JP2003128405A - Method of manufacturing carbon composite fine particle - Google Patents

Method of manufacturing carbon composite fine particle

Info

Publication number
JP2003128405A
JP2003128405A JP2001325262A JP2001325262A JP2003128405A JP 2003128405 A JP2003128405 A JP 2003128405A JP 2001325262 A JP2001325262 A JP 2001325262A JP 2001325262 A JP2001325262 A JP 2001325262A JP 2003128405 A JP2003128405 A JP 2003128405A
Authority
JP
Japan
Prior art keywords
natural graphite
carbon composite
spherical
weight
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001325262A
Other languages
Japanese (ja)
Inventor
Hiroaki Amahashi
弘明 天橋
Wataru Saikai
亘 西海
Koji Kuroda
孝二 黒田
Teruhiro Tsurumoto
照啓 鶴本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEC Corp
Original Assignee
SEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEC Corp filed Critical SEC Corp
Priority to JP2001325262A priority Critical patent/JP2003128405A/en
Publication of JP2003128405A publication Critical patent/JP2003128405A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing carbon composite fine particles which contain natural graphite having random orientation and high crystallinity and have improved adhesive properties to a pole plate of the natural graphite and are suitable for a negative electrode material in a lithium ion secondary battery. SOLUTION: The method of manufacturing the carbon composite fine particles comprises heating a kneaded material obtained by kneading (1) natural graphite, (2) at least one kind of a spherical carbon component selected from a spherical carbon precursor and a spherical carbon material and (3) a binder at 2,400 to 3,000 deg.C, if necessary after it is subjected to the primary heating at 700 to 1,500 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭素複合粉体の製
造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing carbon composite powder.

【0002】[0002]

【従来の技術】リチウムイオン二次電池は、電圧が4V
と高く、かつ軽量で高い放電容量を示すものであり、携
帯用電子機器の電源等として広く用いられている。この
様な高電圧での放電容量を高めるには、負極に使用され
る炭素の結晶性が発達していることが不可欠である。
2. Description of the Related Art A lithium ion secondary battery has a voltage of 4V.
It is high in weight, light in weight and high in discharge capacity, and is widely used as a power source for portable electronic devices. In order to increase the discharge capacity at such a high voltage, it is essential that the crystallinity of carbon used for the negative electrode is well developed.

【0003】黒鉛結晶の理論容量は372mAh/gで
あり、天然黒鉛はこの値に近い容量を示すものである。
しかしながら、天然黒鉛等の結晶性が発達している黒鉛
類は、溶媒や接着剤とのなじみが悪く、極板への接着性
に劣るものである。また、形状が偏平状であり、塗布時
に互いに平行に配向するため、充電中にリチウムイオン
を取り込みにくいという欠点もある。
The theoretical capacity of graphite crystals is 372 mAh / g, and natural graphite has a capacity close to this value.
However, graphites such as natural graphite that have developed crystallinity are not well compatible with solvents and adhesives, and have poor adhesiveness to the electrode plate. Further, since the shape is flat and they are oriented parallel to each other at the time of application, there is a drawback that it is difficult to take in lithium ions during charging.

【0004】特開平6−36760号公報には、天然黒
鉛とコークスを混合使用し、天然黒鉛の極板への接着性
と天然黒鉛の配向性を改善する方法が開示されている。
しかしながら、この方法では、結晶性の低いコークスを
使用するために、負極に蓄える電池容量を減少させるこ
とになる。
Japanese Unexamined Patent Publication (Kokai) No. 6-36760 discloses a method of improving the adhesion of natural graphite to an electrode plate and the orientation of natural graphite by mixing and using natural graphite and coke.
However, in this method, since the coke having low crystallinity is used, the battery capacity stored in the negative electrode is reduced.

【0005】また、特開平5−94838号公報には、
黒鉛の表面をコークスで被覆する方法が開示されている
が、この方法は、コークスで被覆する工程が煩雑である
ため、コストが高くなり、しかも、黒鉛の配向性を改善
する効果は十分なものとはいえない。
Further, in Japanese Patent Laid-Open No. 5-94838,
Although a method of coating the surface of graphite with coke is disclosed, this method has a high cost because the step of coating with coke is complicated, and the effect of improving the orientation of graphite is sufficient. Not really.

【0006】更に、特開平5−290844号公報に
は、天然黒鉛と結晶性の低い人造黒鉛を混合する方法が
開示され、特開平8−287952号公報には、黒鉛に
球状炭素材を混合する方法が開示されている。しかしな
がら、結晶性の低い人造黒鉛、球状炭素材等を単純混合
する上記の方法では、負極に蓄える電池容量を減少させ
ることになり、また、黒鉛の配向性を十分に改善するこ
とはできない。
Further, JP-A-5-290844 discloses a method of mixing natural graphite and artificial graphite having low crystallinity, and JP-A-8-287952 discloses mixing graphite with a spherical carbon material. A method is disclosed. However, the above-mentioned method of simply mixing artificial graphite having low crystallinity, spherical carbonaceous material, and the like reduces the battery capacity stored in the negative electrode, and cannot sufficiently improve the orientation of graphite.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記した様
な従来技術の現状に鑑みてなされたものであり、その主
な目的は、ランダムに配向された結晶性の高い天然黒鉛
を含み、且つ該天然黒鉛の極板への接着性が改善され
た、リチウムイオン二次電池における負極材料として適
した炭素複合粉体を製造する方法を提供することであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional state of the art, and its main purpose is to include randomly oriented natural graphite having high crystallinity, Another object of the present invention is to provide a method for producing a carbon composite powder which has improved adhesion of the natural graphite to an electrode plate and which is suitable as a negative electrode material in a lithium ion secondary battery.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記した課
題に鑑みて鋭意研究を重ねてきた。その結果、天然黒鉛
に、球状の炭素質成分とバインダーを加え、これを捏合
して得られる捏合物は、天然黒鉛がランダムに配向した
粒状物となり、この捏合物を加熱処理することにより、
炭素質成分とバインダーが黒鉛化されて結晶性が向上
し、同時に、天然黒鉛が純化され、その結果、結晶性が
高く、しかもランダムに配向された天然黒鉛を含む、リ
チウムイオン二次電池の負極として適した炭素複合粉体
が得られることを見出し、ここに本発明を完成するに至
った。
Means for Solving the Problems The inventors of the present invention have made extensive studies in view of the above problems. As a result, to natural graphite, a spherical carbonaceous component and a binder were added, and a kneaded product obtained by kneading this was a granular product in which natural graphite was randomly oriented, and by heat-treating the kneaded product,
The carbonaceous component and the binder are graphitized to improve the crystallinity, and at the same time, the natural graphite is purified. As a result, the negative electrode of the lithium-ion secondary battery is high in crystallinity and contains randomly oriented natural graphite. As a result, they have found that a carbon composite powder suitable as a product can be obtained, and have completed the present invention.

【0009】即ち、本発明は、下記の炭素複合粉体の製
造方法を提供するものである。 1. (1)天然黒鉛、(2)球状炭素前駆体及び球状
炭素材から選ばれた少なくとも一種の球状炭素質成分、
並びに(3)バインダーを捏合して得られる捏合物を、
2400〜3000℃で加熱することを特徴とする炭素
複合粉体の製造方法。 2. (1)天然黒鉛、(2)球状炭素前駆体及び球状
炭素材から選ばれた少なくとも一種の球状炭素質成分、
並びに(3)バインダーを捏合して得られる捏合物を、
700〜1500℃で一次加熱した後、2400〜30
00℃で加熱することを特徴とする炭素複合粉体の製造
方法。 3. 天然黒鉛が、純度99.9%未満、平均粒径3〜
30μmである上記項1又は2に記載の炭素複合粉体の
製造方法。 4. 球状炭素質成分が、アスペクト比3以下、円形度
0.9以上、平均粒径3〜50μmである上記項1〜3
のいずれかに記載の炭素複合粉体の製造方法。 5. 天然黒鉛20〜90重量%及び球状炭素質成分1
0〜80重量%からなる材料100重量部に対して、バ
インダー10〜70重量部を用いる上記項1〜4のいず
れかに記載の炭素複合粉体の製造方法。
That is, the present invention provides the following method for producing a carbon composite powder. 1. (1) natural graphite, (2) at least one spherical carbonaceous component selected from spherical carbon precursor and spherical carbon material,
And (3) the kneaded product obtained by kneading the binder,
A method for producing a carbon composite powder, which comprises heating at 2400 to 3000 ° C. 2. (1) natural graphite, (2) at least one spherical carbonaceous component selected from spherical carbon precursor and spherical carbon material,
And (3) the kneaded product obtained by kneading the binder,
2400-30 after primary heating at 700-1500 ° C
A method for producing a carbon composite powder, which comprises heating at 00 ° C. 3. Natural graphite has a purity of less than 99.9% and an average particle size of 3 to
Item 3. The method for producing a carbon composite powder according to Item 1 or 2, which has a size of 30 µm. 4. The spherical carbonaceous component has an aspect ratio of 3 or less, a circularity of 0.9 or more, and an average particle diameter of 3 to 50 μm.
5. The method for producing a carbon composite powder according to any one of 1. 5. 20 to 90% by weight of natural graphite and spherical carbonaceous component 1
The method for producing a carbon composite powder according to any one of Items 1 to 4, wherein 10 to 70 parts by weight of the binder is used with respect to 100 parts by weight of the material composed of 0 to 80% by weight.

【0010】[0010]

【発明の実施の形態】本発明の炭素複合粉体の製造方法
では、原料としては、天然黒鉛、球状炭素質成分及びバ
インダーを用いる。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a carbon composite powder of the present invention, natural graphite, spherical carbonaceous component and binder are used as raw materials.

【0011】天然黒鉛は、鱗状または鱗片状の結晶体で
あり、純度は、高ければ高いほど良いが、本発明の製造
方法を用いる場合は、高純度の天然黒鉛を用いる必要性
はなく、純度99.9%未満のものを用いることができ
る。また、純度95%未満のものを用いても良いが、黒
鉛化に使用する炉の汚損を考慮した場合、純度95%以
上のものを用いるのが好ましく、純度98%以上のもの
を用いるのがより好ましい。
Natural graphite is a scaly or flaky crystalline substance, and the higher the purity, the better. However, when the production method of the present invention is used, it is not necessary to use high-purity natural graphite, and Those less than 99.9% can be used. Further, a material having a purity of less than 95% may be used, but in consideration of fouling of a furnace used for graphitization, a material having a purity of 95% or more is preferably used, and a material having a purity of 98% or more is preferably used. More preferable.

【0012】天然黒鉛としては、平均粒径3〜30μm
程度に粉砕したものを用いることが好ましい。平均粒径
が3μmより小さいと、比表面積が大きくなりすぎる場
合があり、また、平均粒径が30μmより大きいと、電
極に使用した際に表面が平滑になりにくい場合があるの
で好ましくない。
Natural graphite has an average particle size of 3 to 30 μm.
It is preferable to use a crushed product. If the average particle size is smaller than 3 μm, the specific surface area may be too large, and if the average particle size is larger than 30 μm, the surface may not be smooth easily when used for an electrode, which is not preferable.

【0013】尚、本願明細書での平均粒径とは、レーザ
ー光式粒度分布測定装置により測定されるもので、粒子
の体積比率を微粉側から累積し、その累積割合が50%
になった時の粒子径のことである。
The average particle size in the present specification is measured by a laser beam particle size distribution measuring device, and the volume ratio of particles is accumulated from the fine powder side, and the accumulated ratio is 50%.
It is the particle size when it becomes.

【0014】本発明方法では、球状炭素質成分として
は、球状炭素前駆体及び球状炭素材から選ばれた少なく
とも一種の成分を用いる。
In the method of the present invention, as the spherical carbonaceous component, at least one component selected from a spherical carbon precursor and a spherical carbon material is used.

【0015】これらの球状の炭素質成分を用いることに
よって、後述する捏合工程において、天然黒鉛がランダ
ムに配向された粒状物を得ることができる。
By using these spherical carbonaceous components, it is possible to obtain a granular material in which natural graphite is randomly oriented in the kneading step described later.

【0016】球状炭素質成分は、アスペクト比3以下、
円形度0.9以上のものが好ましく、アスペクト比2以
下、円形度0.95以上のものがより好ましい。ここ
で、円形度は、例えば、シスメックス(株)社製のフロ
ー式粒子像分析装置FPIA−2100を用いて測定す
ることができる。具体的には、円形度とは、水に分散し
た粒子をCCDカメラで撮像し、その粒子像の粒子投影
面積を求め、粒子投影面積に相当する円の周囲長を分子
とし、撮像された粒子投影像の周囲長を分母とした比率
であり、粒子像が真円に近いほど円形度は1に近い値と
なる。
The spherical carbonaceous component has an aspect ratio of 3 or less,
A circularity of 0.9 or more is preferable, and an aspect ratio of 2 or less and a circularity of 0.95 or more are more preferable. Here, the circularity can be measured using, for example, a flow type particle image analyzer FPIA-2100 manufactured by Sysmex Corporation. Specifically, the circularity means that the particles dispersed in water are imaged by a CCD camera, the particle projected area of the particle image is obtained, and the perimeter of a circle corresponding to the particle projected area is taken as a molecule, and the imaged particles are taken. It is a ratio with the perimeter of the projected image as the denominator, and the closer the particle image is to a perfect circle, the closer the circularity is to one.

【0017】球状炭素質成分として用いることができる
成分の内で、炭素前駆体とは、有機物を加熱して得られ
るものであって、最終炭素化物の前の段階にある炭素化
中間体であり、通常、炭素以外に異種元素を含むもので
ある。具体的には、コールタールや石油蒸留残渣等を原
料として、後述する捏合工程の温度より高い温度で熱処
理して得られる炭素化中間体を用いることができる。
Among the components which can be used as the spherical carbonaceous component, the carbon precursor is a carbonization intermediate which is obtained by heating an organic substance and is in a stage before the final carbonized product. Usually, it contains a different element in addition to carbon. Specifically, a carbonized intermediate obtained by heat-treating coal tar, petroleum distillation residue or the like as a raw material at a temperature higher than the temperature in the kneading step described later can be used.

【0018】上記した条件を満足する球状炭素前駆体と
しては、特に限定されるものではないが、例えば、メソ
フェーズ小球体、球状フェノール樹脂等を例示できる。
The spherical carbon precursor satisfying the above conditions is not particularly limited, but examples thereof include mesophase spherules and spherical phenol resin.

【0019】一方、球状炭素材としては、上記した球状
の形状を有するものであれば良く、不定形炭素、炭素化
物、黒鉛化物等を用いることができる。上記した炭素前
駆体を加熱処理して、炭素化又は黒鉛化したものを用い
てもよい。
On the other hand, any spherical carbon material may be used as long as it has the above-mentioned spherical shape, and amorphous carbon, carbonized products, graphitized products and the like can be used. The carbon precursor may be carbonized or graphitized by heat treatment.

【0020】球状炭素質成分としては、上記した球状炭
素前駆体及び球状炭素材から選ばれた成分を一種単独又
は二種以上混合して用いることができる。
As the spherical carbonaceous component, a component selected from the above-mentioned spherical carbon precursor and spherical carbon material can be used alone or in combination of two or more.

【0021】球状炭素質成分としては、平均粒径が3〜
50μm程度のものを用いることが好ましく、5〜20
μm程度のものを用いることがより好ましい。平均粒径
が3μmより小さいと、比表面積が大きくなりすぎる場
合がある。また、平均粒径が50μmより大きいと、電
極に使用した際に表面が平滑になりにくい場合があるの
で好ましくない。
The spherical carbonaceous component has an average particle size of 3 to
It is preferable to use one having a thickness of about 50 μm,
It is more preferable to use one having a thickness of about μm. If the average particle size is less than 3 μm, the specific surface area may become too large. Further, if the average particle size is larger than 50 μm, the surface may not be smooth easily when used for an electrode, which is not preferable.

【0022】本発明方法では、バインダーとしては、後
述する捏合操作の際に適度な粘性を有して天然黒鉛と球
状炭素質成分の結合材として作用し、且つ、2400〜
3000℃で熱処理した際に、黒鉛化する成分であれば
良く、各種ピッチ類、樹脂類等を用いることができる。
通常、捏合操作の際のバインダーの粘度は、捏合温度に
おいて、100〜10000cP程度であることが好ま
しい。
In the method of the present invention, the binder acts as a binder for the natural graphite and the spherical carbonaceous component, having a suitable viscosity during the kneading operation described later, and 2400 to 2400.
Any component that graphitizes when heat-treated at 3000 ° C. may be used, and various pitches, resins, and the like can be used.
Generally, the viscosity of the binder during the kneading operation is preferably about 100 to 10,000 cP at the kneading temperature.

【0023】この様なバインダーの具体例としては、コ
ールタールピッチ、石油系ピッチ、ナフタレンピッチ等
のピッチ、フェノール樹脂、3,5−ジメチルフェノー
ルホルムアルデヒド樹脂、フラン樹脂、ポリ塩化ビニル
等を例示できる。
Specific examples of such a binder include pitches such as coal tar pitch, petroleum pitch and naphthalene pitch, phenol resin, 3,5-dimethylphenol formaldehyde resin, furan resin, polyvinyl chloride and the like.

【0024】バインダーは、常温で液状の場合には、そ
のまま添加することができ、常温で固体の場合には、混
合操作が容易となるように、例えば、平均粒径5〜30
0μm程度に粉砕して用いるか、或いは、溶融させた状
態で配合することが好ましい。
When the binder is liquid at room temperature, it can be added as it is, and when it is solid at room temperature, the average particle size is, for example, 5 to 30 so as to facilitate the mixing operation.
It is preferable to pulverize it to about 0 μm for use, or to mix it in a molten state.

【0025】本発明の炭素複合粉体の製造方法では、ま
ず、上記した天然黒鉛、球状炭素質成分及びバインダー
からなる原料を捏合して捏合物とする。
In the method for producing a carbon composite powder of the present invention, first, the above-mentioned natural graphite, a spherical carbonaceous component and a binder are kneaded to obtain a kneaded product.

【0026】原料成分の内で、天然黒鉛と球状炭素質成
分の配合割合は、両者の合計量を100重量%として、
天然黒鉛20〜90重量%及び球状炭素質成分10〜8
0重量%程度とすることが好ましい。球状炭素質成分の
配合量が少なすぎると、天然黒鉛の配向性の改善効果が
小さく、一方、配合量が多すぎると、得られる炭素複合
粉体の結晶性の低下が著しくなり、また、コスト高とな
るので、好ましくない。
Among the raw material components, the blending ratio of the natural graphite and the spherical carbonaceous component is 100% by weight based on the total amount of both.
Natural graphite 20-90% by weight and spherical carbonaceous component 10-8
It is preferably about 0% by weight. If the blending amount of the spherical carbonaceous component is too small, the effect of improving the orientation of the natural graphite is small, while if the blending amount is too large, the crystallinity of the resulting carbon composite powder is significantly reduced, and the cost is also low. It becomes high, which is not preferable.

【0027】バインダーの配合量は、天然黒鉛と球状炭
素質成分の合計量100重量部に対して、10〜70重
量部程度とすることが好ましい。バインダーの配合量が
少なすぎる場合には、天然黒鉛及び球状炭素質成分から
なるフィラー成分同士の接着性能が低下するので好まし
くなく、また、バインダーの配合量が多すぎる場合に
は、得られる炭素複合粉体の結晶性が低下する場合があ
るので好ましくない。
The amount of the binder blended is preferably about 10 to 70 parts by weight based on 100 parts by weight of the total amount of natural graphite and spherical carbonaceous components. If the blending amount of the binder is too small, it is not preferable because the adhesive performance between the filler components composed of natural graphite and spherical carbonaceous components is lowered, and if the blending amount of the binder is too large, the resulting carbon composite is obtained. It is not preferable because the crystallinity of the powder may decrease.

【0028】また、使用するバインダー量は、上記した
配合量の範囲内において、アブソープトメータで測った
吸油量の0.2倍量〜0.4倍量程度とすることが好ま
しい。吸油量の0.4倍より多いと、使用するバインダ
ーが多くなりすぎて、得られる炭素複合粉体の結晶性を
低下させる場合がある。また、0.2倍より少ないと、
使用するバインダー量が少なくなり、充填密度の向上効
果を損なう場合がある。
Further, the amount of the binder used is preferably within a range of the above-mentioned compounding amount, and is about 0.2 to 0.4 times the amount of oil absorption measured by an absorber meter. If the amount of oil absorption is more than 0.4 times, the amount of binder used becomes too much, which may reduce the crystallinity of the obtained carbon composite powder. If less than 0.2 times,
The amount of binder used may be reduced, and the effect of improving the packing density may be impaired.

【0029】天然黒鉛、球状炭素質成分及びバインダー
からなる原料を捏合する方法としては、原料成分を混合
し、バインダーの軟化点以上の温度に加熱しながら攪
拌、捏合すればよい。加熱温度の上限については、特に
限定はなく、バインダーの種類に応じて適当な粘性を有
する温度とすればよいが、通常、300℃程度以下とす
ることが好ましい。
As a method of kneading a raw material composed of natural graphite, a spherical carbonaceous component and a binder, the raw material components may be mixed and stirred and kneaded while heating at a temperature equal to or higher than the softening point of the binder. The upper limit of the heating temperature is not particularly limited, and may be a temperature having an appropriate viscosity depending on the type of binder, but it is usually preferably about 300 ° C. or lower.

【0030】この捏合によって天然黒鉛、球状炭素質成
分及びバインダーの捏合物が、造粒物として得られる。
これにより、天然黒鉛がランダムに配向した配向性の低
い、ビーズ状の形状を有する造粒物となる。この造粒物
を加熱してリチウムイオン二次電池等の非水溶媒二次電
池の負極として使用することにより、負極の配向性が緩
和される。また、造粒することにより、微粉が減少し、
得られる炭素複合粉体の比表面積が低減し、非水溶媒二
次電池の負極として使用する際に、不可逆容量を小さく
することができる。
By this kneading, a kneaded product of natural graphite, spherical carbonaceous components and binder is obtained as a granulated product.
As a result, a granulated product having a bead-like shape in which natural graphite is randomly oriented and has low orientation is obtained. By heating this granulated product and using it as a negative electrode of a non-aqueous solvent secondary battery such as a lithium ion secondary battery, the orientation of the negative electrode is relaxed. Also, by granulating, fine powder is reduced,
The specific surface area of the obtained carbon composite powder is reduced, and the irreversible capacity can be reduced when used as the negative electrode of the non-aqueous solvent secondary battery.

【0031】次いで、得られた捏合物を、冷却した後、
必要に応じて所定の粒度になるまで粉砕する。この時、
過粉砕を避けるため、破砕型の粉砕機を用いるのが好ま
しい。この時の破砕物の粒径は、出発原料となる天然黒
鉛の粒径より大きくすることが好ましい。出発原料の粒
径より小さくすると、ランダムに配向した天然黒鉛の造
粒物を壊すこととなる。尚、後述する一次加熱を行わな
い場合には、この段階で造粒物を平均粒径5〜40μm
程度の粒度に整粒することが好ましい。これにより、黒
鉛化後に得られる炭素複合粉体の比表面積が過大になる
のを防止することができる。
Next, after cooling the obtained kneaded product,
If necessary, grind to a predetermined particle size. At this time,
In order to avoid over-milling, it is preferable to use a crushing type mill. The particle size of the crushed material at this time is preferably larger than the particle size of the natural graphite as a starting material. When the particle size is smaller than that of the starting material, the randomly oriented natural graphite granules are broken. In addition, when the primary heating described below is not performed, the granulated product has an average particle size of 5 to 40 μm at this stage.
It is preferable to adjust the particle size to a certain level. This makes it possible to prevent the carbon composite powder obtained after graphitization from having an excessively large specific surface area.

【0032】その後、天然黒鉛、球状炭素質成分及びバ
インダーの捏合物を2400〜3000℃程度の温度で
加熱処理する。この加熱処理によって、純度99.9%
未満の天然黒鉛を用いた場合であっても、純度99.9
%以上の高純度に純化することができる。また、同時
に、球状炭素質成分とバインダーを黒鉛化することがで
きる。これにより、粒状の炭素複合粉体が得られる。加
熱温度が2400℃より低いと、上記の2つの処理が十
分でなくなる。また、3000℃より高くても良いが、
黒鉛の昇華が生じ始めると共に、炉の安全性及びコスト
面から3000℃以下で十分である。
Thereafter, the kneaded product of the natural graphite, the spherical carbonaceous component and the binder is heat-treated at a temperature of about 2400 to 3000 ° C. By this heat treatment, the purity is 99.9%.
Purity of 99.9, even when less than natural graphite is used
It can be purified to a high purity of not less than%. At the same time, the spherical carbonaceous component and the binder can be graphitized. As a result, granular carbon composite powder is obtained. If the heating temperature is lower than 2400 ° C, the above two treatments will not be sufficient. It may be higher than 3000 ° C,
From the point of view of the sublimation of graphite and the safety and cost of the furnace, 3000 ° C or lower is sufficient.

【0033】加熱処理雰囲気は、非酸化雰囲気とするこ
とが好ましい。加熱時間については、熱処理対象物の形
状、大きさ等に応じて、熱処理対象物の全体が所定の加
熱温度に達するまでの時間とすればよい。
The heat treatment atmosphere is preferably a non-oxidizing atmosphere. The heating time may be the time until the entire heat treatment target reaches a predetermined heating temperature depending on the shape, size, etc. of the heat treatment target.

【0034】また、上記した2400〜3000℃程度
の温度による加熱処理に先だって、700〜1500℃
程度の温度で一次加熱を行ってもよい。一次加熱を行う
ことによって、造粒物から揮発成分を除去することがで
き、2400〜3000℃における二次加熱処理を黒鉛
化炉で行う場合に、加熱処理を安全に行うことができ
る。また、一次加熱によって球状炭素質成分とバインダ
ーの炭素化が進行するので、二次加熱を効率良く行うこ
とができる。
Prior to the heat treatment at the temperature of about 2400 to 3000 ° C., 700 to 1500 ° C.
Primary heating may be performed at about the same temperature. By performing the primary heating, the volatile components can be removed from the granulated product, and when the secondary heating treatment at 2400 to 3000 ° C. is performed in the graphitization furnace, the heating treatment can be safely performed. Further, carbonization of the spherical carbonaceous component and the binder proceeds by the primary heating, so that the secondary heating can be efficiently performed.

【0035】一次加熱処理は、通常、一般的な焼成炉を
用いて、非酸化雰囲気中で行えばよい。一次加熱処理の
加熱時間についても、熱処理対象物の形状、大きさ等に
応じて、熱処理対象物の全体が所定の加熱温度に達する
までの時間とすればよい。
The primary heat treatment may be usually carried out in a non-oxidizing atmosphere using a general baking furnace. The heating time of the primary heat treatment may be the time until the entire heat treatment target reaches a predetermined heating temperature depending on the shape, size, etc. of the heat treatment target.

【0036】一次加熱を行う場合には、2400〜30
00℃程度における二次加熱を行う前に、必要に応じ
て、造粒物を平均粒径5〜40μm程度の粒度に整粒す
ることによって、黒鉛化後に得られる炭素複合粉体の比
表面積が過大になることを防止することができる。
When performing the primary heating, 2400 to 30
Before performing secondary heating at about 00 ° C., the specific surface area of the carbon composite powder obtained after graphitization is adjusted by sizing the granulated product to a particle size of about 5 to 40 μm in average particle size, if necessary. It can be prevented from becoming excessive.

【0037】上記した方法で2400〜3000℃程度
で加熱処理することによって、球状炭素質成分とバイン
ダーが黒鉛化されて結晶性が向上し、放電容量の高い炭
素材料が得られる。同時に、天然黒鉛の純度が向上し高
純度の天然黒鉛となるので、天然黒鉛を前もって高純度
に純化することなく使用することができる。
By heat-treating at about 2400 to 3000 ° C. by the above-mentioned method, the spherical carbonaceous component and the binder are graphitized to improve the crystallinity and a carbon material having a high discharge capacity can be obtained. At the same time, since the purity of the natural graphite is improved and becomes a high-purity natural graphite, the natural graphite can be used without being purified to a high purity in advance.

【0038】得られた炭素複合粉体の(002)面の面
間隔(d002)は、0.3361nm以下となり、結晶
子の大きさ(Lc)が60nm以上となる。このため、
得られる炭素複合粉体の結晶化度は高くなる。上記の面
間隔及び結晶子の大きさは、測定対象試料をメノウ乳鉢
で粉砕し、試料に対して約15重量%のX線高純度シリ
コン粉末を加えて混合し、これを試料セルに詰め、グラ
ファイトモノクロメーターで単色化したCuKα線を線
源とし、反射式ディフラクトメーター法によって広角X
線回折を測定することにより求めた値である。
The spacing (d 002 ) of the (002) plane of the obtained carbon composite powder is 0.3361 nm or less, and the crystallite size (Lc) is 60 nm or more. For this reason,
The crystallinity of the obtained carbon composite powder is high. The above-mentioned interplanar spacing and the size of the crystallites are obtained by crushing the sample to be measured with an agate mortar, adding about 15% by weight of X-ray high-purity silicon powder to the sample, mixing them, and packing this in a sample cell. A CuKα ray monochromated with a graphite monochromator is used as a radiation source, and a wide angle X is obtained by a reflection diffractometer method.
It is the value obtained by measuring the line diffraction.

【0039】また、得られた炭素複合粉体の円形度は、
0.9以上であることが好ましい。この様な炭素複合粉
体を用いて電極を作製すると、得られた電極中の黒鉛結
晶の配向をよりランダムにすることができる。
The circularity of the obtained carbon composite powder is
It is preferably 0.9 or more. When an electrode is produced using such a carbon composite powder, the orientation of graphite crystals in the obtained electrode can be made more random.

【0040】得られた炭素複合粉体は、ランダムに配向
された天然黒鉛を含む結晶性の高い炭素複合粒子であ
る。該炭素複合粒子は、極板への接着性が改善されたも
のであり、リチウムイオン二次電池等の非水溶媒二次電
池用の電極材料として用いる場合に、優れた放電特性を
発揮できる。二次電池用電極を作製する方法は、常法に
従えば良く、例えば、極板用バインダーを溶媒に溶解し
た液に炭素複合粉体を懸濁させてスラリー液を作製し、
これを極板に所定の厚さだけ塗り付けて仮乾燥させ、そ
の後、圧縮、乾燥すればよい。
The obtained carbon composite powder is a highly crystalline carbon composite particle containing randomly oriented natural graphite. The carbon composite particles have improved adhesion to the electrode plate and can exhibit excellent discharge characteristics when used as an electrode material for a non-aqueous solvent secondary battery such as a lithium ion secondary battery. The method for producing the secondary battery electrode may be in accordance with a conventional method, for example, to prepare a slurry liquid by suspending the carbon composite powder in a liquid prepared by dissolving the electrode plate binder in a solvent,
This may be applied to the electrode plate by a predetermined thickness, temporarily dried, and then compressed and dried.

【0041】[0041]

【発明の効果】本発明の炭素複合粉体の製造方法によれ
ば、高い結晶性を有し、しかも天然黒鉛がランダムに配
向された炭素複合粉体が得られる。該炭素複合粉体は、
リチウムイオン二次電池等の非水溶媒二次電池用の電極
材料として用いる場合に、溶媒や接着剤とのなじみが良
く、極板への接着性が良好であり、しかも結晶性が高い
ために、大きな放電容量を有するものとなる。
According to the method for producing a carbon composite powder of the present invention, a carbon composite powder having high crystallinity and natural graphite randomly oriented can be obtained. The carbon composite powder is
When used as an electrode material for a non-aqueous solvent secondary battery such as a lithium-ion secondary battery, it has good compatibility with solvents and adhesives, good adhesion to the electrode plate, and high crystallinity. , Having a large discharge capacity.

【0042】[0042]

【実施例】以下、実施例を挙げて本発明を更に詳細に説
明する。
EXAMPLES The present invention will be described in more detail with reference to examples.

【0043】実施例1 天然黒鉛粉末(中国産)をジェットミルで平均粒径約1
5μmに粉砕し、この粉末90重量部に対し、球状炭素
前駆体として、平均粒径10μmのメソフェーズ小球体
を10重量部混合した。この混合粉末100重量部に対
し、コールタールピッチ(軟化点80℃)(川崎製鉄社
製:PKQL)を30重量部混合し、Z型ニーダーを用
いて200℃で120分間捏合した。次第に粘度を増
し、造粒状態となった造粒物を冷却後、解砕し、黒鉛製
のルツボに入れ、リードハンマータイプの連続焼成炉中
800℃で炭素化した。
Example 1 Natural graphite powder (produced in China) was jet milled to have an average particle size of about 1
It was pulverized to 5 μm, and 10 parts by weight of mesophase microspheres having an average particle diameter of 10 μm as a spherical carbon precursor were mixed with 90 parts by weight of this powder. To 100 parts by weight of this mixed powder, 30 parts by weight of coal tar pitch (softening point 80 ° C.) (PKQL manufactured by Kawasaki Steel) was mixed and kneaded for 120 minutes at 200 ° C. using a Z-type kneader. The granulated product, which gradually increased in viscosity and became in a granulated state, was cooled, crushed, put in a graphite crucible, and carbonized at 800 ° C. in a lead hammer type continuous firing furnace.

【0044】これを平均粒径約25μmに整粒し、黒鉛
製ルツボに入れ、アチソンタイプの黒鉛化炉中3000
℃で黒鉛化した。
This was sized to an average particle size of about 25 μm, placed in a graphite crucible, and placed in an Acheson type graphitizing furnace for 3000 times.
Graphitized at ° C.

【0045】得られた炭素複合粉体について下記の各種
の測定を行った。その結果を下記表1に示す。 (a)結晶化度の測定(d002及びLc) 測定試料が粉末の場合はそのまま、微小片状の場合はメ
ノウ乳鉢で粉砕し、試料に対して約15重量%のX線高
純度シリコン粉末を加えて混合し、試料セルに詰め、グ
ラファイトモノクロメーターで単色化したCukα線を
線源とし、反射式ディフラクトメーター法により広角X
線回折を測定することによって結晶化度を測定した。 (b)比表面積:窒素ガス吸着によるBETの1点法に
よって測定した。 (c)円形度の測定:シスメックス(株)社製フロー式
粒子像分析装置FPIA−2100を用いて行った。 〔電極の作製〕上記の方法で得られた炭素複合粉体を電
極としたときの放電容量及び初期効率を測定するため、
下記の方法で電極を作製した。
The following various measurements were performed on the obtained carbon composite powder. The results are shown in Table 1 below. (A) Crystallinity measurement (d 002 and Lc) If the sample to be measured is a powder, it is ground as it is, and if it is in the form of fine pieces, it is ground in an agate mortar and about 15% by weight of the sample is a high-purity X-ray silicon powder. Add and mix, fill in a sample cell, and use Cukα rays monochromatized with a graphite monochromator as a radiation source, and use a reflection-type diffractometer method to obtain a wide-angle X-ray.
Crystallinity was measured by measuring line diffraction. (B) Specific surface area: measured by the BET one-point method by nitrogen gas adsorption. (C) Measurement of circularity: Flow type particle image analyzer FPIA-2100 manufactured by Sysmex Corporation was used. [Production of electrode] To measure the discharge capacity and initial efficiency when the carbon composite powder obtained by the above method is used as an electrode,
An electrode was produced by the following method.

【0046】PVDFバインダー(ポリフッ化ビニリデ
ンバインダー、クレハ化学(株)社製:1100)0.
0556gをN−メチル−2−ピロリドン1.5mlに
溶解させ、上記炭素複合粉体0.5gを添加してスラリ
ーとし、これを電解銅箔(福田金属箔粉:CF8)にド
クターブレードで約105μmの厚さに塗り付け、11
0℃の熱風循環乾燥機で5分間乾燥した。ハードクロム
メッキのロールプレスで炭素層の厚さを70μmまで圧
縮し、130℃で12時間真空乾燥させ、秤量後さらに
130℃で24時間真空乾燥させた。その後、露点−7
0℃以下のドライボックスに入れたものを電極として、
下記の方法で放電容量及び初期効率を測定した。結果を
下記表1に示す。 [放電容量の測定]電解液を含浸させたセパレーター
(ポリエチレン製多孔性フィルム)を挟み、リチウム金
属電極を対抗させたコイン型セルを作製し、充放電試験
を行った。電解液にはエチレンカーボネートとジエチル
カーボネートを体積比1:1で混合した溶媒にLiPF
6を1mol/リットルの割合で溶解させたものを用い
た。充放電試験は電流値を1.54mAとし、両電極間
の電位差が0Vとなるまで充電を行い、1.5Vまで放
電を行った。
PVDF binder (polyvinylidene fluoride binder, manufactured by Kureha Chemical Co., Ltd .: 1100)
Dissolve 0556 g in 1.5 ml of N-methyl-2-pyrrolidone, add 0.5 g of the above carbon composite powder to make a slurry, and apply this to electrolytic copper foil (Fukuda metal foil powder: CF8) with a doctor blade to obtain about 105 μm. Apply to the thickness of 11
It was dried for 5 minutes by a hot air circulation dryer at 0 ° C. The thickness of the carbon layer was compressed to 70 μm by a hard chrome-plating roll press, vacuum dried at 130 ° C. for 12 hours, weighed, and further vacuum dried at 130 ° C. for 24 hours. After that, dew point -7
Electrodes placed in a dry box at 0 ° C or below
The discharge capacity and initial efficiency were measured by the following methods. The results are shown in Table 1 below. [Measurement of Discharge Capacity] A coin-type cell in which a lithium metal electrode was opposed to each other by sandwiching a separator (a polyethylene porous film) impregnated with an electrolytic solution was subjected to a charge / discharge test. For the electrolyte, LiPF 6 was added to a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1.
What melt | dissolved 6 in the ratio of 1 mol / liter was used. In the charge / discharge test, the current value was 1.54 mA, charging was performed until the potential difference between both electrodes became 0 V, and discharging was performed up to 1.5 V.

【0047】実施例2 天然黒鉛粉末(中国産)をジェットミルで平均粒径約1
5μmに粉砕し、この粉末70重量部に対し、球状炭素
前駆体として、平均粒径10μmのメソフェーズ小球体
を30重量部混合した。この混合粉末100重量部に対
し、コールタールピッチ(軟化点80℃)(川崎製鉄社
製:PKQL)を25重量部混合し、Z型ニーダーを用
いて200℃で120分間捏合した。次第に粘度を増
し、造粒状態となった造粒物を冷却後解砕し、黒鉛製の
ルツボに入れ、リードハンマータイプの連続焼成炉中8
00℃で炭素化した。
Example 2 Natural graphite powder (produced in China) was jet milled to have an average particle size of about 1
The particles were pulverized to 5 μm, and 30 parts by weight of mesophase microspheres having an average particle size of 10 μm as a spherical carbon precursor were mixed with 70 parts by weight of this powder. To 100 parts by weight of this mixed powder, 25 parts by weight of coal tar pitch (softening point 80 ° C.) (Kawasaki Steel Co., Ltd .: PKQL) was mixed and kneaded for 120 minutes at 200 ° C. using a Z-type kneader. Gradually increase the viscosity and cool the granulated product in the granulated state, crush it, put it in a graphite crucible, and put it in a lead hammer type continuous firing furnace.
Carbonized at 00 ° C.

【0048】これを平均粒径約25μmに整粒し、黒鉛
製ルツボに入れ、アチソンタイプの黒鉛化炉中3000
℃で黒鉛化した。
This was sized to an average particle size of about 25 μm, placed in a graphite crucible, and placed in an Acheson type graphitizing furnace for 3000 times.
Graphitized at ° C.

【0049】また、実施例1に記載の方法に基づいて電
極を作製した。
An electrode was prepared based on the method described in Example 1.

【0050】これら熱処理品及び電極について、上記の
各種の測定を行った。その結果を下記表1に示す。
The above-mentioned various measurements were performed on these heat-treated products and electrodes. The results are shown in Table 1 below.

【0051】実施例3 天然黒鉛粉末(中国産)をジェットミルで平均粒径約1
5μmに粉砕し、この粉末50重量部に対し、球状炭素
前駆体として、平均粒径10μmのメソフェーズ小球体
を50重量部混合した。この混合粉末100重量部に対
し、コールタールピッチ(軟化点80℃)(川崎製鉄社
製:PKQL)を20重量部混合し、Z型ニーダーを用
いて200℃で120分間捏合した。次第に粘度を増
し、造粒状態となった造粒物を冷却後解砕し、黒鉛製の
ルツボに入れ、リードハンマータイプの連続焼成炉中8
00℃で炭素化した。
Example 3 Natural graphite powder (produced in China) was jet-milled to an average particle size of about 1
After pulverizing to 5 μm, 50 parts by weight of this powder was mixed with 50 parts by weight of mesophase microspheres having an average particle diameter of 10 μm as a spherical carbon precursor. To 100 parts by weight of this mixed powder, 20 parts by weight of coal tar pitch (softening point 80 ° C.) (Kawasaki Steel Co., Ltd .: PKQL) was mixed and kneaded for 120 minutes at 200 ° C. using a Z-type kneader. Gradually increase the viscosity and cool the granulated product in the granulated state, crush it, put it in a graphite crucible, and put it in a lead hammer type continuous firing furnace.
Carbonized at 00 ° C.

【0052】これを平均粒径約25μmに整粒し、黒鉛
製ルツボに入れ、アチソンタイプの黒鉛化炉中3000
℃で黒鉛化した。
This was sized to an average particle size of about 25 μm, placed in a graphite crucible, and placed in an Acheson type graphitizing furnace for 3000 times.
Graphitized at ° C.

【0053】また、実施例1に記載の方法に基づいて電
極を作製した。
An electrode was prepared based on the method described in Example 1.

【0054】これら熱処理品及び電極について、上記の
各種の測定を行った。その結果を下記表1に示す。
The above-mentioned various measurements were performed on these heat-treated products and electrodes. The results are shown in Table 1 below.

【0055】実施例4 天然黒鉛粉末(中国産)をジェットミルで平均粒径約1
5μmに粉砕し、この粉末90重量部に対し、球状炭素
前駆体として、平均粒径10μmのメソフェーズ小球体
を10重量部混合した。この混合粉末100重量部に対
し、コールタールピッチ(軟化点80℃)(川崎製鉄社
製:PKQL)を40重量部混合し、Z型ニーダーを用
いて200℃で120分間捏合した。次第に粘度を増
し、造粒状態となった造粒物を冷却後解砕し、黒鉛製の
ルツボに入れ、リードハンマータイプの連続焼成炉中8
00℃で炭素化した。
Example 4 Natural graphite powder (produced in China) was jet-milled to an average particle size of about 1
It was pulverized to 5 μm, and 10 parts by weight of mesophase microspheres having an average particle diameter of 10 μm as a spherical carbon precursor were mixed with 90 parts by weight of this powder. To 100 parts by weight of this mixed powder, 40 parts by weight of coal tar pitch (softening point 80 ° C.) (Kawasaki Steel Co., Ltd .: PKQL) was mixed and kneaded for 120 minutes at 200 ° C. using a Z-type kneader. Gradually increase the viscosity and cool the granulated product in the granulated state, crush it, put it in a graphite crucible, and put it in a lead hammer type continuous firing furnace.
Carbonized at 00 ° C.

【0056】これを平均粒径約25μmに整粒し、黒鉛
製ルツボに入れ、アチソンタイプの黒鉛化炉中3000
℃で黒鉛化した。
This was sized to an average particle size of about 25 μm, placed in a graphite crucible, and placed in an Acheson type graphitization furnace for 3000 times.
Graphitized at ° C.

【0057】また、実施例1に記載の方法に基づいて電
極を作製した。
An electrode was prepared based on the method described in Example 1.

【0058】これら熱処理品及び電極について、上記の
各種の測定を行った。結果を下記表1に示す。
The above-mentioned various measurements were performed on these heat-treated products and electrodes. The results are shown in Table 1 below.

【0059】実施例5 天然黒鉛粉末(中国産)をジェットミルで平均粒径約1
5μmに粉砕し、この粉末70重量部に対し、球状炭素
前駆体として、平均粒径10μmのメソフェーズ小球体
を30重量部混合した。この混合粉末100重量部に対
し、コールタールピッチ(軟化点80℃)(川崎製鉄社
製:PKQL)を35重量部混合し、Z型ニーダーを用
いて200℃で120分間捏合した。次第に粘度を増
し、造粒状態となった造粒物を冷却後解砕し、黒鉛製の
ルツボに入れ、リードハンマータイプの連続焼成炉中8
00℃で炭素化した。
Example 5 Natural graphite powder (produced in China) was jet-milled to an average particle size of about 1
The particles were pulverized to 5 μm, and 30 parts by weight of mesophase microspheres having an average particle size of 10 μm as a spherical carbon precursor were mixed with 70 parts by weight of this powder. To 100 parts by weight of this mixed powder, 35 parts by weight of coal tar pitch (softening point 80 ° C.) (Kawasaki Steel Co., Ltd .: PKQL) was mixed and kneaded for 120 minutes at 200 ° C. using a Z-type kneader. Gradually increase the viscosity and cool the granulated product in the granulated state, crush it, put it in a graphite crucible, and put it in a lead hammer type continuous firing furnace.
Carbonized at 00 ° C.

【0060】これを平均粒径約25μmに整粒し、黒鉛
製ルツボに入れ、アチソンタイプの黒鉛化炉中3000
℃で黒鉛化した。
This was sized to an average particle size of about 25 μm, placed in a graphite crucible, and placed in an Atchison type graphitizing furnace in 3000.
Graphitized at ° C.

【0061】また、実施例1に記載の方法に基づいて電
極を作製した。
An electrode was prepared based on the method described in Example 1.

【0062】これら熱処理品及び電極について、上記の
各種の測定を行った。その結果を表1に示す。
The above-mentioned various measurements were performed on these heat-treated products and electrodes. The results are shown in Table 1.

【0063】実施例6 天然黒鉛粉末(中国産)をジェットミルで平均粒径約1
5μmに粉砕し、この粉末50重量部に対し、球状炭素
前駆体として、平均粒径10μmのメソフェーズ小球体
を50重量部混合した。この混合粉末100重量部に対
し、コールタールピッチ(軟化点80℃)(川崎製鉄社
製:PKQL)を30重量部混合し、Z型ニーダーを用
いて200℃で120分間捏合した。次第に粘度を増
し、造粒状態となった造粒物を冷却後解砕し、黒鉛製の
ルツボに入れ、リードハンマータイプの連続焼成炉中8
00℃で炭素化した。
Example 6 Natural graphite powder (produced in China) was jet milled to have an average particle size of about 1
After pulverizing to 5 μm, 50 parts by weight of this powder was mixed with 50 parts by weight of mesophase microspheres having an average particle diameter of 10 μm as a spherical carbon precursor. To 100 parts by weight of this mixed powder, 30 parts by weight of coal tar pitch (softening point 80 ° C.) (PKQL manufactured by Kawasaki Steel) was mixed and kneaded for 120 minutes at 200 ° C. using a Z-type kneader. Gradually increase the viscosity and cool the granulated product in the granulated state, crush it, put it in a graphite crucible, and put it in a lead hammer type continuous firing furnace.
Carbonized at 00 ° C.

【0064】これを平均粒径約25μmに整粒し、黒鉛
製ルツボに入れ、アチソンタイプの黒鉛化炉中3000
℃で黒鉛化した。
This was sized to an average particle size of about 25 μm, placed in a graphite crucible, and placed in an Acheson type graphitization furnace for 3000 times.
Graphitized at ° C.

【0065】また、実施例1に記載の方法に基づいて電
極を作製した。
An electrode was prepared based on the method described in Example 1.

【0066】これらの熱処理品及び電極について、上記
の各種の測定を行った。その結果を下記表1に示す。
The above-mentioned various measurements were performed on these heat-treated products and electrodes. The results are shown in Table 1 below.

【0067】比較例1 実施例1〜6で用いた平均粒径約15μmの天然黒鉛粉
末(中国産)100重量部に対し、コールタールピッチ
(軟化点80℃)(川崎製鉄社製:PKQL)を30重
量部混合し、Z型ニーダーを用いて200℃で120分
間捏合した。次第に粘度を増し、造粒状態となった造粒
物を冷却後解砕し、黒鉛製のルツボに入れ、リードハン
マータイプの連続焼成炉中800℃で炭素化した。
Comparative Example 1 Coal tar pitch (softening point 80 ° C.) (Kawasaki Steel Co., Ltd .: PKQL) based on 100 parts by weight of natural graphite powder (made in China) having an average particle size of about 15 μm used in Examples 1 to 6 Was mixed with 30 parts by weight and kneaded for 120 minutes at 200 ° C. using a Z type kneader. The granulated product having a gradually increased viscosity and in a granulated state was cooled, then crushed, put into a graphite crucible, and carbonized at 800 ° C. in a lead hammer type continuous firing furnace.

【0068】これを平均粒径約25μmに整粒し、黒鉛
製ルツボに入れ、アチソンタイプの黒鉛化炉中3000
℃で黒鉛化した。
This was sized to an average particle size of about 25 μm, placed in a graphite crucible, and placed in an Acheson type graphitizing furnace for 3000 times.
Graphitized at ° C.

【0069】また、実施例1に記載の方法に基づいて電
極を作製した。
An electrode was prepared based on the method described in Example 1.

【0070】これら熱処理品及び電極について、上記の
各種の測定を行った。その結果を表1に示す。
The above-mentioned various measurements were performed on these heat-treated products and electrodes. The results are shown in Table 1.

【0071】比較例2 実施例1〜6で用いた平均粒径約15μmの天然黒鉛粉
末を黒鉛ルツボに入れ、アチソンタイプの黒鉛化炉中3
000℃で熱処理した。また、実施例1に記載の方法に
基づいて電極を作製した。これらの熱処理品及び電極に
ついて、上記の各種の測定を行った。その結果を表1に
示す。
Comparative Example 2 The natural graphite powder having an average particle size of about 15 μm used in Examples 1 to 6 was put into a graphite crucible and placed in an Acheson type graphitizing furnace.
Heat treatment was performed at 000 ° C. Moreover, an electrode was produced based on the method described in Example 1. The above-mentioned various measurements were performed on these heat-treated products and electrodes. The results are shown in Table 1.

【0072】比較例3 メソフェーズ小球体(平均粒径約20μm)を黒鉛ルツ
ボに入れ、リードハンマータイプの連続焼成炉中800
℃で炭素化し、解砕後再び黒鉛ルツボに入れてアチソン
タイプの黒鉛化炉中3000℃で熱処理した。また、実
施例1に記載の方法に基づいて電極を作製した。これら
の熱処理品及び電極について、上記の各種の測定を行っ
た。その結果を表1に示す。
Comparative Example 3 Mesophase small spheres (average particle size of about 20 μm) were placed in a graphite crucible and placed in a lead hammer type continuous firing furnace for 800 times.
It was carbonized at ℃, crushed, put again in a graphite crucible and heat-treated at 3000 ℃ in an Acheson type graphitizing furnace. Moreover, an electrode was produced based on the method described in Example 1. The above-mentioned various measurements were performed on these heat-treated products and electrodes. The results are shown in Table 1.

【0073】[0073]

【表1】 [Table 1]

【0074】表1から明らかなように、実施例1〜6の
炭素複合粉体は、天然黒鉛の高結晶と大きな放電容量を
保ちながら、メソカーボンマイクロビーズと同等の円形
度、嵩密度、比表面積を有していた。
As is clear from Table 1, the carbon composite powders of Examples 1 to 6 have the same degree of circularity, bulk density, and ratio as the mesocarbon microbeads, while maintaining high crystals of natural graphite and a large discharge capacity. It had a surface area.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒田 孝二 京都府福知山市長田野町3丁目26番地 株 式会社エスイーシー京都工場内 (72)発明者 鶴本 照啓 京都府福知山市長田野町3丁目26番地 株 式会社エスイーシー京都工場内 Fターム(参考) 4G046 CA00 CA04 CA07 CB02 CC03 5H050 AA02 AA07 AA08 BA17 CB07 CB08 DA11 EA21 EA23 EA26 FA19 GA02 GA10 HA00 HA01 HA05 HA14    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Koji Kuroda             3-26 Nagano Tanomachi, Fukuchiyama, Kyoto             Ceremony Company SCE Kyoto Factory (72) Inventor Teruhiro Tsurumoto             3-26 Nagano Tanomachi, Fukuchiyama, Kyoto             Ceremony Company SCE Kyoto Factory F-term (reference) 4G046 CA00 CA04 CA07 CB02 CC03                 5H050 AA02 AA07 AA08 BA17 CB07                       CB08 DA11 EA21 EA23 EA26                       FA19 GA02 GA10 HA00 HA01                       HA05 HA14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】(1)天然黒鉛、(2)球状炭素前駆体及
び球状炭素材から選ばれた少なくとも一種の球状炭素質
成分、並びに(3)バインダーを捏合して得られる捏合
物を、2400〜3000℃で加熱することを特徴とす
る炭素複合粉体の製造方法。
1. A kneaded product obtained by kneading (1) natural graphite, (2) at least one spherical carbonaceous component selected from a spherical carbon precursor and a spherical carbon material, and (3) a binder. A method for producing a carbon composite powder, which comprises heating at ˜3000 ° C.
【請求項2】(1)天然黒鉛、(2)球状炭素前駆体及
び球状炭素材から選ばれた少なくとも一種の球状炭素質
成分、並びに(3)バインダーを捏合して得られる捏合
物を、700〜1500℃で一次加熱した後、2400
〜3000℃で加熱することを特徴とする炭素複合粉体
の製造方法。
2. A kneaded product obtained by kneading (1) natural graphite, (2) at least one spherical carbonaceous component selected from a spherical carbon precursor and a spherical carbon material, and (3) a binder, After primary heating at ~ 1500 ° C, 2400
A method for producing a carbon composite powder, which comprises heating at ˜3000 ° C.
【請求項3】天然黒鉛が、純度99.9%未満、平均粒
径3〜30μmである請求項1又は2に記載の炭素複合
粉体の製造方法。
3. The method for producing a carbon composite powder according to claim 1, wherein the natural graphite has a purity of less than 99.9% and an average particle diameter of 3 to 30 μm.
【請求項4】球状炭素質成分が、アスペクト比3以下、
円形度0.9以上、平均粒径3〜50μmである請求項
1〜3のいずれかに記載の炭素複合粉体の製造方法。
4. The spherical carbonaceous component has an aspect ratio of 3 or less,
The method for producing a carbon composite powder according to claim 1, wherein the circularity is 0.9 or more and the average particle size is 3 to 50 μm.
【請求項5】天然黒鉛20〜90重量%及び球状炭素質
成分10〜80重量%からなる材料100重量部に対し
て、バインダー10〜70重量部を用いる請求項1〜4
のいずれかに記載の炭素複合粉体の製造方法。
5. A binder of 10 to 70 parts by weight is used with respect to 100 parts by weight of a material consisting of 20 to 90% by weight of natural graphite and 10 to 80% by weight of a spherical carbonaceous component.
5. The method for producing a carbon composite powder according to any one of 1.
JP2001325262A 2001-10-23 2001-10-23 Method of manufacturing carbon composite fine particle Pending JP2003128405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001325262A JP2003128405A (en) 2001-10-23 2001-10-23 Method of manufacturing carbon composite fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001325262A JP2003128405A (en) 2001-10-23 2001-10-23 Method of manufacturing carbon composite fine particle

Publications (1)

Publication Number Publication Date
JP2003128405A true JP2003128405A (en) 2003-05-08

Family

ID=19141857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001325262A Pending JP2003128405A (en) 2001-10-23 2001-10-23 Method of manufacturing carbon composite fine particle

Country Status (1)

Country Link
JP (1) JP2003128405A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078829A1 (en) * 2004-02-12 2005-08-25 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same, and lithium secondary battery
JP2007145697A (en) * 2005-10-25 2007-06-14 Jfe Chemical Corp Carbon powder, its production method, negative electrode material for rechargeable lithium ion battery, negative electrode for rechargeable lithium ion battery, and rechargeable lithium ion battery
JP2007242282A (en) * 2006-03-06 2007-09-20 Sony Corp Battery
US20100227218A1 (en) * 2006-02-28 2010-09-09 Takaharu Morikawa Non-aqueous electrolyte secondary battery
JP2012506835A (en) * 2008-10-27 2012-03-22 ティムカル ソシエテ アノニム Method for manufacturing and processing graphite powder
WO2013171985A1 (en) * 2012-05-14 2013-11-21 Jfeケミカル株式会社 Composite graphite material, method for producing same, negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2014168170A1 (en) * 2013-04-09 2014-10-16 株式会社クレハ Method for manufacturing non-aqueous electrolyte secondary battery negative electrode material
JP2022551407A (en) * 2020-09-10 2022-12-09 貝特瑞新材料集団股▲ふん▼有限公司 Graphite negative electrode material, negative electrode, lithium ion battery and manufacturing method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100912849B1 (en) * 2004-02-12 2009-08-18 미쓰비시 가가꾸 가부시키가이샤 Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same, and lithium secondary battery
KR100954306B1 (en) * 2004-02-12 2010-04-21 미쓰비시 가가꾸 가부시키가이샤 Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same, and lithium secondary battery
WO2005078829A1 (en) * 2004-02-12 2005-08-25 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same, and lithium secondary battery
JP2007145697A (en) * 2005-10-25 2007-06-14 Jfe Chemical Corp Carbon powder, its production method, negative electrode material for rechargeable lithium ion battery, negative electrode for rechargeable lithium ion battery, and rechargeable lithium ion battery
US8367252B2 (en) * 2006-02-28 2013-02-05 Panasonic Corporation Non-aqueous electrolyte secondary battery
US20100227218A1 (en) * 2006-02-28 2010-09-09 Takaharu Morikawa Non-aqueous electrolyte secondary battery
JP2007242282A (en) * 2006-03-06 2007-09-20 Sony Corp Battery
JP2012506835A (en) * 2008-10-27 2012-03-22 ティムカル ソシエテ アノニム Method for manufacturing and processing graphite powder
US9102539B2 (en) 2008-10-27 2015-08-11 Imerys Graphite & Carbon Switzerland Sa Process for the production and treatment of graphite powders
JP2015212228A (en) * 2008-10-27 2015-11-26 イメリス グラファイト アンド カーボン スイッツァランド リミティド Process for production and treatment of graphite powders
WO2013171985A1 (en) * 2012-05-14 2013-11-21 Jfeケミカル株式会社 Composite graphite material, method for producing same, negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2014168170A1 (en) * 2013-04-09 2014-10-16 株式会社クレハ Method for manufacturing non-aqueous electrolyte secondary battery negative electrode material
JP2022551407A (en) * 2020-09-10 2022-12-09 貝特瑞新材料集団股▲ふん▼有限公司 Graphite negative electrode material, negative electrode, lithium ion battery and manufacturing method thereof
JP7527356B2 (en) 2020-09-10 2024-08-02 貝特瑞新材料集団股▲ふん▼有限公司 Graphite negative electrode material, negative electrode, lithium ion battery and method for producing the same

Similar Documents

Publication Publication Date Title
JP6703988B2 (en) Anode materials for lithium-ion batteries and their applications
EP1906472B1 (en) Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
JP4844943B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
JP5407196B2 (en) Non-aqueous secondary battery composite graphite particles, negative electrode material containing the same, negative electrode and non-aqueous secondary battery
EP2911223B1 (en) Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same
KR101618386B1 (en) Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
KR101441712B1 (en) Composite graphite particles for non-aqueous secondary batteries, negative electrode material containing the same, negative electrodes, and non-aqueous secondary batteries
JP3534391B2 (en) Carbon material for electrode and non-aqueous secondary battery using the same
TWI418081B (en) Lithium ion secondary battery anode material and manufacturing method thereof
WO2014003135A1 (en) Carbon material, carbonaceous material for battery electrode, and battery
JP2002270169A (en) Material for lithium secondary battery negative electrode, producing method thereof and lithium secondary battery
KR20040012541A (en) Lithium secondary battery
WO2015016182A1 (en) Carbon material, cell electrode material, and cell
JP2007042611A (en) Graphite composite particle for non-aqueous secondary battery, negative electrode active material containing it, negative electrode, and non-aqueous secondary battery
WO2016129557A1 (en) Carbon material, method for producing same, and use for same
JP2018006270A (en) Graphite carbon material for lithium ion secondary battery negative electrode, method for manufacturing the same, and negative electrode or battery arranged by use thereof
JP2000182617A (en) Carbon material for lithium secondary battery electrode and its manufacture, and lithium secondary battery
JP2003297357A (en) Negative electrode material for lithium secondary battery and manufacturing method for negative electrode material
JP2000086343A (en) Carbon composite material and its production
WO2021166359A1 (en) Negative electrode carbon material for lithium ion secondary battery, production method therefor, and negative electrode and lithium ion secondary battery using same
JP6447013B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2003128405A (en) Method of manufacturing carbon composite fine particle
JP2003272630A (en) Manufacturing method of negative electrode active material
JP7009049B2 (en) Lithium-ion secondary battery Carbon material for negative electrode, its intermediate, its manufacturing method, and negative electrode or battery using it
JP2013229343A (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery