JPH1087332A - Production of spherical lithium-nickel complex oxide and nonaqueous electrolyte cell using the same as positive electrode - Google Patents

Production of spherical lithium-nickel complex oxide and nonaqueous electrolyte cell using the same as positive electrode

Info

Publication number
JPH1087332A
JPH1087332A JP8242890A JP24289096A JPH1087332A JP H1087332 A JPH1087332 A JP H1087332A JP 8242890 A JP8242890 A JP 8242890A JP 24289096 A JP24289096 A JP 24289096A JP H1087332 A JPH1087332 A JP H1087332A
Authority
JP
Japan
Prior art keywords
lithium
nickel
spherical
composite oxide
nickel composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8242890A
Other languages
Japanese (ja)
Other versions
JP3429633B2 (en
Inventor
Tatsuhiro Kurasawa
辰博 倉沢
Takao Tanaka
隆夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP24289096A priority Critical patent/JP3429633B2/en
Publication of JPH1087332A publication Critical patent/JPH1087332A/en
Application granted granted Critical
Publication of JP3429633B2 publication Critical patent/JP3429633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the density of an electrode and the energy density of a cell by using a spherical lithium-nickel complex oxide. SOLUTION: A mixed slurry of lithium nitrate and a nickel compd. is spray- dried and the resultant powdery mixture of spherical particles is fired at 550-900 deg.C in a firing furnace under continuous or intermittent fluidization to produce the objective spherical lithium-nickel complex oxide. This complex oxide is used as a positive electrode to obtain the objective nonaq. electrolyte cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、球状リチウム・ニ
ッケル複合酸化物の製造方法及びそれを正極活物質に用
いる非水電解液電池に関する。
The present invention relates to a method for producing a spherical lithium / nickel composite oxide and a non-aqueous electrolyte battery using the same as a positive electrode active material.

【0002】[0002]

【従来の技術】近年、携帯電話、ラップトップ型パソコ
ン、カメラ一体型VTR等のポータブル機器の需要が増
加している。これらの機器には、小型軽量の二次電池が
不可欠である。現在、二次電池としては、主にNi−C
d電池やNi水素電池が使われているが、これらの電池
は、小型軽量化の限界にきている。
2. Description of the Related Art In recent years, there has been an increasing demand for portable devices such as portable telephones, laptop personal computers, camera-integrated VTRs, and the like. For these devices, small and lightweight secondary batteries are indispensable. At present, as a secondary battery, Ni-C
Although d batteries and Ni hydrogen batteries are used, these batteries have reached the limit of miniaturization and weight reduction.

【0003】その一方で、負極に金属リチウムやリチウ
ムを吸蔵・脱離できる物質を用いる非水電解液二次電池
の開発が進められている。この電池は、これまでの小型
二次電池に比べて高電圧が得られるうえエネルギー密度
が高いという特徴があり、これまでの電池よりも小型軽
量な二次電池をつくることができる。
On the other hand, development of non-aqueous electrolyte secondary batteries using metallic lithium or a substance capable of occluding / desorbing lithium for the negative electrode has been promoted. This battery is characterized by a higher voltage and a higher energy density than conventional small secondary batteries, and can be made smaller and lighter than conventional batteries.

【0004】この電池の正極には、一般に、LiCoO
が用いられているが、Coは価格が高く、埋蔵量が少
ないなどの問題があるため、LiCoOに比べて安価
でしかも高充放電容量が得られるLiNiO等のリチ
ウム・ニッケル複合酸化物が新規電極活物質として注目
され研究が進められている。
The positive electrode of this battery is generally made of LiCoO
2 is used, but Co is expensive and has a small amount of reserves. Therefore, a lithium-nickel composite oxide such as LiNiO 2 is inexpensive and has a high charge / discharge capacity compared to LiCoO 2 . Is attracting attention as a new electrode active material and is being studied.

【0005】リチウム・ニッケル複合酸化物の合成方法
としては、例えば特開平5−251079号公報には、
硝酸リチウムと水酸化ニッケルまたはオキシ水酸化ニッ
ケルの少なくとも1つをリチウムとニッケルの原子比が
1:1になるように混合し、500℃〜1000℃で焼
成してリチウム・ニッケル複合酸化物を得る方法が開示
されている。また、特開平7−230808号公報に
は、水酸化リチウムと球状の水酸化ニッケルとクエン酸
を混合して焼成することにより球状のリチウムニッケル
複合酸化物を得る方法が開示されている。
As a method for synthesizing a lithium-nickel composite oxide, for example, Japanese Patent Application Laid-Open No. H5-251079 discloses a method.
Lithium nitrate and at least one of nickel hydroxide or nickel oxyhydroxide are mixed such that the atomic ratio of lithium to nickel is 1: 1 and calcined at 500 ° C. to 1000 ° C. to obtain a lithium-nickel composite oxide. A method is disclosed. Japanese Patent Application Laid-Open No. 7-230808 discloses a method of obtaining a spherical lithium-nickel composite oxide by mixing lithium hydroxide, spherical nickel hydroxide, and citric acid and firing the mixture.

【0006】[0006]

【発明が解決しようとする課題】リチウム・ニッケル複
合酸化物を電池の正極として用いる場合、その電極密度
及び電池のエネルギー密度を上げるためには、形状が球
状のリチウム・ニッケル複合酸化物を使用することが必
要である。しかし、球状のリチウム・ニッケル複合酸化
物は、リチウム源として水酸化リチウムを、ニッケル源
として球状の水酸化ニッケルを用いた場合にしか得られ
ず、このこの場合に得られた球状のリチウム・ニッケル
複合酸化物には、球状であるにもかかわらず細孔が多く
存在するため、球状粒子自体の密度が低く、タップ密度
が上がらないため電極の密度が上がらないという問題が
ある。さらに、この球状のリチウム・ニッケル複合酸化
物は、酸素雰囲気で合成しても酸化力が不足するため、
放電容量が大きくならないという問題がある。
When a lithium-nickel composite oxide is used as a positive electrode of a battery, a lithium-nickel composite oxide having a spherical shape is used to increase the electrode density and the energy density of the battery. It is necessary. However, spherical lithium-nickel composite oxides can be obtained only when lithium hydroxide is used as the lithium source and spherical nickel hydroxide is used as the nickel source. In this case, the spherical lithium-nickel obtained in this case is used. The composite oxide has a problem that the density of the spherical particles themselves is low due to the presence of many pores despite being spherical, and the tap density does not increase, so that the electrode density does not increase. Furthermore, since the spherical lithium-nickel composite oxide has insufficient oxidizing power even when synthesized in an oxygen atmosphere,
There is a problem that the discharge capacity does not increase.

【0007】また、酸化力のある硝酸リチウムをリチウ
ム源としてリチウム・ニッケル複合酸化物を合成した場
合には放電容量の大きなリチウム・ニッケル複合酸化物
が得られるが、ニッケル源が球状のニッケル化合物を用
いた場合でも焼成物が凝結して固まってしまう。円筒型
の非水電解液電池のようなスパイラル構造の電池の正極
活物質として用いるためには、正極を厚さ数百ミクロン
のシート電極にする必要があるので、リチウム・ニッケ
ル複合酸化物を50ミクロン以下に粉砕しなければなら
ず、粉砕を行うと球状粒子が得られない。したがって、
タップ密度が上がらず、電極密度も上がらないという問
題がある。
When a lithium-nickel composite oxide is synthesized using lithium nitrate having oxidizing power as a lithium source, a lithium-nickel composite oxide having a large discharge capacity can be obtained. Even when used, the fired product solidifies and hardens. In order to use a positive electrode as a positive electrode active material for a spiral-structured battery such as a cylindrical nonaqueous electrolyte battery, the positive electrode must be a sheet electrode having a thickness of several hundred microns. It must be ground to a micron or less, and spherical particles cannot be obtained when grinding is performed. Therefore,
There is a problem that the tap density does not increase and the electrode density does not increase.

【0008】[0008]

【課題を解決するための手段】本発明は、硝酸リチウム
とニッケル化合物の混合スラリーを噴霧乾燥して得られ
る球状の混合粉を、焼成炉内で動かしながら特定の温度
で焼成することにより高密度で球状のリチウム・ニッケ
ル複合酸化物が得られることを見出した。
SUMMARY OF THE INVENTION The present invention provides a high-density spherical powder obtained by spray-drying a mixed slurry of lithium nitrate and a nickel compound at a specific temperature while moving it in a firing furnace. It has been found that a spherical lithium / nickel composite oxide can be obtained by the above method.

【0009】すなわち、本発明は硝酸リチウムとニッケ
ル化合物の混合スラリーを噴霧乾燥して得られる球状粒
子から成る混合粉を、焼成炉内で連続的または断続的に
動かしながら550〜900℃で焼成することを特徴と
する球状のリチウム・ニッケル複合酸化物の製造方法及
びそれを正極に用いる非水電解液電池に関する。
That is, according to the present invention, a mixed powder composed of spherical particles obtained by spray-drying a mixed slurry of lithium nitrate and a nickel compound is fired at 550 to 900 ° C. while continuously or intermittently moving in a firing furnace. The present invention relates to a method for producing a spherical lithium / nickel composite oxide, and a nonaqueous electrolyte battery using the same as a positive electrode.

【0010】[0010]

【発明の実施の形態】以下、本発明を詳細に説明する。
ここで球状とは、必ずしも真球のみを意味するのではな
く、粒子表面に多少凸凹があるもの、球が全体的に多少
歪んだもの、一部がへこんだもの、球状粒子のいくつか
が凝集したものも含むものとする。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
Here, the term “spherical” does not necessarily mean only a true sphere, but rather a particle with a slightly uneven surface, a sphere that is slightly distorted as a whole, a part that is partially dented, and some of the spherical particles that aggregate. It shall include those that have been done.

【0011】ニッケル化合物は、ニッケル化合物中の金
属元素にニッケル以外の金属元素が25モル%以下含ま
れていることが好ましい。ニッケル以外の金属元素がコ
バルト、鉄、マンガン、またはこれらの混合物であるこ
とが好ましい。また、化合物としては、水酸化物、酸化
物またはこれらの混合物であることが好ましい。
The nickel compound preferably contains a metal element other than nickel in an amount of 25 mol% or less in the metal element in the nickel compound. Preferably, the metal element other than nickel is cobalt, iron, manganese, or a mixture thereof. Further, the compound is preferably a hydroxide, an oxide or a mixture thereof.

【0012】ニッケル化合物が不溶性である場合、その
平均粒径は小さい方が好ましく、平均粒径が5ミクロン
以下であることがより好ましい。例えば水酸化ニッケル
の微粉を得るには、市販の水酸化ニッケルをボールミ
ル、振動ミル、ジェットミル等で粉砕してもよいし、あ
るいはより粒径の小さな水酸化ニッケルスラリーを得る
ためには、硫酸ニッケル、硝酸ニッケル等の水溶液に苛
性ソーダ等のアルカリの水溶液を混合し、溶解している
硝酸塩をデカンテーションで除去して水酸化ニッケルの
微粒子スラリーを得ることもできる。平均粒径が大きい
と、反応を完全にするための焼成時間がかかるうえ、焼
成後のリチウム・ニッケル複合酸化物の組成にばらつき
が生じて放電容量の大きなものが得られない場合があ
る。
When the nickel compound is insoluble, the average particle size is preferably smaller, and more preferably 5 μm or less. For example, to obtain fine powder of nickel hydroxide, commercially available nickel hydroxide may be pulverized by a ball mill, a vibration mill, a jet mill, or the like, or to obtain a nickel hydroxide slurry having a smaller particle size, sulfuric acid may be used. An aqueous solution of an alkali such as caustic soda may be mixed with an aqueous solution of nickel or nickel nitrate, and the dissolved nitrate may be removed by decantation to obtain a nickel hydroxide fine particle slurry. If the average particle diameter is large, it takes a long time to complete the reaction, and the composition of the lithium-nickel composite oxide after firing may vary, so that a large discharge capacity may not be obtained.

【0013】硝酸リチウムとニッケル化合物のスラリー
を作成する溶媒は、水、アンモニア水、アルコールなど
の、不揮発成分を含まない溶媒を用いるのが好ましい。
炭素を含む有機溶媒を用いた場合、焼成条件等によって
は炭酸リチウム等の不純物が生成し、リチウム・ニッケ
ル複合酸化物の組成がずれ、不純物による放電容量の減
少を引き起こすので、炭素を含まない溶媒であることが
好ましい。
As a solvent for preparing a slurry of lithium nitrate and a nickel compound, it is preferable to use a solvent that does not contain a nonvolatile component, such as water, aqueous ammonia, or alcohol.
When an organic solvent containing carbon is used, impurities such as lithium carbonate are generated depending on firing conditions and the like, and the composition of the lithium-nickel composite oxide shifts, causing a reduction in discharge capacity due to the impurities. It is preferred that

【0014】硝酸リチウムとニッケル化合物の混合スラ
リーは、噴霧乾燥前に良く分散、撹拌混合することが好
ましい。分散、撹拌混合が不十分であると、組成にばら
つきが生じ、放電容量の大きなリチウム・ニッケル複合
酸化物が得られない場合がある。
It is preferable that the mixed slurry of lithium nitrate and nickel compound is well dispersed and stirred and mixed before spray drying. If dispersion and stirring and mixing are insufficient, the composition may vary, and a lithium / nickel composite oxide having a large discharge capacity may not be obtained.

【0015】混合スラリーの噴霧乾燥は、均一に混合し
たスラリーをノズル、アトマイザー等により液滴化し、
これをごく短時間に乾燥する一般的な方法のほか、前記
液滴を短時間に凍結した後、減圧下等で乾燥を行う噴霧
凍結乾燥や、前記一般的な噴霧乾燥と焼成を組み合わせ
た噴霧熱分解でも良い。
In the spray drying of the mixed slurry, the uniformly mixed slurry is formed into droplets using a nozzle, an atomizer, or the like.
In addition to the general method of drying this in a very short time, spray freeze-drying in which the droplets are frozen in a short time and then drying under reduced pressure or the like, or spraying in which the general spray drying and baking are combined Thermal decomposition may be used.

【0016】噴霧乾燥により造粒される混合粉は球状で
なければならない。噴霧乾燥により造粒される混合粉の
平均粒子径は、100ミクロン以下であることが好まし
く、50ミクロン以下であることがより好ましい。混合
粉は焼成によって幾分収縮し、焼成後の平均粒子径は焼
成前より小さくなるが、平均粒子径が100ミクロンを
超える混合粉を焼成した場合、電池の活物質として好ま
しくない50ミクロン以上の粒子の割合が多くなるため
好ましくない。粒径の大きな混合粉を含む場合には、篩
い等の分級によって大きな粒子を除いてから焼成を行う
ことが好ましい。
The powder mixture to be granulated by spray drying must be spherical. The average particle size of the mixed powder granulated by spray drying is preferably 100 μm or less, more preferably 50 μm or less. The mixed powder is slightly shrunk by firing, and the average particle size after firing is smaller than before firing, but when firing the mixed powder having an average particle size of more than 100 microns, 50 μm or more, which is not preferable as an active material of a battery, It is not preferable because the ratio of particles increases. When a mixed powder having a large particle size is contained, it is preferable to perform calcination after removing large particles by classification such as sieving.

【0017】噴霧乾燥直後の混合粉は多少吸湿している
可能性が高いので、混合粉を約100℃で乾燥して水分
を除去することが好ましい。また、噴霧乾燥した混合粉
は焼成までは湿度の低い状態で保存することが好まし
い。混合粉には潮解性の硝酸リチウムが含まれるため、
湿度の高い状態で保存して置くと球状の混合粉が凝集す
るおそれがある。
Since it is highly possible that the mixed powder immediately after spray drying has absorbed some moisture, it is preferable to dry the mixed powder at about 100 ° C. to remove water. Further, the spray-dried mixed powder is preferably stored in a low humidity state until firing. Since the mixed powder contains deliquescent lithium nitrate,
When stored in a state of high humidity, the spherical mixed powder may aggregate.

【0018】混合粉の焼成は、焼成炉内で連続的または
断続的に混合粉を動かしながら焼成しなければならな
い。混合粉を静置したままで焼成を行うと、混合粉が焼
結して球状のリチウム・ニッケル酸化物が得られない。
混合粉の動かし方は、例えば管状のロータリーキルンに
混合粉を入れて管を連続的または断続的に回転して焼成
する方法、縦型の焼成炉の上部から混合粉を落とすこと
を繰り返す方法、混合粉を入れた容器または焼成炉全体
を連続的または断続的に振動させる方法などがある。混
合粉の接触する時間が長いと凝集し易いので、断続的に
動かす場合には静置時間を短くすることが好ましい。ま
た、混合粉同士の衝突が強い場合には逆に凝集を引き起
こしやすいので、衝突力が小さくなるように、例えば混
合粉の動く方向が一定方向のみとなる方が好ましい。
In the firing of the mixed powder, the firing must be performed while moving the mixed powder continuously or intermittently in a firing furnace. If firing is performed while the mixed powder is allowed to stand, the mixed powder is sintered and spherical lithium / nickel oxide cannot be obtained.
The method of moving the mixed powder is, for example, a method in which the mixed powder is put into a tubular rotary kiln and the tube is continuously or intermittently rotated and fired, a method of repeatedly dropping the mixed powder from the upper part of the vertical firing furnace, a method of mixing There is a method of continuously or intermittently vibrating the container containing the powder or the entire firing furnace. If the mixed powder is in contact for a long time, it is likely to agglomerate. Therefore, in the case of intermittent operation, it is preferable to shorten the standing time. In addition, when the collision between the mixed powders is strong, agglomeration is likely to be caused on the contrary. Therefore, it is preferable that, for example, the moving direction of the mixed powder is only a certain direction so as to reduce the collision force.

【0019】混合粉の焼成温度は550〜900℃でな
ければならない。550℃未満では反応が進行せず、硝
酸リチウムが残留する。また、900℃を超える温度で
は、混合粉の焼結が進行し、球状のリチウム・ニッケル
複合酸化物が得られない。これらの影響を避けるため、
更に、好ましくは、焼成温度は600〜730℃である
ことが好適である。
The firing temperature of the mixed powder must be 550-900 ° C. If the temperature is lower than 550 ° C., the reaction does not proceed, and lithium nitrate remains. If the temperature exceeds 900 ° C., sintering of the mixed powder proceeds, and a spherical lithium-nickel composite oxide cannot be obtained. To avoid these effects,
More preferably, the firing temperature is preferably from 600 to 730C.

【0020】焼成時にリチウム分がわずかながら減少す
る傾向があるので、硝酸リチウムとニッケル化合物の混
合スラリー中のLi/金属元素の混合モル比は、等モル
またはリチウム小過剰であることが好ましく、Li/金
属元素の混合モル比は1.00≦Li/金属元素≦1.
05であることがより好ましい。
Since the lithium content tends to slightly decrease during firing, the mixing molar ratio of Li / metal element in the mixed slurry of lithium nitrate and nickel compound is preferably equimolar or a small excess of lithium. / Metal element mixture molar ratio is 1.00 ≦ Li / metal element ≦ 1.
05 is more preferable.

【0021】混合粉の焼成時間は焼成温度、焼成方法等
により適宜選択すれば良い。混合粉の焼成雰囲気は、酸
化を促進するためにエアなどの酸素存在雰囲気で行うこ
とが好ましく、酸素分圧が高い方が好ましい。また、ガ
ス中の水分、炭酸ガス等は不純物の生成や球状粒子の凝
集の原因となる可能性があるので、できるだけ除去する
ことが好ましく、さらには純酸素中で行うことがより好
ましい。焼成中は焼成で発生する分解ガス等により酸素
分圧が低下するので、炉内にガスを流通させながら焼成
することが好ましい。焼成中の混合粉が流通ガスに同伴
されて焼成炉系外に排出されないようにガス流量を適宜
調整することが好ましい。
The firing time of the mixed powder may be appropriately selected depending on the firing temperature, the firing method and the like. The firing of the mixed powder is preferably carried out in an oxygen-containing atmosphere such as air in order to promote oxidation, and the oxygen partial pressure is preferably higher. In addition, since water and carbon dioxide in the gas may cause generation of impurities and aggregation of spherical particles, it is preferable to remove as much as possible, and it is more preferable to remove the gas in pure oxygen. During the firing, the oxygen partial pressure is reduced by a decomposition gas or the like generated during the firing, and therefore it is preferable to perform the firing while flowing the gas in the furnace. It is preferable to appropriately adjust the gas flow rate so that the mixed powder during firing is not discharged out of the firing furnace system accompanying the flowing gas.

【0022】焼成後のリチウム・ニッケル複合酸化物
は、球状粉だけでなく、球状粒子が数個凝集したものな
どを含んでいる場合がある。電池の作成には適さない5
0ミクロン以上の粒子は分級等により除去することが好
ましい。
The lithium / nickel composite oxide after calcination may contain not only spherical powder but also agglomerates of several spherical particles. Not suitable for making batteries 5
It is preferable to remove particles having a size of 0 μm or more by classification or the like.

【0023】一般に球状の粒子から成る粉体は嵩密度が
大きいが、粒度分布が狭い場合には嵩密度が大きくなり
にくい場合がある。焼成後の球状のリチウム・ニッケル
複合酸化物の嵩密度が大きくなりにくい場合は必要に応
じて粒度の異なる球状のリチウム・ニッケル複合酸化物
を合成し、それらを適当な割合で混合して嵩密度を高め
るか、あるいは必要に応じて粒度の異なる混合粉を混合
し、焼成を行うのが好ましい。
In general, powder composed of spherical particles has a large bulk density, but if the particle size distribution is narrow, the bulk density may be difficult to increase. If the bulk density of the spherical lithium-nickel composite oxide after firing is difficult to increase, synthesize spherical lithium-nickel composite oxides with different particle sizes as necessary and mix them in an appropriate ratio to obtain a bulk density. It is preferable that the mixture is mixed or mixed powders having different particle sizes are mixed as necessary, followed by baking.

【0024】本発明により得られた球状のリチウムニッ
ケル複合酸化物は、硝酸リチウムを出発原料としている
ため放電容量が大きい。また、得られる粒子が球状であ
るため、嵩密度が大きいことにより電極の密度を上げて
エネルギー密度の大きな電池を作成することができる。
The spherical lithium-nickel composite oxide obtained by the present invention has a large discharge capacity because it uses lithium nitrate as a starting material. In addition, since the obtained particles are spherical, the density of the electrode is increased due to the high bulk density, so that a battery having a high energy density can be manufactured.

【0025】[0025]

【実施例】【Example】

実施例1 市販の硝酸リチウム694.1g(10.1mol)を
純水に溶解し、1.01mol/Lの硝酸リチウム水溶
液を10L調製した。この硝酸リチウム水溶液に、振動
ミルで平均粒径3ミクロン以下に粉砕した市販の水酸化
ニッケル946.6g(10.0mol)を加え20時
間撹拌混合した。この混合スラリーをスプレードライヤ
ーによって噴霧乾燥し、球状混合粉を得た。走査型電子
顕微鏡により球状であることを確認した。この球状混合
粉を乾燥機中で100℃15時間乾燥した後、円柱を水
平に置いた形のロータリーキルンに1000gを仕込ん
だ。ガスの出入口を除いて円柱の底面に当たる部分に蓋
をした後、酸素ガスを流通させながらロータリーキルン
を約1rpmで回転させ、200℃/hで昇温して70
0℃で10時間保持して焼成を行った。放冷後に取り出
された焼成粉を、200メッシュの篩に通したものを正
極活物質とした。この正極活物質のXRD回折ピークは
JCPDSの粉末回折データファイルのカードNo.9
−0063(以下、JCPDS/9−0063のように
記述する)のLiNiOの回折ピークとほぼ一致し、
それ以外の回折ピークは見られなかった。また、形状を
走査型電子顕微鏡で観察したところ、形状は球状であっ
た。
Example 1 694.1 g (10.1 mol) of commercially available lithium nitrate was dissolved in pure water to prepare 10 L of a 1.01 mol / L aqueous solution of lithium nitrate. 946.6 g (10.0 mol) of commercially available nickel hydroxide pulverized to an average particle diameter of 3 μm or less with a vibration mill was added to the aqueous lithium nitrate solution, and the mixture was stirred and mixed for 20 hours. This mixed slurry was spray-dried with a spray drier to obtain a spherical mixed powder. It was confirmed by a scanning electron microscope that it was spherical. The spherical mixed powder was dried in a dryer at 100 ° C. for 15 hours, and then 1000 g was charged into a rotary kiln having a column placed horizontally. After covering the portion corresponding to the bottom of the cylinder except for the gas inlet / outlet, the rotary kiln was rotated at about 1 rpm while flowing oxygen gas, and the temperature was increased at 200 ° C./h to 70 ° C.
The calcination was carried out at 0 ° C. for 10 hours. The calcined powder taken out after cooling was passed through a 200-mesh sieve to obtain a positive electrode active material. The XRD diffraction peak of this positive electrode active material was obtained from the card No. of the powder diffraction data file of JCPDS. 9
-0063 (hereinafter described as JCPDS / 9-0063) almost coincides with the diffraction peak of LiNiO 2 ,
No other diffraction peaks were observed. When the shape was observed with a scanning electron microscope, the shape was spherical.

【0026】また、タップ密度は次の方法で測定した。
まず、正極活物質約45〜50mlを重量既知の50m
lのメスシリンダーに入れ、重量を測定した。次に、メ
スシリンダーをゴム板上で軽くたたき、容量の変化がな
くなるまで1分ごとに容量を読んだ。使用した正極活物
質重量を容量の収束値で割った値をタップ密度とした。
その結果、タップ密度は2.50g/cmであった。
合成したリチウム・ニッケル複合酸化物の電池特性を調
べるため、リチウム・ニッケル複合酸化物、導電材であ
るアセチレンブラック、結着材であるポリフッ化エチレ
ンを所定重量比で混練し、ペレット状に成型して正極と
した。負極には金属リチウムを用い、電解液は六フッ化
リン酸リチウムを1mol/l溶解したプロピレンカー
ボネート/ジエチルカーボネート混合液を用いてボタン
型電池を組み立てた。この電池の性能を調べるために、
0.5mA/cmの定電流で4.3Vまで充電させた
後に、3.0Vまで放電させて放電容量を測定した。結
果を表1に示す。
The tap density was measured by the following method.
First, about 45 to 50 ml of the positive electrode active material was
and placed in a 1 graduated cylinder and weighed. Next, the measuring cylinder was lightly tapped on a rubber plate, and the volume was read every minute until the volume no longer changed. The value obtained by dividing the weight of the used positive electrode active material by the convergence value of the capacity was defined as the tap density.
As a result, the tap density was 2.50 g / cm 3 .
In order to examine the battery characteristics of the synthesized lithium-nickel composite oxide, the lithium-nickel composite oxide, acetylene black as a conductive material, and polyfluoroethylene as a binder were kneaded at a predetermined weight ratio and formed into pellets. To make a positive electrode. A button-type battery was assembled using metallic lithium as the negative electrode and a propylene carbonate / diethyl carbonate mixed solution in which lithium hexafluorophosphate was dissolved at 1 mol / l. To check the performance of this battery,
After charging to 4.3 V at a constant current of 0.5 mA / cm 2, the battery was discharged to 3.0 V and the discharge capacity was measured. Table 1 shows the results.

【0027】実施例2 実施例1の市販の水酸化ニッケルを、市販の水酸化ニッ
ケル757.3g(8.0mol)と市販の水酸化コバ
ルト189.2g(2.0mol)の混合物に変更した
以外は実施例1と同様に実施した。この正極活物質のX
RD回折ピークはJCPDSの粉末回折データファイル
のカードNo.9−0063のLiNiOの回折ピー
クとほぼ一致し、それ以外の回折ピークは見られなかっ
た。LiNiOと同結晶相のLiNi0.8Co
0.2が生成していると考えられる。また、形状を
走査型電子顕微鏡で観察したところ、形状は球状であっ
た。実施例1と同様にタップ密度を調べたところ、2.
56g/cmであった。合成したリチウム・ニッケル
複合酸化物の電池特性は実施例1と同様の方法で測定し
た。結果を表1に示す。
Example 2 The commercially available nickel hydroxide of Example 1 was replaced with the commercially available nickel hydroxide.
Kel 757.3 g (8.0 mol) and commercially available hydroxide
The mixture was changed to a mixture of 189.2 g (2.0 mol).
Except for this, the procedure was the same as in Example 1. X of this positive electrode active material
RD diffraction peak is a powder diffraction data file of JCPDS
Card No. 9-0063 LiNiO2Diffraction peak
Approximately matches the peak, and no other diffraction peaks were seen
Was. LiNiO2And the same crystalline phase of LiNi0.8Co
0.2O2Is considered to have been generated. Also, the shape
When observed with a scanning electron microscope, the shape was spherical.
Was. When the tap density was examined in the same manner as in Example 1, 2.
56g / cm3Met. Synthesized lithium nickel
The battery characteristics of the composite oxide were measured in the same manner as in Example 1.
Was. Table 1 shows the results.

【0028】比較例1 実施例1と同様の方法で得た球状混合粉を乾燥機中で1
00℃、15時間乾燥した後、アルミナ坩堝に仕込み、
ボックス型の焼成炉に静置した。酸素ガスを流通させな
がら700℃まで200℃/hで昇温して700℃で1
0時間保持して焼成を行った。放冷後に取り出した焼成
物はアルミナ坩堝内で全体が固まっていた。該焼成物を
乳鉢で粗粉砕した後、ボールミルで1時間粉砕し、回収
粉を200メッシュの篩いに通したものを正極活物質と
した。この正極活物質のXRD回折ピークはJCPDS
/9−0063のLiNiO の回折ピークとほぼ一致
しそれ以外の回折ピークは見られなかった。形状を走査
型電子顕微鏡で観察したところ、形状は岩石状であっ
た。実施例1と同様にタップ密度を調べたところ、2.
00g/cmであった。合成したリチウム・ニッケル
複合酸化物の電池特性は実施例1と同様の方法で測定し
た。結果を表1に示す。
Comparative Example 1 A spherical mixed powder obtained in the same manner as in Example 1 was dried in a drier.
After drying at 00 ° C for 15 hours, the mixture was charged into an alumina crucible,
It was left still in a box type firing furnace. Do not allow oxygen gas to flow
The temperature was raised to 700 ° C at 200 ° C / h and
The firing was performed while holding for 0 hour. Baking taken out after cooling
The whole thing was solidified in the alumina crucible. The fired product
After crushed roughly in a mortar, crushed in a ball mill for 1 hour and collected
The powder passed through a 200 mesh sieve was used as the positive electrode active material.
did. The XRD diffraction peak of this positive electrode active material is JCPDS
/ 9-0063 LiNiO 2Almost coincides with the diffraction peak of
No other diffraction peaks were observed. Scan shape
When observed with a scanning electron microscope, the shape was rocky.
Was. When the tap density was examined in the same manner as in Example 1, 2.
00g / cm3Met. Synthesized lithium nickel
The battery characteristics of the composite oxide were measured in the same manner as in Example 1.
Was. Table 1 shows the results.

【0029】比較例2 実施例1の硝酸リチウムを水酸化リチウム一水和物42
2.3g(10.1mol)に変更した以外は、実施例
1と同様の方法で行った。この正極活物質のXRD回折
ピークはJCPDS/9−0063のLiNiO の回
折ピークとほぼ一致しそれ以外の回折ピークは見られな
かった。また、形状を走査型電子顕微鏡で観察したとこ
ろ、形状は球状であった。実施例1と同様にタップ密度
を調べたところ、1.82g/cmであった。合成し
たリチウム・ニッケル複合酸化物の電池特性は実施例1
と同様の方法で測定した。結果を表1に示す。
Comparative Example 2 The lithium nitrate of Example 1 was replaced with lithium hydroxide monohydrate 42.
Example except that it was changed to 2.3 g (10.1 mol)
This was performed in the same manner as in Example 1. XRD diffraction of this positive electrode active material
The peak is LiNiO of JCPDS / 9-0063. 2Times
Almost coincides with the diffraction peak and no other diffraction peaks are seen.
won. The shape was observed with a scanning electron microscope.
After all, the shape was spherical. Tap density as in Example 1.
Was found to be 1.82 g / cm3Met. Synthesize
The battery characteristics of the lithium-nickel composite oxide obtained in Example 1
The measurement was performed in the same manner as described above. Table 1 shows the results.

【0030】比較例3 実施例1の焼成温度700℃を500℃に変更した以外
は、実施例1と同様に行った。この正極活物質のXRD
回折ピークには、JCPDS/9−0063のLiNi
の回折ピークの他に、JCPDS/8−0046の
LiNOのピークがみられ、反応が完全に終了してい
なかった。不純物が含まれ電池特性が悪いのは自明であ
るので電池特性の測定及びタップ密度の測定は実施しな
かった。
Comparative Example 3 The same procedure as in Example 1 was carried out except that the sintering temperature in Example 1 was changed from 700 ° C. to 500 ° C. XRD of this positive electrode active material
The diffraction peak shows LiNi of JCPDS / 9-0063.
In addition to the diffraction peak of O 2, seen the peak of LiNO 3 of JCPDS / 8-0046, reaction was not completely finished. Since it is obvious that the battery characteristics are poor due to the inclusion of impurities, the measurement of the battery characteristics and the measurement of the tap density were not performed.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】本発明のリチウム電池正極用の球状リチ
ウム・ニッケル複合酸化物は、放電容量が大きいという
本質的な物性が優れており、かつ、球状で球自体の密度
が高いために嵩密度が大きく電極の密度が上がるので、
従来のリチウム・ニッケル複合酸化物に比較して優れた
正極材料である。
The spherical lithium / nickel composite oxide of the present invention for a lithium battery positive electrode has excellent physical properties such as a large discharge capacity, and has a high bulk density due to the spherical and high density of the sphere itself. And the density of the electrode increases,
It is a positive electrode material that is superior to conventional lithium-nickel composite oxides.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 硝酸リチウムとニッケル化合物の混合
スラリーを噴霧乾燥し、得られた球状粒子から成る混合
粉を、焼成炉内で連続的または断続的に動かしながら5
50〜900℃で焼成することを特徴とする球状リチウ
ム・ニッケル複合酸化物の製造方法。
1. A mixed slurry of lithium nitrate and a nickel compound is spray-dried, and the resulting mixed powder composed of spherical particles is continuously or intermittently moved in a firing furnace.
A method for producing a spherical lithium / nickel composite oxide, characterized by firing at 50 to 900 ° C.
【請求項2】 ニッケル化合物中の金属元素にニッケ
ル以外の金属元素が25モル%以下含む請求項1記載の
球状リチウム・ニッケル複合酸化物の製造方法。
2. The method for producing a spherical lithium-nickel composite oxide according to claim 1, wherein the metal element in the nickel compound contains 25 mol% or less of a metal element other than nickel.
【請求項3】 ニッケル化合物中の金属元素にニッケ
ル以外の金属元素が25モル%以下含まれる水酸化物ま
たは酸化物である請求項1または2項記載の球状リチウ
ム・ニッケル複合酸化物の製造方法。
3. The method for producing a spherical lithium-nickel composite oxide according to claim 1, wherein the metal element in the nickel compound is a hydroxide or an oxide containing 25 mol% or less of a metal element other than nickel. .
【請求項4】 硝酸リチウムとニッケル化合物の混合
スラリー中のリチウム/金属元素の混合モル比が1.0
0≦リチウム/金属元素≦1.05である請求項1〜3
項のうちいずれか1項に記載の球状リチウム・ニッケル
複合酸化物の製造方法。
4. A mixed slurry of lithium / metal element in a mixed slurry of lithium nitrate and a nickel compound having a mixing molar ratio of 1.0 to 1.0.
4. The condition of 0 ≦ lithium / metal element ≦ 1.05.
Item 14. The method for producing a spherical lithium-nickel composite oxide according to any one of the items.
【請求項5】 焼成炉に酸素を流通させながら焼成す
る請求項1〜4項のうちいずれか1項に記載の球状リチ
ウム・ニッケル複合酸化物の製造方法。
5. The method for producing a spherical lithium-nickel composite oxide according to claim 1, wherein the calcination is performed while flowing oxygen through a calcination furnace.
【請求項6】 混合スラリーの溶媒が水である請求項
1〜5項のうちいずれか1項に記載の球状のリチウム・
ニッケル複合酸化物の製造方法。
6. The spherical lithium powder according to claim 1, wherein the solvent of the mixed slurry is water.
A method for producing a nickel composite oxide.
【請求項7】 ニッケル以外の金属元素がコバルト、
鉄、マンガンまたはこれらの混合物である請求項1〜6
項のうちいずれか1項に記載の球状リチウム・ニッケル
複合酸化物の製造方法。
7. The metal element other than nickel is cobalt,
7. Iron or manganese or a mixture thereof.
Item 14. The method for producing a spherical lithium-nickel composite oxide according to any one of the items.
【請求項8】 請求項1〜7項のうちいずれか1項に
記載の球状リチウム・ニッケル複合酸化物を正極に用い
る非水電解液電池。
8. A nonaqueous electrolyte battery using the spherical lithium / nickel composite oxide according to claim 1 as a positive electrode.
JP24289096A 1996-09-13 1996-09-13 Method for producing spherical lithium / nickel composite oxide and nonaqueous electrolyte battery using the same as positive electrode Expired - Fee Related JP3429633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24289096A JP3429633B2 (en) 1996-09-13 1996-09-13 Method for producing spherical lithium / nickel composite oxide and nonaqueous electrolyte battery using the same as positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24289096A JP3429633B2 (en) 1996-09-13 1996-09-13 Method for producing spherical lithium / nickel composite oxide and nonaqueous electrolyte battery using the same as positive electrode

Publications (2)

Publication Number Publication Date
JPH1087332A true JPH1087332A (en) 1998-04-07
JP3429633B2 JP3429633B2 (en) 2003-07-22

Family

ID=17095756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24289096A Expired - Fee Related JP3429633B2 (en) 1996-09-13 1996-09-13 Method for producing spherical lithium / nickel composite oxide and nonaqueous electrolyte battery using the same as positive electrode

Country Status (1)

Country Link
JP (1) JP3429633B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203559A (en) * 2000-12-28 2002-07-19 Sony Corp Non-aqueous electrolyte secondary battery and manufacturing method of positive electrode active material
JP2002338250A (en) * 2001-05-17 2002-11-27 Mitsubishi Chemicals Corp Method for producing layered lithium-nickel-manganese composite oxide
JP2003034536A (en) * 2001-07-19 2003-02-07 Mitsubishi Chemicals Corp Method for producing laminar lithium nickel manganese complex oxide powder
JP2003146662A (en) * 2001-11-13 2003-05-21 Nikki Chemcal Co Ltd Lithium-nickel-manganese complex oxide, method for manufacturing the same and use of the same
US8147783B2 (en) 2004-10-27 2012-04-03 Sumitomo Chemical Company, Limited Nickel hydroxide powder and method for producing same
JP2014197552A (en) * 2014-06-18 2014-10-16 三菱化学株式会社 Lamellar lithium nickel manganese complex oxide
WO2021116819A1 (en) * 2019-12-10 2021-06-17 株式会社半導体エネルギー研究所 Method for producing positive electrode active material, kiln, and heating furnace

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203559A (en) * 2000-12-28 2002-07-19 Sony Corp Non-aqueous electrolyte secondary battery and manufacturing method of positive electrode active material
JP2002338250A (en) * 2001-05-17 2002-11-27 Mitsubishi Chemicals Corp Method for producing layered lithium-nickel-manganese composite oxide
JP2003034536A (en) * 2001-07-19 2003-02-07 Mitsubishi Chemicals Corp Method for producing laminar lithium nickel manganese complex oxide powder
JP2003146662A (en) * 2001-11-13 2003-05-21 Nikki Chemcal Co Ltd Lithium-nickel-manganese complex oxide, method for manufacturing the same and use of the same
US8147783B2 (en) 2004-10-27 2012-04-03 Sumitomo Chemical Company, Limited Nickel hydroxide powder and method for producing same
JP2014197552A (en) * 2014-06-18 2014-10-16 三菱化学株式会社 Lamellar lithium nickel manganese complex oxide
WO2021116819A1 (en) * 2019-12-10 2021-06-17 株式会社半導体エネルギー研究所 Method for producing positive electrode active material, kiln, and heating furnace

Also Published As

Publication number Publication date
JP3429633B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
JP4768901B2 (en) Lithium titanium composite oxide, method for producing the same, and use thereof
JP5484404B2 (en) Lithium-containing composite oxide
EP1491504B1 (en) Lithium manganese composite oxide granular secondary particle, method for production thereof and use thereof
JP4949561B2 (en) Titanium dioxide powder as lithium ion secondary battery electrode active material production raw material, lithium titanate as lithium ion secondary battery electrode active material, and method for producing the same
JP5112318B2 (en) Lithium-containing composite oxide and method for producing the same
US8685289B2 (en) Pulverulent compounds, a process for the preparation thereof and the use thereof in lithium secondary batteries
JP4254267B2 (en) Lithium manganese composite oxide granule secondary particles, method for producing the same, and use thereof
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JPH11180717A (en) Lithium manganate, its production and lithium cell produced by using the same
JP2005347134A (en) Manufacturing method of positive electrode active material for lithium ion secondary battery
JPH0950810A (en) Electrode active material for non-aqueous electrolytic battery and manufacture thereof
JP2002060225A (en) Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate
US20150180025A1 (en) Lithium Metal Complex Oxide
CN116130662A (en) Method for preparing cathode material of lithium ion battery
WO2012020769A1 (en) Method for producing nickel-containing complex compound
JP4581333B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2006318929A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP2004281253A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method and nonaqueous system lithium secondary battery using the material
JP4172024B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery
JP2006318928A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP2003081639A (en) Manganese-containing layer lithium-transition metal compound oxide, and production method therefor
JP3429633B2 (en) Method for producing spherical lithium / nickel composite oxide and nonaqueous electrolyte battery using the same as positive electrode
JP2008010434A (en) Lithium/nickel/cobalt composite oxide, manufacturing method therefor, and cathode active material for secondary battery
JP7159535B2 (en) Lithium tungstate, method for producing lithium tungstate, apparatus for producing lithium tungstate, positive electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP3733659B2 (en) Method for producing active material for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees