JP3355126B2 - Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery - Google Patents

Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Info

Publication number
JP3355126B2
JP3355126B2 JP03367998A JP3367998A JP3355126B2 JP 3355126 B2 JP3355126 B2 JP 3355126B2 JP 03367998 A JP03367998 A JP 03367998A JP 3367998 A JP3367998 A JP 3367998A JP 3355126 B2 JP3355126 B2 JP 3355126B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
firing
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03367998A
Other languages
Japanese (ja)
Other versions
JPH11219706A (en
Inventor
光一郎 江島
幸雄 平岡
勝明 岡部
義則 山中
孝造 尾木
正行 仁科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP03367998A priority Critical patent/JP3355126B2/en
Publication of JPH11219706A publication Critical patent/JPH11219706A/en
Application granted granted Critical
Publication of JP3355126B2 publication Critical patent/JP3355126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池用正極活物質とその製造法及びリチウムイオン二
次電池に関する。
The present invention relates to a positive electrode active material for a lithium ion secondary battery, a method for producing the same, and a lithium ion secondary battery.

【0002】[0002]

【従来の技術】近年、エレクトロニクス機器の小型高性
能化とコ−ドレス化が進み、それらの駆動電源として二
次電池に関心が集まっており、特にリチウムイオン二次
電池は高電圧高エネルギ−密度を有する電池として期待
が大きい。このような電池の正極活物質としては、リチ
ウムイオンをインタ−カレ−ション、デインタ−カレ−
ションすることのできる層状化合物、例えばLiCoO
2やLiNiO2 などリチウムと遷移金属を主体とする
複合酸化物(以下リチウム複合酸化物と言う)が用いら
れる。
2. Description of the Related Art In recent years, miniaturization and high performance of electronic equipment have been advanced, and attention has been paid to secondary batteries as power sources for driving them. In particular, lithium ion secondary batteries have high voltage and high energy density. Is highly expected as a battery having As a positive electrode active material of such a battery, lithium ions are intercalated and deintercalated.
Layered compounds, such as LiCoO
A composite oxide mainly composed of lithium and a transition metal such as LiNiO 2 or LiNiO 2 (hereinafter referred to as lithium composite oxide) is used.

【0003】このようなリチウム複合酸化物のうち、す
でに実用化されているリチウム二次電池用正極活物質と
してはLiCoO2 があるが、資源的に希少で高価なコ
バルトを用いていることから、より安価で高エネルギ−
密度が可能なリチウム複合酸化物としてLiNiO2
LiNi1-y Coy2 といったニッケルを主要な遷移
金属元素とするリチウム複合酸化物の材料開発が精力的
に行われてきた。
Among such lithium composite oxides, LiCoO 2 is a positive electrode active material for lithium secondary batteries which has already been put into practical use. However, since cobalt is rare and expensive as a resource, Lower cost and higher energy
LiNiO 2 as a lithium composite oxide capable of density,
Materials such as LiNi 1-y Co y O 2 , a lithium composite oxide containing nickel as a main transition metal element, have been vigorously developed.

【0004】このようなニッケル系のリチウム複合酸化
物を正極活物質として用いたリチウムイオン二次電池で
は、充電状態での高温保存時や高温環境下での使用時に
正極活物質表面で電解液の分解反応が生じ易い。そのた
め分解生成ガスにより電池の内部圧力が異常に上昇した
り、あるいは分解生成物で活物質の表面が被覆される結
果、電池容量が著しく低下するという問題があった。ま
た、ニッケル系のリチウム複合酸化物は、充電時にリチ
ウムイオンが結晶格子からデインターカレートされた状
態で加熱された場合、比較的低温で酸素を放出し、周囲
の電解液を急激に酸化するという熱的安定性の問題もあ
った。
[0004] In a lithium ion secondary battery using such a nickel-based lithium composite oxide as a positive electrode active material, the electrolyte solution on the surface of the positive electrode active material during high-temperature storage in a charged state or during use in a high-temperature environment. Decomposition reaction easily occurs. Therefore, there is a problem that the internal pressure of the battery is abnormally increased by the decomposition product gas, or the surface of the active material is coated with the decomposition product, so that the battery capacity is significantly reduced. In addition, nickel-based lithium composite oxides release oxygen at a relatively low temperature and rapidly oxidize the surrounding electrolyte when the lithium ions are heated while being deintercalated from the crystal lattice during charging. There was also the problem of thermal stability.

【0005】これらの問題を改善するための技術として
は、結晶格子内のニッケルの一部を他元素で置換した
り、或いは正極活物質の表面を金属・無機化合物・有機
物等で被覆したり、または正極合剤中に各種化合物を添
加する等の数多くの試みがなされてきた。
Techniques for solving these problems include replacing part of nickel in the crystal lattice with another element, coating the surface of the positive electrode active material with a metal, an inorganic compound, an organic substance, or the like. Many attempts have been made such as adding various compounds to the positive electrode mixture.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
従来の技術においては、正極活物質と電解液との反応の
抑制機能や正極活物質の熱的安定性は改善されるもの
の、本来ニッケル系のリチウム複合酸化物に期待されて
いる大きな放電容量が損なわれることのない正極活物質
を得ることは困難であった。従って本発明の目的は、電
解液との反応の抑制機能および熱的安定性が改善され、
従って安全性の改善された高容量の正極活物質とその製
造方法、及びそれを用いたリチウムイオン二次電池を提
供することにある。
However, in these conventional techniques, although the function of suppressing the reaction between the positive electrode active material and the electrolyte and the thermal stability of the positive electrode active material are improved, the nickel-based lithium It has been difficult to obtain a positive electrode active material that does not impair the large discharge capacity expected of the composite oxide. Therefore, an object of the present invention is to improve the function of suppressing the reaction with the electrolytic solution and the thermal stability,
Accordingly, it is an object of the present invention to provide a high-capacity positive electrode active material with improved safety, a method for producing the same, and a lithium ion secondary battery using the same.

【0007】[0007]

【課題を解決するための手段】本発明者らは、ニッケル
を主体とするリチウム複合酸化物の焼成条件を詳細に検
討した結果、以下の知見を得た。焼成初期に発生した微
細な核粒子は、粒界面での液相焼結により粒子成長し、
この過程において粒界面近傍でのリチウムとニッケルの
組成比は局所的に不定比組成を生じ易く、リチウム不足
であれば、粒子が異常成長するとともに、ニッケル過剰
な不定比組成の化合物が結晶内に混入して充放電特性が
低下する。また、800℃を超える温度で長時間焼成す
るとニッケルがリチウムサイトに拡散し、放電容量の低
下が一層顕著となる。
Means for Solving the Problems The present inventors have studied in detail the firing conditions of a lithium composite oxide mainly composed of nickel and have obtained the following findings. Fine core particles generated in the early stage of firing grow by liquid phase sintering at the grain interface,
In this process, the composition ratio of lithium and nickel in the vicinity of the grain interface tends to locally produce a non-stoichiometric composition. If lithium is insufficient, particles grow abnormally, and a compound with a nickel-excess non-stoichiometric composition is introduced into the crystal. When mixed, the charge / discharge characteristics deteriorate. Further, when the sintering is performed at a temperature exceeding 800 ° C. for a long time, nickel is diffused into lithium sites, and the reduction in discharge capacity becomes more remarkable.

【0008】このような粒子成長に伴う不定比組成化合
物の混入や、リチウムサイトへのニッケルの拡散を回避
するため低温度で焼成した場合には、得られた粒子の結
晶化度が低くかつ表面積が大きいため、得られた活物質
は熱的安定性に劣り、またその電解液との反応性を抑制
できない。本発明者らは、これらの課題を解決するため
の手段として、まず製造方法においては、焼成工程を1
次焼成と2次焼成の二段階で行い、かつ1次焼成で得ら
れた焼成物を水中で平均粒径を1ミクロン以下に解粒分
散してスラリー化した。これにより、粒子表面近傍のリ
チウムと遷移金属の組成比を粒子単位で均一化できた。
このスラリーを噴霧乾燥で球状に造粒した後、1次焼成
より高い温度で2次焼成を実施することにより不定比組
成化合物の生成を抑制し、結晶化度が高まることを見い
だした。
When calcination is carried out at a low temperature in order to avoid the incorporation of a non-stoichiometric compound accompanying the growth of particles and the diffusion of nickel into lithium sites, the resulting particles have low crystallinity and a low surface area. Therefore, the obtained active material is inferior in thermal stability and cannot suppress the reactivity with the electrolytic solution. As a means for solving these problems, the present inventors first set a firing step in the manufacturing method.
The sintering was performed in two stages of secondary sintering and secondary sintering, and the sinter obtained by the primary sintering was pulverized and dispersed in water to an average particle size of 1 μm or less to form a slurry. As a result, the composition ratio of lithium and transition metal near the particle surface could be made uniform for each particle.
After granulating the slurry into a spherical shape by spray drying, it was found that by performing secondary firing at a temperature higher than the primary firing, generation of the non-stoichiometric composition compound was suppressed, and the crystallinity was increased.

【0009】この様にして得られる複合酸化物は、1次
粒子がLiを主体とする無機酸化物を含む無機化合物で
接合されて形成された球状の2次粒子であり、不活性ガ
ス雰囲気下で750℃に昇温した時の示差熱減量が0.
5重量%以下である場合に、高容量かつ電解液との反応
性・熱的安定性の改良された正極活物質が得られる事を
見いだした。
The composite oxide thus obtained is spherical secondary particles formed by joining primary particles with an inorganic compound containing an inorganic oxide mainly composed of Li, and is formed under an inert gas atmosphere. The differential heat loss when the temperature was raised to 750 ° C. was 0.
It has been found that when the content is 5% by weight or less, a positive electrode active material having a high capacity and improved reactivity with an electrolytic solution and thermal stability can be obtained.

【0010】本発明者らは更に、当該無機酸化物やその
原料形態を特定することにより改良効果がより高まるこ
とを見いだし、本発明に到達した。
The present inventors have further found that the improvement effect can be enhanced by specifying the inorganic oxide and its raw material form, and reached the present invention.

【0011】 すなわち本発明は第1に、一般式:Li
Ni1−x−yCo(ただし、EはAlまた
はAlとMn、Tiの群から選ばれる1種以上の元素と
の組み合わせ、0.10≦x≦0.20、0.02≦y
≦0.10)で示される組成の1次粒子がLiを主体と
する無機酸化物を含む無機化合物で接合されて形成され
た2次粒子を含むリチウムイオン電池用正極活物質であ
って、不活性ガス雰囲気下で750℃に昇温したときの
示差熱減量が0.5重量%以下であることを特徴とする
リチウムイオン二次電池用正極活物質;第2に、前記無
機酸化物がMg、Y、Zr、B、Al、Co、Pの群か
ら選ばれる1種以上の元素とLiとの酸化物であり、前
記無機化合物の酸素を除く元素の合計含有量が前記1次
粒子中のLi、Ni、Co、元素Eの合計含有量に対し
て原子数比で0.002〜0.03であることを特徴と
する上記第1記載のリチウムイオン二次電池用正極活物
質;第3に、上記第1記載の正極活物質を製造する方法
であって、Li、Ni、Co、元素Eの各化合物の混合
物を500〜800℃で焼成する1次焼成工程と、1次
焼成工程で得られた焼成物を水中で平均粒径が1ミクロ
ン以下となるように解粒分散させたスラリーを噴霧乾燥
して球状造粒粉を得る分散造粒工程と、分散造粒工程で
得られた球状造粒粉を1次焼成温度より30℃以上高く
かつ900℃以下の温度で焼成する2次焼成工程とを含
むことを特徴とするリチウムイオン二次電池用正極活物
質の製造方法;第4に、上記第1記載の正極活物質を製
造する方法であって、Li、Ni、Co、元素Eの各化
合物の混合物を500〜800℃で焼成する1次焼成工
程と、1次焼成工程で得られた焼成物を水中で平均粒径
が1ミクロン以下となるように解粒分散させ、かつ硝酸
を添加し液相中に溶出したリチウム塩の一部または全部
を硝酸リチウムに転換させたスラリーを噴霧乾燥して球
状造粒粉を得る分散造粒工程と、分散造粒工程で得られ
た球状造粒粉を1次焼成温度より30℃以上高くかつ9
00℃以下の温度で焼成する2次焼成工程とを含むこと
を特徴とするリチウムイオン二次電池用正極活物質の製
造方法;第5に、上記第2記載の正極活物質を製造する
方法であって、Li、Ni、Co、元素Eの各化合物の
混合物を500〜800℃で焼成する1次焼成工程と、
1次焼成工程で得られた焼成物を水中で平均粒径が1ミ
クロン以下となるように解粒分散させた後Mg、Y、Z
r、B、Al、Co、Pの群から選ばれる1種以上の元
素の化合物を添加したスラリーを噴霧乾燥して球状造粒
粉を得る分散造粒工程と、分散造粒工程で得られた球状
造粒粉を1次焼成温度より30℃以上高くかつ900℃
以下の温度で焼成する2次焼成工程とを含むことを特徴
とするリチウムイオン二次電池用正極活物質の製造方
法;第6に、前記分散造粒工程において添加する元素の
化合物が硝酸塩であることを特徴とする上記第5記載の
リチウムイオン二次電池用正極活物質の製造方法;第7
に、上記第1または2のいずれかに記載の正極活物質を
正極活物質として用いたことを特徴とするリチウムイオ
ン二次電池を提供するものである。
That is, the present invention firstly provides a compound represented by the general formula: Li
Ni 1-xy Co x E y O 2 (where E is Al or a combination of Al and one or more elements selected from the group consisting of Mn and Ti; 0.10 ≦ x ≦ 0.20; 02 ≦ y
≦ 0.10) is a positive electrode active material for a lithium ion battery including secondary particles formed by joining primary particles of an inorganic compound containing an inorganic oxide mainly composed of Li. A positive electrode active material for a lithium ion secondary battery, wherein a differential thermal weight loss when heated to 750 ° C. in an active gas atmosphere is 0.5% by weight or less; , Y, Zr, B, Al, Co, an oxide of one or more elements selected from the group of P and Li, and the total content of elements other than oxygen of the inorganic compound in the primary particles 3. The positive electrode active material for a lithium ion secondary battery according to the above item 1, wherein the atomic number ratio is 0.002 to 0.03 with respect to the total content of Li, Ni, Co, and the element E; A method for producing a positive electrode active material according to the first aspect, wherein Li, a first baking step of baking a mixture of each compound of i, Co, and element E at 500 to 800 ° C., and dissolving the fired product obtained in the first baking step in water so that the average particle size is 1 μm or less. A dispersion granulation step of spray-drying the slurry in which the granules are dispersed to obtain a spherical granulated powder; and a temperature of the spherical granulated powder obtained in the dispersion granulation step higher than the primary firing temperature by 30 ° C. or more and 900 ° C. or less. And 4. a method for producing a positive electrode active material for a lithium ion secondary battery, the method comprising: A primary baking step of baking a mixture of each compound of Ni, Co and the element E at 500 to 800 ° C., and dissolving the calcined product obtained in the primary baking step in water so that the average particle size becomes 1 μm or less. Lithium dispersed in particles and added to nitric acid and eluted in the liquid phase A slurry obtained by spray-drying a slurry obtained by converting part or all of the powder into lithium nitrate to obtain a spherical granulated powder, and subjecting the spherical granulated powder obtained in the dispersion granulating step to a primary firing temperature of 30 ° C. Higher and 9
A second firing step of firing at a temperature of 00 ° C. or lower; a method for producing a positive electrode active material for a lithium ion secondary battery; A first firing step of firing a mixture of each compound of Li, Ni, Co, and the element E at 500 to 800 ° C;
The fired product obtained in the first firing step is pulverized and dispersed in water so that the average particle diameter is 1 μm or less, and then Mg, Y, Z
A slurry obtained by spray-drying a slurry to which a compound of at least one element selected from the group consisting of r, B, Al, Co, and P was added to obtain a spherical granulated powder, and a dispersion granulating step. The spherical granulated powder is at least 30 ° C. higher than the primary firing temperature and 900 ° C.
A method for producing a positive electrode active material for a lithium ion secondary battery, comprising: a secondary firing step of firing at the following temperature; sixth, a compound of an element to be added in the dispersion granulation step is nitrate. 7. The method for producing a positive electrode active material for a lithium ion secondary battery according to the above item 5;
A lithium ion secondary battery characterized by using the positive electrode active material according to any one of the first and second aspects as a positive electrode active material.

【0012】[0012]

【発明の実施の形態】本発明の正極活物質は、1次粒子
が一般式:LiNi1−x−yCo(但し、
EはAlまたはAlとMn、Tiの群から選ばれる1種
以上の元素との組み合わせ、0.10≦x≦0.20、
0.02≦y≦0.10)で表わせる組成を有し、且つ
該1次粒子がLiを主体とする無機酸化物を含む無機化
合物で接合されて形成された球状の2次粒子であり、且
つ不活性ガス雰囲気下で750℃に昇温した時の示差熱
減量が0.5重量%以下であることを特徴とし、高容量
と熱的安定性、電解液との反応性の抑制が両立できる。
BEST MODE FOR CARRYING OUT THE INVENTION In the positive electrode active material of the present invention, the primary particles have the general formula: LiNi 1-xy Co x E y O 2 (provided that:
E is Al or a combination of Al and one or more elements selected from the group consisting of Mn and Ti, 0.10 ≦ x ≦ 0.20,
0.02 ≦ y ≦ 0.10), wherein the primary particles are spherical secondary particles formed by bonding with an inorganic compound containing an inorganic oxide mainly composed of Li. And a differential heat loss when heated to 750 ° C. in an inert gas atmosphere is 0.5% by weight or less, and high capacity, thermal stability, and suppression of reactivity with an electrolytic solution are achieved. Can be compatible.

【0013】Coを添加する目的は、充放電時の結晶構
造変化に起因するサイクル劣化を抑制するためで、Ni
の置換率が10モル%未満では改善効果が低く、20モ
ル%を超えると原料費が高価なため好ましくない。M
n、Al、Tiは熱的安定性を改良する目的で添加され
る。置換量が少ないと改善効果が低く、多すぎると充放
電容量が低下するため2〜10モル%の範囲であること
が好ましい。本発明においては、正極活物質が、上記1
次粒子がLiを主体とする無機酸化物を含む無機化合物
で接合されて形成された球状の2次粒子であることが重
要である。
The purpose of adding Co is to suppress cycle deterioration due to a change in crystal structure during charging and discharging.
Is less than 10 mol%, the effect of improvement is low. If it exceeds 20 mol%, the raw material cost is high, which is not preferable. M
n, Al and Ti are added for the purpose of improving thermal stability. When the substitution amount is small, the improvement effect is low, and when the substitution amount is too large, the charge / discharge capacity is reduced. In the present invention, the positive electrode active material comprises the above 1
It is important that the secondary particles are spherical secondary particles formed by bonding with an inorganic compound containing an inorganic oxide mainly composed of Li.

【0014】類似した形状を特徴とする公知技術とし
て、例えば特開平9−231973、特開平9−129
230、特開平8−339806、特開平7−3757
6等がある。しかしながら、これら公知資料で開示され
た技術においては、個々の粒子表面におけるリチウムと
遷移金属元素の組成比を均一に制御することが不可能で
あり、1次粒子間の焼結を完全に防止することは出来な
いため、得られる正極活物質の放電容量を上げることが
できない。
Known techniques characterized by similar shapes include, for example, Japanese Patent Application Laid-Open Nos. 9-231973 and 9-129.
230, JP-A-8-339806, JP-A-7-3775
6 and others. However, according to the techniques disclosed in these known documents, it is impossible to uniformly control the composition ratio of lithium and the transition metal element on the surface of each particle, and completely prevent sintering between primary particles. Therefore, the discharge capacity of the obtained positive electrode active material cannot be increased.

【0015】本発明の正極活物質では1次粒子間に均一
な無機酸化物を含む無機化合物の結合層が存在し焼結が
抑制されているため、この様な問題が生じにくい。本発
明の正極活物質の製造法のより好適な実施の形態とし
て、1次粒子の接合に使用する無機酸化物を含む無機化
合物としては、結合層を容易に形成できる点からLi2
Oが好ましい。また電解液との反応性を抑制する効果の
ある元素としてMg、Y、Zr、B、Al、Co、Pの
群から選ばれる少なくとも1種の元素を無機酸化物を含
む無機化合物層に含有させることが更に好ましい。
In the positive electrode active material of the present invention, such a problem is unlikely to occur because a sintering is suppressed by the presence of a uniform binding layer of an inorganic compound containing an inorganic oxide between the primary particles. As a more preferred embodiment of the method for producing a positive electrode active material of the present invention, as an inorganic compound containing an inorganic oxide used for bonding primary particles, Li 2 is used because a bonding layer can be easily formed.
O is preferred. Further, at least one element selected from the group consisting of Mg, Y, Zr, B, Al, Co, and P is contained in the inorganic compound layer containing the inorganic oxide as an element having an effect of suppressing the reactivity with the electrolytic solution. Is more preferred.

【0016】無機酸化物を含む無機化合物の量が少な過
ぎると均一な結合層を形成できず焼結による粒子成長と
放電容量の低下が生じ、逆に多過ぎると2次粒子表面に
過剰分が偏析して放電容量を低下させるため、無機化合
物中の酸素を除く元素の合計含有量は、一次粒子中のL
i、Ni、Co、元素Eの合計含有量に対する原子数比
で0.002〜0.03の範囲内にあることが好まし
い。さらに上記活物質は、不活性雰囲気下で750℃に
昇温した時の示差熱減量が0.5重量%以下であること
が重要である。
If the amount of the inorganic compound containing an inorganic oxide is too small, a uniform bonding layer cannot be formed, and particle growth and discharge capacity decrease due to sintering. In order to reduce the discharge capacity due to segregation, the total content of elements excluding oxygen in the inorganic compound is L in the primary particles.
It is preferable that the ratio of the number of atoms to the total content of i, Ni, Co, and the element E is in the range of 0.002 to 0.03. Further, it is important that the active material has a differential heat loss of 0.5% by weight or less when heated to 750 ° C. in an inert atmosphere.

【0017】何故、示差熱減量が正極活物質の特性と相
関があるのかは不明であるが、600℃までの減量は活
物質中の水分や未反応物量に起因し、600℃以上での
減量は結晶性が低いことに起因する結晶格子からの酸素
離脱と推定され、この様な要因を抑制したことにより、
高い充放電容量と優れた熱的安定性を示し、電解液との
反応性を抑制することができたと考えられる。このよう
な不活性雰囲気下での示差熱減量値の制御は、以下に述
べる製造方法の範囲において、製造条件の最適化を行う
ことにより達成できる。
It is unclear why the differential thermal weight loss correlates with the characteristics of the positive electrode active material, but the weight loss up to 600 ° C. is caused by the amount of moisture and unreacted substances in the active material, and is reduced at 600 ° C. or higher. Is presumed to be oxygen desorption from the crystal lattice due to low crystallinity, and by suppressing such factors,
It is considered that high charge / discharge capacity and excellent thermal stability were exhibited, and the reactivity with the electrolytic solution could be suppressed. Such control of the differential heat loss value under an inert atmosphere can be achieved by optimizing the manufacturing conditions within the range of the manufacturing method described below.

【0018】本発明による正極活物質の製造方法は、少
なくともリチウム化合物とニッケルを主体とする遷移金
属化合物と場合によりAl化合物との混合物、すなわち
Li、Ni、Co、元素Eの各化合物の混合物を500
〜800℃で5〜20時間焼成する1次焼成の工程と、
1次焼成工程で得られた焼成物を水中で平均粒径が1ミ
クロン以下になるまで解粒分散させたスラリーを噴霧乾
燥して球状造粒粉を得る分散造粒工程と、分散造粒工程
で得られた球状造粒粉を1次焼成温度より30℃以上高
くかつ900℃以下の温度で1〜5時間焼成する2次焼
成工程とを含むことを特徴とする。類似する公知の製造
方法としては、例えば特開平9−251854、特開平
9−50810、特開平8−185861、特開平8−
55624、特開平7−335220等がある。
The method for producing a positive electrode active material according to the present invention is characterized in that a mixture of at least a lithium compound, a transition metal compound mainly composed of nickel and optionally an Al compound, that is, a mixture of each compound of Li, Ni, Co and the element E is prepared. 500
A primary firing step of firing at ~ 800 ° C for 5-20 hours;
A dispersion granulation step of spray-drying a slurry obtained by pulverizing and dispersing the fired product obtained in the primary firing step in water until the average particle diameter becomes 1 μm or less to obtain a spherical granulated powder; And a secondary firing step of firing the spherical granulated powder obtained in the above at a temperature higher than the primary firing temperature by 30 ° C. or more and 900 ° C. or lower for 1 to 5 hours. Similar known production methods include, for example, JP-A-9-251854, JP-A-9-50810, JP-A-8-185611, and JP-A-8-18561.
55624 and JP-A-7-335220.

【0019】しかしながら本発明は、1次焼成後の分散
造粒工程において、焼成物を水中で平均粒径が1ミクロ
ン以下になるまで解粒分散させたことに第一の特徴があ
り、1次粒子の表面に於けるリチウムと遷移金属と場合
によりAlとの混合比をより均一に調整できるため、ニ
ッケル過剰な不定比組成物の生成を抑制し、結晶性が高
く、且つ粒子表面での電解液の分解反応を抑制する効果
があり、これらの点で本発明の方法は公知の製造方法よ
り格段に優れている。
The first feature of the present invention, however, is that the fired product is pulverized and dispersed in water until the average particle diameter becomes 1 μm or less in the dispersion granulation step after the primary firing. Since the mixing ratio of lithium, transition metal, and, in some cases, Al on the surface of the particles can be adjusted more uniformly, generation of a non-stoichiometric composition excessive in nickel is suppressed, crystallinity is high, and electrolysis on the particle surface is performed. The method of the present invention has an effect of suppressing the decomposition reaction of the liquid, and in these respects, the method of the present invention is far superior to known production methods.

【0020】また第二の特徴として、分散造粒工程にお
いて、スラリーに特定の化合物を添加した後、噴霧乾燥
を行い、1次粒子間に特定の元素を含む無機酸化物を含
む無機化合物層を均一に形成した後に2次焼成する事に
ある。この効果として、2次焼成時における1次粒子の
焼結をより一層抑制するとともに、電解液の分解反応が
抑制できる。さらに、2次焼成温度を1次焼成温度より
高くすることによって正極活物質の結晶性が高まり、熱
的安定性が改良される。
As a second feature, in the dispersion granulation step, after adding a specific compound to the slurry, spray drying is performed to form an inorganic compound layer containing an inorganic oxide containing a specific element between primary particles. The secondary firing may be performed after the film is formed uniformly. As this effect, sintering of the primary particles during the secondary firing can be further suppressed, and the decomposition reaction of the electrolytic solution can be suppressed. Further, by setting the secondary firing temperature higher than the primary firing temperature, the crystallinity of the positive electrode active material is increased, and the thermal stability is improved.

【0021】焼成原料であるリチウム化合物とニッケル
を主体とする遷移金属塩との場合によりAl化合物を含
む混合物において、リチウムと場合によりAlを含む遷
移金属との元素比はリチウム過剰であることが好まし
い。
In a mixture containing a lithium compound and a transition metal salt mainly composed of nickel and possibly an Al compound, the element ratio of lithium and a transition metal containing Al in some cases is preferably lithium-excess. .

【0022】1次焼成工程は500〜800℃、5〜2
0時間の範囲内で焼成する事が好ましい。500℃より
低い焼成温度では合成反応が実質的に進行せず、また8
00℃を超える温度では粒子成長が進行し、本発明の効
果が低下する。本工程の目的は、原料中のリチウム塩と
ニッケルを主体とする遷移金属塩(場合によりAl化合
物を含む)との合成反応を1次粒子の成長を抑制しなが
ら行うことにあり、生産性を阻害しない範囲で低温度・
長時間の焼成を行うことが好ましい。
The primary sintering step is performed at 500 to 800 ° C. and 5-2.
It is preferable to bake within the range of 0 hours. At a firing temperature lower than 500 ° C., the synthesis reaction does not substantially proceed.
If the temperature exceeds 00 ° C., the particle growth proceeds, and the effect of the present invention is reduced. The purpose of this step is to carry out a synthesis reaction between a lithium salt in the raw material and a transition metal salt mainly composed of nickel (including an Al compound in some cases) while suppressing the growth of primary particles. Low temperature within the range that does not interfere
It is preferable to perform firing for a long time.

【0023】1次焼成工程で得られた焼成物は、水中で
平均粒径が1ミクロン以下になるまで解粒分散したスラ
リーとする。この時の解粒分散操作は1次粒子径付近ま
で行うことが重要であり、解粒分散後の平均粒子径が1
ミクロンを超える場合は1次粒子表面近傍におけるリチ
ウムと遷移金属(場合によりAl化合物を含む)との混
合比の均一化が不十分であり、2次焼成後に得られる正
極活物質の放電容量が低下してしまう。好適な解粒分散
装置として、例えば湿式ビーズミル等を使用することが
できる。
The calcined product obtained in the primary calcining step is a slurry which is pulverized and dispersed in water until the average particle diameter becomes 1 μm or less. It is important that the pulverization and dispersion operation at this time is performed to the vicinity of the primary particle diameter.
If the diameter exceeds 1 μm, the mixing ratio of lithium and transition metal (including an Al compound in some cases) near the surface of the primary particles is not sufficiently uniform, and the discharge capacity of the positive electrode active material obtained after secondary firing is reduced. Resulting in. As a suitable pulverizer / disperser, for example, a wet bead mill or the like can be used.

【0024】この様にして得られたスラリーは、原料段
階でのリチウムの過剰量に応じてリチウム塩が溶解する
ため、pHが10以上のアルカリ性を呈する。このスラ
リーに特定の化合物を添加することにより、2次焼成後
に得られる活物質の特性を改善することが可能である。
スラリーに添加する化合物の形態としては、硝酸もしく
は硝酸塩が好ましい。硝酸根が添加されることにより液
中のリチウム塩の一部もしくは全部が硝酸リチウムに転
換され、次工程の2次焼成工程で硝酸リチウムの分解が
1次粒子近傍で生じ、その酸化力により粒子表面の結晶
性が高まると考えられる。添加元素としては、Mg、
Y、Zr、B、Al、Co、Pの群から選ばれる少なく
とも1種以上の元素の化合物を加えることが更に好まし
い。これら元素の添加により、電解液との反応性が、一
層抑制される。これら元素の合計添加量は、一次粒子中
のLi、Ni、Co、元素Eの合計量に対し、原子数比
で0.002〜0.03の範囲内にあることが望まし
い。
The slurry thus obtained exhibits an alkaline pH of 10 or more because the lithium salt is dissolved in accordance with the excess amount of lithium in the raw material stage. By adding a specific compound to this slurry, it is possible to improve the characteristics of the active material obtained after the secondary firing.
As the form of the compound to be added to the slurry, nitric acid or nitrate is preferable. By the addition of the nitrate group, part or all of the lithium salt in the liquid is converted to lithium nitrate, and in the next firing step, decomposition of lithium nitrate occurs near the primary particles, and the oxidizing power causes the particles to be decomposed. It is considered that the crystallinity of the surface increases. As additional elements, Mg,
More preferably, a compound of at least one element selected from the group consisting of Y, Zr, B, Al, Co, and P is added. By adding these elements, the reactivity with the electrolytic solution is further suppressed. The total addition amount of these elements is desirably in the range of 0.002 to 0.03 in terms of the atomic ratio with respect to the total amount of Li, Ni, Co, and the element E in the primary particles.

【0025】上記スラリーは、次工程である2次焼成に
先立ち造粒される。好適な造粒方法としては、液中の添
加物を損失せず、かつ乾燥時の添加物の偏析の少ない噴
霧乾燥法が好適であるが、或いは、該スラリーを濾過脱
水した後、押し出し造粒機等により成形造粒してもよ
い。
The slurry is granulated prior to the next step, secondary firing. As a preferable granulation method, a spray drying method which does not lose the additive in the liquid and causes less segregation of the additive during drying is suitable. You may shape | mold and granulate with a machine etc.

【0026】2次焼成工程では、1次焼成工程より30
℃以上高く且つ900℃以下の温度で1〜5時間焼成を
行うことが好ましい。焼成時間が短いと結晶性が上がら
ないため熱安定性や電解液との反応性が改善されず、長
過ぎるとリチウムサイトへのニッケルの拡散が生じ、放
電容量が低下する。また焼成温度は、1次焼成温度より
30℃以上高くなければ結晶性の向上が顕著でなく、ま
た900℃より高温では、リチウムサイトへのニッケル
の拡散や異常な粒成長が生じてしまう。さらに、800
℃より高温で焼成する場合には、酸素気流中で焼成を行
う必要がある。焼成炉方式としては、プッシャー炉、流
動焼成炉、キルン炉等が用いられる。2次焼成終了後の
焼成物を乾燥空気中で解粒分級した後、所定の粒度に調
整して正極活物質を得る。得られた正極活物質につい
て、示差熱分析計(TG−TDA)によりAr気流中で
10℃/minの速度で750℃まで昇温した時の示差
熱減量を測定した。
In the second firing step, 30 times more than in the first firing step.
It is preferable to perform calcination at a temperature of at least 900C and not more than 900C for 1 to 5 hours. If the firing time is short, the crystallinity is not improved, so that the thermal stability and the reactivity with the electrolytic solution are not improved. If the firing time is too long, nickel is diffused into lithium sites, and the discharge capacity is reduced. If the firing temperature is not higher than the primary firing temperature by 30 ° C. or more, the improvement in crystallinity will not be remarkable. If the firing temperature is higher than 900 ° C., diffusion of nickel into lithium sites and abnormal grain growth will occur. In addition, 800
When firing at a temperature higher than ℃, it is necessary to perform firing in an oxygen stream. As a sintering furnace method, a pusher furnace, a fluidized sintering furnace, a kiln furnace or the like is used. After the fired product after the completion of the second firing is pulverized and classified in dry air, it is adjusted to a predetermined particle size to obtain a positive electrode active material. The obtained positive electrode active material was measured for differential heat loss when heated to 750 ° C. at a rate of 10 ° C./min in an Ar gas flow using a differential thermal analyzer (TG-TDA).

【0027】電池の作製は次のようにして行った。ま
ず、正極活物質と、導電材としての黒鉛と、結着剤とし
てのポリテトラフルオロエチレン(PTFE)とを重量
比87:8:5の割合で混練・成形した後、得られた成
形物を圧延したものを正極合剤として用いた。負極には
金属リチウムを、セパレーターにはポリプロピレンのフ
ィルムを切り抜いたものを、それぞれ使用した。電解液
には、炭酸エチレンと炭酸ジエチレンを体積比で1:1
に混合した液に電解質としてLiPF6 を1モル/Lの
濃度で溶解させたものを用いた。
The production of the battery was performed as follows. First, a positive electrode active material, graphite as a conductive material, and polytetrafluoroethylene (PTFE) as a binder are kneaded and molded in a weight ratio of 87: 8: 5, and then the obtained molded product is molded. The rolled product was used as a positive electrode mixture. Metal lithium was used for the negative electrode, and a polypropylene film cut out was used for the separator. In the electrolyte, ethylene carbonate and diethylene carbonate were mixed at a volume ratio of 1: 1.
The solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L as an electrolyte in the mixed solution was used.

【0028】上記のようにして作製した試験電池の模式
断面図を図1に示す。図中1はステンレスケース、2は
ガスケット、3は封口板、4は負極、5は正極、6はセ
パレーター、7は負極集電体、8は正極集電体を示す。
充放電試験は0.5mA/cm2 の電流密度で行い、
4.3Vまで充電し、その後2.7Vまで放電して正極
活物質単位重量あたりの電気量を放電容量とした。正極
活物質の熱的安定性の評価は次のようにして行った。2
回目の充電を終止電圧+4.3Vで行い、充電後の電池
から正極合剤を取り出し、これをAr雰囲気でステンレ
ス製の密閉セルに封入した後、300℃まで10℃/m
inの速度で昇温して熱量分析測定を行い、この時の急
発熱ピーク温度を求め、この値で正極活物質の熱的安定
性を評価した(この評価法を以下DSC法と略記す
る)。熱的安定性の高い正極活物質では、この急発熱ピ
ーク温度が高温側にシフトする。
FIG. 1 is a schematic cross-sectional view of the test battery manufactured as described above. In the figure, 1 is a stainless steel case, 2 is a gasket, 3 is a sealing plate, 4 is a negative electrode, 5 is a positive electrode, 6 is a separator, 7 is a negative electrode current collector, and 8 is a positive electrode current collector.
The charge / discharge test was performed at a current density of 0.5 mA / cm 2 ,
The battery was charged to 4.3 V and then discharged to 2.7 V, and the amount of electricity per unit weight of the positive electrode active material was defined as the discharge capacity. The thermal stability of the positive electrode active material was evaluated as follows. 2
The first charge was performed at a final voltage of +4.3 V, the positive electrode mixture was taken out of the charged battery, and the positive electrode mixture was sealed in a stainless steel sealed cell in an Ar atmosphere.
The temperature was increased at a rate of in and calorimetric measurement was performed to determine the rapid peak temperature at this time, and the thermal stability of the positive electrode active material was evaluated using this value (this evaluation method is hereinafter abbreviated as DSC method). . In a positive electrode active material having high thermal stability, the peak temperature of rapid heating shifts to a higher temperature side.

【0029】また、正極活物質と電解液との反応性の評
価は次のようにして行った。2回目の充電を終止電圧+
4.3Vで行い、充電後の電池から正極合剤を取り出
し、これを耐圧3kgf/cm2 のAl製密封容器に封
入し、示差熱分析計で300℃まで10℃/minの速
度で昇温した時に、発生ガスによる内圧上昇によって容
器の気密が破れる時の温度を測定し、この温度の値で正
極活物質と電解液との反応性を評価した(この評価法を
以下TG法と略記する)。電解液との反応性の抑制され
た正極活物質では、この容器気密の破れる温度が高温側
にシフトする。以下、実施例をもって詳細に説明する
が、本発明の範囲はこれらによって限定されるものでは
ない。
The evaluation of the reactivity between the positive electrode active material and the electrolyte was performed as follows. The second charge is the end voltage +
The operation was performed at 4.3 V, the positive electrode mixture was taken out of the charged battery, sealed in a sealed aluminum container having a pressure resistance of 3 kgf / cm 2 , and heated to 300 ° C. at a rate of 10 ° C./min by a differential thermal analyzer. Then, the temperature at which the airtightness of the container was broken due to an increase in internal pressure due to the generated gas was measured, and the reactivity between the positive electrode active material and the electrolyte was evaluated based on this temperature value (this evaluation method is hereinafter abbreviated as TG method). ). In a positive electrode active material in which the reactivity with the electrolytic solution is suppressed, the temperature at which the airtightness of the container is broken shifts to a higher temperature side. Hereinafter, the present invention will be described in detail with reference to examples, but the scope of the present invention is not limited thereto.

【0030】[0030]

【実施例1】水酸化リチウム、水酸化ニッケル、水酸化
コバルト、水酸化アルミニウムをモル比で105:8
0:15:5となるようにそれぞれ計量した後、ボール
ミルで粉砕混合し、得られた混合粉末を1トン/cm2
の圧力下で加圧成形し、得られた成形体を焼成用原料と
した。この原料を700℃で10時間、空気気流中で焼
成(1次焼成)した。得られた焼成物と純水とを40:
60の重量比で混合した後、湿式ビーズミルで2時間解
粒分散して平均粒子径が0.4ミクロンのスラリーと
し、噴霧乾燥機により球状に乾燥造粒した。この造粒粉
を、850℃で2時間、酸素気流中で焼成(2次焼成)
し、臼式粉砕機で解粒した後、スクリーン式分級機で整
粒した。
EXAMPLE 1 Lithium hydroxide, nickel hydroxide, cobalt hydroxide and aluminum hydroxide were mixed in a molar ratio of 105: 8.
After weighing each so as to be 0: 15: 5, they were pulverized and mixed by a ball mill, and the obtained mixed powder was 1 ton / cm 2.
, And the resulting molded body was used as a raw material for firing. This raw material was fired (primary firing) at 700 ° C. for 10 hours in an air stream. The obtained calcined product and pure water are combined at 40:
After mixing at a weight ratio of 60, the mixture was pulverized and dispersed in a wet bead mill for 2 hours to obtain a slurry having an average particle diameter of 0.4 μm, and dried and granulated in a spherical shape by a spray dryer. This granulated powder is fired at 850 ° C. for 2 hours in an oxygen stream (secondary firing)
The resulting mixture was pulverized with a mortar mill and then sized with a screen classifier.

【0031】この様にして得られた正極活物質は、粒子
径が0.5〜2ミクロンの1次粒子が炭酸リチウムと酸
化リチウムで接合されて形成された球状の2次粒子であ
り、その構造を示す電子顕微鏡写真は図2に示す通りで
あり、その示差熱減量は0.3重量%であった。この活
物質をAr気流中で750℃まで昇温した時の示差熱分
析結果を示す図は図3の通りであった。
The positive electrode active material thus obtained is spherical secondary particles formed by joining primary particles having a particle size of 0.5 to 2 μm with lithium carbonate and lithium oxide. An electron micrograph showing the structure was as shown in FIG. 2, and the differential heat loss was 0.3% by weight. FIG. 3 shows the results of differential thermal analysis when this active material was heated to 750 ° C. in an Ar gas flow.

【0032】またこの活物質の放電容量は195mAh
/g、DSC法での熱的安定性は248℃、TG法での
電解液との反応性は178℃であった。図4は活物質の
熱的安定性をDSC法で測定した結果を示すものであ
る。また図5は活物質の電解液との反応性をTG法で測
定した結果を示す図である。
The discharge capacity of this active material is 195 mAh
/ G, the thermal stability by the DSC method was 248 ° C, and the reactivity with the electrolytic solution by the TG method was 178 ° C. FIG. 4 shows the results of measuring the thermal stability of the active material by the DSC method. FIG. 5 is a graph showing the results of measuring the reactivity of the active material with the electrolytic solution by the TG method.

【0033】[0033]

【比較例1】実施例1で用いた焼成用原料を、850℃
で10時間酸素気流中で焼成し、臼式粉砕器で解粒した
後、スクリーン式分級機で整粒した。得られた正極活物
質は、粒子径が1〜15ミクロンの、焼結の進行した粒
度分布の広い粒子であり、示差熱減量は0.8重量%で
あった。また、この活物質の放電容量は178mAh/
g、DSC法での熱的安定性は230℃、TG法での電
解液との反応性は157℃であった。
Comparative Example 1 The firing raw material used in Example 1 was heated at 850 ° C.
For 10 hours in an oxygen stream, pulverized with a mortar type pulverizer, and then sized with a screen type classifier. The obtained positive electrode active material was a particle having a particle diameter of 1 to 15 μm and having a wide particle size distribution after sintering, and had a differential weight loss of 0.8% by weight. The discharge capacity of this active material was 178 mAh /
g, thermal stability by the DSC method was 230 ° C., and reactivity with the electrolytic solution by the TG method was 157 ° C.

【0034】[0034]

【比較例2】実施例1で用いた焼成用原料を700℃で
10時間空気気流中で焼成した後、引き続き850℃で
2時間酸素気流中で焼成し、臼式粉砕器で解粒した後、
スクリーン式分級機で整粒した。得られた正極活物質
は、粒子径が0.5〜10ミクロンの、焼結の進行した
粒度分布の広い粒子であり、示差熱減量は0.9重量%
であった。また、この活物質の放電容量は180mAh
/g、DSC法での熱的安定性は233℃、TG法での
電解液との反応性は165℃であった。
COMPARATIVE EXAMPLE 2 The raw material for firing used in Example 1 was fired at 700 ° C. for 10 hours in an air stream, then fired at 850 ° C. for 2 hours in an oxygen stream, and pulverized with a mortar pulverizer. ,
The particles were sized using a screen classifier. The obtained positive electrode active material is a particle having a particle diameter of 0.5 to 10 μm and having a wide particle size distribution with advanced sintering, and a differential weight loss of 0.9% by weight.
Met. The discharge capacity of this active material was 180 mAh.
/ G, the thermal stability by the DSC method was 233 ° C, and the reactivity with the electrolytic solution by the TG method was 165 ° C.

【0035】[0035]

【比較例3】実施例1で用いた焼成用原料を700℃で
10時間空気気流中で焼成した後、衝撃式粉砕器で解粒
した。得られた粒子は、粒子径0.1〜0.5ミクロン
の1次粒子が凝集した塊状の2次粒子であり、2次粒子
としての平均粒径は15ミクロンであった。この粉末を
引き続き850℃で2時間酸素気流中で焼成し、臼式粉
砕器で解粒した後、スクリーン式分級機で整粒した。得
られた正極活物質は、粒子径が0.1〜5ミクロンの、
焼結の進行した粒度分布の広い粒子であり、示差熱減量
は0.6重量%であった。また、この活物質の放電容量
は184mAh/g、DSC法での熱的安定性は232
℃、TG法での電解液との反応性は163℃であった。
Comparative Example 3 The firing raw material used in Example 1 was fired in an air stream at 700 ° C. for 10 hours, and then pulverized with an impact-type pulverizer. The obtained particles were agglomerated secondary particles in which primary particles having a particle size of 0.1 to 0.5 micron were aggregated, and the average particle size of the secondary particles was 15 microns. This powder was subsequently calcined at 850 ° C. for 2 hours in an oxygen stream, pulverized with a mortar type pulverizer, and then sized with a screen type classifier. The obtained positive electrode active material has a particle diameter of 0.1 to 5 microns,
The particles had a wide particle size distribution after sintering, and the differential heat loss was 0.6% by weight. The discharge capacity of this active material was 184 mAh / g, and the thermal stability by the DSC method was 232.
The reactivity with the electrolytic solution by the TG method was 163 ° C.

【0036】[0036]

【比較例4】湿式ビーズミルで10分間解粒分散して平
均粒径が4ミクロンのスラリーとした以外は、実施例1
と同様にして正極活物質を作成した。得られた正極活物
質は、粒子径が0.5〜5ミクロンの1次粒子が炭酸リ
チウムと酸化リチウムで接合された球状の2次粒子であ
り、示差熱減量は0.7重量%であった。また、この活
物質の放電容量は179mAh/g、DSC法での熱的
安定性は246℃、TG法での電解液との反応性は17
0℃であった。
Comparative Example 4 Example 1 was repeated except that the slurry was pulverized and dispersed in a wet bead mill for 10 minutes to obtain a slurry having an average particle size of 4 microns.
A positive electrode active material was prepared in the same manner as described above. The obtained positive electrode active material was spherical secondary particles in which primary particles having a particle size of 0.5 to 5 μm were joined with lithium carbonate and lithium oxide, and had a differential heat loss of 0.7% by weight. Was. The discharge capacity of this active material was 179 mAh / g, the thermal stability by the DSC method was 246 ° C., and the reactivity with the electrolytic solution by the TG method was 17
It was 0 ° C.

【0037】[0037]

【実施例2】湿式ビーズミルで1時間解粒分散して平均
粒径が1ミクロンのスラリーとした以外は、実施例1と
同様にして正極活物質を作成した。得られた正極活物質
は、粒子径が0.5〜2ミクロンの1次粒子が炭酸リチ
ウムと酸化リチウムで接合された球状の2次粒子であ
り、示差熱減量は0.4重量%であった。また、この活
物質の放電容量は190mAh/g、DSC法での熱的
安定性は243℃、TG法での電解液との反応性は17
7℃であった。
Example 2 A positive electrode active material was prepared in the same manner as in Example 1 except that the slurry was pulverized and dispersed in a wet bead mill for 1 hour to obtain a slurry having an average particle size of 1 micron. The obtained positive electrode active material was spherical secondary particles in which primary particles having a particle size of 0.5 to 2 μm were joined with lithium carbonate and lithium oxide, and had a differential heat loss of 0.4% by weight. Was. The discharge capacity of this active material was 190 mAh / g, the thermal stability by the DSC method was 243 ° C., and the reactivity with the electrolytic solution by the TG method was 17
7 ° C.

【0038】実施例1〜2と比較例1〜4の結果から、
本発明の製造方法により得られた正極活物質は放電容量
が高く、その熱的安定性および電解液との反応性が改良
されたことがわかる。特に解粒分散工程において得られ
たスラリー中粒子の平均粒子径を、1次焼成後の1次粒
子径付近まで、すなわち1ミクロン以下とすることによ
り、活物質の放電容量の低下を防止することがわかる。
1次焼成温度を変更した以外は実施例1と同様にして正
極活物質を作製した結果を実施例3〜5および比較例5
〜6として表1に示す。この表から、1次焼成温度が5
00℃から800℃の範囲内にあるとき、得られた正極
活物質が高い放電容量を示すことが分かる。
From the results of Examples 1-2 and Comparative Examples 1-4,
It can be seen that the positive electrode active material obtained by the production method of the present invention has a high discharge capacity, and has improved thermal stability and reactivity with the electrolytic solution. In particular, by reducing the average particle diameter of the particles in the slurry obtained in the crushing and dispersing step to around the primary particle diameter after the first firing, that is, 1 μm or less, to prevent a decrease in the discharge capacity of the active material. I understand.
Except that the primary sintering temperature was changed, the results of producing the positive electrode active material in the same manner as in Example 1 were shown in Examples 3 to 5 and Comparative Example 5.
Are shown in Table 1 as .about.6. From this table, the primary firing temperature is 5
It can be seen that when the temperature is in the range of 00 ° C. to 800 ° C., the obtained positive electrode active material shows a high discharge capacity.

【0039】[0039]

【表1】 [Table 1]

【0040】1次焼成時間を変更した以外は実施例1と
同様にして正極活物質を作製した結果を実施例6〜7お
よび比較例7〜8として表2に示す。この表から、1次
焼成時間が5〜20時間の範囲内にあるとき、得られた
正極活物質が高い放電容量を示すことが分かる。
The results of producing positive electrode active materials in the same manner as in Example 1 except that the primary firing time was changed are shown in Table 2 as Examples 6 to 7 and Comparative Examples 7 and 8. From this table, it can be seen that when the primary firing time is in the range of 5 to 20 hours, the obtained positive electrode active material shows a high discharge capacity.

【0041】[0041]

【表2】 [Table 2]

【0042】1次焼成温度と2次焼成温度を変更した以
外は実施例1と同様にして正極活物質を作製した結果を
実施例8〜11および比較例9〜13として表3に示
す。この表から、1次焼成と2次焼成との温度差が30
℃以上でなければ熱的安定性や電解液との反応性の改善
効果が低く、また2次焼成温度が900℃より高いと放
電容量が著しく低下することが分かる。
The results of producing positive electrode active materials in the same manner as in Example 1 except that the primary sintering temperature and the secondary sintering temperature were changed are shown in Table 3 as Examples 8 to 11 and Comparative Examples 9 to 13. From this table, the temperature difference between the primary firing and the secondary firing is 30.
It is found that the effect of improving the thermal stability and the reactivity with the electrolytic solution is low if the temperature is not higher than ° C, and that the discharge capacity is significantly reduced if the secondary firing temperature is higher than 900 ° C.

【0043】[0043]

【表3】 [Table 3]

【0044】2次焼成時間を変更した以外は実施例1と
同様にして正極活物質を作製した結果を実施例12〜1
3および比較例14〜15として表4に示す。この表か
ら、2次焼成時間が1〜5時間の範囲内にあるとき、高
い放電容量、および電解液との反応性と熱的安定性の改
良効果が両立することが分かる。
A positive electrode active material was produced in the same manner as in Example 1 except that the secondary firing time was changed.
Table 4 shows No. 3 and Comparative Examples 14 to 15. From this table, it can be seen that when the secondary firing time is in the range of 1 to 5 hours, a high discharge capacity and the effect of improving the reactivity with the electrolytic solution and the thermal stability are compatible.

【0045】[0045]

【表4】 [Table 4]

【0046】[0046]

【実施例14】1次焼成後に得られた焼成物と純水とを
60:40の重量比で混合した後、湿式ビーズミルで解
粒分散してpHが13.7のスラリーを得た。このスラ
リーを攪拌しつつ、希硝酸溶液を添加してスラリーのp
Hを12に調整した後、純水を加えてスラリー濃度を4
0重量%として乾燥造粒した以外は実施例1と同様にし
て正極活物質を作製した。この様にして得られた正極活
物質は、粒子径が0.2〜1ミクロンの1次粒子が酸化
リチウムで接合されて形成された球状の2次粒子であ
り、示差熱減量は0.2重量%であった。
Example 14 A baked product obtained after the first calcination and pure water were mixed at a weight ratio of 60:40, and the mixture was pulverized and dispersed by a wet bead mill to obtain a slurry having a pH of 13.7. While stirring this slurry, a dilute nitric acid solution was added to
After adjusting H to 12, pure water was added to make the slurry concentration 4
A positive electrode active material was prepared in the same manner as in Example 1, except that the drying and granulation were performed at 0% by weight. The positive electrode active material thus obtained is spherical secondary particles formed by joining primary particles having a particle size of 0.2 to 1 μm with lithium oxide, and has a differential heat loss of 0.2. % By weight.

【0047】[0047]

【実施例15】スラリーのpHを10に調整した以外は
実施例14と同様にして正極活物質を作製した。
Example 15 A positive electrode active material was produced in the same manner as in Example 14 except that the pH of the slurry was adjusted to 10.

【0048】[0048]

【実施例16】1次焼成後に得られた焼成物と純水を6
0:40の重量比で混合した後、湿式ビーズミルで解粒
分散したスラリーに、Mgが原子数比でNiとCoの合
計量に対して1モル%に相当する硝酸マグネシウムを、
最終スラリー濃度を40重量%とするために必要な量の
純水中に溶解してスラリーに添加した以外は実施例1と
同様にして正極活物質を作製した。この様にして得られ
た正極活物質は、粒子径が0.2〜1ミクロンの1次粒
子が酸化リチウムと酸化マグネシウムで接合されて形成
された球状の2次粒子であり、示差熱減量は0.2重量
%であった。
Embodiment 16 The fired product obtained after the first firing and pure water were mixed in 6 parts.
After mixing at a weight ratio of 0:40, the slurry pulverized and dispersed by a wet bead mill was added with magnesium nitrate in which Mg is 1 atomic% in atomic ratio to the total amount of Ni and Co,
A positive electrode active material was prepared in the same manner as in Example 1, except that the slurry was dissolved in pure water in an amount necessary to make the final slurry concentration 40% by weight and added to the slurry. The positive electrode active material thus obtained is spherical secondary particles formed by joining primary particles having a particle size of 0.2 to 1 μm with lithium oxide and magnesium oxide, and has a differential heat loss. 0.2% by weight.

【0049】[0049]

【実施例17〜20】硝酸マグネシウムの代わりに、硝
酸イットリウム、硝酸ジルコニウム、硝酸アルミニウ
ム、硝酸コバルトを用いた以外は実施例16と同様にし
て正極活物質を作製した。
Examples 17 to 20 A positive electrode active material was produced in the same manner as in Example 16 except that yttrium nitrate, zirconium nitrate, aluminum nitrate and cobalt nitrate were used instead of magnesium nitrate.

【0050】[0050]

【実施例21〜22】硝酸マグネシウムを純粋中に溶解
する代わりに、水酸化マグネシウム、水酸化アルミニウ
ムを純水中に分散した後、スラリーに添加した以外は実
施例16と同様にして正極活物質を作製した。
Examples 21 to 22 Instead of dissolving magnesium nitrate in pure water, magnesium hydroxide and aluminum hydroxide were dispersed in pure water and then added to the slurry. Was prepared.

【0051】[0051]

【実施例23〜24】硝酸マグネシウムの代わりに、ホ
ウ酸、リン酸を用いた以外は実施例16と同様にして正
極活物質を作製した。実施例14〜24で得られた正極
活物質の評価結果を表5に示す。これらの化合物を添加
することにより熱的安定性や電解液との反応性が改良さ
れることが分かる。
Examples 23 and 24 A positive electrode active material was produced in the same manner as in Example 16 except that boric acid and phosphoric acid were used instead of magnesium nitrate. Table 5 shows the evaluation results of the positive electrode active materials obtained in Examples 14 to 24. It can be seen that the addition of these compounds improves the thermal stability and the reactivity with the electrolyte.

【0052】[0052]

【表5】 [Table 5]

【0053】ホウ酸の添加量を0.1mol%、0.2
mol%、3mol%、5mol%とした以外は実施例
23と同様にして正極活物質を作製した。得られた正極
活物質の評価結果を表6に示す。添加物の添加量が少な
過ぎると改善効果が見られず、多過ぎると放電容量の低
下が著しいため、添加量は0.2〜3.0mol%の範
囲内にあることが望ましいことが分かる。
The amount of boric acid added was 0.1 mol%, 0.2
A positive electrode active material was produced in the same manner as in Example 23 except that the mol%, 3 mol%, and 5 mol% were used. Table 6 shows the evaluation results of the obtained positive electrode active materials. If the amount of the additive is too small, no improvement effect is obtained, and if the amount is too large, the discharge capacity is significantly reduced. Therefore, it is understood that the amount of the additive is desirably in the range of 0.2 to 3.0 mol%.

【0054】[0054]

【表6】 [Table 6]

【0055】焼成用原料の組成比を表7に示すように変
更した以外は実施例1と同様にして正極活物質を作製し
た。尚、Mn化合物としてはオキシ水酸化マンガンを、
Ti化合物としては四水酸化チタンを用いた。Coの添
加量が10mol%より少ないと、熱的安定性や電解液
との反応性が改善されない。また20mol%より多い
場合は放電容量が低下することが分かる。Alの一部を
Mnで置換すると電解液との反応性が抑制され、Tiで
置換した場合は、放電容量が向上することが分かる。
A positive electrode active material was prepared in the same manner as in Example 1, except that the composition ratio of the firing raw materials was changed as shown in Table 7. Incidentally, manganese oxyhydroxide is used as the Mn compound,
Titanium tetrahydroxide was used as the Ti compound. If the added amount of Co is less than 10 mol%, the thermal stability and the reactivity with the electrolytic solution are not improved. Also, it can be seen that when the content is more than 20 mol%, the discharge capacity is reduced. It can be seen that when Al is partially replaced with Mn, the reactivity with the electrolytic solution is suppressed, and when Ti is replaced with Ti, the discharge capacity is improved.

【0056】[0056]

【表7】 [Table 7]

【0057】[0057]

【発明の効果】以上説明したように、本発明によれば、
電解液との反応性および熱的安定性の改良された、従っ
て安全性の改善された高容量の正極活物質とその製造方
法、及びそれを用いたリチウムイオン二次電池を提供す
ることができる。
As described above, according to the present invention,
It is possible to provide a high-capacity positive electrode active material having improved reactivity with an electrolyte and thermal stability, and thus improved safety, a method for producing the same, and a lithium ion secondary battery using the same. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例及び比較例において試験電池と
して作成されたコイン電池の模式断面図である。
FIG. 1 is a schematic sectional view of a coin battery prepared as a test battery in Examples of the present invention and Comparative Examples.

【図2】実施例1で得られた活物質粒子の構造を示す電
子顕微鏡写真である。
FIG. 2 is an electron micrograph showing the structure of the active material particles obtained in Example 1.

【図3】実施例1で得られた活物質をAr気流中で75
0℃まで昇温した時の示差熱分析結果を示す図である。
FIG. 3 shows that the active material obtained in Example 1 was used for 75 times in an Ar gas stream.
It is a figure which shows the differential-thermal-analysis result when it heats up to 0 degreeC.

【図4】実施例1で得られた活物質の熱的安定性をDS
C法で測定した結果を示す図である。
FIG. 4 shows the thermal stability of the active material obtained in Example 1 as DS.
It is a figure showing the result measured by the C method.

【図5】実施例1で得られた活物質の電解液との反応性
をTG法で測定した結果を示す図である。
FIG. 5 is a view showing the result of measuring the reactivity of an active material obtained in Example 1 with an electrolytic solution by a TG method.

【符号の説明】[Explanation of symbols]

1 ステンレスケース 2 ガスケット 3 封口板 4 負極 5 正極 6 セパレーター 7 負極集電体 8 正極集電体 DESCRIPTION OF SYMBOLS 1 Stainless steel case 2 Gasket 3 Sealing plate 4 Negative electrode 5 Positive electrode 6 Separator 7 Negative electrode collector 8 Positive electrode collector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山中 義則 東京都千代田区丸の内1丁目8番2号 同和鉱業株式会社内 (72)発明者 尾木 孝造 東京都千代田区丸の内1丁目8番2号 同和鉱業株式会社内 (72)発明者 仁科 正行 東京都千代田区丸の内1丁目8番2号 同和鉱業株式会社内 (56)参考文献 特開 平9−129230(JP,A) 特開 平9−237631(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 H01M 4/58 H01M 10/40 C01G 53/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshinori Yamanaka 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Kozo Ogi 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining (72) Inventor Masayuki Nishina 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (56) References JP-A-9-129230 (JP, A) JP-A-9-237631 (JP) , A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/02 H01M 4/58 H01M 10/40 C01G 53/00

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式:LiNi1−x−yCo
(ただし、EはAlまたはAlとMn、Tiの群か
ら選ばれる1種以上の元素との組み合わせ、0.10≦
x≦0.20、0.02≦y≦0.10)で示される組
成の1次粒子がLiを主体とする無機酸化物を含む無機
化合物で接合されて形成された2次粒子を含むリチウム
イオン電池用正極活物質であって、不活性ガス雰囲気下
で750℃に昇温したときの示差熱減量が0.5重量%
以下であることを特徴とするリチウムイオン二次電池用
正極活物質。
1. A general formula: LiNi 1-xy Co x E y
O 2 (where E is Al or a group of Al and Mn, Ti
A combination with at least one element selected from the group consisting of 0.10 ≦
(x ≦ 0.20, 0.02 ≦ y ≦ 0.10) Lithium containing secondary particles formed by joining primary particles of an inorganic compound containing an inorganic oxide mainly composed of Li A positive electrode active material for an ion battery, having a differential heat loss of 0.5% by weight when heated to 750 ° C. in an inert gas atmosphere.
A positive electrode active material for a lithium ion secondary battery, comprising:
【請求項2】 前記無機酸化物がMg、Y、Zr、B、
Al、Co、Pの群から選ばれる1種以上の元素とLi
との酸化物であり、前記無機化合物の酸素を除く元素の
合計含有量が前記1次粒子中のLi、Ni、Co、元素
Eの合計含有量に対して原子数比で0.002〜0.0
3であることを特徴とする請求項1記載のリチウムイオ
ン二次電池用正極活物質。
2. The method according to claim 1, wherein the inorganic oxide is Mg, Y, Zr, B,
At least one element selected from the group consisting of Al, Co, and P and Li
And the total content of elements excluding oxygen of the inorganic compound is 0.002 to 0 in atomic ratio to the total content of Li, Ni, Co, and element E in the primary particles. .0
3. The positive electrode active material for a lithium ion secondary battery according to claim 1.
【請求項3】 請求項1記載の正極活物質を製造する方
法であって、Li、Ni、Co、元素Eの各化合物の混
合物を500〜800℃で焼成する1次焼成工程と、1
次焼成工程で得られた焼成物を水中で平均粒径が1ミク
ロン以下となるように解粒分散させたスラリーを噴霧乾
燥して球状造粒粉を得る分散造粒工程と、分散造粒工程
で得られた球状造粒粉を1次焼成温度より30℃以上高
くかつ900℃以下の温度で焼成する2次焼成工程とを
含むことを特徴とするリチウムイオン二次電池用正極活
物質の製造方法。
3. A method for producing a positive electrode active material according to claim 1, wherein a first firing step of firing a mixture of each compound of Li, Ni, Co and element E at 500 to 800 ° C.
A dispersion granulation step of spray-drying a slurry obtained by pulverizing and dispersing the calcined product obtained in the next calcining step in water so that the average particle diameter is 1 μm or less to obtain a spherical granulated powder; A secondary firing step of firing the spherical granulated powder obtained in the above at a temperature higher than the primary firing temperature by at least 30 ° C. and at a temperature of 900 ° C. or lower, producing a positive electrode active material for a lithium ion secondary battery. Method.
【請求項4】 請求項1記載の正極活物質を製造する方
法であって、Li、Ni、Co、元素Eの各化合物の混
合物を500〜800℃で焼成する1次焼成工程と、1
次焼成工程で得られた焼成物を水中で平均粒径が1ミク
ロン以下となるように解粒分散させ、かつ硝酸を添加し
液相中に溶出したリチウム塩の一部または全部を硝酸リ
チウムに転換させたスラリーを噴霧乾燥して球状造粒粉
を得る分散造粒工程と、分散造粒工程で得られた球状造
粒粉を1次焼成温度より30℃以上高くかつ900℃以
下の温度で焼成する2次焼成工程とを含むことを特徴と
するリチウムイオン二次電池用正極活物質の製造方法。
4. The method for producing a positive electrode active material according to claim 1, wherein a first firing step of firing a mixture of each compound of Li, Ni, Co and element E at 500 to 800 ° C.
The fired product obtained in the next firing step is disintegrated and dispersed in water so that the average particle size is 1 μm or less, and a part or all of the lithium salt eluted into the liquid phase by adding nitric acid is converted to lithium nitrate. A dispersion granulation step of spray-drying the converted slurry to obtain a spherical granulated powder; and a step of subjecting the spherical granulated powder obtained in the dispersion granulation step to a temperature of 30 ° C. or higher and 900 ° C. or lower than the primary firing temperature. A method for producing a positive electrode active material for a lithium ion secondary battery, comprising a secondary firing step of firing.
【請求項5】 請求項2記載の正極活物質を製造する方
法であって、Li、Ni、Co、元素Eの各化合物の混
合物を500〜800℃で焼成する1次焼成工程と、1
次焼成工程で得られた焼成物を水中で平均粒径が1ミク
ロン以下となるように解粒分散させた後Mg、Y、Z
r、B、Al、Co、Pの群から選ばれる1種以上の元
素の化合物を添加したスラリーを噴霧乾燥して球状造粒
粉を得る分散造粒工程と、分散造粒工程で得られた球状
造粒粉を1次焼成温度より30℃以上高くかつ900℃
以下の温度で焼成する2次焼成工程とを含むことを特徴
とするリチウムイオン二次電池用正極活物質の製造方
法。
5. A method for producing a positive electrode active material according to claim 2, wherein a first firing step of firing a mixture of each compound of Li, Ni, Co and element E at 500 to 800 ° C.
The fired product obtained in the next firing step is pulverized and dispersed in water so that the average particle diameter is 1 μm or less, and then Mg, Y, Z
A slurry obtained by spray-drying a slurry to which a compound of at least one element selected from the group consisting of r, B, Al, Co, and P was added to obtain a spherical granulated powder, and a dispersion granulating step. The spherical granulated powder is at least 30 ° C. higher than the primary firing temperature and 900 ° C.
A method for producing a positive electrode active material for a lithium ion secondary battery, comprising: a secondary firing step of firing at the following temperature.
【請求項6】 前記分散造粒工程において添加する元素
の化合物が硝酸塩であることを特徴とする請求項5記載
のリチウムイオン二次電池用正極活物質の製造方法。
6. The method for producing a positive electrode active material for a lithium ion secondary battery according to claim 5, wherein the compound of the element added in the dispersion granulation step is a nitrate.
【請求項7】 請求項1または2のいずれかに記載の正
極活物質を正極活物質として用いたことを特徴とするリ
チウムイオン二次電池。
7. A lithium ion secondary battery using the positive electrode active material according to claim 1 as a positive electrode active material.
JP03367998A 1998-01-30 1998-01-30 Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery Expired - Fee Related JP3355126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03367998A JP3355126B2 (en) 1998-01-30 1998-01-30 Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03367998A JP3355126B2 (en) 1998-01-30 1998-01-30 Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JPH11219706A JPH11219706A (en) 1999-08-10
JP3355126B2 true JP3355126B2 (en) 2002-12-09

Family

ID=12393135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03367998A Expired - Fee Related JP3355126B2 (en) 1998-01-30 1998-01-30 Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP3355126B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289261A (en) * 2001-01-16 2002-10-04 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2000200605A (en) 1998-10-30 2000-07-18 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacture
KR100309769B1 (en) * 1999-06-17 2001-11-01 김순택 Positive active material for lithium secondary battery and method of preparing the same
JP4795509B2 (en) * 2000-06-09 2011-10-19 三洋電機株式会社 Non-aqueous electrolyte battery
JP4965019B2 (en) * 2000-08-29 2012-07-04 株式会社三徳 Cathode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP4697504B2 (en) * 2001-01-10 2011-06-08 株式会社豊田中央研究所 Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
JP2002260655A (en) * 2001-02-28 2002-09-13 Nichia Chem Ind Ltd Manufacturing method of positive electrode material for lithium ion secondary battery
JP4986098B2 (en) * 2001-03-15 2012-07-25 日立金属株式会社 Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
JP2002321921A (en) * 2001-04-24 2002-11-08 Sony Corp Method for manufacturing lithium cobalt oxide
JP5079951B2 (en) * 2001-06-27 2012-11-21 株式会社三徳 Non-aqueous electrolyte secondary battery positive electrode active material, its manufacturing method, non-aqueous electrolyte secondary battery, and positive electrode manufacturing method
JP2003034536A (en) * 2001-07-19 2003-02-07 Mitsubishi Chemicals Corp Method for producing laminar lithium nickel manganese complex oxide powder
JP4447831B2 (en) * 2002-10-18 2010-04-07 ソニー株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery
US7763386B2 (en) 2002-01-08 2010-07-27 Sony Corporation Cathode active material and non-aqueous electrolyte secondary cell using same
US7410511B2 (en) 2002-08-08 2008-08-12 Matsushita Electric Industrial Co., Ltd. Production method of positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material
JP4374930B2 (en) * 2003-07-04 2009-12-02 パナソニック株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2005339887A (en) * 2004-05-25 2005-12-08 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
CN100423328C (en) * 2005-01-14 2008-10-01 哈尔滨光宇电源股份有限公司 Preparation method of positive electrode material of lithium ion secondary cell
US7906239B2 (en) 2006-03-06 2011-03-15 Sony Corporation Cathode active material, method for producing the same, and nonaqueous electrolyte secondary battery
CN102044672A (en) 2006-04-07 2011-05-04 三菱化学株式会社 Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery
JP5079291B2 (en) * 2006-09-21 2012-11-21 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP4613943B2 (en) * 2006-11-10 2011-01-19 三菱化学株式会社 Lithium transition metal-based compound powder, method for producing the same, spray-dried body as a pre-fired body, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2009032647A (en) * 2007-06-25 2009-02-12 Mitsubishi Chemicals Corp Material for positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery using it, and lithium secondary battery
WO2010064440A1 (en) 2008-12-04 2010-06-10 戸田工業株式会社 Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
JP5699436B2 (en) 2009-03-23 2015-04-08 住友化学株式会社 Method for producing layered structure lithium composite metal oxide
JP6750577B2 (en) * 2017-07-12 2020-09-02 トヨタ自動車株式会社 Powder evaluation method

Also Published As

Publication number Publication date
JPH11219706A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
JP3355126B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
CN112750999B (en) Cathode material, preparation method thereof and lithium ion battery
EP3296267B1 (en) Spherical or spherical-like lithium ion battery cathode material, preparation method and application thereof
EP2264815A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
EP0849817A2 (en) Positive active material for lithium battery having the same, and method for producing the same
US7241532B2 (en) Positive-electrode material for lithium secondary battery, secondary battery employing the same, and process for producing positive-electrode material for lithium secondary battery
WO2011155523A1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP4951638B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP2009120480A (en) Cobalt oxide particle powder and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
JPH1167209A (en) Lithium secondary battery
JP2005011713A (en) Positive electrode material for lithium secondary battery and its manufacturing method
KR20110044936A (en) Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same
JP4172622B2 (en) Lithium-containing composite oxide and method for producing the same
CN116031380A (en) Polycrystalline sodium ion-like positive electrode material, and preparation method and application thereof
JP3503688B2 (en) Lithium secondary battery
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JP3709446B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
KR20080088177A (en) Spinel type cathode active material for lithium secondary batteries and manufacturing method for the same
JPH10162830A (en) Positive electrode active material for lithium secondary battery, and secondary battery using same
CN116190631A (en) Lithium-rich manganese-based positive electrode active material and battery
CN114430031B (en) Cobalt-free cathode material and preparation method and application thereof
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JPH11213999A (en) Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery
JP6008578B2 (en) Method for producing positive electrode active material for secondary battery and secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130927

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees