JP2003034536A - Method for producing laminar lithium nickel manganese complex oxide powder - Google Patents

Method for producing laminar lithium nickel manganese complex oxide powder

Info

Publication number
JP2003034536A
JP2003034536A JP2001218995A JP2001218995A JP2003034536A JP 2003034536 A JP2003034536 A JP 2003034536A JP 2001218995 A JP2001218995 A JP 2001218995A JP 2001218995 A JP2001218995 A JP 2001218995A JP 2003034536 A JP2003034536 A JP 2003034536A
Authority
JP
Japan
Prior art keywords
composite oxide
oxide powder
lithium nickel
nickel manganese
layered lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001218995A
Other languages
Japanese (ja)
Other versions
JP2003034536A5 (en
Inventor
Kazuhiro Kikuchi
一寛 菊地
Koji Shima
耕司 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001218995A priority Critical patent/JP2003034536A/en
Publication of JP2003034536A publication Critical patent/JP2003034536A/en
Publication of JP2003034536A5 publication Critical patent/JP2003034536A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a laminar lithium nickel manganese complex oxide powder, which has a high bulk density and is preferably used for the positive electrode active substance of lithium secondary cell. SOLUTION: A slurry contains at least a lithium source compound, a nickel source compound, and a manganese source compound, which are crushed and mixed, in a weight ratio of nickel atom [Ni] to manganese atom [Mn] of 0.7 to 90. The slurry is dried through spray drying and is fired to obtain a laminar lithium nickel manganese complex oxide powder and thereafter is pulverized to obtain the product laminar lithium nickel manganese complex oxide powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、層状リチウムニッ
ケルマンガン複合酸化物粉体の製造方法に関し、特に高
嵩密度を有し、リチウム二次電池の正極活物質として用
いるに好適な層状リチウムニッケルマンガン複合酸化物
粉体の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a layered lithium nickel manganese composite oxide powder, and particularly to a layered lithium nickel manganese having a high bulk density and suitable for use as a positive electrode active material of a lithium secondary battery. The present invention relates to a method for producing a composite oxide powder.

【0002】[0002]

【従来の技術】従来より、リチウム二次電池は、高エネ
ルギー密度及び高出力密度等に優れ、小型化・軽量化で
きることから、ノート型パソコン、携帯電話、ハンディ
ビデオカメラ等の携帯機器の電源として急激な伸びを示
しており、そのリチウム二次電池の正極活物質として
は、リチウムと、コバルト、ニッケル、マンガン等の遷
移金属との複合酸化物、例えば、リチウムコバルト複合
酸化物、リチウムニッケル複合酸化物、リチウムマンガ
ン複合酸化物等が、高性能の電池特性が得られることか
ら注目され、一部実用化に到っている。
2. Description of the Related Art Conventionally, lithium secondary batteries are excellent in high energy density and high output density and can be made compact and lightweight, so that they are used as a power source for portable devices such as laptop computers, mobile phones and handy video cameras. The positive electrode active material of the lithium secondary battery, which shows a rapid growth, is a composite oxide of lithium and a transition metal such as cobalt, nickel or manganese, for example, a lithium cobalt composite oxide or a lithium nickel composite oxide. , Lithium manganese composite oxides, and the like have attracted attention because they can obtain high-performance battery characteristics, and have been partially put into practical use.

【0003】更に、複合酸化物としての安定化や、電池
としての高容量化或いは高温での電池特性の改良等を目
的とし、経済性等も勘案して、それらの遷移金属原子の
一部を他の金属原子で置換した各種の複合酸化物の研究
も進められており、その中で、LiNi1-x Mnx 2
(0<x<1)で表される層状リチウムニッケルマンガ
ン複合酸化物が注目され、例えば、Solid State Ionics
311-318(1992)、J. Mater. Chem. 1149-1155(1996) 、
J. Power Sources 629-633(1997)、J. Power Sources 4
6-53(1998)等には、0≦x≦0.5の層状複合酸化物の
単一相の合成例が報告され、又、第41回電池討論会2D20
(2000)では、x=0.5、即ちNi/Mn=1の単一相
の合成例が報告されている。
Furthermore, for the purpose of stabilizing the compound oxide, increasing the capacity of the battery, improving the battery characteristics at high temperatures, etc., and considering the economical efficiency, a part of these transition metal atoms is considered. Research on various complex oxides substituted with other metal atoms is also underway, among which LiNi 1-x Mn x O 2
Layered lithium nickel manganese composite oxides represented by (0 <x <1) have attracted attention, and for example, Solid State Ionics
311-318 (1992), J. Mater. Chem. 1149-1155 (1996),
J. Power Sources 629-633 (1997), J. Power Sources 4
6-53 (1998) et al. Reported an example of synthesizing a single phase of a layered composite oxide with 0 ≦ x ≦ 0.5, and the 41st Battery Symposium 2D20.
(2000) reported a single-phase synthesis example in which x = 0.5, that is, Ni / Mn = 1.

【0004】一方、これらの複合酸化物の製造方法とし
ては、例えば、リチウム源化合物と前記の如き遷移金属
源化合物等を、粉砕及び混合した後、焼成する等の乾式
法、又は、リチウム源化合物と前記の如き遷移金属源化
合物等とを水等の媒体に分散させ粉砕及び混合したスラ
リーを、或いは、リチウム源化合物と前記の如き遷移金
属源化合物等を粉砕した後、水等の媒体に分散させ混合
したスラリーを、噴霧乾燥等により乾燥させた後、焼成
する等の湿式法等の方法があるが、得られる複合酸化物
粉体を球状に形成でき、高嵩密度の粉体が得られ易いこ
とから、後者湿式法の方が優れる方法とされている。
On the other hand, as a method for producing these composite oxides, for example, a lithium source compound and a transition metal source compound as described above are pulverized and mixed, and then dried, or a lithium method is used. And a transition metal source compound or the like as described above are dispersed and pulverized and mixed in a medium such as water, or a lithium source compound and the transition metal source compound or the like as described above are pulverized and then dispersed in a medium such as water. There is a method such as a wet method in which the mixed and mixed slurry is dried by spray drying or the like and then baked, but the obtained composite oxide powder can be formed into a spherical shape, and a powder having a high bulk density can be obtained. The latter wet method is considered to be superior because it is easy.

【0005】しかしながら、本発明者等の検討による
と、従来知られている層状リチウムニッケルマンガン複
合酸化物は、前記湿式法によって製造される複合酸化物
であっても、スピネル型複合酸化物等に比して、粉体嵩
密度が低く、そのため、正極活物質として正極に用いた
ときに、一定のエネルギー容量を確保するためには電池
を大型化せざるを得ず、又、電池を小型化すると低エネ
ルギー容量しか得られない等の問題を内在するものであ
ることが判明した。
However, according to the study by the present inventors, the conventionally known layered lithium nickel manganese composite oxide is a spinel type composite oxide or the like even if it is a composite oxide produced by the wet method. In comparison, the bulk density of the powder is low, so when used as a positive electrode active material in the positive electrode, the battery must be upsized in order to secure a certain energy capacity, and the battery must be downsized. Then, it was found that there was a problem that only low energy capacity was obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来技術と
しての層状リチウムニッケルマンガン複合酸化物粉体に
おける前記問題を解決すべくなされたものであって、従
って、本発明は、高嵩密度を有し、リチウム二次電池の
正極活物質として用いるに好適な層状リチウムニッケル
マンガン複合酸化物粉体の製造方法を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems in the layered lithium nickel manganese composite oxide powder as the prior art. Therefore, the present invention provides a high bulk density. An object of the present invention is to provide a method for producing a layered lithium nickel manganese composite oxide powder that has and is suitable for use as a positive electrode active material of a lithium secondary battery.

【0007】[0007]

【課題を解決するための手段】本発明者等は、前記課題
を解決すべく鋭意検討した結果、層状リチウムニッケル
マンガン複合酸化物粉体を更に粉砕することによって前
記目的を達成できることを見出し本発明に到達したもの
で、従って、本発明は、粉砕及び混合された少なくとも
リチウム源化合物とニッケル源化合物とマンガン源化合
物とを、ニッケル原子〔Ni〕とマンガン原子〔Mn〕
とのモル比〔Ni/Mn〕として0.7〜9.0の範囲
で含有するスラリーを、噴霧乾燥により乾燥させ、焼成
することにより層状リチウムニッケルマンガン複合酸化
物粉体となした後、該複合酸化物粉体を粉砕する層状リ
チウムニッケルマンガン複合酸化物粉体の製造方法、を
要旨とする。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be achieved by further pulverizing a layered lithium nickel manganese composite oxide powder. Therefore, according to the present invention, at least a lithium source compound, a nickel source compound and a manganese source compound, which have been ground and mixed, are mixed with nickel atom [Ni] and manganese atom [Mn].
And a slurry containing it in a molar ratio [Ni / Mn] of 0.7 to 9.0 by spray drying and firing to form a layered lithium nickel manganese composite oxide powder. The gist is a method for producing a layered lithium nickel manganese composite oxide powder by pulverizing the composite oxide powder.

【0008】[0008]

【発明の実施の形態】本発明においては、先ず、粉砕及
び混合された少なくともリチウム源化合物とニッケル源
化合物とマンガン源化合物とを含有するスラリーを、噴
霧乾燥により乾燥させ、焼成することにより層状リチウ
ムニッケルマンガン複合酸化物粉体となす。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, first, a slurry containing at least a lithium source compound, a nickel source compound and a manganese source compound, which has been ground and mixed, is dried by spray drying and then calcined to form a layered lithium. Made of nickel manganese composite oxide powder.

【0009】ここで、リチウム源化合物、ニッケル源化
合物、及びマンガン源化合物としては、リチウム、ニッ
ケル、及びマンガンの各酸化物、水酸化物、炭酸塩、硝
酸塩、硫酸塩、蓚酸塩、カルボン酸塩、アルキル化物、
ハロゲン化物等が挙げられ、これらの中から、スラリー
化における媒体への分散或いは溶解性、複合酸化物への
反応性、及び、焼成時におけるNOx 、SOx 等の非発
生性等を考慮して選択される。
Here, the lithium source compound, the nickel source compound, and the manganese source compound include lithium, nickel, and manganese oxides, hydroxides, carbonates, nitrates, sulfates, oxalates, and carboxylates. , Alkylated,
Halides and the like can be mentioned, and among these, consideration is given to dispersion or solubility in a medium during slurry formation, reactivity to a composite oxide, and non-generation of NO x , SO x, etc. during firing. Selected.

【0010】そのリチウム源化合物としては、具体的に
は、例えば、Li2 O、LiOH、LiOH・H2 O、
Li2 CO3 、LiNO3 、LiOCOCH3 、Li3
(OCOC)3 4 OH(クエン酸リチウム)、LiC
3 、LiC2 5 、LiCl、LiI等が挙げられ、
中で、LiOH・H2 O、Li2 CO3 、LiNO3
LiCH3 CO2 が好ましく、LiOH・H2 Oが特に
好ましい。
Specific examples of the lithium source compound include Li 2 O, LiOH, LiOH.H 2 O,
Li 2 CO 3 , LiNO 3 , LiOCOCH 3 , Li 3
(OCOC) 3 H 4 OH (lithium citrate), LiC
H 3 , LiC 2 H 5 , LiCl, LiI and the like can be mentioned,
Among them, LiOH.H 2 O, Li 2 CO 3 , LiNO 3 ,
LiCH 3 CO 2 is preferable, and LiOH.H 2 O is particularly preferable.

【0011】又、ニッケル源化合物としては、具体的に
は、例えば、NiO、Ni(OH) 2 、NiOOH、N
iCO3 ・2Ni(OH)2 ・4H2 O、Ni(N
3 2・6H2 O、NiSO4 、NiSO4 ・6H2
O、Ni(OCO)2 ・2H2 O、 Ni(OCOCH
3 2 、NiCl2 等が挙げられ、中で、NiO、Ni
(OH)2 、NiOOH、NiCO3 ・2Ni(OH)
2 ・4H2 O、NiC2 4 ・2H2 Oが好ましく、N
iO、Ni(OH)2 、NiOOHが特に好ましい。
Specific examples of the nickel source compound include
Is, for example, NiO, Ni (OH) 2, NiOOH, N
iCO3・ 2Ni (OH)2・ 4H2O, Ni (N
O3)2・ 6H2O, NiSOFour, NiSOFour・ 6H2
O, Ni (OCO)2・ 2H2O, Ni (OCOCH
3)2, NiCl2Etc., among them, NiO, Ni
(OH)2, NiOOH, NiCO3・ 2Ni (OH)
2・ 4H2O, NiC2O Four・ 2H2O is preferred, N
iO, Ni (OH)2, NiOOH are particularly preferred.

【0012】又、マンガン源としては、具体的には、例
えば、MnO2 、Mn2 3 、Mn 3 4 、MnOO
H、MnCO3 、Mn(NO3 2 、MnSO4 、Mn
(OCOCH3 2 、Mn(OCOCH3 3 、MnC
2 、MnCi3 等が挙げられ、中で、MnO2 、Mn
2 3 、Mn3 4 、MnOOHが好ましく、Mn
2、Mn2 3 、Mn3 4 が特に好ましい。
Specific examples of the manganese source include
For example, MnO2, Mn2O3, Mn 3OFour, MnOO
H, MnCO3, Mn (NO3)2, MnSOFour, Mn
(OCOCH3)2, Mn (OCOCH3)3, MnC
l2, MnCi3And the like, among which MnO2, Mn
2O3, Mn3OFour, MnOOH is preferable, and Mn
O2, Mn2O3, Mn3OFourIs particularly preferable.

【0013】尚、本発明において、前記リチウム源、ニ
ッケル源、及びマンガン源の各化合物としては、化合物
の状態でスラリー媒体中に存在する場合の外、スラリー
媒体中でカチオンとアニオンとに解離し、リチウムカチ
オン、ニッケルカチオン、或いはマンガンカチオンとし
て存在する場合も含むものとする。
In the present invention, the lithium source compound, the nickel source compound, and the manganese source compound are dissociated into cations and anions in the slurry medium, as well as when they exist in the slurry medium in the form of compounds. , Lithium cations, nickel cations, or manganese cations are also included.

【0014】又、本発明においては、前記リチウム源化
合物、ニッケル源化合物、及びマンガン源化合物を含有
するスラリーには、これらの化合物の他に、マグネシウ
ム源化合物、アルミニウム源化合物、カルシウム源化合
物、鉄源化合物、及びコバルト源化合物からなる群から
選択されるいずれかの化合物を更に含有していてもよ
い。
Further, in the present invention, the slurry containing the lithium source compound, the nickel source compound and the manganese source compound, in addition to these compounds, a magnesium source compound, an aluminum source compound, a calcium source compound, iron. It may further contain any compound selected from the group consisting of the source compound and the cobalt source compound.

【0015】ここで、マグネシウム源化合物、アルミニ
ウム源化合物、カルシウム源化合物、鉄源化合物、及び
コバルト源化合物としては、マグネシウム、アルミニウ
ム、カルシウム、鉄、及びコバルトの各酸化物、水酸化
物、炭酸塩、硝酸塩、硫酸塩、蓚酸塩、タングステン酸
塩、カルボン酸塩、アルキル化物、ハロゲン化、炭化物
等が挙げられるが、これらの中から、スラリー化におけ
る媒体への分散或いは溶解性、複合酸化物への反応性、
及び、焼成時におけるNOx 、SOx 等の非発生性等を
考慮して選択される。
Here, the magnesium source compound, the aluminum source compound, the calcium source compound, the iron source compound, and the cobalt source compound include magnesium oxide, aluminum oxide, calcium oxide, iron oxide, cobalt oxide, hydroxide, and carbonate. , Nitrates, sulfates, oxalates, tungstates, carboxylates, alkylated compounds, halogenated compounds, carbides, and the like. Among these, dispersion or solubility in a medium in slurry formation, to complex oxides Reactivity of
Also, it is selected in consideration of non-generation of NO x , SO x and the like during firing.

【0016】そのマグネシウム源化合物としては、具体
的には、例えば、MgO、Mg(OH)2 、Mg(NO
3 2 ・6H2 O、MgSO4 、Mg(OCO)2 ・2
2O、Mg(OCOCH3 2 ・4H2 O、MgCl
2 等が挙げられ、中で、MgO、Mg(OH)2 が好ま
しく、Mg(OH)2 が特に好ましい。
Specific examples of the magnesium source compound include MgO, Mg (OH) 2 and Mg (NO).
3) 2 · 6H 2 O, MgSO 4, Mg (OCO) 2 · 2
H 2 O, Mg (OCOCH 3 ) 2 · 4H 2 O, MgCl
2, and the like, of which, MgO and Mg (OH) 2 are preferable, and Mg (OH) 2 is particularly preferable.

【0017】又、アルミニウム源化合物としては、具体
的には、例えば、Al2 3 、Al(OH)3 、AlO
OH、Al(NO3 3 ・9H2 O、Ai2 (SO4
3 、AlCl3 等が挙げられ、中で、Al2 3 、Al
(OH)3 、AlOOHが好ましく、AlOOHが特に
好ましい。
Specific examples of the aluminum source compound include Al 2 O 3 , Al (OH) 3 and AlO.
OH, Al (NO 3) 3 · 9H 2 O, Ai 2 (SO 4)
3 , AlCl 3 and the like, among which Al 2 O 3 , Al
(OH) 3 and AlOOH are preferable, and AlOOH is particularly preferable.

【0018】又、カルシウム源化合物としては、具体的
には、例えば、CaO、Ca(OH)2 、CaCO3
Ca(NO3 2 ・4H2 O、CaSO4 ・2H2 O、
Ca(OCO)2 ・H2 O、CaWO4 、Ca(OCO
CH3 2 ・H2 O、CaCl2 、CaC2 等が挙げら
れ、中で、CaO、Ca(OH)2 、CaCO3 が好ま
しく、Ca(OH)2 が特に好ましい。
Specific examples of the calcium source compound include CaO, Ca (OH) 2 , CaCO 3 , and
Ca (NO 3) 2 · 4H 2 O, CaSO 4 · 2H 2 O,
Ca (OCO) 2 · H 2 O, CaWO 4 , Ca (OCO
CH 3) 2 · H 2 O , CaCl 2, CaC 2 , and the like, in, CaO, Ca (OH) are preferred 2, CaCO 3, Ca (OH ) 2 is particularly preferred.

【0019】又、鉄源化合物としては、具体的には、例
えば、Fe2 3 、Fe3 4 、FeOOH、Fe(N
3 3 ・9H2 O、FeSO4 ・7H2 O、Fe
2 (SO 4 3 ・nH2 O、Fe(OCO)2 ・2H2
O、FeCl2 、FeCl3 等が挙げられ、中で、Fe
2 3 、Fe3 4 、FeOOHが好ましく、Fe2
3、FeOOHが特に好ましい。
Specific examples of the iron source compound include:
For example, Fe2O3, Fe3OFour, FeOOH, Fe (N
O3)3・ 9H2O, FeSOFour・ 7H2O, Fe
2(SO Four)3・ NH2O, Fe (OCO)2・ 2H2
O, FeCl2, FeCl3Etc., among which, Fe
2O3, Fe3OFour, FeOOH is preferable, and Fe2O
3, FeOOH are particularly preferred.

【0020】又、コバルト源化合物としては、具体的に
は、例えば、CoO、Co2 3 、Co3 4 、Co
(OH)2 、Co(NO3 2 ・6H2 O、Co(SO
4 2・7H2 0、Co(OCOCH3 2 ・4H
2 O、CoCl2 等が挙げられ、中で、CoO、Co2
3 、Co3 4 、Co(OH)2 が好ましく、Co
(OH)2 が特に好ましい。
Specific examples of the cobalt source compound include CoO, Co 2 O 3 , Co 3 O 4 and Co.
(OH) 2, Co (NO 3) 2 · 6H 2 O, Co (SO
4) 2 · 7H 2 0, Co (OCOCH 3) 2 · 4H
2 O, CoCl 2, etc., among which CoO, Co 2
O 3 , Co 3 O 4 , and Co (OH) 2 are preferable, and Co
(OH) 2 is particularly preferred.

【0021】尚、前記マグネシウム源化合物、アルミニ
ウム源化合物、カルシウム源化合物、鉄源化合物、及び
コバルト源化合物の中で、マグネシウム源化合物、アル
ミニウム源化合物、コバルト源化合物が好ましく、アル
ミニウム源化合物、コバルト源化合物が特に好ましい。
又、これらの各化合物としても、化合物の状態でスラリ
ー媒体中に存在する場合の外、スラリー媒体中でカチオ
ンとアニオンとに解離し、マグネシウムカチオン、アル
ミニウムカチオン、カルシウムカチオン、鉄カチオン、
或いはコバルトカチオンとして存在する場合も含むもの
とする。
Among the magnesium source compound, aluminum source compound, calcium source compound, iron source compound, and cobalt source compound, the magnesium source compound, aluminum source compound, and cobalt source compound are preferable, and the aluminum source compound and cobalt source compound are preferable. Compounds are particularly preferred.
Further, also as each of these compounds, except when present in the slurry medium in the form of a compound, dissociates into cations and anions in the slurry medium, magnesium cations, aluminum cations, calcium cations, iron cations,
Alternatively, the case where it exists as a cobalt cation is also included.

【0022】本発明において、少なくとも前記リチウム
源化合物とニッケル源化合物とマンガン源化合物とを含
有し、必要に応じて、前記マグネシウム源化合物、アル
ミニウム源化合物、カルシウム源化合物、鉄源化合物、
及びコバルト源化合物からなる群から選択されるいずれ
かの化合物を含有するスラリーは、水等の媒体中にこれ
らの化合物を加え、媒体攪拌式粉砕機等の湿式粉砕機を
用いて粉砕及び混合するか、或いは、これらの化合物を
ハンマーミル、ロールミル、ボールミル、ジェットミル
等の乾式粉砕機を用いて粉砕した後、水等の媒体中に加
え混合する等の方法により調製されるが、水等の媒体中
で粉砕及び混合する前者方法が、均一なスラリーが得ら
れる上で好ましい。
In the present invention, at least the lithium source compound, the nickel source compound, and the manganese source compound are contained, and if necessary, the magnesium source compound, the aluminum source compound, the calcium source compound, the iron source compound,
And a slurry containing any compound selected from the group consisting of cobalt source compounds, the compounds are added to a medium such as water, and the mixture is pulverized and mixed using a wet pulverizer such as a medium agitation pulverizer. Alternatively, these compounds are prepared by pulverizing with a dry pulverizer such as a hammer mill, a roll mill, a ball mill and a jet mill, and then adding them into a medium such as water and mixing them. The former method of grinding and mixing in a medium is preferable because a uniform slurry is obtained.

【0023】そして、本発明においては、前記スラリー
は、前記ニッケル源化合物とマンガン源化合物とを、ニ
ッケル原子〔Ni〕とマンガン原子〔Mn〕とのモル比
〔Ni/Mn〕として0.7〜9.0の範囲で含有する
ことが必要であり、Ni/Mnとして0.8〜1.2の
範囲とするのが好ましく、0.9〜1.1の範囲とする
のが更に好ましく、0.95〜1.05の範囲とするの
が特に好ましい。Ni/Mnの値が前記範囲未満では、
層状リチウムニッケルマンガン複合酸化物を単一相で合
成することが困難となり、一方、前記範囲超過では、経
済性の面で不利となる。
In the present invention, the slurry contains the nickel source compound and the manganese source compound in a molar ratio [Ni / Mn] of nickel atom [Ni] and manganese atom [Mn] of 0.7 to. The Ni / Mn content is required to be in the range of 9.0, preferably 0.8 to 1.2 as Ni / Mn, more preferably 0.9 to 1.1, and A range of 0.95 to 1.05 is particularly preferable. When the value of Ni / Mn is less than the above range,
It becomes difficult to synthesize the layered lithium-nickel-manganese composite oxide in a single phase. On the other hand, if it exceeds the above range, it is economically disadvantageous.

【0024】尚、その際のスラリー中における化合物全
体による固形分濃度としては、後述する噴霧乾燥により
形成される粉体粒子径を最適な範囲に確保する上で、通
常10重量%以上、好ましくは12.5重量%以上と
し、又、均一なスラリーを確保する上で、通常50重量
%以下、好ましくは35重量%以下とする。
The solid content concentration of the whole compound in the slurry at that time is usually 10% by weight or more, preferably in order to secure the powder particle size formed by spray drying described later in an optimum range. It is 12.5% by weight or more, and usually 50% by weight or less, preferably 35% by weight or less in order to secure a uniform slurry.

【0025】又、スラリー中における各化合物の平均粒
子径は、前述の粉砕混合方法及びその条件により制御す
ることができるが、レーザー回折/散乱式粒度分布測定
装置により測定した値として、後述する焼成における反
応性、及び高嵩密度を確保する上で、通常2μm以下、
好ましくは1μm以下、更に好ましくは0.5μm以下
とし、又、経済性の面から、通常0.01μm以上、好
ましくは0.05μm以上、更に好ましくは0.1μm
以上とする。
The average particle size of each compound in the slurry can be controlled by the above-described pulverizing and mixing method and the conditions thereof, but as a value measured by a laser diffraction / scattering type particle size distribution measuring device, calcination described later is carried out. In order to secure the reactivity and high bulk density in
It is preferably 1 μm or less, more preferably 0.5 μm or less, and from the viewpoint of economy, it is usually 0.01 μm or more, preferably 0.05 μm or more, more preferably 0.1 μm.
That is all.

【0026】又、スラリーの粘度としては、BM型粘度
計により測定した値として、後述する噴霧乾燥により形
成される粉体粒子径を最適な範囲に確保する上で、通常
50mPa・秒以上、好ましくは100mPa・秒以
上、更に好ましくは200mPa・秒以上とし、又、ス
ラリーの取扱性を確保する上で、通常3000mPa・
秒以下、好ましくは2000mPa・秒以下、更に好ま
しくは1600mPa・秒以下とする。
The viscosity of the slurry is usually 50 mPa · sec or more, preferably 50 mPa · sec or more, as a value measured by a BM type viscometer in order to secure the powder particle diameter formed by spray drying described later in an optimum range. Is 100 mPa · sec or more, more preferably 200 mPa · sec or more, and in order to ensure the handleability of the slurry, it is usually 3000 mPa · sec.
Seconds or less, preferably 2000 mPa · sec or less, more preferably 1600 mPa · sec or less.

【0027】本発明において、粉砕及び混合された少な
くとも前記リチウム源化合物とニッケル源化合物とマン
ガン源化合物とを含有する前記スラリーを、噴霧乾燥に
より乾燥させ、焼成することにより層状リチウムニッケ
ルマンガン複合酸化物粉体となす。
In the present invention, the slurry containing at least the lithium source compound, the nickel source compound, and the manganese source compound, which have been crushed and mixed, is dried by spray drying and fired to form a layered lithium nickel manganese composite oxide. Eat with powder.

【0028】ここで、噴霧乾燥とは、前記スラリーを液
滴化して加熱された気体流中へ噴霧飛散させ、該気体流
で搬送しながら急速に乾燥させて粉体を得る公知の乾燥
法であり、その装置としては、例えば、ロータリーアト
マイザー、二流体ノズル型或いは四流体ノズル型スプレ
ードライヤー等が挙げられる。又、液滴化する際の加圧
気体としては、空気、窒素等が用いられ、そのガス線速
としては、通常100m/秒以上、好ましくは200m
/秒以上、更に好ましくは300m/秒以上とし、通常
1000m/秒以下とする。又、加熱された気体流とし
ては、通常50℃以上、好ましくは70℃以上とし、通
常120℃以下、好ましくは100℃以下の温度とす
る。
Here, spray drying is a known drying method in which the slurry is formed into droplets, sprayed and dispersed in a heated gas stream, and rapidly dried while being conveyed by the gas stream to obtain a powder. There are, for example, a rotary atomizer, a two-fluid nozzle type or a four-fluid nozzle type spray dryer, and the like. Air, nitrogen or the like is used as the pressurized gas for forming the liquid droplets, and the gas linear velocity is usually 100 m / sec or more, preferably 200 m
/ Sec or more, more preferably 300 m / sec or more, and usually 1000 m / sec or less. The heated gas flow is usually 50 ° C. or higher, preferably 70 ° C. or higher, and usually 120 ° C. or lower, preferably 100 ° C. or lower.

【0029】この噴霧乾燥により、前記各化合物の粉砕
混合物としての球形状の粉体が得られる。その粉体の平
均粒子径は、前述の噴霧方法、ノズル形状、加圧気体噴
射速度、スラリー供給速度、加熱気体流温度等によって
制御することができるが、レーザー回折/散乱式粒度分
布測定装置により測定した値として、好ましくは50μ
m以下、更に好ましくは30μm以下とし、通常4μm
以上、好ましくは5μm以上とする。
By this spray drying, a spherical powder as a pulverized mixture of the above compounds is obtained. The average particle diameter of the powder can be controlled by the above-mentioned spraying method, nozzle shape, pressurized gas injection rate, slurry supply rate, heated gas flow temperature, etc., but with a laser diffraction / scattering particle size distribution measuring device. The measured value is preferably 50μ
m or less, more preferably 30 μm or less, usually 4 μm
Or more, preferably 5 μm or more.

【0030】前記噴霧乾燥により得られた粉体を、例え
ば、箱型炉、管状炉、トンネル炉、ロータリーキルン等
の装置内で、空気等の酸素含有ガス或いは酸素ガス雰囲
気下、又は、窒素、アルゴン等の不活性ガス雰囲気下、
好ましくは酸素含有ガス或いは酸素ガス雰囲気下、加熱
処理し焼成する。
The powder obtained by the spray drying is, for example, in an apparatus such as a box furnace, a tubular furnace, a tunnel furnace, and a rotary kiln under an oxygen-containing gas such as air or an oxygen gas atmosphere, or nitrogen, argon. In an inert gas atmosphere such as
Preferably, heat treatment and firing are performed in an oxygen-containing gas or oxygen gas atmosphere.

【0031】その際の焼成温度としては、反応性を確保
する上で、通常200℃以上、好ましくは600℃以
上、更に好ましくは800℃以上とし、又、欠陥のない
層状複合酸化物を形成する上で、通常1050℃以下、
好ましくは1000℃以下、更に好ましくは950℃以
下とする、尚、その際の加熱時間としては、0.5〜5
0時間程度とし、加熱処理後、5℃/分以下の速度で徐
冷するのが好ましい。
The firing temperature at that time is usually 200 ° C. or higher, preferably 600 ° C. or higher, more preferably 800 ° C. or higher in order to secure reactivity, and a layered composite oxide having no defects is formed. Above, usually 1050 ℃ or less,
The temperature is preferably 1000 ° C. or lower, more preferably 950 ° C. or lower, and the heating time at that time is 0.5 to 5
It is preferable that the heating time is about 0 hours, and after the heat treatment, the material is gradually cooled at a rate of 5 ° C./minute or less.

【0032】本発明の層状リチウムニッケルマンガン複
合酸化物粉体の製造方法は、以上の如くして、粉砕及び
混合された少なくとも前記リチウム源化合物とニッケル
源化合物とマンガン源化合物とを含有する前記スラリー
を、噴霧乾燥により乾燥させ、焼成することにより前記
層状リチウムニッケルマンガン複合酸化物粉体となした
後、該複合酸化物粉体を粉砕することを必須とする。
In the method for producing the layered lithium nickel manganese composite oxide powder of the present invention, the slurry containing at least the lithium source compound, the nickel source compound, and the manganese source compound pulverized and mixed as described above is used. It is indispensable that the layered lithium-nickel-manganese composite oxide powder is obtained by drying by spray drying and firing, and then pulverizing the composite oxide powder.

【0033】ここで、粉砕は、基本的には、前記層状リ
チウムニッケルマンガン複合酸化物粉体の製造における
と同様にして、水等の媒体中に該複合酸化物粉体を加
え、湿式粉砕機を用いて湿式粉砕し、乾燥させるか、或
いは、該複合酸化物粉体を乾式粉砕機を用いて乾式粉砕
する等によりなされるが、前者の湿式粉砕による方法
が、均一な球形粉体を得る上で好ましい。尚、前者の湿
式粉砕による場合の乾燥は、前記層状リチウムニッケル
マンガン複合酸化物粉体の製造におけると同様にして、
噴霧乾燥によるのが好ましい。又、後者の乾式粉砕によ
る場合には、粉砕後の粉体に球形処理を施すのが好まし
い。
Here, the pulverization is basically the same as in the production of the layered lithium nickel manganese composite oxide powder, and the complex oxide powder is added to a medium such as water, and the wet pulverizer is used. It is carried out by wet pulverizing with a dry powder, or by dry pulverizing the composite oxide powder with a dry pulverizer. The former wet pulverizing method gives a uniform spherical powder. It is preferable above. In the case of the former wet pulverization, drying is performed in the same manner as in the production of the layered lithium nickel manganese composite oxide powder,
Preferably by spray drying. In the latter case of dry pulverization, it is preferable to subject the pulverized powder to spherical treatment.

【0034】又、粉砕後の複合酸化物には、粉体の機械
的強度を確保する上で、加熱処理を施すのが好ましく、
その加熱処理方法としては、基本的には、前記層状リチ
ウムニッケルマンガン複合酸化物粉体の製造における焼
成と同様の方法を採るのが好ましい。尚、その際の加熱
温度としては、通常700℃以上、好ましくは750℃
以上、更に好ましくは800℃以上とし、通常1050
℃以下、好ましくは1000℃以下、更に好ましくは9
50℃以下とする。
Further, the pulverized composite oxide is preferably subjected to a heat treatment in order to secure the mechanical strength of the powder,
As the heat treatment method, it is basically preferable to adopt the same method as the firing in the production of the layered lithium nickel manganese composite oxide powder. The heating temperature at that time is usually 700 ° C. or higher, preferably 750 ° C.
Or higher, more preferably 800 ° C. or higher, usually 1050
℃ or less, preferably 1000 ℃ or less, more preferably 9
It shall be 50 ° C or lower.

【0035】本発明の層状リチウムニッケルマンガン複
合酸化物粉体の製造方法による層状リチウムニッケルマ
ンガン複合酸化物は、下記一般式(I)で表される複合
酸化物であるのが好ましい。
The layered lithium nickel manganese composite oxide produced by the method for producing a layered lithium nickel manganese composite oxide powder of the present invention is preferably a composite oxide represented by the following general formula (I).

【0036】[0036]

【化2】 Lix Niy Mnz (1-Y-Z) 2 (I)Embedded image Li x Ni y Mn z Q (1-YZ) O 2 (I)

【0037】〔式(I)中、xは、0<x≦1.2の数
であり、y及びzはそれぞれ、0.7≦y/z≦9.
0、及び、0≦1−y−z≦0.5の関係を満たす数で
あり、Qは、Mg、Al、Ca、Fe、及びCoからな
る群から選択されるいずれかの金属原子を示す。〕
[In the formula (I), x is a number of 0 <x ≦ 1.2, and y and z are 0.7 ≦ y / z ≦ 9.
0 and a number satisfying the relationship of 0 ≦ 1-yz ≦ 0.5, and Q represents any metal atom selected from the group consisting of Mg, Al, Ca, Fe, and Co. . ]

【0038】前記式(I)において、0<x≦1.1で
あるのが好ましく、xが前記範囲超過では、層状複合酸
化物として結晶構造が不安定となり、電池に用いたとき
に電池容量の低下を引き起こす傾向となる。又、0.8
≦y/z≦1.2であるのが好ましく、0.9≦y/z
≦1.1であるのが更に好ましく、0.95≦y/z≦
1.05であるのが特に好ましい。y/zが前記範囲未
満では、層状複合酸化物を単一相で得ることが困難な傾
向となり、一方、前記範囲超過では、経済性の面で不利
となる。又、0≦1−y−z≦0.35であるのが好ま
しく、0≦1−y−z≦0.25であるのが更に好まし
い。1−y−zが前記範囲超過では、電池に用いたとき
に電池容量の低下を引き起こす傾向となる。
In the above formula (I), it is preferable that 0 <x ≦ 1.1. If x exceeds the above range, the crystal structure of the layered composite oxide becomes unstable, and the battery capacity when used in a battery. Will tend to cause a decrease in Also, 0.8
≦ y / z ≦ 1.2 is preferable, and 0.9 ≦ y / z
≦ 1.1 is more preferable, and 0.95 ≦ y / z ≦
1.05 is particularly preferable. If y / z is less than the above range, it tends to be difficult to obtain a layered composite oxide in a single phase, while if it exceeds the above range, it is disadvantageous in terms of economy. Moreover, it is preferable that 0 ≦ 1-yz ≦ 0.35, and it is further preferable that 0 ≦ 1-yz ≦ 0.25. If 1-yz exceeds the above range, the battery capacity tends to decrease when used in a battery.

【0039】又、本発明の層状リチウムニッケルマンガ
ン複合酸化物粉体の製造方法による層状リチウムニッケ
ルマンガン複合酸化物粉体は、レーザー回折/散乱式粒
度分布測定装置により測定した値として、平均一次粒子
径が、通常0.01μm以上、好ましくは0.02μm
以上、更に好ましくは0.1μm以上であり、通常30
μm以下、好ましくは5μm以下、更に好ましくは25
μm以下のものである。又、平均二次粒子径が、通常1
μm以上、好ましくは4μm以上であり、通常50μm
以下、好ましくは40μm以下のもでである。又、BE
T法による比表面積が、通常0.1m2 /g以上、好ま
しくは4.0m2 /g以上であり、通常10.0m2
g以下、好ましくは8.0m2 /g以下のものである。
The layered lithium nickel manganese composite oxide powder produced by the method for producing a layered lithium nickel manganese composite oxide powder of the present invention has an average primary particle as a value measured by a laser diffraction / scattering particle size distribution analyzer. The diameter is usually 0.01 μm or more, preferably 0.02 μm
Or more, more preferably 0.1 μm or more, usually 30
μm or less, preferably 5 μm or less, more preferably 25
It is less than μm. The average secondary particle size is usually 1
μm or more, preferably 4 μm or more, usually 50 μm
The thickness is preferably 40 μm or less. Also BE
The specific surface area by T method, usually 0.1 m 2 / g or more, preferably 4.0 m 2 / g or more and usually 10.0 m 2 /
g or less, preferably 8.0 m 2 / g or less.

【0040】又、本発明の層状リチウムニッケルマンガ
ン複合酸化物粉体の製造方法による層状リチウムニッケ
ルマンガン複合酸化物粉体は、粉体充填密度としての2
00回タップ後のタップ密度が、通常0.5g/cc以
上、好ましくは0.6g/cc以上、更に好ましくは
0.8g/cc以上であり、通常3.0g/cc以下、
好ましくは2.5g/cc以下のものであり、そして、
そのタップ密度の粉砕前のタップ密度に対する比が、好
ましくは1.10以上、更に好ましくは1.15以上と
なって、嵩密度における顕著な改良効果を示すものとな
る。尚、この比が大きい程、改良効果が顕著となるが、
実用的には10以下、特には5以下である。
The layered lithium nickel manganese composite oxide powder produced by the method for producing a layered lithium nickel manganese composite oxide powder of the present invention has a powder packing density of 2
The tap density after being tapped 00 times is usually 0.5 g / cc or more, preferably 0.6 g / cc or more, more preferably 0.8 g / cc or more, and usually 3.0 g / cc or less,
Preferably less than 2.5 g / cc, and
The ratio of the tap density to the tap density before pulverization is preferably 1.10 or more, more preferably 1.15 or more, which shows a remarkable improvement effect in bulk density. Incidentally, the larger this ratio, the more remarkable the improvement effect,
Practically 10 or less, particularly 5 or less.

【0041】本発明の層状リチウムニッケルマンガン複
合酸化物粉体の製造方法による層状リチウムニッケルマ
ンガン複合酸化物粉体は、高嵩密度を有することから、
リチウム二次電池の正極活物質として用いるに好適であ
る。
Since the layered lithium nickel manganese composite oxide powder according to the method for producing the layered lithium nickel manganese composite oxide powder of the present invention has a high bulk density,
It is suitable for use as a positive electrode active material of a lithium secondary battery.

【0042】本発明の製造方法により得られる層状リチ
ウムニッケルマンガン複合酸化物粉体のリチウム二次電
池の正極活物質としての使用法は、従来公知の方法によ
る。即ち、正極活物質としての本発明の層状リチウムニ
ッケルマンガン複合酸化物粉体を、結着剤と共に、必要
に応じて導電剤を加え、溶媒に分散させた塗布液とな
し、該塗布液を集電体表面に塗布し、乾燥させた後、好
ましくは一軸プレスやロールプレス等により圧密化処理
を行うことにより、集電体表面に正極活物質含有層を形
成し、正極とされる。
The method of using the layered lithium nickel manganese composite oxide powder obtained by the production method of the present invention as a positive electrode active material of a lithium secondary battery is a conventionally known method. That is, the layered lithium nickel manganese composite oxide powder of the present invention as a positive electrode active material was made into a coating solution in which a conductive agent was optionally added together with a binder and dispersed in a solvent, and the coating solution was collected. After being applied to the surface of the current collector and dried, a positive electrode active material-containing layer is formed on the surface of the current collector by preferably performing a consolidation treatment by a uniaxial press, a roll press, or the like, to obtain a positive electrode.

【0043】ここで、用いられる結着剤としては、例え
ば、ポリビニリデンフルオライド、ポリテトラフルオロ
エチレン、ポリメチルメタクリレート、ポリエチレン等
の樹脂、スチレンブタジエンゴム、アクリロニトリルブ
タジエンゴム、エチレンプロピレンゴム、弗素ゴム等の
ゴム、その他、ポリ酢酸ビニル、セルロース等の高分子
物質が、又、導電剤としては、例えば、天然黒鉛、人造
黒鉛等の黒鉛、アセチレンブラック等のカーボンブラッ
ク、ニードルコークス等の無定形炭素等の炭素質微粒子
が、それぞれ挙げられ、又、溶媒としては、例えば、エ
チレンオキシド、テトラヒドロフラン等のエーテル系溶
媒、メチルエチルケトン、シクロヘキサノン等のケトン
系溶媒、酢酸メチル、アクリル酸メチル等のエステル系
溶媒、ジエチルトリアミン、N,N−ジメチルアミノプ
ロピルアミン等のアミン系溶媒、N−メチルピロリド
ン、ジメチルホルムアミド、ジメチルアセトアミド等の
非プロトン性極性溶媒等が挙げられる。
Examples of the binder used here include resins such as polyvinylidene fluoride, polytetrafluoroethylene, polymethylmethacrylate and polyethylene, styrene butadiene rubber, acrylonitrile butadiene rubber, ethylene propylene rubber, fluorine rubber and the like. Rubber, other polymeric substances such as polyvinyl acetate and cellulose, and examples of the conductive agent include graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon such as needle coke. The carbonaceous fine particles may be mentioned, respectively, and as the solvent, for example, ether solvents such as ethylene oxide and tetrahydrofuran, ketone solvents such as methyl ethyl ketone and cyclohexanone, ester solvents such as methyl acetate and methyl acrylate, and diethyl ether. Amine, N, N- amine solvents dimethylaminopropylamine and the like, N- methylpyrrolidone, dimethylformamide, an aprotic polar solvent such as dimethylacetamide.

【0044】又、集電体としては、アルミニウム、ステ
ンレス鋼、ニッケルメッキ鋼等の、厚みが、通常1〜1
000μm、好ましくは5〜500μmの箔が挙げら
れ、正極の集電体としてはアルミニウム箔が好ましい。
尚、正極活物質含有層の厚みは、通常1〜1000μ
m、好ましくは10〜200μmとされる。
The current collector is usually made of aluminum, stainless steel, nickel-plated steel or the like and has a thickness of 1 to 1.
A foil having a thickness of 000 μm, preferably 5 to 500 μm can be mentioned, and an aluminum foil is preferable as a collector for the positive electrode.
The thickness of the positive electrode active material-containing layer is usually 1 to 1000 μm.
m, preferably 10 to 200 μm.

【0045】又、正極活物質含有層における正極活物質
の含有割合は、電池容量等の電池特性を確保する上で、
通常10重量%以上、好ましくは30重量%以上、更に
好ましくは50重量%以上とし、電極としての機械的強
度等を確保する上で、通常99.9重量%以下、好まし
くは99重量%以下、更に好ましくは95重量%以下と
する。又、結着剤の含有割合は、電極としての機械的強
度等を確保する上で、通常0.1重量%以上、好ましく
は1重量%以上、更に好ましくは5重量%以上とし、電
池容量や導電性等の電池特性を確保する上で、通常80
重量%以下、好ましくは60重量%以下、更に好ましく
は40重量%以下とする。又、導電剤の含有割合は、導
電性等の電池特性を確保する上で、通常0.01重量%
以上、好ましくは0.1重量%以上、更に好ましくは1
重量%以上とし、電池容量等の電池特性を確保する上
で、通常50重量%以下、好ましくは30重量%以下、
更に好ましくは15重量%以下とする。
In addition, the content ratio of the positive electrode active material in the positive electrode active material containing layer is determined in order to secure battery characteristics such as battery capacity.
Usually 10 wt% or more, preferably 30 wt% or more, more preferably 50 wt% or more, usually 99.9 wt% or less, preferably 99 wt% or less in order to secure the mechanical strength and the like of the electrode, More preferably, it is 95% by weight or less. Further, the content ratio of the binder is usually 0.1% by weight or more, preferably 1% by weight or more, more preferably 5% by weight or more in order to secure the mechanical strength and the like of the electrode. In order to secure battery characteristics such as conductivity, it is usually 80
The content is not more than 60% by weight, preferably not more than 60% by weight, more preferably not more than 40% by weight. The content ratio of the conductive agent is usually 0.01% by weight in order to secure battery characteristics such as conductivity.
Or more, preferably 0.1% by weight or more, more preferably 1
In order to secure battery characteristics such as battery capacity, the content is usually 50% by weight or less, preferably 30% by weight or less,
It is more preferably 15% by weight or less.

【0046】又、負極は、負極活物質を、結着剤と共に
溶媒に分散させた塗布液となし、該塗布液を集電体表面
に塗布し、乾燥させた後、好ましくは一軸プレスやロー
ルプレス等により圧密化処理を行うことにより、集電体
表面に負極活物質含有層を形成し、負極とされる。
The negative electrode is a coating liquid in which the negative electrode active material is dispersed in a solvent together with a binder, and the coating liquid is applied to the surface of the current collector and dried, and preferably uniaxial press or roll. By performing a consolidation treatment with a press or the like, a negative electrode active material-containing layer is formed on the surface of the current collector to obtain a negative electrode.

【0047】ここで、用いられる負極活物質としては、
例えば、リチウム、リチウムアルミニウム合金、黒鉛、
石炭系や石油系コークスの炭化物、石炭系や石油系ピッ
チの炭化物、ニードルコークス、ピッチコークス、フェ
ノール樹脂や結晶セルロース等の炭化物、ファーネスブ
ラックやアセチレンブラック等のカーボンブラック、及
び、SnO、SnO2 、Sn1-x x O(MはHg、
P、B、Si、Ge、又はSbであり、xは0≦x<1
である。)、Sn3 2 (OH)2 、Sn3-x x 2
(OH)2 (MはMg、P、B、Si、Ge、Sb、又
はMnであり、xは0≦x<3である。)、LiSiO
2 、SiO2 、LiSnO2 等が挙げられ、又、結着
剤、溶媒等は前記正極の形成におけると同様のものが挙
げられる。又、集電体としては、銅、ニッケル、ステン
レス鋼、ニッケルメッキ鋼等の箔が挙げられ、負極の集
電体としては銅箔が好ましい。
As the negative electrode active material used here,
For example, lithium, lithium aluminum alloy, graphite,
Coal and petroleum coke carbides, coal and petroleum
Ji carbide, needle coke, pitch coke, feather
Carbides such as knoll resin and crystalline cellulose, furnace
Carbon black such as rack and acetylene black, and
, SnO, SnO2, Sn1-xMxO (M is Hg,
P, B, Si, Ge, or Sb, and x is 0 ≦ x <1
Is. ), Sn3O2(OH)2, Sn3-xM xO2
(OH)2(M is Mg, P, B, Si, Ge, Sb, or
Is Mn and x is 0 ≦ x <3. ), LiSiO
2, SiO2, LiSnO2Etc., and also binding
The same agents and solvents as those used for forming the positive electrode are listed.
You can The current collectors are copper, nickel, stainless steel.
Foils such as stainless steel, nickel-plated steel, etc.
Copper foil is preferable as the electric body.

【0048】そして、集電体表面に正極活物質含有層を
有する正極と、集電体表面に負極活物質含有層を有する
負極と、電解質層と、必要に応じて正極と負極の間に介
在させるセパレータとから、リチウム二次電池が構成さ
れる。
Then, a positive electrode having a positive electrode active material-containing layer on the surface of the current collector, a negative electrode having a negative electrode active material-containing layer on the surface of the current collector, an electrolyte layer, and if necessary, interposed between the positive electrode and the negative electrode. A lithium secondary battery is composed of the separator.

【0049】ここで、電解質層としては、例えば、電解
質を溶媒に溶解させた有機電解液、又は、高分子固体電
解質、ゲル状電解質、無機固体電解質等が用いられ、中
で、有機電解液が好ましい。
Here, as the electrolyte layer, for example, an organic electrolyte solution in which an electrolyte is dissolved in a solvent, a polymer solid electrolyte, a gel electrolyte, an inorganic solid electrolyte or the like is used, in which the organic electrolyte solution is preferable.

【0050】その有機電解液における電解質としては、
例えば、LiCl、LiBr、LiClO4 、LiAs
6 、LiPF6 、LiBF4 、LiB(C
6 5 4 、LiCH3 SO3 、LiCF3 SO3 、L
iN(SO2 CF3 2 、LiN(SO 2
2 5 2 、LiN(SO3 CF3 2 、LiC(SO
2 CF3 3 等が挙げられ、又、溶媒としては、例え
ば、ジエチルエーテル、1,2−ジメトキシエタン、
1,2−ジエトキシエタン、テトラヒドロフラン、2−
メチルテトラヒドロフラン、1,4−ジオキサン、1,
3−ジオキソラン、4−メチル−1,3−ジオキソラン
等のエーテル類、4−メチル−2−ペンタノン等のケト
ン類、メチルホルメート、メチルアセテート、メチルプ
ロピオネート等のエステル類、ジメチルカーボネート、
ジエチルカーボネート、メチルエチルカーボネート、エ
チレンカーボネート、プロピレンカーボネート、ブチレ
ンカーボネート、ビニレンカーボネート等のカーボネー
ト類、γ−ブチロラクトン、γ−バレロラクトン等のラ
クトン類、1,2−ジクロロエタン等のハロゲン化炭化
水素類、スルホラン、メチルスルホラン等のスルホラン
系化合物類、アセトニトリル、プロピオニトリル、ブチ
ロニトリル、バレロニトリル、ベンゾニトリル等のニト
リル類、ジエチルアミン、エチレンジアミン、トリエタ
ノールアミン等のアミン類、リン酸トリメチル、リン酸
トリエチル等のリン酸エステル類、N,N−ジメチルホ
ルムアミド、N−メチルピロリドン、ジメチルスルホキ
シド等の非プロトン性極性溶媒等が挙げられる。
As the electrolyte in the organic electrolytic solution,
For example, LiCl, LiBr, LiClOFour, LiAs
F6, LiPF6, LiBFFour, LiB (C
6HFive)Four, LiCH3SO3, LiCF3SO3, L
iN (SO2CF3)2, LiN (SO 2C
2FFive)2, LiN (SO3CF3)2, LiC (SO
2CF3)3Etc., and as the solvent, for example,
For example, diethyl ether, 1,2-dimethoxyethane,
1,2-diethoxyethane, tetrahydrofuran, 2-
Methyl tetrahydrofuran, 1,4-dioxane, 1,
3-dioxolane, 4-methyl-1,3-dioxolane
Such as ethers, keto such as 4-methyl-2-pentanone
, Methyl formate, methyl acetate, methyl
Esters such as ropionate, dimethyl carbonate,
Diethyl carbonate, methyl ethyl carbonate,
Tylene carbonate, propylene carbonate, butyre
Carbonates such as vinyl carbonate and vinylene carbonate
, Γ-butyrolactone, γ-valerolactone, etc.
Halogenated carbonization of kutones and 1,2-dichloroethane
Hydrogen, sulfolane, sulfolane such as methylsulfolane
Compounds, acetonitrile, propionitrile, buty
Nito such as ronitrile, valeronitrile, and benzonitrile
Rills, diethylamine, ethylenediamine, trieta
Amines such as nolamine, trimethyl phosphate, phosphoric acid
Phosphoric acid esters such as triethyl, N, N-dimethylphosphine
Lumamide, N-methylpyrrolidone, dimethyl sulfoxide
An aprotic polar solvent such as side and the like can be mentioned.

【0051】又、セパレータとしては、ポリエチレン、
ポリプロピレン等のポリオレフィン、ポリビニリデンフ
ルオライド、ポリテトラフルオロエチレン、ポリエステ
ル、ポリアミド、ポリスルホン、ポリアクリロニトリ
ル、セルロース、セルロースアセテート等の高分子の微
多孔性フィルムが用いられる。
As the separator, polyethylene,
A microporous film of a polymer such as polyolefin such as polypropylene, polyvinylidene fluoride, polytetrafluoroethylene, polyester, polyamide, polysulfone, polyacrylonitrile, cellulose, cellulose acetate or the like is used.

【0052】[0052]

【実施例】以下、本発明を実施例によりさらに具体的に
説明するが、本発明はその要旨を越えない限り以下の実
施例に限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

【0053】比較例1 リチウム源化合物としての水酸化リチウム一水塩〔Li
OH・H2 O〕と、ニッケル源化合物としての水酸化ニ
ッケル〔Ni(OH)2 〕と、マンガン源化合物として
の三二酸化マンガン〔Mn2 3 〕とを、最終的に得ら
れる層状リチウムニッケルマンガン複合酸化物における
各原子のモル比で、リチウム原子〔Li〕:ニッケル原
子〔Ni〕:マンガン原子〔Mn〕=1.05:0.5
0:0.50となる量を、純水に加えて固形分濃度1
2.5重量%のスラリーを調製し、このスラリーを、循
環式媒体攪拌型湿式粉砕機(シンマルエンタープライゼ
ス社製「ダイノーミルKD−20B型」)を用いて混合
すると共に、スラリー中の各化合物の平均粒子径が、レ
ーザー回折/散乱式粒度分布測定装置により測定した値
として0.3μmになるまで、約6時間湿式粉砕した。
このスラリーの粘度は、BM型粘度計により測定した値
として290mPa・秒であった。
Comparative Example 1 Lithium hydroxide monohydrate [Li as a lithium source compound
OH.H 2 O], nickel hydroxide [Ni (OH) 2 ] as a nickel source compound, and manganese trioxide [Mn 2 O 3 ] as a manganese source compound, which are finally obtained. The molar ratio of each atom in the manganese composite oxide is lithium atom [Li]: nickel atom [Ni]: manganese atom [Mn] = 1.05: 0.5.
Add 0: 0.50 to pure water to obtain a solid content of 1
A 2.5 wt% slurry was prepared, and this slurry was mixed using a circulating medium stirring type wet pulverizer (“Dyno Mill KD-20B type” manufactured by Shinmaru Enterprises Co., Ltd.), and each compound in the slurry was mixed. Wet pulverization was carried out for about 6 hours until the average particle diameter of was 0.3 μm as a value measured by a laser diffraction / scattering type particle size distribution measuring device.
The viscosity of this slurry was 290 mPa · sec as a value measured by a BM type viscometer.

【0054】次いで、得られたスラリーを、スプレード
ライヤー(藤崎電機社製「四流体ノズル型スプレードラ
イヤー」)を用いて、23m3 /分の導入量でダウンフ
ローさせた90℃の加熱空気流に対して直交方向に、加
圧空気により300m/秒の線速でノズルから噴出さ
せ、噴霧乾燥により乾燥させた後、得られた粉体粒子を
空気中で900℃で10時間焼成することにより、モル
比で、リチウム原子〔Li〕:ニッケル原子〔Ni〕:
マンガン原子〔Mn〕=1.05:0.50:0.50
の層状リチウムニッケルマンガン複合酸化物粉体を製造
した。
Then, the obtained slurry was heated to 90 ° C. by using a spray dryer (“Four-fluid nozzle type spray dryer” manufactured by Fujisaki Electric Co., Ltd.) at a downflow rate of 23 m 3 / min. On the other hand, in the orthogonal direction, it is jetted from the nozzle by a pressurized air at a linear velocity of 300 m / sec, dried by spray drying, and then the obtained powder particles are fired in air at 900 ° C. for 10 hours, In molar ratio, lithium atom [Li]: nickel atom [Ni]:
Manganese atom [Mn] = 1.05: 0.50: 0.50
A layered lithium nickel manganese composite oxide powder was produced.

【0055】得られた層状リチウムニッケルマンガン複
合酸化物粉体は、ほゞ球形を有する粒子であり、粉末X
線回折を測定したところ、菱面体晶の層状リチウムニッ
ケルマンガン複合酸化物であることが確認された。又、
全自動粉体比表面積測定装置(大倉理研製「AMS80
00型」)を用いてBET法による比表面積を測定した
ところ、6.14m2 /gであった。又、得られた複合
酸化物粉体の約5gを10mlのガラス製メスシリンダ
ーに入れ、200回タップした後の粉体充填密度をタッ
プ密度として測定したところ、1.12g/ccであっ
た。
The layered lithium nickel manganese composite oxide powder obtained is a particle having a substantially spherical shape, and is powder X
When the line diffraction was measured, it was confirmed to be a rhombohedral layered lithium nickel manganese composite oxide. or,
Fully automatic powder specific surface area measuring device (Okura Riken "AMS80
The specific surface area measured by the BET method was 6.14 m 2 / g. Further, about 5 g of the obtained composite oxide powder was put into a 10 ml glass graduated cylinder, and the powder packing density after tapping 200 times was measured as the tap density, and it was 1.12 g / cc.

【0056】実施例1 比較例1で得られた層状リチウムニッケルマンガン複合
酸化物粉体を純水に加えて固形分濃度23.0重量%の
スラリーを調製し、このスラリーを、循環式媒体攪拌型
湿式粉砕機(シンマルエンタープライゼス社製「ダイノ
ーミルKDL−A型」)を用いて約2時間湿式粉砕し
た。次いで、得られたスラリーを、スプレードライヤー
(大川原化工機社製「二流体ノズル型スプレードライヤ
ー」)を用いて、3m3 /分の導入量でダウンフローさ
せた90℃の加熱空気流に対して直交方向に、加圧空気
により200m/秒の線速でノズルから噴出させ、噴霧
乾燥により乾燥させた後、得られた粉体粒子を空気中で
900℃で10時間加熱処理することにより、モル比
で、リチウム原子〔Li〕:ニッケル原子〔Ni〕:マ
ンガン原子〔Mn〕=1.05:0.50:0.50の
層状リチウムニッケルマンガン複合酸化物粉体を製造し
た。
Example 1 The layered lithium nickel manganese composite oxide powder obtained in Comparative Example 1 was added to pure water to prepare a slurry having a solid content concentration of 23.0% by weight, and this slurry was agitated with a circulating medium. Wet milling was performed for about 2 hours using a mold wet mill (“Dyno Mill KDL-A type” manufactured by Shinmaru Enterprises Co., Ltd.). Next, the obtained slurry was down-flowed with a spray dryer (“Two-fluid nozzle type spray dryer” manufactured by Okawara Kakoki Co., Ltd.) at a flow rate of 3 m 3 / min to a heated air flow of 90 ° C. The powder particles were ejected from the nozzle in a perpendicular direction at a linear velocity of 200 m / sec by a pressurized air, dried by spray drying, and then the obtained powder particles were heat-treated in air at 900 ° C. for 10 hours to give a A layered lithium nickel manganese composite oxide powder having a ratio of lithium atom [Li]: nickel atom [Ni]: manganese atom [Mn] = 1.05: 0.50: 0.50 was produced.

【0057】得られた層状リチウムニッケルマンガン複
合酸化物粉体は、ほゞ球形を有する粒子であり、粉末X
線回折を測定したところ、菱面体晶の層状リチウムニッ
ケルマンガン複合酸化物であることが確認された。又、
レーザー回折/散乱式粒度分布測定装置により測定した
平均二次粒子径は7.2μmであった。
The layered lithium nickel manganese composite oxide powder obtained is a particle having a substantially spherical shape, and is powder X
When the line diffraction was measured, it was confirmed to be a rhombohedral layered lithium nickel manganese composite oxide. or,
The average secondary particle diameter measured by a laser diffraction / scattering type particle size distribution analyzer was 7.2 μm.

【0058】又、比較例1におけると同様の方法で比表
面積を測定したところ、5.54m 2 /gであった。
又、得られた複合酸化物粉体の約5gを10mlのガラ
ス製メスシリンダーに入れ、200回タップした後の粉
体充填密度をタップ密度として測定したところ、1.4
0g/ccであり、比較例1における粉砕前のタップ密
度に対する比は1.25であった。
In addition, a comparison table was prepared in the same manner as in Comparative Example 1.
When the area was measured, it was 5.54 m 2/ G.
In addition, about 5 g of the obtained composite oxide powder is mixed with 10 ml of glass.
Powder in a stainless steel graduated cylinder and tapped 200 times
When the body packing density was measured as the tap density, it was 1.4.
0 g / cc, which is the tap density before grinding in Comparative Example 1.
The ratio to degree was 1.25.

【0059】応用例 前記比較例1及び実施例1で得られた層状リチウムニッ
ケルマンガン複合酸化物粉体、導電剤としてのアセチレ
ンブラック、及び、結着剤としてのポリテトラフルオロ
エチレン粉体を、75重量%:20重量%:5重量%の
割合となる量で混合し、直径9mmの円形に打ち抜いた
ときの重量が約8mgとなる厚さでシートに成形し、該
シートから直径9mmの円形に打ち抜き、アルミニウム
製エキスパンドメタルの片面に圧着することにより正極
を作製した。この正極を試験極とし、リチウム金属を対
極としてコインセルを組み、これに、電流密度0.2m
A/cm2 の定電流充電、即ち正極からリチウムイオン
を放出させる反応を上限4.3Vで行い、次いで、電流
密度0.2mA/cm2 の定電流放電、即ち正極にリチ
ウムイオンを吸蔵させる反応を下限3.0Vで行ったと
きの、正極活物質単位重量当たりの初期充電容量〔Qs
(C)(mAh/g)〕、及び、初期放電容量〔Qs
(D)(mAh/g)〕を測定した。その初期放電容量
〔Qs(D)(mAh/g)〕を、電流密度11mA/
cm2 で測定した放電容量〔Qa(D)(mAh/
g)〕と共に、表1に示した。
Application Example The layered lithium nickel manganese composite oxide powder obtained in Comparative Example 1 and Example 1, acetylene black as a conductive agent, and polytetrafluoroethylene powder as a binder, % By weight: 20% by weight: 5% by weight and mixed into an amount of about 8 mg when punched into a circle having a diameter of 9 mm to form a sheet, and the sheet was made into a circle having a diameter of 9 mm. A positive electrode was produced by punching and crimping to one surface of an expanded metal made of aluminum. A coin cell was assembled with this positive electrode as the test electrode and lithium metal as the counter electrode, and the current density was 0.2 m.
A / cm 2 constant current charging, that is, a reaction for releasing lithium ions from the positive electrode is performed at an upper limit of 4.3 V, and then constant current discharging with a current density of 0.2 mA / cm 2 , that is, a reaction for occluding lithium ions in the positive electrode. Charging at a lower limit of 3.0 V, the initial charge capacity [Qs per unit weight of the positive electrode active material]
(C) (mAh / g)] and initial discharge capacity [Qs
(D) (mAh / g)] was measured. The initial discharge capacity [Qs (D) (mAh / g)] was set to a current density of 11 mA /
discharge capacity measured in cm 2 [Qa (D) (mAh /
g)] and the results are shown in Table 1.

【0060】又、それらの初期放電容量〔Qs(D)
(mAh/g)〕、及び放電容量〔Qa(D)(mAh
/g)〕を、前記タップ密度から単位容積当たりに換算
し、初期放電容量〔Qs’(D)(mAh/cc)〕、
及び放電容量〔Qa’(D)(mAh/cc)〕として
表1に併記した。
Also, their initial discharge capacity [Qs (D)
(MAh / g)], and discharge capacity [Qa (D) (mAh
/ G)] is converted from the tap density per unit volume to obtain an initial discharge capacity [Qs' (D) (mAh / cc)],
And discharge capacity [Qa '(D) (mAh / cc)] are also shown in Table 1.

【0061】一方、負極活物質としての黒鉛粉末(d
002 =3.35Å、平均粒子径=8〜10μm)、結着
剤としてのポリビニリデンフルオライドを、92.5重
量%:7.5重量%の割合となる量でN−メチルピロリ
ドンに分散させてスラリーを調製し、このスラリーを厚
さ20μmの銅箔の片面に塗布し、乾燥させた後、直径
12mmの円形に打ち抜き、0.5トン/cm2 でプレ
スすることにより負極を作製した。この負極を試験極と
し、リチウム金属を対極としてコインセルを組み、これ
に0.2mA/cm2 の定電流で負極にリチウムイオン
を吸蔵させる反応を下限0Vで行ったときの、負極活物
質単位重量当たりの初期吸蔵容量〔Qf(mAh/
g)〕を測定した。
On the other hand, graphite powder (d
002 = 3.35Å, average particle size = 8 to 10 μm), and polyvinylidene fluoride as a binder was dispersed in N-methylpyrrolidone in an amount of 92.5% by weight: 7.5% by weight. A slurry was prepared by applying the slurry to one surface of a copper foil having a thickness of 20 μm, and after drying, it was punched into a circle having a diameter of 12 mm and pressed at 0.5 ton / cm 2 to produce a negative electrode. A unit weight of the negative electrode active material when a coin cell was assembled using the negative electrode as a test electrode and lithium metal as a counter electrode, and a reaction of occluding lithium ions in the negative electrode at a constant current of 0.2 mA / cm 2 was performed at a lower limit of 0 V. Initial storage capacity [Qf (mAh /
g)] was measured.

【0062】引き続いて、正極缶の上に、前記正極用シ
ートから直径12mmの円形に打ち抜いたもの(重量が
約18mg)をアルミニウム製エキスパンドメタルに圧
着することにより作製した正極を載置し、その上にセパ
レータとしての多孔性ポリエチレンフィルム(厚さ25
μm)を載置し、ポリプロピレン製ガスケットで押さ
え、前記で作製した負極を載置し、更に厚み調整用のス
ペーサーを載置した後、非水電解液としての、エチレン
カーボネートとジエチルカーボネートとの混合溶媒(容
積比3:7)に1モル/リットルの六弗化燐酸リチウム
(LiPF6 )を溶解させた溶液を、電池内に加えて十
分にしみ込ませ、次いで、負極缶を載置して封口するこ
とによりコインセルを作製した。尚、その際、正極活物
質重量(g)/負極活物質重量(g)={〔Qf(mA
h/g)〕/1.2}/〔Qs(C)(mAh/g)〕
となるように設定した。
Subsequently, on the positive electrode can, a positive electrode prepared by pressing a circular sheet having a diameter of 12 mm (weight of about 18 mg) punched from the positive electrode sheet to an expanded metal made of aluminum was placed, and Porous polyethylene film (thickness 25
μm), and then press it with a polypropylene gasket, place the negative electrode prepared above, and then place a spacer for adjusting the thickness, and then mix ethylene carbonate and diethyl carbonate as a non-aqueous electrolyte. A solution prepared by dissolving 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) in a solvent (volume ratio 3: 7) was added to the inside of the battery so that the solution was sufficiently impregnated, and then the negative electrode can was placed and sealed. By doing so, a coin cell was produced. At that time, positive electrode active material weight (g) / negative electrode active material weight (g) = {[Qf (mA
h / g)] / 1.2} / [Qs (C) (mAh / g)]
It was set so that

【0063】得られたコインセルについて、1時間率電
流値〔1C(mA)〕=〔Qs(D)(mAh/g)〕
×正極活物質重量(g)と設定して、先ず、室温で、定
電流0.2C充放電2サイクル、及び定電流1C充放電
1サイクルの試験を行い、次いで、50℃で、定電流
0.2C充放電1サイクル、及び定電流1C充放電50
サイクルの試験を行った。尚、充電上限電圧は4.2
V、下限電圧は3.0Vとした。このときの50℃での
定電流1C充放電50サイクル試験において、1サイク
ル目放電容量〔Qh(1)(mAh/g)〕と50サイ
クル目放電容量〔Qh(50)(mAh/g)〕とを測
定し、それらの値から下式に従って高温サイクル容量維
持率〔P(%)〕を算出し、結果を表1に示した。 P(%)={〔Qh(50)〕/〔Qh(1)〕}×1
00
With respect to the obtained coin cell, 1-hour rate current value [1C (mA)] = [Qs (D) (mAh / g)]
X positive electrode active material weight (g), first, at room temperature, a constant current 0.2C charge / discharge 2 cycle, and a constant current 1C charge / discharge 1 cycle test, and then at 50 ° C, constant current 0. 1 cycle of 2C charge / discharge and 50 charge / discharge of constant current 1C
The cycle was tested. The charging upper limit voltage is 4.2.
V and the lower limit voltage were 3.0V. At this time, in a constant current 1C charge / discharge 50 cycle test at 50 ° C., the first cycle discharge capacity [Qh (1) (mAh / g)] and the 50th cycle discharge capacity [Qh (50) (mAh / g)] Was measured, the high temperature cycle capacity retention rate [P (%)] was calculated from these values according to the following formula, and the results are shown in Table 1. P (%) = {[Qh (50)] / [Qh (1)]} × 1
00

【0064】[0064]

【表1】 [Table 1]

【0065】以上の比較例1と実施例1の結果から、本
発明の製造方法により得られる実施例1の層状リチウム
ニッケルマンガン複合酸化物粉体は、比較例1の層状複
合酸化物に対する嵩密度の改良効果が大きく、高嵩密度
を有することが明らかであり、更に、応用例の結果か
ら、本発明の製造方法により得られる実施例1の層状リ
チウムニッケルマンガン複合酸化物粉体を正極活物質と
して用いたリチウム二次電池は、比較例1の層状複合酸
化物を正極活物質として用いた場合に比して、単位重量
当たりで同等の電池特性を有し、粉砕或いは更に加熱処
理による電池特性上の劣化等を生じてはいないことが明
らかであり、従って、単位容積当たりの電池特性におい
て優れることが明らかである。
From the results of Comparative Example 1 and Example 1 described above, the layered lithium nickel manganese composite oxide powder of Example 1 obtained by the production method of the present invention was found to have a bulk density relative to the layered composite oxide of Comparative Example 1. Of the layered lithium nickel manganese composite oxide powder of Example 1 obtained by the production method of the present invention is positive electrode active material. The lithium secondary battery used as has the same battery characteristics per unit weight as compared with the case where the layered composite oxide of Comparative Example 1 is used as the positive electrode active material, and the battery characteristics by pulverization or further heat treatment are It is clear that the above deterioration has not occurred, and therefore it is clear that the battery characteristics per unit volume are excellent.

【0066】[0066]

【発明の効果】本発明によれば、高嵩密度を有し、リチ
ウム二次電池の正極活物質として用いるに好適な層状リ
チウムニッケルマンガン複合酸化物粉体を製造する方法
を提供することができる。
According to the present invention, it is possible to provide a method for producing a layered lithium nickel manganese composite oxide powder having a high bulk density and suitable for use as a positive electrode active material of a lithium secondary battery. .

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AB01 AB05 AC06 AD04 AD06 AE05 5H029 AJ03 AK03 AL02 AL03 AL06 AL07 AL08 AL12 AM02 AM03 AM04 AM05 AM07 CJ01 CJ02 CJ08 DJ16 DJ17 HJ02 HJ07 HJ08 5H050 AA08 BA16 BA17 CA09 CB02 CB03 CB07 CB08 CB09 CB12 FA19 GA02 GA05 GA10 HA02 HA07 HA08    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G048 AA04 AB01 AB05 AC06 AD04                       AD06 AE05                 5H029 AJ03 AK03 AL02 AL03 AL06                       AL07 AL08 AL12 AM02 AM03                       AM04 AM05 AM07 CJ01 CJ02                       CJ08 DJ16 DJ17 HJ02 HJ07                       HJ08                 5H050 AA08 BA16 BA17 CA09 CB02                       CB03 CB07 CB08 CB09 CB12                       FA19 GA02 GA05 GA10 HA02                       HA07 HA08

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 粉砕及び混合された少なくともリチウム
源化合物とニッケル源化合物とマンガン源化合物とを、
ニッケル原子〔Ni〕とマンガン原子〔Mn〕とのモル
比〔Ni/Mn〕として0.7〜9.0の範囲で含有す
るスラリーを、噴霧乾燥により乾燥させ、焼成すること
により層状リチウムニッケルマンガン複合酸化物粉体と
なした後、該複合酸化物粉体を粉砕することを特徴とす
る層状リチウムニッケルマンガン複合酸化物粉体の製造
方法。
1. A ground and mixed at least lithium source compound, nickel source compound and manganese source compound,
A layered lithium nickel manganese manganese is obtained by drying a slurry containing a molar ratio [Ni / Mn] of nickel atoms [Ni] and manganese atoms [Mn] in the range of 0.7 to 9.0 by spray drying and firing. A method for producing a layered lithium nickel manganese composite oxide powder, which comprises pulverizing the composite oxide powder after forming the composite oxide powder.
【請求項2】 層状リチウムニッケルマンガン複合酸化
物粉体の粉砕を湿式粉砕により行い、次いで、噴霧乾燥
により乾燥させる請求項1に記載の層状リチウムニッケ
ルマンガン複合酸化物粉体の製造方法。
2. The method for producing a layered lithium nickel manganese composite oxide powder according to claim 1, wherein the layered lithium nickel manganese composite oxide powder is pulverized by wet pulverization and then dried by spray drying.
【請求項3】 層状リチウムニッケルマンガン複合酸化
物粉体を粉砕した後、加熱処理する請求項1又は2に記
載の層状リチウムニッケルマンガン複合酸化物粉体の製
造方法。
3. The method for producing a layered lithium nickel manganese composite oxide powder according to claim 1, wherein the layered lithium nickel manganese composite oxide powder is pulverized and then heat-treated.
【請求項4】 粉砕後の層状リチウムニッケルマンガン
複合酸化物粉体が、下記一般式(I)で表される複合酸
化物である請求項1乃至3のいずれかに記載の層状リチ
ウムニッケルマンガン複合酸化物粉体の製造方法。 【化1】 Lix Niy Mnz (1-Y-Z) 2 (I) 〔式(I)中、xは、0<x≦1.2の数であり、y及
びzはそれぞれ、0.7≦y/z≦9.0、及び、0≦
1−y−z≦0.5の関係を満たす数であり、Qは、M
g、Al、Ca、Fe、及びCoからなる群から選択さ
れるいずれかの金属原子を示す。〕
4. The layered lithium nickel manganese composite according to claim 1, wherein the pulverized layered lithium nickel manganese composite oxide powder is a composite oxide represented by the following general formula (I). Method for producing oxide powder. Embedded image Li x Ni y Mn z Q (1-YZ) O 2 (I) [In the formula (I), x is a number satisfying 0 <x ≦ 1.2, and y and z are 0 respectively. 0.7 ≦ y / z ≦ 9.0 and 0 ≦
1 is a number satisfying the relation of 1-yz ≦ 0.5, and Q is M
Indicates any metal atom selected from the group consisting of g, Al, Ca, Fe, and Co. ]
【請求項5】 粉砕後の層状リチウムニッケルマンガン
複合酸化物粉体が、BET法による比表面積0.1〜1
0.0m2 /gのものである請求項1乃至4のいずれか
に記載の層状リチウムニッケルマンガン複合酸化物粉体
の製造方法。
5. The layered lithium nickel manganese composite oxide powder after pulverization has a specific surface area of 0.1 to 1 according to the BET method.
The method for producing the layered lithium nickel manganese composite oxide powder according to any one of claims 1 to 4, wherein the layered lithium nickel manganese composite oxide has a particle size of 0.0 m 2 / g.
【請求項6】 粉砕後の層状リチウムニッケルマンガン
複合酸化物粉体が、タップ密度0.5〜3.0g/cc
のものである請求項1乃至5のいずれかに記載の層状リ
チウムニッケルマンガン複合酸化物粉体の製造方法。
6. The layered lithium nickel manganese composite oxide powder after pulverization has a tap density of 0.5 to 3.0 g / cc.
The method for producing a layered lithium nickel manganese composite oxide powder according to any one of claims 1 to 5, wherein
【請求項7】 粉砕後の層状リチウムニッケルマンガン
複合酸化物粉体が、そのタップ密度の粉砕前のタップ密
度に対する比1.10以上のものである請求項1乃至6
のいずれかに記載の層状リチウムニッケルマンガン複合
酸化物粉体の製造方法。
7. The layered lithium nickel manganese composite oxide powder after crushing has a ratio of the tap density to the tap density before crushing of 1.10 or more.
5. The method for producing a layered lithium nickel manganese composite oxide powder according to any one of 1.
JP2001218995A 2001-07-19 2001-07-19 Method for producing laminar lithium nickel manganese complex oxide powder Pending JP2003034536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001218995A JP2003034536A (en) 2001-07-19 2001-07-19 Method for producing laminar lithium nickel manganese complex oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001218995A JP2003034536A (en) 2001-07-19 2001-07-19 Method for producing laminar lithium nickel manganese complex oxide powder

Publications (2)

Publication Number Publication Date
JP2003034536A true JP2003034536A (en) 2003-02-07
JP2003034536A5 JP2003034536A5 (en) 2007-07-26

Family

ID=19053076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001218995A Pending JP2003034536A (en) 2001-07-19 2001-07-19 Method for producing laminar lithium nickel manganese complex oxide powder

Country Status (1)

Country Link
JP (1) JP2003034536A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044881A1 (en) * 2001-11-22 2003-05-30 Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
WO2005007577A1 (en) * 2003-07-18 2005-01-27 Tosoh Corporation Lithium-nickel-manganese composite oxide, process for producing the same and use thereof
JP2005141983A (en) * 2003-11-05 2005-06-02 Mitsubishi Chemicals Corp Layered lithium nickel base composite oxide powder for positive electrode material of lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery, and lithium secondary battery
JP2005347134A (en) * 2004-06-04 2005-12-15 Sumitomo Metal Mining Co Ltd Manufacturing method of positive electrode active material for lithium ion secondary battery
WO2008091028A1 (en) 2007-01-26 2008-07-31 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure
JP2010030808A (en) * 2008-07-25 2010-02-12 Mitsui Mining & Smelting Co Ltd Lithium transition metal oxide having layer structure
WO2013047569A1 (en) * 2011-09-29 2013-04-04 株式会社田中化学研究所 Lithium-rich lithium metal complex oxide
KR20150103103A (en) 2013-03-04 2015-09-09 미쓰이금속광업주식회사 Lithium metal composite oxide powder
US9640794B2 (en) 2012-04-27 2017-05-02 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure
US10263244B2 (en) 2011-11-25 2019-04-16 Mitsui Mining & Smelting Co., Ltd. Lithium metal composite oxide having layered structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069910A (en) * 1995-11-24 1998-03-10 Fuji Chem Ind Co Ltd Lithium nickel composite oxide, manufacture thereof, and positive electrode active substance for secondary battery
JPH1087332A (en) * 1996-09-13 1998-04-07 Mitsui Petrochem Ind Ltd Production of spherical lithium-nickel complex oxide and nonaqueous electrolyte cell using the same as positive electrode
JPH11135119A (en) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
JPH11219706A (en) * 1998-01-30 1999-08-10 Dowa Mining Co Ltd Positive electrode active material for lithium ion secondary battery, manufacture thereof and lithium ion secondary battery
JPH11273677A (en) * 1998-03-19 1999-10-08 Sanyo Electric Co Ltd Lithium secondary battery
JP2001146426A (en) * 1999-11-19 2001-05-29 Mitsubishi Chemicals Corp Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same
JP2001155727A (en) * 1999-11-24 2001-06-08 Hitachi Metals Ltd Positive electrode active material for use in non-aqueous lithium secondary battery and method of fabricating it

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069910A (en) * 1995-11-24 1998-03-10 Fuji Chem Ind Co Ltd Lithium nickel composite oxide, manufacture thereof, and positive electrode active substance for secondary battery
JPH1087332A (en) * 1996-09-13 1998-04-07 Mitsui Petrochem Ind Ltd Production of spherical lithium-nickel complex oxide and nonaqueous electrolyte cell using the same as positive electrode
JPH11135119A (en) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
JPH11219706A (en) * 1998-01-30 1999-08-10 Dowa Mining Co Ltd Positive electrode active material for lithium ion secondary battery, manufacture thereof and lithium ion secondary battery
JPH11273677A (en) * 1998-03-19 1999-10-08 Sanyo Electric Co Ltd Lithium secondary battery
JP2001146426A (en) * 1999-11-19 2001-05-29 Mitsubishi Chemicals Corp Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same
JP2001155727A (en) * 1999-11-24 2001-06-08 Hitachi Metals Ltd Positive electrode active material for use in non-aqueous lithium secondary battery and method of fabricating it

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044881A1 (en) * 2001-11-22 2003-05-30 Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
JPWO2003044881A1 (en) * 2001-11-22 2005-03-24 株式会社ユアサコーポレーション Positive electrode active material for lithium secondary battery and lithium secondary battery
US7393476B2 (en) 2001-11-22 2008-07-01 Gs Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
JP4956883B2 (en) * 2001-11-22 2012-06-20 株式会社Gsユアサ Positive electrode active material for lithium secondary battery and lithium secondary battery
WO2005007577A1 (en) * 2003-07-18 2005-01-27 Tosoh Corporation Lithium-nickel-manganese composite oxide, process for producing the same and use thereof
JP2005141983A (en) * 2003-11-05 2005-06-02 Mitsubishi Chemicals Corp Layered lithium nickel base composite oxide powder for positive electrode material of lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery, and lithium secondary battery
JP2005347134A (en) * 2004-06-04 2005-12-15 Sumitomo Metal Mining Co Ltd Manufacturing method of positive electrode active material for lithium ion secondary battery
US7927741B2 (en) 2007-01-26 2011-04-19 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure
WO2008091028A1 (en) 2007-01-26 2008-07-31 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure
JP2010030808A (en) * 2008-07-25 2010-02-12 Mitsui Mining & Smelting Co Ltd Lithium transition metal oxide having layer structure
WO2013047569A1 (en) * 2011-09-29 2013-04-04 株式会社田中化学研究所 Lithium-rich lithium metal complex oxide
JP2013075773A (en) * 2011-09-29 2013-04-25 Tanaka Chemical Corp Lithium-rich lithium metal complex oxide
US10263244B2 (en) 2011-11-25 2019-04-16 Mitsui Mining & Smelting Co., Ltd. Lithium metal composite oxide having layered structure
US9640794B2 (en) 2012-04-27 2017-05-02 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure
KR20150103103A (en) 2013-03-04 2015-09-09 미쓰이금속광업주식회사 Lithium metal composite oxide powder
US9391313B2 (en) 2013-03-04 2016-07-12 Mitsui Mining & Smelting Co., Ltd. Lithium metal composite oxide powder

Similar Documents

Publication Publication Date Title
JP4943145B2 (en) Positive electrode active material powder for lithium secondary battery
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
CA2672072C (en) Li-ni composite oxide particles for non-aqueous electrolyte secondary cell, process for producing the same, and non-aqueous electrolyte secondary cell
JP4301875B2 (en) Lithium nickel manganese cobalt-based composite oxide for lithium secondary battery positive electrode material, positive electrode for lithium secondary battery using the same, and lithium secondary battery
JP5135912B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5257272B2 (en) Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
JP4591717B2 (en) Lithium nickel manganese cobalt based composite oxide powder for lithium secondary battery positive electrode material, method for producing the same, spray-dried powder, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP3974420B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2003092108A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2011105594A (en) Nickel-manganese-cobalt based complex oxide, laminar lithium-nickel-manganese-cobalt based complex oxide, positive electrode material for lithium secondary batteries, positive electrode using the material, and lithium secondary battery
JP2003034538A (en) Method for producing lithium nickel manganese complex oxide
JP2003051311A (en) Lithium transition metal compound oxide, manufacturing method of positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP4997700B2 (en) Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2009032647A (en) Material for positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery using it, and lithium secondary battery
JP2010278015A (en) Lithium-nickel-manganese-cobalt-based compound oxide powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, and positive electrode for lithium rechargeable battery, and lithium rechargeable battery using the powder
JP2006151707A (en) Anhydride of lithium hydroxide for manufacturing lithium transition metal complex oxide and its manufacturing method, and method for manufacturing lithium transition metal complex oxide using it
JP2002338250A (en) Method for producing layered lithium-nickel-manganese composite oxide
JP2005336004A (en) Nickel manganese cobalt based multiple oxide, lamellar lithium nickel manganese cobalt based multiple oxide, lithium secondary cell positive electrode material, positive electrode for lithium secondary cell and lithium secondary cell using the same
JP2004103546A (en) Positive active material composite particle, electrode using the same, and lithium secondary battery
JP2003089526A (en) Lithium nickel manganese multiple oxide, positive electrode material for lithium secondary cell by using the same, positive electrode for lithium secondary cell, and lithium secondary cell
JP2003034536A (en) Method for producing laminar lithium nickel manganese complex oxide powder
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP4605175B2 (en) Method for producing lithium nickel manganese composite oxide
JP4674423B2 (en) Method for producing layered lithium nickel manganese composite oxide powder
JP2003045424A (en) Electrode active material containing composition, electrode using it, and lithium secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116