔表4〕に示すように、回転数が高すぎるため、微粉はさらに粉砕され、造粒には至らなかった。
The evaluation results in this example are shown in [Table 2] to [Table 4].
At the stirring device rotation speed of 1000 rpm, as shown in [Table 2], no change was confirmed for all parameters.
At the stirring device rotation speed of 2000 rpm, as shown in [Table 3], the specific surface area decreased and D50 increased with time. From this, it is considered that the fine powders are adhered and granulated.
Further, as the time passed, it was confirmed that the degree of spheroidization increased, and it was found that the shape was spheroidized by friction between the aggregates accompanying stirring.
Moreover, when the bulk density of the granulated body for each treatment time was measured, the bulk density was 0.20 g / cm 3 or more and 0.70 g / cm 3 or less from the numerical values of specific surface area, volume average particle diameter, and circularity. It was confirmed that is preferable. By selecting the bulk density within this numerical range, particles having a circularity of 0.85 or less can be made 20% or less on the basis of the number, and in particular, the bulk density is 0.52 g / cm 3 or more and 0.70 g / cm. If it is 3 or less, the specific surface area can be further increased to 6.5 m 2 / g or more and 8.7 m 2 / g or less. When the specific surface area exceeds 10 m 2 / g, the initial charge / discharge efficiency decreases, which is not preferable.
In addition, in the production of an actual battery, this granulated body forms an active material layer through other processes such as firing as shown in an example in a third embodiment to be described later. It was confirmed that the bulk density hardly changed at least by firing.
Further, at a stirring device rotational speed of 4000 rpm, as shown in [Table 4], since the rotational speed was too high, the fine powder was further pulverized and did not reach granulation.
次に、第3の実施例について説明する。
電池材料としては、粒径が20〜30ミクロン程度の黒鉛粉体用いることが特に好適であることから、前述の第2の実施例の結果より、本実施例では、造粒処理において攪拌装置回転速度2000rpm、攪拌時間30minとして得られた造粒体を用いた。
この造粒体を窒素雰囲気下で12時間焼成し、その際の焼成温度による比表面積の変化を測定した。比表面積測定はBET法により、吸着質を窒素、脱気温度を120℃、脱気時間を30分として測定した。
測定結果を〔表5〕に示す。
焼成後は、CMCの揮発のため、比表面積が増加した。CMCはリチウムのインターカレーション、デインターカレーションを阻害するものなので、出来るだけ造粒体内部に存在しないことが好ましい。従って、造粒体の比表面積が6.5m2/g以上8.7m2/g以下となる焼成温度のうち、CMCが完全に揮発したと思われる焼成温度400℃以上のものが電池を構成する上で好適と考えられる。
Next, a third embodiment will be described.
As the battery material, it is particularly preferable to use graphite powder having a particle size of about 20 to 30 microns. Therefore, from the result of the second example described above, in this example, the agitation apparatus is rotated in the granulation process. Granules obtained at a speed of 2000 rpm and a stirring time of 30 min were used.
This granulated body was fired for 12 hours in a nitrogen atmosphere, and the change in specific surface area depending on the firing temperature was measured. The specific surface area was measured by the BET method with the adsorbate being nitrogen, the degassing temperature being 120 ° C., and the degassing time being 30 minutes.
The measurement results are shown in [Table 5].
After firing, the specific surface area increased due to volatilization of CMC. Since CMC inhibits lithium intercalation and deintercalation, it is preferable that CMC is not present in the granulated body as much as possible. Therefore, among the firing temperatures at which the granulated body has a specific surface area of 6.5 m 2 / g or more and 8.7 m 2 / g or less, the one having a firing temperature of 400 ° C. or more at which CMC is considered to have completely volatilized constitutes the battery. Therefore, it is considered preferable.
なお、細孔径を測定したところ、図3に示すように、本実施形態における造粒体においては、より小さい径(0.2μm程度)の細孔が形成されるのに対し、従来の天然黒鉛においては、より大きい径(0.9μm程度)の細孔が確認されるのみであることから、本実施形態における造粒体においては、より多くの細孔が形成されて、電池の充放電時のインターカレーション/デインターカレーションが促進されるものと考えられる。 In addition, when the pore diameter was measured, as shown in FIG. 3, in the granulated body in the present embodiment, pores having a smaller diameter (about 0.2 μm) are formed, whereas conventional natural graphite is formed. Since only pores having a larger diameter (about 0.9 μm) are confirmed in the granule in the present embodiment, more pores are formed and the battery is charged and discharged. Intercalation / deintercalation is considered to be promoted.
次に、第4の実施例について説明する。
前述の第3の実施例の結果に基づき、本実施例では、温度400℃の焼成処理を経た造粒体を用意し、この焼成した造粒体に、バインダーとして 2重量%のスチレンブタジエンゴム(SBR)を加え、増粘材として1.0重量%のCMCを混合して負極合剤を調製し、水分散させてスラリー(ペースト状)にした。その後、スラリーを負極集電体となる厚さ15μmの銅箔上に塗布して80℃の乾燥炉を通過させ、造粒体を集電体上に形成し、更に圧縮成型して、所定の体積密度の負極活物質層を有する負極を形成した。
本実施例においては、負極活物質層を焼成造粒体で構成したので、その配向性を調べるために、プレス後の電極のX線回折を測定した。
黒鉛のような結晶性の高い炭素材料の場合、C軸が電極面に対して法線となる方向に配向しやすく、その配向に起因する(002)面の強力なピークは26.5°(2θ)付近に認められることがわかっている。また、黒鉛の六角網面(層面)電極面に対して垂直に近いとき大きくなる(110)面のピークは77.5°(2θ)付近に見られる。それぞれのピークの相対強度比I(110)/I(002)を配向度と定義し、この値を比較することで炭素材料の配向のしやすさ(配向性)を評価した。
〔表6〕に、この造粒体(焼成及びプレス後)に関する(110面)/(002面)のピーク強度比を、前述した第1実施例で使用した天然黒鉛(粉砕前)と、第2実施例で使用した天然黒鉛(粉砕後;攪拌装置回転速度2000rpm、攪拌時間30min)と、第3実施例で使用した造粒体(焼成前)と比較して示す。
ここで、造粒体の配向方向、すなわちX線回折における黒鉛の(002)面の回折ピークの強度I(002)と(110)面の回折ピークの強度I(110)との比I(110)/I(002)は、0.5以上が好ましい。0.5未満であると増粒による等方性の付与がない増粒条件であり好ましくない。
〔表6〕に示すように、造粒によって、(110面)/(002面)強度比が増加し、異方性が減少していることが認められ、強度比0.5以上となることが確認できた。この結果より、エッジ面が多方向を向いて等方性が向上し、リチウムイオン受け入れ性が向上していると考えられる。
Next, a fourth embodiment will be described.
Based on the results of the third embodiment described above, in this embodiment, a granulated body that has been subjected to a baking treatment at a temperature of 400 ° C. is prepared, and 2% by weight of styrene butadiene rubber ( SBR) was added and 1.0% by weight of CMC was mixed as a thickener to prepare a negative electrode mixture, which was dispersed in water to form a slurry (paste). Thereafter, the slurry is applied on a copper foil having a thickness of 15 μm serving as a negative electrode current collector, passed through a drying furnace at 80 ° C., a granulated body is formed on the current collector, and further compression-molded. A negative electrode having a volume density negative electrode active material layer was formed.
In this example, since the negative electrode active material layer was composed of fired granules, the X-ray diffraction of the electrode after pressing was measured in order to examine its orientation.
In the case of a highly crystalline carbon material such as graphite, the C-axis tends to be oriented in a direction normal to the electrode surface, and the strong peak on the (002) plane due to the orientation is 26.5 ° ( It is known that it is observed near 2θ). Further, the peak of the (110) plane, which becomes large when it is nearly perpendicular to the hexagonal mesh plane (layer plane) electrode plane of graphite, is seen at around 77.5 ° (2θ). The relative intensity ratio I (110) / I (002) of each peak was defined as the degree of orientation, and the ease of orientation (orientation) of the carbon material was evaluated by comparing this value.
In [Table 6], the peak intensity ratio of (110 face) / (002 face) relating to this granulated body (after firing and pressing) is the same as that of natural graphite (before pulverization) used in the first embodiment described above. It is shown in comparison with the natural graphite used in the second example (after pulverization; stirring device rotation speed 2000 rpm, stirring time 30 min) and the granulated body used in the third example (before firing).
Here, the orientation direction of the granule, i.e. the ratio of the graphite in the X-ray diffraction (002) plane diffraction peak intensity I and (002) of the (110) intensity of the diffraction peak of the plane I (110) I (110 ) / I (002) is preferably 0.5 or more. If it is less than 0.5, it is not preferable because it is a condition for increasing the grain size without imparting isotropy by increasing the grain size.
As shown in [Table 6], it is recognized that the (110 plane) / (002 plane) strength ratio increases and anisotropy decreases due to granulation, and the strength ratio is 0.5 or more. Was confirmed. From this result, it is considered that the isotropic surface is improved because the edge surface faces in multiple directions, and the lithium ion acceptability is improved.
次に、第5の実施例について説明する。
本実施例では、第1実施例で使用した天然黒鉛(粉砕前)と、第2実施例で使用した天然黒鉛(粉砕後;攪拌装置回転速度2000rpm、攪拌時間30min)と、第3実施例で使用した造粒体(焼成前)と、第4実施例で得た造粒体(焼成及びプレス後)とを用いて、それぞれ前述した第4実施例に示した方法で負極を作製し、電極の比表面積測定を行った。
作製した電極は、それぞれ体積密度1.60g/cm3にプレスし、縦1mm横10mmにカットし、比表面積測定用試験管に詰め、比表面積をBET法により測定した。その際、吸着質を窒素とし、脱気温度を80℃、脱気時間を40分とした。なお、脱気温度は、CMCバインダーの揮発温度が約110℃であることから、焼成による影響をより高い精度で検討するために、より低い80℃に選定した。
〔表7〕に、加熱温度と各加熱温度での電極比表面積を示す。この結果より、黒鉛の粉砕によっても電極の比表面積が増加するものの、造粒後焼成したものについては更に比表面積が増加することが確認でき、比表面積が0.52以上1.10以下となることが確認できた。これは、CMCバインダー揮発の際に形成された、造粒体粒子内の孔に起因すると考えられる。
Next, a fifth embodiment will be described.
In this example, natural graphite used in the first example (before pulverization), natural graphite used in the second example (after pulverization; stirring device rotation speed 2000 rpm, stirring time 30 min), and in the third example, Using the used granulated body (before firing) and the granulated body obtained in the fourth example (after firing and pressing), a negative electrode was prepared by the method described in the fourth example, and the electrode The specific surface area was measured.
The produced electrodes were each pressed to a volume density of 1.60 g / cm 3 , cut to a length of 1 mm and a width of 10 mm, packed in a test tube for specific surface area measurement, and the specific surface area was measured by the BET method. At that time, the adsorbate was nitrogen, the degassing temperature was 80 ° C., and the degassing time was 40 minutes. In addition, since the volatilization temperature of the CMC binder is about 110 ° C., the deaeration temperature was selected to be lower 80 ° C. in order to examine the influence of firing with higher accuracy.
Table 7 shows the heating temperature and the electrode specific surface area at each heating temperature. From this result, it can be confirmed that the specific surface area of the electrode is increased by the pulverization of graphite, but the specific surface area is further increased for those fired after granulation, and the specific surface area becomes 0.52 or more and 1.10 or less. I was able to confirm. This is thought to be due to the pores in the granulated particles formed during CMC binder volatilization.
次に、第6の実施例について説明する。
本実施例では、第1実施例で得た天然黒鉛(粉砕前)と、第2実施例で得た天然黒鉛(粉砕後)と、第3実施例で得た造粒体(焼成前)と、第4実施例で得た造粒体(焼成及びプレス後)との各試料を用いて、第5の実施例で示した手法によって負極を作製し、この各負極を用いて前述した実施形態で説明した円筒型の非水電解液二次電池(直径18mm,高さ65mm)の円筒型非水電解液二次電池作製してサイクル試験を行った。
Next, a sixth embodiment will be described.
In this example, natural graphite obtained in the first example (before pulverization), natural graphite obtained in the second example (after pulverization), and granulated material obtained in the third example (before firing) The negative electrode was produced by the method shown in the fifth example using each sample with the granulated body (after firing and pressing) obtained in the fourth example, and the embodiment described above using each negative electrode A cylindrical non-aqueous electrolyte secondary battery (diameter 18 mm, height 65 mm) of the cylindrical non-aqueous electrolyte secondary battery described in 1 was manufactured and subjected to a cycle test.
本実施例における、具体的な電池の製造方法について説明する。
まず、第1実施例〜第4実施例に対応する各試料(天然黒鉛または造粒体)に、バインダーとして2重量%のスチレンブタジエンゴム(SBR)を加え、増粘材として1重量%のカルボキシルメチルセルロース(CMC)を混合して負極合剤を調製し、水分散させてスラリー(ペースト状)にし、この負極合剤スラリーを最終的に負極集電体となる厚さ10μmの帯状銅箔の両面に塗布した後、乾燥及び圧縮成型して薄板状の負極を作製した。
続いて、炭酸リチウム0.5モルと炭酸コバルト1モルを混合し、900℃の空気中で5時間焼成してLiCoO2を得た後、このLiCoO2を粉砕し、レーザ回折法によって得られる50%累積粒径が15μmのLiCoO2粉末を作製した。その後、LiCoO2粉末95重量部と炭酸リチウム粉末5重量部からなる混合物を91重量部、導電剤としてグラファイト6重量部、結着剤としてポリフッ化ビニリデン3重量部を混合して正極合剤を調製し、N−メチルピロリドンに分散させてスラリー(ペースト状)にした。この正極合剤スラリーを、最終的に正極集電体となる厚さ20μmの帯状のアルミニウム箔の両面に均一に塗布し、乾燥及び圧縮成型して薄板状の正極を作製した。
続いて、作製した負極及び正極と、厚さ25μmの微多孔性ポリプロピレンフィルムより成るセパレータとを、負極、セパレータ、正極、セパレータの順に積層してから多数回巻回し、外径18mmの渦巻型巻回体を作製した。
この渦巻型巻回体を、ニッケルめっきを施した鉄製電池缶に収納し、渦巻式電極上下両面には絶縁板を配設し、アルミニウム製正極リードを正極集電体から導出して電池蓋に、ニッケル製負極リードを負極集電体から導出して電池缶底に、それぞれ溶接した。
この、巻回体が収納された電池缶の中に、エチレンカーボネートとジエチルカーボネートの等容量混合溶媒にLiPF6を1mol/dm3の割合で溶解した電解液を注入した。その後、アスファルトで表面を塗布した絶縁封口ガスケットを介して電池蓋をかしめることにより、電流遮断機構を有する安全弁装置、PTC素子並びに電池蓋を固定し、電池内の気密性を保持させた。
A specific battery manufacturing method in the present embodiment will be described.
First, to each sample (natural graphite or granulated material) corresponding to the first to fourth examples, 2% by weight of styrene butadiene rubber (SBR) is added as a binder, and 1% by weight of carboxyl as a thickener. Methyl cellulose (CMC) is mixed to prepare a negative electrode mixture, dispersed in water to form a slurry (paste-like), and the negative electrode mixture slurry finally becomes a negative electrode current collector. Then, the thin plate-like negative electrode was produced by drying and compression molding.
Subsequently, a mixture of lithium carbonate 0.5 molar and cobalt 1 mole carbonate, after obtaining the LiCoO 2 was fired for 5 hours in a 900 ° C. in air, grinding the LiCoO 2, obtained by a laser diffraction method 50 A LiCoO 2 powder having a% cumulative particle size of 15 μm was prepared. Thereafter, 91 parts by weight of a mixture comprising 95 parts by weight of LiCoO 2 powder and 5 parts by weight of lithium carbonate powder, 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were prepared to prepare a positive electrode mixture. Then, it was dispersed in N-methylpyrrolidone to form a slurry (paste). The positive electrode mixture slurry was uniformly applied to both surfaces of a 20 μm-thick strip-shaped aluminum foil that finally became the positive electrode current collector, and dried and compression molded to produce a thin plate-shaped positive electrode.
Subsequently, the prepared negative electrode and positive electrode and a separator made of a microporous polypropylene film having a thickness of 25 μm were laminated in the order of the negative electrode, the separator, the positive electrode, and the separator, and then wound many times to form a spiral wound with an outer diameter of 18 mm. A rotating body was produced.
This spiral wound body is housed in a nickel-plated iron battery can, insulating plates are provided on both the upper and lower surfaces of the spiral electrode, and the aluminum positive electrode lead is led out from the positive electrode current collector to the battery lid. The nickel negative electrode lead was led out from the negative electrode current collector and welded to the bottom of the battery can.
An electrolytic solution in which LiPF 6 was dissolved in an equal volume mixed solvent of ethylene carbonate and diethyl carbonate at a ratio of 1 mol / dm 3 was poured into the battery can in which the wound body was housed. Thereafter, the battery lid was caulked through an insulating sealing gasket whose surface was coated with asphalt, thereby fixing the safety valve device having a current interruption mechanism, the PTC element, and the battery lid, and maintaining the airtightness in the battery.
本実施例において、サイクル試験は、最大充電電圧4.2V,充電電流1Aで2.5h充電を行い、500mAの定電流放電で行った。サイクル初期の容量と、初期サイクルに対する100サイクル後の容量維持率、0.1C放電時容量に対する2.0Cでの容量維持率を〔表8〕に示す。
〔表8〕に示した結果より、本実施形態に係る、造粒体を用いて構成された負極を有する筒型試験用電池は、従来の天然黒鉛用いて構成された負極を有する筒型試験用電池に比べ、サイクル特性の向上、負荷特性(2.0C)の向上が認められた。
In this example, the cycle test was performed by charging at a maximum charging voltage of 4.2 V and a charging current of 1 A for 2.5 hours and by a constant current discharge of 500 mA. [Table 8] shows the capacity at the initial stage of the cycle, the capacity retention ratio after 100 cycles with respect to the initial cycle, and the capacity retention ratio at 2.0 C with respect to the capacity at 0.1 C discharge.
From the results shown in [Table 8], the cylindrical test battery having the negative electrode configured using the granulated body according to the present embodiment is the cylindrical test having the negative electrode configured using conventional natural graphite. Improvement in cycle characteristics and load characteristics (2.0 C) were observed as compared with the batteries for use.
次に、第7の実施例について説明する。
本実施例においては、第1実施例で使用した天然黒鉛(粉砕前)と、第2実施例で使用した天然黒鉛(粉砕後)と、第3実施例で使用した造粒体(焼成前)と、第4実施例で得た造粒体(焼成及びプレス後)との各試料について、島津製作所製微小圧縮試験機MCT−W500Jによって圧縮強度を測定した。なお、粒子径に対して10%変形する試験力を強度と規定した。測定結果を〔表9〕に示す。
〔表9〕に示す結果より、バインダー揮発前の強度が20MPaと硬いのに対し、バインダー揮発後は、0.9MPaと小さくなった。これにより、バインダーの揮発によって粒子中に空洞が形成されたことと、本実施形態に係る、造粒体を用いた負極においては、電解液の浸透効率が向上し、リチウムイオンの移動が促進されることが確認できた。
なお、図4に、この測定結果をより詳細に示すように、天然黒鉛においては、試験力の増加に伴って徐々に変位が進むのに対し、本実施形態における造粒体においては、段階的に変位が進むことも確認できた。これは、造粒体においては、内部に空洞が形成されていることによっても、比表面積の増加が更になされているためと考えられる。
Next, a seventh embodiment will be described.
In this example, natural graphite used in the first example (before pulverization), natural graphite used in the second example (after pulverization), and granulated material used in the third example (before firing). And about each sample with the granulated body (after baking and press) obtained in 4th Example, the compressive strength was measured by Shimadzu Corporation micro compression tester MCT-W500J. In addition, the test force which deform | transforms 10% with respect to a particle diameter was prescribed | regulated as intensity | strength. The measurement results are shown in [Table 9].
From the results shown in [Table 9], the strength before volatilization of the binder was as hard as 20 MPa, whereas it decreased to 0.9 MPa after the volatilization of the binder. As a result, in the negative electrode using the granulated body according to the present embodiment that cavities are formed in the particles due to the volatilization of the binder, the penetration efficiency of the electrolytic solution is improved and the movement of lithium ions is promoted. It was confirmed that
In addition, as shown in FIG. 4 in more detail, the natural graphite gradually displaces as the test force increases, whereas in the granulated body in the present embodiment, stepwise. It was also confirmed that the displacement progressed. This is considered to be because the specific surface area is further increased in the granulated body due to the formation of cavities inside.
以上の実施の形態及び実施例の説明から明らかなように、造粒体が、本発明で規定する球形化度及び比表面積を満足し、且つその造粒体を含むペーストを集電体に塗布したものが、X線回折法による(110面/002面)強度比及び比表面積に対応する負極は、良好な電極構造を有すると考えられ、これを用いることによりサイクル特性が改善され、高エネルギー密度で且つ長寿命な非水電解液二次電池を提供することが可能となる。 As is clear from the description of the above embodiments and examples, the granulation body satisfies the sphericity and specific surface area defined in the present invention, and a paste containing the granulation body is applied to the current collector. The negative electrode corresponding to the intensity ratio and the specific surface area according to the X-ray diffraction method (110 plane / 002 plane) is considered to have a good electrode structure. By using this negative electrode, cycle characteristics are improved and high energy is obtained. It is possible to provide a nonaqueous electrolyte secondary battery having a high density and a long life.
すなわち、本発明に係る電池においては、負極を構成する活物質層が、ランダムな方向にエッジが向いて細孔なども適度に形成された造粒体を有して構成されるため、リチウムのインターカレート/デインターカレートが促進されてスムーズな充放電が可能となることにより、負荷特性の向上が図られるものである。
また、受け入れ性を改善することによって、負荷特性だけでなく、充放電サイクルに伴うリチウム金属の析出が抑制されるため、サイクル特性の向上も見込まれる。
That is, in the battery according to the present invention, the active material layer constituting the negative electrode has a granulated body in which edges are oriented in random directions and pores are appropriately formed. Intercalation / deintercalation is promoted to enable smooth charge / discharge, thereby improving load characteristics.
In addition, by improving acceptability, not only load characteristics but also lithium metal precipitation associated with charge / discharge cycles is suppressed, and therefore cycle characteristics are expected to be improved.
なお、前述の特許文献1に記載の手法による場合、製造において造粒後に焼成を行うことがないため、得られる造粒体も電解液の浸透が悪く、黒鉛内部に充放電に寄与できない部分が生じてしまうおそれがある。
しかしながら本発明によれば、製造において、400℃という比較的低温でバインダーを焼き飛ばす焼成を行うため、得られる造粒体も電解液の浸透性に優れ、黒鉛全体を充放電に寄与させることが負極活物質層を有する電池を構成することも可能となる。
In addition, in the case of the method described in Patent Document 1 described above, since firing is not performed after granulation in production, the obtained granulated body also has poor penetration of the electrolytic solution, and there is a portion that cannot contribute to charge / discharge inside the graphite. It may occur.
However, according to the present invention, since the firing is performed by burning out the binder at a relatively low temperature of 400 ° C., the obtained granule also has excellent electrolyte permeability, and the entire graphite can contribute to charge and discharge. A battery having a negative electrode active material layer can also be configured.
以上、本発明に係る電池の実施の形態及び実施例を説明したが、説明で挙げた使用材料及びその量、処理時間及び寸法などの数値的条件は好適例に過ぎず、説明に用いた各図における寸法形状及び配置関係も概略的なものである。すなわち、本発明は、この実施の形態に限られない。
例えば前述の実施の形態では焼成を窒素雰囲気下で行う場合を例として説明したが、アルゴンガスなど、他の不活性ガス雰囲気下で焼成を行うことも可能である。
また、前述の実施の形態では、円筒型の二次電池を例として説明したが、これに限らず、コイン型,ボタン型,薄型,大型或いはラミネートフィルムなどの外装部材を用いた他の形状を有する二次電池、または積層構造などの他の構造を有する二次電池についても同様に適用することができるなど、本発明は種々の変形及び変更をなされうる。
As described above, the embodiments and examples of the battery according to the present invention have been described. However, the materials used in the description and the numerical conditions such as the amount, the processing time, and the dimensions are only suitable examples, and each used for the description. The dimensional shape and arrangement relationship in the figure are also schematic. That is, the present invention is not limited to this embodiment.
For example, in the above-described embodiment, the case where the firing is performed in a nitrogen atmosphere has been described as an example. However, the firing may be performed in another inert gas atmosphere such as argon gas.
Further, in the above-described embodiment, the cylindrical secondary battery has been described as an example. However, the present invention is not limited to this, and other shapes using an exterior member such as a coin type, a button type, a thin type, a large size, or a laminate film can be used. The present invention can be variously modified and changed such that the present invention can be similarly applied to a secondary battery having another structure such as a laminated battery or a laminated structure.
1・・・電池、2・・・電池缶、3・・・巻回体、4・・・中心(センターピン)、5・・・電池蓋、6・・・ガスケット、7、・・・セパレータ、8・・・セパレータ、9・・・正極、10・・・負極、11・・・正極集電体、11a・・・第1主面(内面)、11b・・・第2主面(外面)、12・・・内面正極活物質層、13・・・外面正極活物質層、14・・・負極集電体、14a・・・第1主面(内面)、14b・・・第2主面(外面)、15・・・内面負極活物質層、16・・・外面負極活物質層、17・・・正極リード、18・・・安全弁機構、19・・・熱感抵抗素子、20・・・絶縁板
DESCRIPTION OF SYMBOLS 1 ... Battery, 2 ... Battery can, 3 ... Winding body, 4 ... Center (center pin), 5 ... Battery cover, 6 ... Gasket, 7, ... Separator , 8 ... separator, 9 ... positive electrode, 10 ... negative electrode, 11 ... positive electrode current collector, 11a ... first main surface (inner surface), 11b ... second main surface (outer surface) ), 12 ... inner surface positive electrode active material layer, 13 ... outer surface positive electrode active material layer, 14 ... negative electrode current collector, 14a ... first main surface (inner surface), 14b ... second main Surface (outer surface), 15 ... inner surface negative electrode active material layer, 16 ... outer surface negative electrode active material layer, 17 ... positive electrode lead, 18 ... safety valve mechanism, 19 ... heat sensitive resistance element, 20 ..Insulating plates
Claims (16)
前記負極が、複数の天然黒鉛の造粒体を含有し、
前記造粒体のかさ密度が、0.20g/cm3以上0.70g/cm3以下である
ことを特徴とする電池。 A battery comprising an electrolyte together with a positive electrode and a negative electrode,
The negative electrode contains a plurality of natural graphite granules,
A bulk density of the granulated body is 0.20 g / cm 3 or more and 0.70 g / cm 3 or less.
ことを特徴とする請求項1に記載の電池。 Wherein the negative electrode active material, BET specific surface area determined by (Brunauer-Emmett-Teller) method is cell according to claim 1, characterized in that a 0.52 m 2 / g or more 1.10 m 2 / g .
ことを特徴とする請求項1に記載の電池。 2. The battery according to claim 1, wherein the granulated body has a specific surface area measured by a BET method of 6.5 m 2 / g or more and 8.7 m 2 / g or less.
ことを特徴とする請求項1に記載の電池。 2. The battery according to claim 1, wherein a specific surface area of the natural graphite measured by a BET method is 8.9 m 2 / g or more and 15.2 m 2 / g or less.
ことを特徴とする請求項1に記載の電池。 X-ray diffraction after the dried product obtained by applying a paste made of the granulated body, the binder constituting the negative electrode, and the thickening material to the metal thin film and drying the paste according to the conditions for producing the negative electrode 2. The battery according to claim 1, wherein the strength ratio between the 110 plane and the 002 plane according to the method is 0.5 or more.
ことを特徴とする請求項1に記載の電池。 2. The battery according to claim 1, wherein an average particle diameter of natural graphite constituting the granulated body is 8.0 μm or more and 15.0 μm or less.
ことを特徴とする請求項1に記載の電池。 The battery according to claim 1, wherein the granulated body has a compressive strength of 0.5 MPa or more and 2.0 MPa or less.
バインダーとして、C6H10O5を基本構造とする澱粉の誘導体、C6H10O5を基本構造とする粘性多糖類、C6H10O5を基本構造とする水溶性セルロース誘導体、ポリウロニドおよび水溶性合成樹脂からなる群から選ばれる1つ以上、またはポリビニルアルコール、スチレンブタジエンゴムを用いて作製された
ことを特徴とする請求項1に記載の電池。 The granulated body is
As the binder, water-soluble cellulose derivatives and viscous polysaccharide, C 6 H 10 O 5 the basic structure of derivatives of starch which the C 6 H 10 O 5 as a basic structure, a C 6 H 10 O 5 as a basic structure, polyuronide 2. The battery according to claim 1, wherein the battery is produced using one or more selected from the group consisting of water-soluble synthetic resins, polyvinyl alcohol, and styrene-butadiene rubber.
ことを特徴とする請求項1に記載の電池。 When the area of each image of the granule is replaced with an equivalent circle, the equivalent circle diameter is L, the actual perimeter is l, and L / l is defined as the circularity, the circularity is 0. The battery according to claim 1, wherein 85 or less particles are 20% or less based on the number.
ことを特徴とする請求項1に記載の電池。 When the area of each image of the granule is replaced with an equivalent circle, the equivalent circle diameter is L, the actual perimeter is l, and L / l is defined as the circularity. The battery according to claim 1, wherein the circularity is 0.925 or more.
ことを特徴とする請求項1に記載の電池。 The battery according to claim 1, wherein the granulated body is fired under nitrogen or an inert gas.
ことを特徴とする請求項1に記載の電池。 The battery according to claim 1, wherein the granulated body is produced by stirring granulation.
ことを特徴とする請求項1に記載の電池。 The battery according to claim 1, wherein the carbon material capable of occluding and releasing lithium ions is the natural graphite particles.
ことを特徴とする請求項1に記載の電池。 The battery according to claim 1, wherein the natural graphite is scaly.
ことを特徴とする請求項1に記載の電池。 The battery according to claim 1, wherein the battery is a secondary battery including a non-aqueous electrolyte.
ことを特徴とする請求項1に記載の電池。 The battery according to claim 1, wherein the positive electrode and the negative electrode are arranged to face each other with a separator including at least a part of the electrolyte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006059661A JP2007242282A (en) | 2006-03-06 | 2006-03-06 | Battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006059661A JP2007242282A (en) | 2006-03-06 | 2006-03-06 | Battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007242282A true JP2007242282A (en) | 2007-09-20 |
Family
ID=38587620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006059661A Pending JP2007242282A (en) | 2006-03-06 | 2006-03-06 | Battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007242282A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014133067A1 (en) * | 2013-02-27 | 2014-09-04 | 日本ゼオン株式会社 | Composite particles for electrochemical element electrode, manufacturing method for composite particles for electrochemical element electrode, electrochemical element electrode, and electrochemical element |
US9287567B2 (en) | 2011-12-08 | 2016-03-15 | Sony Corporation | Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus |
US9484572B2 (en) | 2010-02-18 | 2016-11-01 | Murata Manufacturing Co., Ltd. | Electrode active material for all solid state secondary battery and all solid state secondary battery |
JP2017126426A (en) * | 2016-01-12 | 2017-07-20 | 三菱ケミカル株式会社 | Method for producing negative electrode material for nonaqueous secondary battery and nonaqueous secondary battery using negative electrode material for nonaqueous secondary battery |
JP2018056409A (en) * | 2016-09-30 | 2018-04-05 | 旭化成株式会社 | Nonaqueous lithium power storage element |
WO2019225534A1 (en) * | 2018-05-22 | 2019-11-28 | 三菱ケミカル株式会社 | Negative electrode material for non-aqueous secondary batteries, negative electrode for non-aqueous secondary batteries, and non-aqueous secondary battery |
CN114725315A (en) * | 2017-01-06 | 2022-07-08 | 昭和电工材料株式会社 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10312806A (en) * | 1997-05-14 | 1998-11-24 | Mitsui Mining Co Ltd | Negative electrode material for lithium ton secondary battery and manufacture therefor |
JP2003128405A (en) * | 2001-10-23 | 2003-05-08 | Sec Corp | Method of manufacturing carbon composite fine particle |
JP2004179015A (en) * | 2002-11-28 | 2004-06-24 | Nippon Carbon Co Ltd | Anode material for lithium-ion secondary battery, its manufacturing method and battery using this |
-
2006
- 2006-03-06 JP JP2006059661A patent/JP2007242282A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10312806A (en) * | 1997-05-14 | 1998-11-24 | Mitsui Mining Co Ltd | Negative electrode material for lithium ton secondary battery and manufacture therefor |
JP2003128405A (en) * | 2001-10-23 | 2003-05-08 | Sec Corp | Method of manufacturing carbon composite fine particle |
JP2004179015A (en) * | 2002-11-28 | 2004-06-24 | Nippon Carbon Co Ltd | Anode material for lithium-ion secondary battery, its manufacturing method and battery using this |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9484572B2 (en) | 2010-02-18 | 2016-11-01 | Murata Manufacturing Co., Ltd. | Electrode active material for all solid state secondary battery and all solid state secondary battery |
US9287567B2 (en) | 2011-12-08 | 2016-03-15 | Sony Corporation | Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus |
WO2014133067A1 (en) * | 2013-02-27 | 2014-09-04 | 日本ゼオン株式会社 | Composite particles for electrochemical element electrode, manufacturing method for composite particles for electrochemical element electrode, electrochemical element electrode, and electrochemical element |
JPWO2014133067A1 (en) * | 2013-02-27 | 2017-02-02 | 日本ゼオン株式会社 | Electrochemical element electrode composite particle, method for producing electrochemical element electrode composite particle, electrochemical element electrode and electrochemical element |
JP2017126426A (en) * | 2016-01-12 | 2017-07-20 | 三菱ケミカル株式会社 | Method for producing negative electrode material for nonaqueous secondary battery and nonaqueous secondary battery using negative electrode material for nonaqueous secondary battery |
JP2018056409A (en) * | 2016-09-30 | 2018-04-05 | 旭化成株式会社 | Nonaqueous lithium power storage element |
CN114725315A (en) * | 2017-01-06 | 2022-07-08 | 昭和电工材料株式会社 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
WO2019225534A1 (en) * | 2018-05-22 | 2019-11-28 | 三菱ケミカル株式会社 | Negative electrode material for non-aqueous secondary batteries, negative electrode for non-aqueous secondary batteries, and non-aqueous secondary battery |
CN112166513A (en) * | 2018-05-22 | 2021-01-01 | 三菱化学株式会社 | Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery |
JPWO2019225534A1 (en) * | 2018-05-22 | 2021-05-27 | 三菱ケミカル株式会社 | Negative electrode material for non-aqueous secondary batteries, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries |
JP7334735B2 (en) | 2018-05-22 | 2023-08-29 | 三菱ケミカル株式会社 | Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102020753B1 (en) | Multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous secondary battery, lithium ion secondary battery, and method for manufacturing multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery | |
JP6334195B2 (en) | Composite active material for lithium secondary battery and method for producing the same | |
KR101211072B1 (en) | Powdered graphite and nonaqueous electrolyte secondary battery | |
CA2817483C (en) | Secondary battery | |
CA2817494C (en) | Secondary battery | |
JP4986098B2 (en) | Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same | |
JP5094144B2 (en) | Positive electrode active material for lithium secondary battery and method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery | |
WO2009141991A1 (en) | Electrode for non-aqueous electrolyte secondary battery, manufacturing method therefor, and non-aqueous electrolyte secondary battery | |
KR20170118044A (en) | Electrodes for metal-ion batteries | |
JP2004355824A (en) | Cathode active substance for nonaqueous secondary battery and cathode | |
EP3183765A1 (en) | Electroactive materials for metal-ion batteries | |
JP4499498B2 (en) | Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode material | |
CN111801817A (en) | Positive electrode material for rechargeable lithium ion batteries | |
JP5574196B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2003132889A (en) | Anode material for lithium ion secondary battery and its manufacturing method | |
JP2007242282A (en) | Battery | |
EP4254556A1 (en) | Positive electrode material, electrochemical device, and electronic device | |
JP2004281253A (en) | Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method and nonaqueous system lithium secondary battery using the material | |
JP2005150102A (en) | Cathode active material for lithium secondary cell and its manufacturing mathod as well as nouaqueous lithium secondary cell | |
JP5076316B2 (en) | Negative electrode for secondary battery and secondary battery | |
JP2014118335A (en) | Lithium multiple oxide and method for manufacturing the same, anode active material for a secondary battery including the lithium multiple oxide, anode for a secondary battery including the same, and lithium ion secondary battery using the same as an anode | |
JP3709446B2 (en) | Positive electrode active material for lithium secondary battery and method for producing the same | |
JP2005276502A (en) | Lithium transition metal compound oxide powder for lithium secondary battery positive electrode active material and its manufacturing method, its precursor and its manufacturing method, lithium secondary battery positive electrode using it, and lithium secondary battery | |
JP2014011071A (en) | Nonaqueous electrolyte secondary battery | |
JP2014044897A (en) | Lithium composite oxide and method for producing the same, positive electrode active material for secondary battery including the lithium composite oxide, positive electrode for secondary battery including the same, and lithium ion secondary battery using the same as positive electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090227 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120403 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121204 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130402 |