JP2002060225A - Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate - Google Patents

Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate

Info

Publication number
JP2002060225A
JP2002060225A JP2000248169A JP2000248169A JP2002060225A JP 2002060225 A JP2002060225 A JP 2002060225A JP 2000248169 A JP2000248169 A JP 2000248169A JP 2000248169 A JP2000248169 A JP 2000248169A JP 2002060225 A JP2002060225 A JP 2002060225A
Authority
JP
Japan
Prior art keywords
aggregate
cobalt oxide
cobalt
lithium
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000248169A
Other languages
Japanese (ja)
Inventor
Makoto Ogasawara
誠 小笠原
Mitsuo Suzuki
光郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2000248169A priority Critical patent/JP2002060225A/en
Publication of JP2002060225A publication Critical patent/JP2002060225A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a new lithium cobaltate aggregate having the performance in good balance with improved stability and safeness as a cell material without decreasing the cell characteristics, to provide a new cobalt oxide aggregate to be used for the manufacture of the above aggregate, a method for manufacturing these aggregates, and to provide a lithium cell using the lithium cobaltate aggregate as the positive pole active material. SOLUTION: The lithium cobaltate aggregate having 1 to 30 μm average particle size as the secondary particles is obtained by aggregating primary particles having 0.05 to 5 μm average particle size, and by using the aggregate as the positive pole active material of a lithium cell, the lithium cell is excellent in the cell characteristics, stability and safeness. The cobalt oxide aggregate having 0.5 to 30 μm average particle size as the secondary particles is prepared by aggregating primary particles having 0.01 to 2 μm average particle size and is useful to manufacture the above lithium cobaltate aggregate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電池材料などに有用
なコバルト酸リチウム凝集体、その製造に用いるコバル
ト化合物凝集体及びそれらの製造方法並びに該コバルト
酸リチウム凝集体を用いてなるリチウム電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium cobaltate aggregate useful for a battery material and the like, a cobalt compound aggregate used for the production thereof, a method for producing the same, and a lithium battery using the lithium cobaltate aggregate.

【0002】[0002]

【従来の技術】コバルト化合物は工業分野で様々な用途
で用いられているが、近年のパーソナルコンピュータ、
携帯電話などの小型電子機器の急速な拡大とともに、特
にリチウム二次電池やポリマー二次電池の正極材原料と
しての需要が急激に伸びている。リチウム電池の正極活
物質には主にコバルト酸リチウムが用いられており、コ
バルト酸リチウムは通常四酸化三コバルト、水酸化コバ
ルト、炭酸コバルトなどのコバルト化合物と、炭酸リチ
ウム、水酸化リチウムなどのリチウム化合物とを混合し
た後、高温で加熱焼成するという方法により製造されて
いる。
2. Description of the Related Art Cobalt compounds are used for various purposes in the industrial field.
Along with the rapid expansion of small electronic devices such as mobile phones, demand for cathode materials for lithium secondary batteries and polymer secondary batteries has been growing rapidly. Lithium cobalt oxide is mainly used as a positive electrode active material of a lithium battery. Lithium cobalt oxide is usually a cobalt compound such as tricobalt tetroxide, cobalt hydroxide or cobalt carbonate, and a lithium compound such as lithium carbonate or lithium hydroxide. It is manufactured by a method of heating and firing at a high temperature after mixing with a compound.

【0003】一般的にリチウム電池の充放電特性などの
電池特性は、電池材料用のコバルト酸リチウムの粒子径
が小さい程優れているが、粒子径を小さくすると電池と
しての安定性や安全性が低下するので、いずれの特性も
満足するようなコバルト酸リチウムが求められている。
In general, the battery characteristics such as the charge and discharge characteristics of a lithium battery are better as the particle size of lithium cobalt oxide used as a battery material is smaller, but if the particle size is smaller, the stability and safety of the battery are reduced. Therefore, lithium cobaltate that satisfies all the characteristics is required.

【0004】[0004]

【発明が解決しようとする課題】本発明は従来技術の問
題点を克服し、電池材料として電池特性を損なうことな
く、安定性や安全性を改良した、バランスの取れた性能
を有する新規なコバルト酸リチウム凝集体、その製造に
用いる新規なコバルト酸化物凝集体及びそれらの製造方
法、さらに前記のコバルト酸リチウム凝集体を正極活物
資として用いたリチウム電池を提供するものである。
SUMMARY OF THE INVENTION The present invention overcomes the problems of the prior art, and provides a novel cobalt material having a balanced performance with improved stability and safety without impairing battery characteristics as a battery material. An object of the present invention is to provide a lithium oxide aggregate, a novel cobalt oxide aggregate used for the production thereof, a method for producing the same, and a lithium battery using the above lithium cobalt oxide aggregate as a positive electrode active material.

【0005】[0005]

【課題を解決するための手段】本発明者らは鋭意研究を
重ねた結果、平均粒子径が0.05〜5μmのコバルト
酸リチウムの一次粒子を凝集させて、二次粒子径として
1〜30μmの平均粒子径を有する凝集体とすれば、こ
の凝集体を正極活物質として用いたリチウム電池は、電
池特性及び安定性、安全性のいずれも優れたものである
ことを見出した。また、平均粒子径が0.01〜2μm
のコバルト酸化物の一次粒子を凝集させて、二次粒子径
として0.5〜30μmの平均粒子径を有するコバルト
酸化物凝集体は、このようなコバルト酸リチウム凝集体
を製造するのに有用であることを見出し、本発明を完成
した。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that primary particles of lithium cobaltate having an average particle size of 0.05 to 5 μm are aggregated to form a secondary particle size of 1 to 30 μm. Assuming that the agglomerate has an average particle size of, a lithium battery using this agglomerate as a positive electrode active material was found to have excellent battery characteristics, stability, and safety. Further, the average particle diameter is 0.01 to 2 μm
The cobalt oxide aggregate having an average particle diameter of 0.5 to 30 μm as a secondary particle diameter by aggregating the primary particles of the cobalt oxide is useful for producing such a lithium cobaltate aggregate. The inventors have found that the present invention has been completed.

【0006】すなわち、本発明は平均粒子径0.05〜
5μmの一次粒子が平均粒子径が1〜30μmの二次粒
子を形成してなるコバルト酸リチウム凝集体及び平均粒
子径0.01〜2μmの一次粒子が平均粒子径が0.5
〜30μmの二次粒子を形成してなるコバルト酸化物凝
集体並びにそれらの製造方法並びに該コバルト酸リチウ
ム凝集体を用いてなるリチウム電池に関する。
That is, the present invention provides an average particle size of 0.05 to
Lithium cobaltate aggregates in which 5 μm primary particles form secondary particles having an average particle diameter of 1 to 30 μm and primary particles having an average particle diameter of 0.01 to 2 μm having an average particle diameter of 0.5
The present invention relates to a cobalt oxide aggregate formed by forming secondary particles of about 30 μm, a method for producing the same, and a lithium battery using the lithium cobaltate aggregate.

【0007】[0007]

【発明の実施の形態】1.コバルト酸リチウム凝集体 本発明のコバルト酸リチウム凝集体は、平均粒子径が
0.05〜5μmのコバルト酸リチウムの一次粒子が強
固に凝集して、1〜30μmの平均粒子径を有する二次
粒子を形成したものである。一次粒子径や二次粒子径が
上記範囲内にあると、これを電極材料として用いると、
充放電特性などの電池特性と、安定性及び安全性のいず
れにも優れたバランスの取れた性能のリチウム電池が得
られる。
BEST MODE FOR CARRYING OUT THE INVENTION Lithium cobaltate aggregate The lithium cobaltate aggregate of the present invention is a secondary particle having an average particle size of 1 to 30 μm, in which primary particles of lithium cobaltate having an average particle size of 0.05 to 5 μm are strongly aggregated. Is formed. When the primary particle diameter and the secondary particle diameter are within the above range, when this is used as an electrode material,
A lithium battery having a well-balanced performance excellent in both battery characteristics such as charge / discharge characteristics and stability and safety can be obtained.

【0008】本発明のコバルト酸リチウム凝集体の一次
及び二次粒子のさらに好ましい平均粒子径の範囲は、そ
れぞれ0.1〜2μm、2〜10μmである。尚、本発
明における凝集体とは、工業的に用いられる通常の機械
的粉砕を行っても、一次粒子にまで粉砕されることな
く、ほとんどが二次粒子として残るものであり、また一
次粒子及び二次粒子の平均粒子径とは、電子顕微鏡法に
より測定したものである。
The primary and secondary particles of the lithium cobaltate aggregate of the present invention have a more preferable average particle size range of 0.1 to 2 μm and 2 to 10 μm, respectively. Incidentally, the aggregates in the present invention, even if the usual mechanical pulverization used industrially, is not pulverized to primary particles, most remain as secondary particles, primary particles and The average particle diameter of the secondary particles is measured by an electron microscope.

【0009】コバルト酸リチウム凝集体の一次粒子及び
二次粒子は、組成式LixCoyO2で表されるもので
あって、x、yの値の範囲はそれぞれ、0.8≦x≦
1.2、0.8≦y≦1.2であり、x/yで表して
0.9〜1.1の範囲のものが好ましく、コバルト酸リ
チウムの単一相であっても、コバルト酸リチウムとコバ
ルト酸化物との混合物であっても良い。一次粒子の形状
は球状、多面体状などがあり特に制限はないが、二次粒
子は電池特性上できるだけ異方性が小さい形状が有利で
あり、粒塊状や球状が最も望ましい。
The primary particles and the secondary particles of the lithium cobaltate aggregate are represented by the composition formula LixCoyO2, and the ranges of the values of x and y are respectively 0.8 ≦ x ≦
1.2, 0.8 ≦ y ≦ 1.2, and preferably in the range of 0.9 to 1.1 expressed by x / y, even if it is a single phase of lithium cobalt oxide, It may be a mixture of lithium and cobalt oxide. The shape of the primary particles is spherical and polyhedral, and is not particularly limited. However, secondary particles are advantageous in shape with as small anisotropy as possible in terms of battery characteristics, and agglomerates and spheres are most desirable.

【0010】コバルト酸リチウムの凝集体は、コバルト
酸化物とリチウム化合物とを混合し、加熱焼成して焼結
させても得られるが、一次粒子径や二次粒子径の制御が
困難で、均一な粒子形状が得られない。本発明では、例
えば一次粒子径が前記範囲内にあるコバルト酸化物とリ
チウム化合物とを混合し、凝集処理を行った後加熱焼成
するか、あるいはそのようなコバルト酸化物に凝集処理
を行ってコバルト酸化物凝集体とした後、これとリチウ
ム化合物を混合し、加熱焼成することで製造できる。
[0010] An aggregate of lithium cobalt oxide can be obtained by mixing a cobalt oxide and a lithium compound, heating and sintering the mixture, but it is difficult to control the primary particle diameter and the secondary particle diameter. A fine particle shape cannot be obtained. In the present invention, for example, a cobalt oxide and a lithium compound having a primary particle diameter within the above range are mixed, and then subjected to agglomeration treatment, followed by heating and firing, or such a cobalt oxide is subjected to an agglomeration treatment to obtain cobalt. After being made into an oxide aggregate, it can be manufactured by mixing this with a lithium compound and heating and firing.

【0011】加熱焼成温度はコバルト酸リチウムに相変
化する温度以上で、生成した凝集体同士が焼結しないよ
うになるべく低い温度で行うのが良く、加熱焼成の好ま
しい温度は600〜1100℃、さらに好ましくは70
0〜900℃である。得られたコバルト酸リチウム凝集
体は、必要に応じてサンプルミル、ライカイ機などの摩
砕式、ハンマーミルなどの衝撃式、ジェットミルなどの
気流式など各種の粉砕機を用いて粉砕を行っても良い。
The heating and sintering temperature is preferably not lower than the temperature at which the phase changes to lithium cobalt oxide, and the temperature should be as low as possible so as to prevent sintering of the formed aggregates. Preferably 70
0-900 ° C. The obtained lithium cobaltate aggregate is pulverized using various mills such as a sample mill, a grinding type such as a raikai machine, an impact type such as a hammer mill, and an air flow type such as a jet mill, as necessary. Is also good.

【0012】本発明でいうコバルト酸化物は、一酸化コ
バルト、三酸化二コバルト、二酸化コバルト、四酸化三
コバルトなどのコバルトの酸化物及びコバルトの酸化物
の水和物、水酸化第一コバルトなどのコバルトの水酸化
物、オキシ水酸化コバルト、あるいはこれらの2種以上
の混合物ことである。本発明で用いるコバルト酸化物と
しては、特に四酸化三コバルトが好ましい。リチウム化
合物としては水酸化リチウム、炭酸リチウム、硝酸リチ
ウムなどを用いることができる。
The cobalt oxide referred to in the present invention includes cobalt oxides such as cobalt monoxide, dicobalt trioxide, cobalt dioxide and tricobalt tetroxide, hydrates of cobalt oxides, and cobaltous hydroxide. Of cobalt, cobalt oxyhydroxide, or a mixture of two or more thereof. As the cobalt oxide used in the present invention, tricobalt tetroxide is particularly preferred. As the lithium compound, lithium hydroxide, lithium carbonate, lithium nitrate, or the like can be used.

【0013】コバルト酸化物は種々の方法によって得ら
れるが、本発明では粒度分布が均一なものを用いること
が好ましく、例えば水酸化コバルトであれば、水などの
媒液中で二価コバルト化合物とアルカリ性化合物とを反
応させることで得られ、また四酸化三コバルトやオキシ
水酸化物コバルトなどは、前記の水酸化コバルトを加熱
乾燥または加熱焼成することにより得ることができる。
あるいは、二価コバルト化合物とアルカリ性化合物とを
水などの媒液中で反応させながら、媒液中に酸化剤を添
加して酸化させたり、媒液中で反応させた後酸化剤を添
加して酸化さて得ることもできる。
The cobalt oxide can be obtained by various methods. In the present invention, it is preferable to use one having a uniform particle size distribution. It is obtained by reacting with an alkaline compound, and tricobalt tetroxide, cobalt oxyhydroxide and the like can be obtained by heating and drying or heating and firing the above-mentioned cobalt hydroxide.
Alternatively, while reacting the divalent cobalt compound and the alkaline compound in a medium such as water, an oxidizing agent is added to the medium and oxidized, or after the reaction in the medium, the oxidizing agent is added. It can also be obtained by oxidation.

【0014】コバルト酸化物とリチウム化合物との混合
物を凝集処理する方法としては、例えばコバルト酸化物
を含むスラリーを噴霧乾燥する方法がある。この方法で
は、先ずコバルト酸化物とリチウム化合物とを含むスラ
リーを調製し、これをディスク式、圧力ノズル式、二流
体ノズル式などの噴霧乾燥機を用いて造粒乾燥する。噴
霧乾燥機はスラリーの性状や処理能力に応じて適宜選択
することができる。二次粒子径の制御は、例えば上記の
ディスク式ならディスクの回転数を、圧力ノズル式や二
流体ノズル式ならば、噴霧圧やノズル径を調整して、噴
霧される液滴の大きさを制御することにより行える。
As a method of coagulating a mixture of a cobalt oxide and a lithium compound, for example, there is a method of spray-drying a slurry containing a cobalt oxide. In this method, first, a slurry containing a cobalt oxide and a lithium compound is prepared, and the slurry is granulated and dried using a spray dryer of a disk type, a pressure nozzle type, a two-fluid nozzle type, or the like. The spray dryer can be appropriately selected according to the properties and processing capacity of the slurry. The control of the secondary particle diameter is performed, for example, by adjusting the number of rotations of the disk in the case of the above-described disk type, or by adjusting the spray pressure or the nozzle diameter in the case of the pressure nozzle type or the two-fluid nozzle type, to thereby adjust the size of the sprayed droplet. It can be done by controlling.

【0015】スラリーの粘度が低く造粒し難い場合や、
より粒子径を制御し易くするために、PVA(ポリビニ
ルアルコール)などのバインダーや界面活性剤など各種
の添加剤を用いてもよい。これら添加剤は有機物系で金
属成分を含有せず、噴霧乾燥中に分解、揮散するものが
望ましい。乾燥温度としては入り口温度が250℃前
後、出口温度が120℃前後が好ましい。
When the viscosity of the slurry is low and granulation is difficult,
To make it easier to control the particle size, various additives such as a binder such as PVA (polyvinyl alcohol) and a surfactant may be used. It is desirable that these additives are organic substances, do not contain a metal component, and decompose and volatilize during spray drying. The drying temperature is preferably about 250 ° C. at the inlet and about 120 ° C. at the outlet.

【0016】2.コバルト酸化物凝集体 本発明のコバルト酸リチウム凝集体は、前述のようにコ
バルト酸化物凝集体とリチウム化合物とを加熱焼成する
ことで得られるが、特にコバルト酸化物凝集体として、
平均粒子径0.01〜2μmのコバルト酸化物の一次粒
子が強固に凝集し、0.5〜30μmの平均粒子径を有
する二次粒子を形成したものを用いるのが好ましい。こ
のようなコバルト酸化物凝集体は新規なものであり、電
池材料の中間体としてばかりでなく、電子材料や触媒、
顔料などとしても有用である。
2. Cobalt oxide aggregate The lithium cobaltate aggregate of the present invention is obtained by heating and calcining the cobalt oxide aggregate and the lithium compound as described above.
It is preferable to use one in which primary particles of cobalt oxide having an average particle diameter of 0.01 to 2 μm are strongly aggregated to form secondary particles having an average particle diameter of 0.5 to 30 μm. Such cobalt oxide aggregates are novel and not only as intermediates for battery materials, but also for electronic materials, catalysts,
It is also useful as a pigment.

【0017】本発明のコバルト酸化物凝集体は、その一
次粒子及び二次粒子の平均粒子径が、それぞれ0.02
〜1μm、1〜20μmの範囲にあればさらに好まし
く、特に電極材料用の四酸化三コバルトとしては、それ
ぞれの範囲が0.03〜0.2μm及び1〜10μmの
ものが好ましい。一次粒子の形状は球状、粒状、板状な
ど種々のものがあり、その形状は特に制限されない。二
次粒子の形状も球状、粒塊状、卵形、多面体状、鱗片状
など特に制限はなく、一部が欠損していてもよいが、電
池用としては球状が最も望ましい
The average particle diameter of the primary particles and the secondary particles of the cobalt oxide aggregate of the present invention is 0.02
It is more preferable that they are in the range of 1 to 1 μm and 1 to 20 μm, and particularly that of tricobalt tetroxide for the electrode material is in the range of 0.03 to 0.2 μm and 1 to 10 μm, respectively. The shape of the primary particles includes various shapes such as a sphere, a particle, and a plate, and the shape is not particularly limited. The shape of the secondary particles is also not particularly limited, such as spherical, agglomerate, egg-shaped, polyhedral, and scale-like, and may be partially missing, but a spherical shape is most desirable for batteries.

【0018】本発明においてコバルト酸化物凝集体の一
次粒子及び二次粒子は、組成式CoxOyHz(1≦x
≦3、1≦y≦4、0≦z≦2)で表されるコバルト酸
化物であり、一酸化コバルト、三酸化二コバルト、二酸
化コバルト、四酸化三コバルト及びコバルト酸化物の水
和物、水酸化第一コバルトなどのコバルトの水酸化物、
オキシ水酸化コバルトを意味し、あるいはこれらの2種
以上の混合物も含まれる。電池材料のコバルト酸リチウ
ムの原料としては四酸化三コバルトが好ましく、四酸化
三コバルトが特に微細な球状粒子であれば、これを凝集
処理することにより、緻密な構造の球状の凝集体が形成
され易いので、電池材料として好適なものとなる。
In the present invention, the primary particles and the secondary particles of the cobalt oxide aggregate are represented by the composition formula CoxOyHz (1 ≦ x
≦ 3, 1 ≦ y ≦ 4, 0 ≦ z ≦ 2), a cobalt oxide, dicobalt trioxide, cobalt dioxide, tricobalt tetroxide and a hydrate of cobalt oxide; Hydroxides of cobalt, such as cobaltous hydroxide;
It means cobalt oxyhydroxide or a mixture of two or more of these. Tricobalt tetroxide is preferable as a raw material of lithium cobalt oxide as a battery material. If tricobalt tetroxide is particularly fine spherical particles, a spherical aggregate having a dense structure is formed by aggregating the particles. Since it is easy, it becomes suitable as a battery material.

【0019】本発明のコバルト酸化物凝集体はコバルト
酸化物を凝集処理することによって得られる。凝集処理
はコバルト化合物を加熱焼成して焼結させてもよいが、
二次粒子の粒子径や粒子形状の制御が容易であるので、
例えば(a)コバルト酸化物を含むスラリーを噴霧乾燥
する方法、及び(b)コバルト酸化物を水などの媒液中
で粒子成長させることにより凝集させる方法が好まし
い。(a)の方法については、前述のコバルト酸リチウ
ム凝集体と同様にして製造することができる。
The cobalt oxide aggregate of the present invention can be obtained by subjecting a cobalt oxide to an aggregation treatment. The coagulation treatment may be performed by heating and sintering the cobalt compound,
Since it is easy to control the particle size and particle shape of the secondary particles,
For example, (a) a method of spray-drying a slurry containing a cobalt oxide, and (b) a method of aggregating the cobalt oxide by growing particles in a medium such as water are preferable. The method (a) can be produced in the same manner as in the above-mentioned lithium cobaltate aggregate.

【0020】(b)の方法では、水などの媒液中でコバ
ルト化合物の存在下、系内を酸化性雰囲気として二価コ
バルト化合物とアルカリ性化合物とを反応させながら酸
化させるもので、コバルト酸化物が粒子成長する過程
で、成長粒子同士が凝集し、本発明のコバルト酸化物凝
集体が合成される。系内を非酸化性雰囲気にして粒子成
長させても、最初に存在させるコバルト酸化物とは別に
生成するので、凝集物にはならず、単に水酸化コバルト
が六角板状に粒子成長するだけで本発明のような凝集体
は得られない。
In the method (b), the system is oxidized by reacting a divalent cobalt compound with an alkaline compound in a medium such as water in the presence of a cobalt compound in an oxidizing atmosphere to react the divalent cobalt compound with an alkaline compound. In the process of growing the particles, the grown particles aggregate, and the cobalt oxide aggregate of the present invention is synthesized. Even if particles are grown in a non-oxidizing atmosphere in the system, they are generated separately from the cobalt oxide that is initially present, so they do not become agglomerates, just cobalt hydroxide grows in hexagonal plate shape. Aggregates as in the present invention cannot be obtained.

【0021】系内を酸化性雰囲気にするには媒液中に酸
化剤を添加する。酸化剤としては空気、酸素、オゾンな
どの酸化性ガス、または過酸化水素水などの酸化性化合
物を用いることができるが、取り扱い易さや経済性から
空気などの酸化性ガスを吹き込む方法が望ましい。本発
明の凝集体の平均粒子径は二価コバルト化合物とアルカ
リ化合物との反応量を調整することにより制御できる。
To make the inside of the system an oxidizing atmosphere, an oxidizing agent is added to the medium. As the oxidizing agent, an oxidizing gas such as air, oxygen, and ozone, or an oxidizing compound such as aqueous hydrogen peroxide can be used. However, a method of blowing an oxidizing gas such as air is preferable from the viewpoint of ease of handling and economy. The average particle size of the aggregate of the present invention can be controlled by adjusting the reaction amount between the divalent cobalt compound and the alkali compound.

【0022】粒子成長時の反応温度は50〜100℃、
且つpHは5以上が望ましく、温度及びpHがこの範囲
から外れると、粒子径が均一な凝集体にならなかった
り、反応に長時間を要するなど好ましくない。より好ま
しい温度の範囲は70〜100℃であり、より好ましい
pHの範囲は7〜14、さらに好ましくは9〜13であ
る。
The reaction temperature during grain growth is 50-100 ° C.
Further, the pH is desirably 5 or more. If the temperature and the pH are out of these ranges, the aggregates having a uniform particle size are not obtained, and the reaction takes a long time. A more preferred temperature range is 70-100 ° C, and a more preferred pH range is 7-14, and even more preferably 9-13.

【0023】一次粒子径としての平均粒子径が0.01
〜2μmのコバルト酸化物は、種々の方法によって得る
ことができる。例えば、水酸化コバルトであれば、水な
どの媒液中で二価コバルト化合物とアルカリ性化合物と
を反応させる際に、両者の添加量を調整することで、粒
子径を所望の大きさに制御できる。二価コバルト化合物
とアルカリ性化合物の媒液中への添加順序は適宜選択で
き特に制限はなく、例えば両者を同時に添加してもよ
い。
The average particle diameter as the primary particle diameter is 0.01
22 μm cobalt oxide can be obtained by various methods. For example, in the case of cobalt hydroxide, when reacting a divalent cobalt compound and an alkaline compound in a medium such as water, the particle size can be controlled to a desired size by adjusting the addition amount of both. . The order of addition of the divalent cobalt compound and the alkaline compound to the medium can be appropriately selected and is not particularly limited. For example, both may be added simultaneously.

【0024】コバルトの酸化物、コバルトのオキシ水酸
化物などは、前記のような方法により得られた水酸化コ
バルトを、大気中50〜900℃で加熱乾燥または加熱
焼成することにより得ることができる。加熱温度や加熱
時間を調整することで、これらの単独物、混合物、また
はこれらに水酸化物が一部残留したものなど、所望の組
成のコバルト酸化物が得られる。四酸化三コバルトは水
酸化コバルトを150〜900℃での加熱焼成により得
ることができる。この加熱焼成は水酸化コバルトを凝集
体とした後に行ってもよい。
Cobalt oxides, cobalt oxyhydroxides and the like can be obtained by heating and drying or calcining the cobalt hydroxide obtained by the above method at 50 to 900 ° C. in the air. . By adjusting the heating temperature and the heating time, a cobalt oxide having a desired composition, such as a single substance, a mixture, or a substance in which a part of the hydroxide remains, can be obtained. Tricobalt tetroxide can be obtained by heating and firing cobalt hydroxide at 150 to 900 ° C. This heat calcination may be performed after the cobalt hydroxide is formed into an aggregate.

【0025】本発明ではコバルト酸化物として微細な、
一次粒子の平均粒子径が0.03〜0.2μmの球状粒
子の四酸化三コバルトを用いるのがより好ましい。この
ような四酸化三コバルトは、(1)水などの媒液中で二
価コバルト化合物とアルカリ性化合物とを反応させなが
ら酸化剤を添加して酸化させる、または(2)二価コバ
ルト化合物とアルカリ性化合物とを水などの媒液中で反
応させ水酸化コバルトを得た後、酸化剤を添加して酸化
させることにより得られる。
In the present invention, fine particles of cobalt oxide are used.
It is more preferable to use tricobalt tetroxide as a spherical particle having an average primary particle diameter of 0.03 to 0.2 μm. Such cobalt trioxide can be oxidized by (1) adding an oxidizing agent while reacting a divalent cobalt compound and an alkaline compound in a medium such as water, or (2) adding a divalent cobalt compound to an alkaline compound. It is obtained by reacting a compound with a medium such as water to obtain cobalt hydroxide, and then adding an oxidizing agent to oxidize the compound.

【0026】本発明で用いる二価コバルト化合物として
硫酸コバルト、塩化コバルト、硝酸コバルトなどが挙げ
られ、またアルカリ性化合物としてアルカリ金属の炭酸
塩や特に水酸化ナトリウム、水酸化カリウムなどの水酸
化物、あるいはアンモニアガス、アンモニア水、炭酸ア
ンモニウムなどのアンモニウムを用いることができる。
Examples of the divalent cobalt compound used in the present invention include cobalt sulfate, cobalt chloride, and cobalt nitrate. Alkaline compounds such as alkali metal carbonates and hydroxides such as sodium hydroxide and potassium hydroxide, Ammonia gas, aqueous ammonia, and ammonium such as ammonium carbonate can be used.

【0027】3.リチウム電池 次に、本発明は以上に述べたコバルト酸リチウム凝集体
を電極活物質として用いたリチウム電池である。一般
に、起電力や充放電特性などの電池特性は、正極活物質
のコバルト酸リチウムの粒子径が小さい程優れ、安定性
や安全性がはコバルト酸リチウムの粒子径が大きい程優
れていると言われている。従って、従来のリチウム電池
では両者を満足することが困難であった。
3. Lithium Battery Next, the present invention is a lithium battery using the above-described lithium cobaltate aggregate as an electrode active material. In general, battery characteristics such as electromotive force and charge / discharge characteristics are said to be better as the particle size of lithium cobalt oxide as the positive electrode active material is smaller, and stability and safety are better as the particle size of lithium cobalt oxide is larger. Have been done. Therefore, it has been difficult for the conventional lithium battery to satisfy both.

【0028】しかし、本発明では以上に述べたコバルト
酸リチウム凝集体を用いることにより、バランスの取れ
た性能を有するリチウム電池となった。本発明でいうリ
チウム電池とは、負極にリチウム金属を用いた一次電
池、及び負極にリチウム金属を用いた充放電可能な二次
電池、負極に炭素材料、スズ化合物などを用いた充放電
可能なリチウムイオン二次電池のことをいう。
However, in the present invention, by using the above-described lithium cobaltate aggregate, a lithium battery having balanced performance was obtained. A lithium battery as referred to in the present invention is a primary battery using lithium metal for the negative electrode, and a rechargeable secondary battery using lithium metal for the negative electrode, a carbon material for the negative electrode, capable of charging and discharging using a tin compound and the like. Refers to a lithium ion secondary battery.

【0029】リチウム電池用正極は、コイン型電池用と
する場合には、本発明のコバルト酸リチウム凝集体に、
アセチレンブラックやカーボン、グラファイト粉末など
の炭素系導電剤や、ポリ四フッ化エチレン樹脂やポリビ
ニリデンフルオライドなどの結着剤を添加、混練し、ペ
レット状に成型して得ることができる。さらに、円筒型
あるいは角形電池用とする場合には、本発明のコバルト
酸リチウム凝集体に、これらの添加物以外にN−メチル
ピロリドンなどの有機溶剤も添加し、混練してペースト
状とし、アルミニウム箔のような金属集電体上に塗布
し、乾燥して得ることができる。
When the positive electrode for a lithium battery is used for a coin-type battery, the lithium cobaltate aggregate of the present invention may be
A carbon-based conductive agent such as acetylene black, carbon, or graphite powder, or a binder such as polytetrafluoroethylene resin or polyvinylidene fluoride is added, kneaded, and formed into a pellet shape. Furthermore, in the case of a cylindrical or prismatic battery, an organic solvent such as N-methylpyrrolidone is also added to the lithium cobaltate aggregate of the present invention, in addition to these additives, and the mixture is kneaded to form a paste. It can be obtained by coating on a metal current collector such as a foil and drying.

【0030】リチウム電池の電解液には、電気化学的に
安定な、すなわちリチウムイオン電池として作動する電
位範囲より広い範囲で、酸化・還元されることのない極
性有機溶媒に、リチウムイオンを溶解させたものを使用
することができる。極性有機溶媒としては、プロピレン
カーボネートやエチレンカーボネート、ジエチルカーボ
ネート、ジメトキシエタン、テトラヒドロフラン、γ−
ブチルラクトンなどや、それらの混合液を用いることが
できる。リチウムイオン源となる溶質には、過塩素酸リ
チウムや六フッ化リン酸リチウム、四フッ化ホウ素酸リ
チウムなどを用いることができる。また、電極間には多
孔性のポリプロピレンフィルムやポリエチレンフィルム
が、セパレータとして配置される。
In a lithium battery electrolyte, lithium ions are dissolved in a polar organic solvent which is electrochemically stable, that is, is not oxidized or reduced in a wider range than a potential range in which the lithium ion battery operates. Can be used. As the polar organic solvent, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethoxyethane, tetrahydrofuran, γ-
Butyl lactone or a mixture thereof can be used. As a solute serving as a lithium ion source, lithium perchlorate, lithium hexafluorophosphate, lithium tetrafluoroborate, or the like can be used. A porous polypropylene film or polyethylene film is disposed between the electrodes as a separator.

【0031】電池の種類としては、ペレット状の正極と
負極の間にセパレータを置き、ポリプロピレン製のガス
ケットのついた封口缶に圧着し、電解液を注入し、密閉
したコイン型のものや、正極材料や負極材料を金属集電
体上に塗布し、セパレータをはさんで巻き取り、ガスケ
ットのついた電池缶に挿入し、電解液を注入し、封入し
た円筒型のものなどが挙げられる。また、特に電気化学
特性を測定することを目的とした三極式の電池もある。
この電池は正極と負極以外に参照極も配置し、参照極に
対して他の電極の電位をコントロールすることにより、
各電極の電気化学的な特性を評価するものである。
As for the type of battery, a separator is placed between a positive electrode and a negative electrode in the form of a pellet, pressed into a sealing can with a gasket made of polypropylene, injected with an electrolytic solution, and sealed. Materials include a cylindrical type in which a material or a negative electrode material is applied onto a metal current collector, wound up with a separator interposed therebetween, inserted into a battery can with a gasket, injected with an electrolyte, and sealed. There is also a three-electrode type battery particularly for measuring electrochemical properties.
This battery also has a reference electrode besides the positive and negative electrodes, and by controlling the potential of the other electrodes with respect to the reference electrode,
The purpose is to evaluate the electrochemical characteristics of each electrode.

【0032】コバルト酸リチウム凝集体の正極活物質と
しての性能については、負極に金族リチウム等を用いて
二次電池を構成し、適当な電位範囲を定電流で充放電す
ることにより、その電気容量を測定することができる。
また、充放電を繰り返すことによる電気容量の変化か
ら、そのサイクル特性の良否を判断することができる。
The performance of the lithium cobaltate aggregate as a positive electrode active material is determined by forming a secondary battery using a lithium metal or the like for the negative electrode and charging / discharging the battery in an appropriate potential range at a constant current. The capacity can be measured.
In addition, the quality of the cycle characteristics can be determined from the change in the electric capacity due to the repeated charge and discharge.

【0033】[0033]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れら実施例に限定されるものではない。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited to these examples.

【0034】(コバルト酸化物凝集体の製造) 実施例1 1.コバルト酸化物の合成 二価コバルトイオン濃度60(g/l)の硫酸コバルト
水溶液20(l)を30℃の温度に昇温し、窒素ガスを
吹き込みながら、100(g/l)の水酸化ナトリウム
水溶液16.3(l)を2時間で添加した後、2時間熟
成することにより六角板状の水酸化コバルト(試料a)
を得た。
(Production of Cobalt Oxide Aggregate) Example 1 1. Synthesis of Cobalt Oxide 20 (l) of an aqueous solution of cobalt sulfate having a divalent cobalt ion concentration of 60 (g / l) was heated to a temperature of 30 ° C, and while blowing nitrogen gas, 100 (g / l) sodium hydroxide was added. Aqueous solution 16.3 (l) was added for 2 hours and then aged for 2 hours to obtain hexagonal plate-like cobalt hydroxide (sample a).
I got

【0035】2.コバルト酸化物の凝集処理 水酸化コバルトを濾過、洗浄後、100(g/l)のス
ラリーに分散した後、ディスク回転式噴霧乾燥機(ニロ
製)を用いて入口温度230℃、出口温度120℃にて
噴霧乾燥を行い、本発明の凝集体(試料A)を得た。
2. Coagulation treatment of cobalt oxide After filtering and washing cobalt hydroxide, it was dispersed in a slurry of 100 (g / l), and the inlet temperature was 230 ° C and the outlet temperature was 120 ° C using a disk rotary spray drier (manufactured by Niro). Was subjected to spray drying to obtain an aggregate (sample A) of the present invention.

【0036】実施例2 1.コバルト酸化物の合成 実施例1の第1の工程で合成した水酸化コバルト(試料
a)を含むスラリーを70℃に昇温し、pHを12にな
るように調整しながら、スラリー中に空気を15(l/
分)の流速で24時間吹き込むことによって球状の四酸
化三コバルト(試料b)を得た。
Embodiment 2 1. Synthesis of Cobalt Oxide The slurry containing cobalt hydroxide (sample a) synthesized in the first step of Example 1 was heated to 70 ° C., and while adjusting the pH to 12, air was added to the slurry. 15 (l /
), Thereby obtaining spherical tricobalt tetroxide (sample b).

【0037】2.コバルト酸化物の凝集処理 実施例1の第2の工程と同様の方法により、四酸化三コ
バルトを噴霧乾燥して本発明の凝集体(試料B)を得
た。
2. Coagulation treatment of cobalt oxide In the same manner as in the second step of Example 1, tricobalt tetroxide was spray-dried to obtain an aggregate (sample B) of the present invention.

【0038】実施例3 実施例2において得られた試料Bを800℃で2時間加
熱焼成して、本発明の凝集体(試料C)を得た。加熱焼
成により、一次粒子径同士が凝集、成長して大きくなる
が、二次粒子径はほとんど変わらなかった。
Example 3 Sample B obtained in Example 2 was heated and baked at 800 ° C. for 2 hours to obtain an aggregate (Sample C) of the present invention. By heating and sintering, the primary particle diameters aggregated and grew to increase, but the secondary particle diameter was hardly changed.

【0039】実施例4 1.コバルト酸化物の合成 二価コバルトイオン濃度60(g/l)の硫酸コバルト
水溶液2(l)を60℃に昇温し、空気を2(l/分)
の流速で吹き込みながら、100(g/l)の水酸化ナ
トリウム水溶液1.63(l)を2時間で添加し、引き
続き空気を吹き込んで18時間熟成して水酸化コバル
ト、オキシ水酸化コバルト及び四酸化三コバルトの混合
物(試料d)を得た。
Embodiment 4 1. Synthesis of Cobalt Oxide A 2 (l) aqueous solution of cobalt sulfate having a divalent cobalt ion concentration of 60 (g / l) was heated to 60 ° C, and air was heated at 2 (l / min).
1.63 (l) of a 100 (g / l) aqueous solution of sodium hydroxide was added over 2 hours while blowing at a flow rate of 2, followed by aging for 18 hours by blowing in air to obtain cobalt hydroxide, cobalt oxyhydroxide and tetrahydrofuran. A mixture of tricobalt oxide (sample d) was obtained.

【0040】2.コバルト酸化物の凝集処理 水酸化コバルト、オキシ水酸化コバルト及び四酸化三コ
バルトの混合物を濾過、洗浄後、PVA1.5%を含む
100(g/l)のスラリーに分散した後、実施例1の
第2の工程と同様の条件により噴霧乾燥して本発明の凝
集体(試料D)を得た。
2. Coagulation Treatment of Cobalt Oxide A mixture of cobalt hydroxide, cobalt oxyhydroxide and tricobalt tetroxide was filtered, washed, and dispersed in a 100 (g / l) slurry containing 1.5% PVA. Spray drying was performed under the same conditions as in the second step to obtain an aggregate (sample D) of the present invention.

【0041】実施例5 1.コバルト酸化物の合成 5%アンモニア水7(l)を40℃に昇温し、窒素ガス
を吹き込みながら、二価コバルトイオン濃度60(g/
l)の硫酸コバルト水溶液10(l)と400(g/
l)の水酸化ナトリウム水溶液2(l)を6時間かけて
同時に添加し、3日間熟成してた後、濾過、洗浄し、1
20℃で24時間乾燥した。次いで、空気中にて800
℃で2時間焼成し、粒状の四酸化三コバルト(試料e)
を得た。
Embodiment 5 1. Synthesis of cobalt oxide 5% ammonia water 7 (l) was heated to 40 ° C., and a divalent cobalt ion concentration of 60 (g /
l) of cobalt sulfate aqueous solution 10 (l) and 400 (g /
l) of sodium hydroxide aqueous solution 2 (l) was added simultaneously over 6 hours, aged for 3 days, filtered, washed,
Dry at 20 ° C. for 24 hours. Then, in air 800
Baked at 2 ° C for 2 hours, granular tricobalt tetroxide (sample e)
I got

【0042】2.コバルト酸化物の凝集処理 水四酸化三コバルトを濾過、洗浄後、エーテル系界面活
性剤(ペクノールST−7:東邦化学製)0.2%を含
む100(g/l)のスラリーに分散した後、実施例1
の第2の工程と同様の条件により噴霧乾燥して本発明の
凝集体(試料E)を得た。
2. Coagulation treatment of cobalt oxide After filtering and washing tricobalt tetroxide, it was dispersed in a 100 (g / l) slurry containing 0.2% of an ether-based surfactant (Peknol ST-7: manufactured by Toho Chemical). Example 1
Spray-drying was performed under the same conditions as in the second step to obtain an aggregate (sample E) of the present invention.

【0043】実施例6 1.コバルト酸化物の合成 実施例2の第1の工程と同様の方法により、四酸化三コ
バルトを得た。
Embodiment 6 1. Synthesis of cobalt oxide Tricobalt tetroxide was obtained in the same manner as in the first step of Example 2.

【0044】2.コバルト酸化物の凝集処理 四酸化三コバルト100gと、二価コバルトイオン濃度
60(g/l)の硫酸コバルト水溶液12(l)を含む
スラリーを70℃に昇温し、空気を5(l/分)の流速
で吹き込みながら、400(g/l)の水酸化ナトリウ
ム水溶液2.45(l)をpHが10.0になるように
調整しながら60時間かけて添加し、四酸化三コバルト
を粒子成長させながら凝集させることにより本発明の凝
集体(試料F)を得た。
2. Coagulation treatment of cobalt oxide A slurry containing 100 g of tricobalt tetroxide and 12 (l) of a cobalt sulfate aqueous solution having a divalent cobalt ion concentration of 60 (g / l) was heated to 70 ° C, and air was discharged at 5 (l / min). ), 2.45 (l) of a 400 (g / l) aqueous sodium hydroxide solution is added over 60 hours while adjusting the pH to 10.0, and tricobalt tetroxide is added to the particles. The aggregate of the present invention (sample F) was obtained by aggregation while growing.

【0045】実施例7 1.コバルト酸化物の合成 実施例1の第1の工程と同様の方法により得た水酸化コ
バルトを濾過、洗浄後、150℃で乾燥してオキシ水酸
化コバルトが約70%と四酸化三コバルトが約30%の
混合物(試料g)を得た。
Embodiment 7 1. Synthesis of Cobalt Oxide The cobalt hydroxide obtained by the same method as in the first step of Example 1 was filtered, washed, and dried at 150 ° C. to obtain about 70% of cobalt oxyhydroxide and about A 30% mixture (sample g) was obtained.

【0046】2.コバルト酸化物の凝集処理 前記混合物100gを含むスラリーを70℃に昇温し、
空気を5(l/分)の流速で吹き込みながら二価コバル
トイオン濃度60(g/l)の硫酸コバルト水溶液1
0.3(l)と400(g/l)の水酸化ナトリウム水
溶液2.1(l)とをpHが10.0になるように調整
しながら56時間かけて同時に添加し、混合物を粒子成
長させながら凝集させることにより本発明の凝集体(試
料G)を得た。凝集体はオキシ水酸化コバルト約4%と
四酸化三コバルト約96%とからなる混合物であった。
2. Coagulation treatment of cobalt oxide The slurry containing 100 g of the mixture was heated to 70 ° C.
While blowing air at a flow rate of 5 (l / min), an aqueous solution of cobalt sulfate having a divalent cobalt ion concentration of 60 (g / l) 1
0.3 (l) and 2.1 (l) of a 400 (g / l) aqueous sodium hydroxide solution were added simultaneously over a period of 56 hours while adjusting the pH to 10.0, and the mixture was subjected to particle growth. Agglomeration was carried out to obtain an aggregate (sample G) of the present invention. The agglomerates were a mixture of about 4% cobalt oxyhydroxide and about 96% tricobalt tetroxide.

【0047】実施例8 実施例7において得られた試料Fを濾過、洗浄後、空気
中にて800℃で2時間加熱焼成して本発明の四酸化三
コバルト(試料H)を得た。
Example 8 Sample F obtained in Example 7 was filtered, washed, and calcined by heating at 800 ° C. for 2 hours in the air to obtain tricobalt tetroxide (Sample H) of the present invention.

【0048】実施例9 オキシ水酸化コバルトと四酸化三コバルトとの混合物に
変えて実施例5の第1の工程で得られた四酸化三コバル
ト(試料e)を用いた以外は、実施例7の第2の工程と
同様の方法により、本発明の四酸化三コバルトの凝集体
(試料I)を得た。
Example 9 Example 7 was repeated except that tricobalt tetroxide (sample e) obtained in the first step of Example 5 was used instead of the mixture of cobalt oxyhydroxide and tricobalt tetroxide. In the same manner as in the second step, an aggregate of tricobalt tetroxide of the present invention (sample I) was obtained.

【0049】比較例1〜5 実施例1、2、4、5及び7の第1の工程で得られた凝
集処理前のコバルト化合物(試料a、b、d、e及び
g)をそれぞれ比較例1〜5とする。
Comparative Examples 1 to 5 Cobalt compounds (samples a, b, d, e, and g) obtained in the first step of Examples 1, 2, 4, 5, and 7 before the agglomeration treatment were each used as a comparative example. 1 to 5.

【0050】比較例6 実施例1の第1の工程で得た水酸化コバルト(試料a)
100gを含むスラリーを70℃に昇温し、窒素ガスを
吹き込みなら、二価コバルトイオン濃度60(g/l)
の硫酸コバルト水溶液8.6(l)と400(g/l)
の濃度の水酸化ナトリウム水溶液1.75(l)を56
時間かけて添加して粒子成長させ試料Jを得た。試料J
は水酸化コバルトの大きい板状粒子であり、本発明の凝
集体は得られなかった。
Comparative Example 6 Cobalt hydroxide obtained in the first step of Example 1 (sample a)
If the slurry containing 100 g is heated to 70 ° C. and nitrogen gas is blown, the divalent cobalt ion concentration is 60 (g / l).
8.6 (l) and 400 (g / l) of aqueous cobalt sulfate solution
1.75 (l) of an aqueous sodium hydroxide solution having a concentration of
Sample J was obtained by adding the particles over time and allowing the particles to grow. Sample J
Are large plate-like particles of cobalt hydroxide, and the aggregate of the present invention was not obtained.

【0051】比較例7 実施例2で得た四酸化三コバルト(試料b)100gの
存在下、比較例6と同様の処理を行い、試料Kを得た。
試料Kは球状の四酸化三コバルトと、これとは別に生成
した板状の水酸化コバルトとの混合物であり、本発明の
凝集体は得られなかった。
Comparative Example 7 The same treatment as in Comparative Example 6 was carried out in the presence of 100 g of tricobalt tetroxide (Sample b) obtained in Example 2 to obtain Sample K.
Sample K was a mixture of a spherical tricobalt tetroxide and a separately formed plate-like cobalt hydroxide, and the aggregate of the present invention was not obtained.

【0052】比較例8 実施例5で得た四酸化三コバルト(試料e)100gの
存在下、比較例6と同様の処理を行い、試料Lを得た。
試料Lは粒状の四酸化三コバルトと、これとは別に生成
した板状の水酸化コバルトとの混合物であり、本発明の
凝集体は得られなかった。
Comparative Example 8 The same treatment as in Comparative Example 6 was performed in the presence of 100 g of tricobalt tetroxide (sample e) obtained in Example 5 to obtain Sample L.
Sample L was a mixture of granular tricobalt tetroxide and a separately formed plate-like cobalt hydroxide, and the aggregate of the present invention was not obtained.

【0053】評価1 実施例1〜9で得られたコバルト酸化物凝集体(試料A
〜I)、および比較例1〜5で得られたコバルト酸化物
(試料a、b、d、e、g及びJ〜L)の平均粒子径を
下記の方法により測定した。結果を表1及び2に示す。
Evaluation 1 Cobalt oxide aggregates obtained in Examples 1 to 9 (sample A
To I) and the average particle diameter of the cobalt oxides (samples a, b, d, e, g and J to L) obtained in Comparative Examples 1 to 5 were measured by the following methods. The results are shown in Tables 1 and 2.

【0054】(平均粒子径の測定方法)先ず、凝集処理
前の一次粒子または処理後の二次粒子の試料5gを自動
乳鉢(石川製)にて10分間粉砕した後、走査型電子顕
微鏡写真を撮影する。その写真から粒子径をパーティク
ルアナライザー(カールツァイス社製)を用いて測定
し、算出された重量平均径をもって平均粒子径とする。
(Measurement Method of Average Particle Size) First, 5 g of a sample of primary particles before the aggregation treatment or secondary particles after the treatment was ground in an automatic mortar (manufactured by Ishikawa) for 10 minutes. Shoot. The particle diameter is measured from the photograph using a particle analyzer (manufactured by Carl Zeiss), and the calculated weight average diameter is defined as the average particle diameter.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】実施例2、3,6で得られたコバルト酸化
物凝集体(試料B、C、F)、および比較例1、2、
6、7で得られたコバルト酸化物(試料a、b、J、
K)の電子顕微鏡写真を図1〜7に示す。本発明が小さ
な粒子が凝集してなる凝集体であることがわかった。
The cobalt oxide aggregates (samples B, C, and F) obtained in Examples 2, 3, and 6, and Comparative Examples 1, 2,
Cobalt oxides obtained in 6, 7 (samples a, b, J,
The electron micrograph of K) is shown in FIGS. It has been found that the present invention is an aggregate formed by aggregating small particles.

【0058】(コバルト酸リチウム凝集体の製造) 実施例10 1.コバルト酸化物とリチウム化合物との混合物の凝集
処理 実施例1における水酸化コバルト(試料a)を濾過、洗
浄し、再スラリー化した後、水酸化リチウムをCo/L
i比=1/1(モル比)になるように添加し、濃度を1
00(g/l)に調整した。このスラリーを、ディスク
型噴霧乾燥機(ニロ社製)を用いて入口温度230℃、
出口温度120℃にて噴霧乾燥を行い、鱗片状の塊をな
す凝集体を得た。
(Production of Aggregate of Lithium Cobaltate) Example 10 1. Aggregation treatment of mixture of cobalt oxide and lithium compound The cobalt hydroxide (sample a) in Example 1 was filtered, washed, and reslurried, and then the lithium hydroxide was converted to Co / L.
i ratio = 1/1 (molar ratio).
It was adjusted to 00 (g / l). Using a disk type spray drier (manufactured by Niro Corporation), this slurry was heated at an inlet temperature of 230 ° C.
Spray drying was performed at an outlet temperature of 120 ° C. to obtain a scale-like aggregate.

【0059】2.加熱焼成 前記凝集体を空気中にて850℃で10時間加熱焼成し
て本発明のコバルト酸リチウム凝集体(試料M)を得
た。
2. Heat Firing The above aggregate was heated and fired in air at 850 ° C. for 10 hours to obtain a lithium cobaltate aggregate (Sample M) of the present invention.

【0060】実施例11 1.コバルト酸化物とリチウム化合物との混合物の凝集
処理 実施例2における四酸化三コバルト(試料b)を濾過、
洗浄し、再スラリー化した後、炭酸リチウムをCo/L
i比=1/1(モル比)になるように添加し、濃度を1
00(g/l)に調整した。このスラリーを、実施例1
と同様にして噴霧乾燥を行い、球状の凝集体を得た。
Embodiment 11 1. Aggregation treatment of mixture of cobalt oxide and lithium compound Tricobalt tetroxide (sample b) in Example 2 was filtered,
After washing and reslurrying, the lithium carbonate was removed using Co / L
i ratio = 1/1 (molar ratio).
It was adjusted to 00 (g / l). This slurry was used in Example 1
Spray drying was performed in the same manner as described above to obtain a spherical aggregate.

【0061】2.加熱焼成 前記凝集体を空気中にて800℃で10時間加熱焼成し
て本発明のコバルト酸リチウム凝集体(試料N)を得
た。
[0061] 2. Heat calcination The aggregate was heated and baked in air at 800 ° C. for 10 hours to obtain a lithium cobaltate aggregate (Sample N) of the present invention.

【0062】実施例12 1.コバルト酸化物の凝集処理 実施例2と同様の方法により四酸化三コバルトの凝集体
を得た。
Embodiment 12 1. Aggregation treatment of cobalt oxide An aggregate of tricobalt tetroxide was obtained in the same manner as in Example 2.

【0063】2.加熱焼成 前記凝集体と炭酸リチウムとをCo/Li比=1/1
(モル比)となるように混合し、実施例10と同様に加
熱焼成して本発明のコバルト酸リチウム凝集体(試料
O)を得た。
2. Heat calcination The aggregate and lithium carbonate were mixed at a Co / Li ratio of 1/1.
(Molar ratio), and heated and fired in the same manner as in Example 10 to obtain a lithium cobaltate aggregate (Sample O) of the present invention.

【0064】実施例13 1.コバルト酸化物とリチウム化合物との混合物の凝集
処理 実施例1における水酸化コバルト、オキシ水酸化コバル
ト及び四酸化三コバルトの混合物(試料d)を濾過、洗
浄し、再スラリー化した後、水酸化リチウムをCo/L
i比=1/1(モル比)になるように添加し、PVA
1.5%を含む濃度を100(g/l)に調整した。こ
のスラリーを、実施例1と同様にして噴霧乾燥を行い、
球状の凝集体を得た。
Embodiment 13 1. Aggregation treatment of mixture of cobalt oxide and lithium compound A mixture (sample d) of cobalt hydroxide, cobalt oxyhydroxide and tricobalt tetroxide in Example 1 was filtered, washed, reslurried, and then lithium hydroxide. To Co / L
i ratio = 1/1 (molar ratio)
The concentration containing 1.5% was adjusted to 100 (g / l). This slurry was spray-dried in the same manner as in Example 1,
A spherical aggregate was obtained.

【0065】2.加熱焼成 前記凝集体を実施例10と同様に加熱焼成して本発明の
コバルト酸リチウム凝集体(試料P)を得た。
2. Heating and Firing The above aggregate was heated and fired in the same manner as in Example 10 to obtain a lithium cobaltate aggregate (Sample P) of the present invention.

【0066】実施例14 1.コバルト酸化物とリチウム化合物との混合物の凝集
処理 実施例5における四酸化三コバルトの混合物(試料e)
を濾過、洗浄し、再スラリー化した後、水酸化リチウム
をCo/Li比=1/1(モル比)になるように添加
し、エーテル系界面活性剤(ペクノールST−7:東邦
化学製)0.2%を含む濃度を100(g/l)に調整
した。このスラリーを、実施例1と同様にして噴霧乾燥
を行い、球状の凝集体を得た。
Embodiment 14 1. Aggregation treatment of mixture of cobalt oxide and lithium compound Mixture of tricobalt tetroxide in Example 5 (sample e)
After filtration, washing and reslurrying, lithium hydroxide was added so that the Co / Li ratio = 1/1 (molar ratio), and an ether-based surfactant (Peknol ST-7: manufactured by Toho Chemical) The concentration containing 0.2% was adjusted to 100 (g / l). This slurry was spray-dried in the same manner as in Example 1 to obtain a spherical aggregate.

【0067】2.加熱焼成 前記凝集体を実施例10と同様に加熱焼成して本発明の
コバルト酸リチウム凝集体(試料Q)を得た。
2. Heating and Firing The above aggregate was heated and fired in the same manner as in Example 10 to obtain a lithium cobaltate aggregate (Sample Q) of the present invention.

【0068】実施例15 1.コバルト酸化物の凝集処理 実施例6と同様の方法により四酸化三コバルトの凝集体
を得た。
Embodiment 15 1. Aggregation treatment of cobalt oxide An aggregate of tricobalt tetroxide was obtained in the same manner as in Example 6.

【0069】2.加熱焼成 前記凝集体と炭酸リチウムとをCo/Li比=1/1
(モル比)となるように混合し、実施例11と同様に加
熱焼成して本発明のコバルト酸リチウム凝集体(試料
R)を得た。
2. Heat calcination The aggregate and lithium carbonate were mixed at a Co / Li ratio of 1/1.
(Molar ratio) and heated and baked in the same manner as in Example 11 to obtain a lithium cobaltate aggregate (Sample R) of the present invention.

【0070】実施例16 1.コバルト酸化物の凝集処理 実施例7と同様の方法によりオキシ水酸化コバルト約4
%と四酸化三コバルト約96%とからなる凝集体を得
た。
Embodiment 16 Coagulation treatment of cobalt oxide Cobalt oxyhydroxide of about 4 was obtained in the same manner as in Example 7.
% And about 96% of tricobalt tetroxide.

【0071】2.加熱焼成 前記凝集体と炭酸リチウムとをCo/Li比=1/1
(モル比)となるように混合し、実施例10と同様に加
熱焼成して本発明のコバルト酸リチウム凝集体(試料
S)を得た。
2. Heat calcination The aggregate and lithium carbonate were mixed at a Co / Li ratio of 1/1.
(Molar ratio), and heated and fired in the same manner as in Example 10 to obtain a lithium cobaltate aggregate (Sample S) of the present invention.

【0072】実施例17 1.コバルト酸化物の凝集処理 実施例8と同様の方法により四酸化三コバルトからなる
凝集体を得た。
Embodiment 17 Aggregation treatment of cobalt oxide An aggregate composed of tricobalt tetroxide was obtained in the same manner as in Example 8.

【0073】2.加熱焼成 前記凝集体と炭酸リチウムとをCo/Li比=1/1
(モル比)となるように混合し、実施例10と同様に加
熱焼成して本発明のコバルト酸リチウム凝集体(試料
T)を得た。
2. Heat calcination The aggregate and lithium carbonate were mixed at a Co / Li ratio of 1/1.
(Molar ratio), and heated and fired in the same manner as in Example 10 to obtain a lithium cobaltate aggregate (Sample T) of the present invention.

【0074】比較例9 実施例1で得た水酸化コバルト(試料a)を濾過、洗
浄、乾燥した後、炭酸リチウムをCo/Li比=1/1
(モル比)となるように混合し、空気中にて850℃で
10時間焼成してコバルト酸リチウム(試料U)を得
た。
Comparative Example 9 The cobalt hydroxide (sample a) obtained in Example 1 was filtered, washed and dried, and then lithium carbonate was added in a Co / Li ratio of 1/1.
(Molar ratio) and calcined in air at 850 ° C. for 10 hours to obtain lithium cobalt oxide (sample U).

【0075】比較例10 比較例7で得た四酸化三コバルトと水酸化コバルトとの
混合物(試料K)を濾過、洗浄、乾燥した後、炭酸リチ
ウムをCo/Li比=1/1(モル比)となるように混
合し、空気中にて850℃で10時間焼成してコバルト
酸リチウム(試料V)を得た。
Comparative Example 10 A mixture (sample K) of tricobalt tetroxide and cobalt hydroxide obtained in Comparative Example 7 was filtered, washed and dried, and then lithium carbonate was subjected to Co / Li ratio = 1/1 (molar ratio). ) And baked in air at 850 ° C. for 10 hours to obtain lithium cobaltate (sample V).

【0076】比較例11 実施例4で得た水酸化コバルト、オキシ水酸化コバルト
及び四酸化三コバルトの混合物(試料d)を濾過、洗
浄、乾燥した後、炭酸リチウムをCo/Li比=1/1
(モル比)となるように混合し、空気中にて850℃で
10時間焼成してコバルト酸リチウム(試料W)を得
た。
Comparative Example 11 A mixture (sample d) of cobalt hydroxide, cobalt oxyhydroxide and tricobalt tetroxide obtained in Example 4 was filtered, washed and dried. 1
(Molar ratio) and calcined in air at 850 ° C. for 10 hours to obtain lithium cobalt oxide (sample W).

【0077】評価2 実施例10〜17で得られたコバルト酸リチウム凝集体
(試料M〜T)、及び比較例9〜11で得られたコバル
ト酸リチウム(試料U〜V)の平均粒子径を評価1と同
様の方法により測定した。結果を表3に示す。
Evaluation 2 The average particle size of the lithium cobaltate aggregates (samples MT) obtained in Examples 10 to 17 and the lithium cobaltate aggregates (samples U to V) obtained in Comparative Examples 9 to 11 were determined. It was measured in the same manner as in Evaluation 1. Table 3 shows the results.

【0078】[0078]

【表3】 [Table 3]

【0079】評価3 実施例10〜17、比較例9〜11で得られた試料M〜
Wを正極活物質とした場合のリチウム二次電池の充放電
特性、及びサイクル特性を評価した。電池は三極式のセ
ルとし、充放電を繰り返した。電池の形態や測定条件に
ついて説明する。
Evaluation 3 Samples M to M obtained in Examples 10 to 17 and Comparative Examples 9 to 11
The charge and discharge characteristics and the cycle characteristics of the lithium secondary battery when W was used as the positive electrode active material were evaluated. The battery was a three-electrode cell, and charging and discharging were repeated. The form of the battery and the measurement conditions will be described.

【0080】前記の各試料と、導電剤としてのグラファ
イト粉末、および結着剤としてのポリ四フッ化エチレン
樹脂を重量比で3:2:1で混合し、乳鉢で練り合わ
せ、直径14mmの円形に成型してペレット状とした。
ペレットの重量は50mgであった。これを金属チタン
製のメッシュに挟み込み、14.7MPaの圧力でプレ
スして正極とした。
Each of the above samples, graphite powder as a conductive agent, and polytetrafluoroethylene resin as a binder were mixed at a weight ratio of 3: 2: 1 and kneaded in a mortar to form a circle having a diameter of 14 mm. It was molded into a pellet.
The weight of the pellet was 50 mg. This was sandwiched between metal titanium meshes and pressed at a pressure of 14.7 MPa to obtain a positive electrode.

【0081】一方、厚み0.5mmの金属リチウムを直
径14mmの円形に成型し、金属ニッケル製のメッシュ
に挟み込んで圧着し、これを負極とした。また、厚み
0.1mmの金属リチウム箔を金属ニッケルワイヤ上
に、米粒大となる程度巻き付け、これを参照電極とし
た。非水電解液として、1モル/リットルとなる濃度で
過塩素酸リチウムを溶解した1,2−ジメトキシエタン
とプロピレンカーボネート混合溶液(体積比で1:1に
混合)を用いた。尚、電極は、正極、参照極、負極の順
に配置し、その間にはセパレーターとして多孔性ポリプ
ロピレンフィルムを置いた。
On the other hand, metallic lithium having a thickness of 0.5 mm was formed into a circular shape having a diameter of 14 mm, sandwiched between meshes made of metallic nickel, and pressed to obtain a negative electrode. In addition, a metal lithium foil having a thickness of 0.1 mm was wound around a metal nickel wire to the extent that rice grains were large, and this was used as a reference electrode. As the non-aqueous electrolyte, a mixed solution of 1,2-dimethoxyethane and propylene carbonate in which lithium perchlorate was dissolved at a concentration of 1 mol / liter (mixed at a volume ratio of 1: 1) was used. In addition, the electrode was arrange | positioned in order of the positive electrode, the reference electrode, and the negative electrode, and the porous polypropylene film was put as a separator between them.

【0082】充放電サイクルの測定は、電圧範囲を4.
3Vから3.5Vに、充放電電流を0.26mA(約1
サイクル/日)に設定して、定電流で行った。初期放電
容量及び10サイクルの放電容量から算出した平均充放
電効率、10サイクル目の放電容量から算出した放電容
量のサイクル特性を表4に示す。容量は、正極活物質1
g当りのものである。
The measurement of the charge / discharge cycle was performed by setting the voltage range to 4.
From 3 V to 3.5 V, the charge / discharge current was 0.26 mA (about 1
(Cycles / day) at a constant current. Table 4 shows the average charge / discharge efficiency calculated from the initial discharge capacity and the discharge capacity of the 10th cycle, and the cycle characteristics of the discharge capacity calculated from the discharge capacity at the 10th cycle. Capacity is positive electrode active material 1
It is per g.

【0083】[0083]

【表4】 [Table 4]

【0084】本発明のコバルト酸リチウム凝集体はこれ
と同程度の粒子径の大きいコバルト酸リチウムと比較
し、リチウム電池の正極活物質として用いた場合、初期
放電容量が高く、平均充放電効率、放電容量のサイクル
特性にも優れたものである。
The lithium cobaltate aggregate of the present invention, when used as a positive electrode active material of a lithium battery, has a higher initial discharge capacity, an average charge / discharge efficiency, It also has excellent discharge capacity cycle characteristics.

【0085】実施例11で得られたコバルト酸リチウム
凝集体(試料N)と、比較例9のコバルト酸リチウム
(試料U)の電子顕微鏡写真を図8、9に示す。本発明
が小さな粒子が凝集して、凝集体をなしていることがわ
かった。
Electron micrographs of the lithium cobaltate aggregate (sample N) obtained in Example 11 and lithium cobaltate (sample U) of Comparative Example 9 are shown in FIGS. It was found that in the present invention, small particles aggregated to form an aggregate.

【0086】[0086]

【発明の効果】本発明は、一次粒子の平均粒子径が0.
05〜5μmであり、且つ二次粒子の平均粒子径が1〜
30μmであるコバルト酸リチウム凝集体であり、リチ
ウム電池の正極活物質として最適なものである。また、
本発明は一次粒子の平均粒子径が0.01〜2μmであ
り、且つ二次粒子の平均粒子径が0.5〜30μmであ
るコバルト酸化物凝集体に関し、前記コバルト酸リチウ
ム凝集体の中間体として、さらには電子材料、顔料、触
媒などとしても有用なものである。本発明のコバルト酸
リチウム凝集体を用いたリチウム電池はサイクル特性な
どの電池特性と、安全性や安定性のいずれにも優れたも
のとなる。
According to the present invention, the average particle size of the primary particles is 0.
And the average particle size of the secondary particles is 1 to 5 μm.
It is a lithium cobaltate aggregate having a size of 30 μm, and is most suitable as a positive electrode active material of a lithium battery. Also,
The present invention relates to a cobalt oxide aggregate having an average particle size of primary particles of 0.01 to 2 μm and an average particle size of secondary particles of 0.5 to 30 μm, and an intermediate of the lithium cobaltate aggregate. It is also useful as an electronic material, a pigment, a catalyst, and the like. The lithium battery using the lithium cobaltate aggregate of the present invention is excellent in both battery characteristics such as cycle characteristics and safety and stability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は試料Bの電子顕微鏡写真(倍率1万倍)
である。
FIG. 1 is an electron micrograph of sample B (magnification: 10,000 times).
It is.

【図2】図2は試料Cの電子顕微鏡写真(倍率1万倍)
である。
FIG. 2 is an electron micrograph of sample C (magnification: 10,000 times).
It is.

【図3】図3は試料Fの電子顕微鏡写真(倍率1万倍)
である。
FIG. 3 is an electron micrograph of sample F (magnification: 10,000 times).
It is.

【図4】図4は試料aの電子顕微鏡写真(倍率5万倍)
である。
FIG. 4 is an electron micrograph of sample a (magnification: 50,000 times).
It is.

【図5】図5は試料bの電子顕微鏡写真(倍率5万倍)
である。
FIG. 5 is an electron micrograph of sample b (magnification: 50,000 times).
It is.

【図6】図6は試料Jの電子顕微鏡写真(倍率5万倍)
である。
FIG. 6 is an electron micrograph of sample J (magnification: 50,000 times).
It is.

【図7】図7は試料Kの電子顕微鏡写真(倍率5万倍)
である。
FIG. 7 is an electron micrograph of sample K (magnification: 50,000 times).
It is.

【図8】図8は試料Nの電子顕微鏡写真(倍率1万倍)
である。
FIG. 8 is an electron micrograph of sample N (magnification: 10,000 times).
It is.

【図9】図9は試料Uの電子顕微鏡写真(倍率1万倍)
である。
FIG. 9 is an electron micrograph of the sample U (magnification: 10,000 times).
It is.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AB01 AC06 AD03 AE05 5H029 AJ05 AJ12 AK03 AL12 AM03 AM04 AM05 AM07 CJ02 CJ14 DJ16 HJ02 HJ05 5H050 AA07 AA15 BA17 CA08 EA11 EA12 FA17 GA02 GA06 GA15 HA02 HA05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G048 AA04 AB01 AC06 AD03 AE05 5H029 AJ05 AJ12 AK03 AL12 AM03 AM04 AM05 AM07 CJ02 CJ14 DJ16 HJ02 HJ05 5H050 AA07 AA15 BA17 CA08 EA11 EA12 FA17 GA02 GA06 GA15 HA02 HA05

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】平均粒子径0.05〜5μmの一次粒子が
平均粒子径1〜30μmの二次粒子を形成してなるコバ
ルト酸リチウム凝集体。
A lithium cobaltate aggregate comprising primary particles having an average particle size of 0.05 to 5 μm forming secondary particles having an average particle size of 1 to 30 μm.
【請求項2】一次粒子の平均粒子径が0.1〜2μmで
あり、二次粒子の平均粒子径が2〜10μmである請求
項1記載のコバルト酸リチウム凝集体。
2. The lithium cobaltate aggregate according to claim 1, wherein the primary particles have an average particle size of 0.1 to 2 μm, and the secondary particles have an average particle size of 2 to 10 μm.
【請求項3】コバルト酸化物とリチウム化合物とを凝集
処理した後加熱焼成することを特徴とする請求項1記載
のコバルト酸リチウム凝集体の製造方法。
3. The method for producing a lithium cobaltate aggregate according to claim 1, wherein agglomeration treatment of the cobalt oxide and the lithium compound is carried out, followed by heating and firing.
【請求項4】凝集処理がコバルト酸化物とリチウム化合
物とを含むスラリーを噴霧乾燥することを特徴とする請
求項3記載のコバルト酸リチウム凝集体の製造方法。
4. The method for producing a lithium cobaltate aggregate according to claim 3, wherein the aggregation treatment comprises spray-drying a slurry containing a cobalt oxide and a lithium compound.
【請求項5】コバルト酸化物が二価コバルト化合物とア
ルカリ性化合物との反応生成物であるか、または反応生
成物を加熱焼成したものであることを特徴とする請求項
4記載のコバルト酸リチウム凝集体の製造方法。
5. The lithium cobaltate coagulant according to claim 4, wherein the cobalt oxide is a reaction product of a divalent cobalt compound and an alkaline compound, or the reaction product is heated and calcined. Manufacturing method of aggregate.
【請求項6】コバルト酸化物が二価コバルト化合物とア
ルカリ性化合物とを媒液中で反応させながら酸化させる
か、または媒液中で反応させた後酸化させたものである
ことを特徴とする請求項4記載のコバルト酸リチウム凝
集体の製造方法。
6. The method according to claim 1, wherein the cobalt oxide is oxidized while reacting the divalent cobalt compound and the alkaline compound in a medium, or oxidized after reacting in a medium. Item 5. The method for producing a lithium cobaltate aggregate according to Item 4.
【請求項7】コバルト酸化物凝集体とリチウム化合物と
を加熱焼成することを特徴とする請求項1記載のコバル
ト酸リチウム凝集体の製造方法。
7. The method for producing a lithium cobaltate aggregate according to claim 1, wherein the cobalt oxide aggregate and the lithium compound are heated and calcined.
【請求項8】コバルト酸化物凝集体が平均粒子径0.0
1〜2μmのコバルト酸化物の一次粒子が凝集して、平
均粒子径が0.5〜30μmの二次粒子を形成したもの
であることを特徴とする請求項7記載のコバルト酸リチ
ウム凝集体の製造方法。
8. The method according to claim 8, wherein the cobalt oxide aggregate has an average particle size of 0.0
The lithium cobaltate aggregate according to claim 7, wherein primary particles of cobalt oxide of 1 to 2 µm are aggregated to form secondary particles having an average particle diameter of 0.5 to 30 µm. Production method.
【請求項9】請求項1記載のコバルト酸リチウム凝集体
を正極活物質として用いてなるリチウム電池。
9. A lithium battery using the lithium cobaltate aggregate according to claim 1 as a positive electrode active material.
【請求項10】平均粒子径0.01〜2μmの一次粒子
が平均粒子径が0.5〜30μmの二次粒子を形成して
なるコバルト酸化物凝集体。
10. A cobalt oxide aggregate comprising primary particles having an average particle size of 0.01 to 2 μm forming secondary particles having an average particle size of 0.5 to 30 μm.
【請求項11】一次粒子の平均粒子径が0.02〜1μ
mであり、二次粒子の平均粒子径が1〜20μmである
請求項10記載のコバルト酸化物凝集体。
11. The primary particles have an average particle size of 0.02 to 1 μm.
11. The cobalt oxide aggregate according to claim 10, wherein the average particle diameter of the secondary particles is 1 to 20 μm.
【請求項12】一次粒子の平均粒子径が0.03〜0.
2μmであり、二次粒子の平均粒子径が1〜10μmで
ある請求項10記載のコバルト酸化物凝集体。
12. The method according to claim 1, wherein the primary particles have an average particle size of 0.03 to 0.1.
The cobalt oxide aggregate according to claim 10, wherein the average particle diameter of the secondary particles is 2 μm and the average particle diameter of the secondary particles is 1 to 10 μm.
【請求項13】一次粒子及び二次粒子が組成式CoxO
yHz(1≦x≦3、1≦y≦4、0≦z≦2)で表さ
れることを特徴とする請求項10記載のコバルト酸化物
凝集体。
13. The method according to claim 13, wherein the primary particles and the secondary particles have the composition formula CoxO.
The cobalt oxide aggregate according to claim 10, wherein the aggregate is represented by yHz (1≤x≤3, 1≤y≤4, 0≤z≤2).
【請求項14】一次粒子及び二次粒子が一酸化コバル
ト、三酸化二コバルト、四酸化三コバルト、水酸化第一
コバルト及びオキシ水酸化コバルトから選ばれる少なく
とも1種であることを特徴とする請求項10記載のコバ
ルト酸化物凝集体。
14. The method according to claim 1, wherein the primary particles and the secondary particles are at least one selected from cobalt monoxide, dicobalt trioxide, tricobalt tetroxide, cobaltous hydroxide and cobalt oxyhydroxide. Item 11. The cobalt oxide aggregate according to Item 10.
【請求項15】一次粒子及び二次粒子が四酸化三コバル
トであることを特徴とする請求項10、11または12
記載のコバルト酸化物凝集体。
15. The method according to claim 10, wherein the primary particles and the secondary particles are tricobalt tetroxide.
The cobalt oxide aggregate according to the above.
【請求項16】コバルト酸化物を凝集処理することを特
徴とする請求項10記載のコバルト酸化物凝集体の製造
方法。
16. The method for producing a cobalt oxide aggregate according to claim 10, wherein the cobalt oxide is subjected to an aggregation treatment.
【請求項17】凝集処理がコバルト酸化物を含むスラリ
ーを噴霧乾燥してコバルト酸化物を凝集させることを特
徴とする請求項16記載のコバルト酸化物凝集体の製造
方法。
17. The method for producing a cobalt oxide aggregate according to claim 16, wherein the aggregation treatment comprises spray drying a slurry containing the cobalt oxide to aggregate the cobalt oxide.
【請求項18】凝集処理がコバルト酸化物の存在下、二
価コバルト化合物とアルカリ性化合物とを反応させなが
ら酸化させて該コバルト酸化物を凝集させることを特徴
とする請求項16記載のコバルト酸化物凝集体の製造方
法。
18. The cobalt oxide according to claim 16, wherein the coagulation treatment is carried out by oxidizing the divalent cobalt compound and the alkaline compound while reacting them in the presence of the cobalt oxide to coagulate the cobalt oxide. Method for producing aggregates.
【請求項19】コバルト酸化物が二価コバルト化合物と
アルカリ性化合物との反応生成物であるか、または反応
生成物を加熱焼成したものであることを特徴とする請求
項16記載のコバルト酸化物凝集体の製造方法。
19. The cobalt oxide coagulant according to claim 16, wherein the cobalt oxide is a reaction product of a divalent cobalt compound and an alkaline compound, or the reaction product is heated and calcined. Manufacturing method of aggregate.
【請求項20】コバルト酸化物が二価コバルト化合物と
アルカリ性化合物とを媒液中で反応させながら酸化させ
るか、または媒液中で反応させた後酸化させたものであ
ることを特徴とする請求項16記載のコバルト酸化物凝
集体の製造方法。
20. The method according to claim 20, wherein the cobalt oxide is oxidized while reacting the divalent cobalt compound and the alkaline compound in the medium, or oxidized after reacting in the medium. Item 18. The method for producing a cobalt oxide aggregate according to Item 16.
JP2000248169A 2000-08-18 2000-08-18 Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate Pending JP2002060225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000248169A JP2002060225A (en) 2000-08-18 2000-08-18 Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000248169A JP2002060225A (en) 2000-08-18 2000-08-18 Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate

Publications (1)

Publication Number Publication Date
JP2002060225A true JP2002060225A (en) 2002-02-26

Family

ID=18738122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000248169A Pending JP2002060225A (en) 2000-08-18 2000-08-18 Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate

Country Status (1)

Country Link
JP (1) JP2002060225A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002660A (en) * 2001-06-20 2003-01-08 Seimi Chem Co Ltd Method for producing lithium cobalt composite oxide
WO2004023583A1 (en) * 2002-09-03 2004-03-18 Seimi Chemical Co., Ltd. Process for producing lithium cobalt composite oxide for positive electrode of lithium secondary battery
WO2004030126A1 (en) * 2002-09-25 2004-04-08 Seimi Chemical Co., Ltd. Positive electrode material for lithium secondary battery and process for producing the same
WO2004051771A1 (en) * 2002-11-29 2004-06-17 Seimi Chemical Co., Ltd. Method for preparing positive electrode active material for lithium secondary cell
JP2005071623A (en) * 2003-08-21 2005-03-17 Seimi Chem Co Ltd Producing method for lithium cobalt composite oxide for secondary battery positive electrode
JP2006160571A (en) * 2004-12-08 2006-06-22 Tanaka Chemical Corp Mg SOLID SOLUTION COBALT OXYHYDROXIDE PARTICLE AND ITS PRODUCING METHOD
JP2007055817A (en) * 2005-08-22 2007-03-08 Dainichiseika Color & Chem Mfg Co Ltd Particulate tricobalt tetroxide pigment, and method for producing the same
JP2007119340A (en) * 2005-09-29 2007-05-17 Seimi Chem Co Ltd Method for producing lithium-containing multiple oxide
JP2007145695A (en) * 2005-10-31 2007-06-14 Agc Seimi Chemical Co Ltd Method for producing lithium-containing multiple oxide
CN1322614C (en) * 2005-07-08 2007-06-20 清华大学 Macro-grain LiCoO2 of anode material for lithium ion cell and preparing process thereof
JP2007302492A (en) * 2006-05-10 2007-11-22 Mitsui Mining & Smelting Co Ltd Cobalt hydroxide particle and cobalt oxide particle
JP2007302491A (en) * 2006-05-10 2007-11-22 Mitsui Mining & Smelting Co Ltd Cobalt hydroxide particle and cobalt oxide particle
US7510805B2 (en) 2003-03-04 2009-03-31 Canon Kabushiki Kaisha Lithium metal composite oxide particles having particles with columnar or planar shape
US7709148B2 (en) 2005-11-02 2010-05-04 Agc Seimi Chemical Co., Ltd. Lithium-containing composite oxide and its production process
JP2010105833A (en) * 2008-10-28 2010-05-13 Sekko Seiho Kogokin Shinzairyo Kk Method for producing tricobalt tetroxide
JP2010120842A (en) * 2008-10-24 2010-06-03 Soshin Kagaku Sangyo Kk Method for producing tri-metal tetraoxide
US7749482B2 (en) 2005-09-27 2010-07-06 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
US20100173204A1 (en) * 2008-12-24 2010-07-08 Ngk Insulators, Ltd. Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, method for manufacturing the same, method for manufacturing a cathode active material of a lithium secondary battery, and a lithium secondary battery
EP2362972A1 (en) * 2008-11-10 2011-09-07 Daejung EM Co., Ltd. Cathode active material for lithium secondary batteries with high safety and method of preparing for the same and lithium secondary batteries comprising the same
WO2012029730A1 (en) * 2010-09-02 2012-03-08 日本化学工業株式会社 Lithium cobalt oxide, process for producing same, positive active material for lithium secondary battery, and lithium secondary battery
WO2012029729A1 (en) * 2010-09-02 2012-03-08 日本化学工業株式会社 Cobalt hydroxide, method for producing same, cobalt oxide, and method for producing same
US8287828B2 (en) 2004-04-30 2012-10-16 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
JP2014503942A (en) * 2010-11-25 2014-02-13 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing transition metal composite oxide precursor
JP2014523383A (en) * 2011-05-31 2014-09-11 オーエムジー・コッコラ・ケミカルズ・オイ Lithium cobalt oxide material
KR20150115532A (en) * 2014-04-04 2015-10-14 삼성에스디아이 주식회사 Composite precursor of cathode active material, cathode active material, cathode and lithium battery containing material and preparation method of composite precursor

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002660A (en) * 2001-06-20 2003-01-08 Seimi Chem Co Ltd Method for producing lithium cobalt composite oxide
WO2004023583A1 (en) * 2002-09-03 2004-03-18 Seimi Chemical Co., Ltd. Process for producing lithium cobalt composite oxide for positive electrode of lithium secondary battery
JPWO2004023583A1 (en) * 2002-09-03 2006-01-05 セイミケミカル株式会社 Method for producing lithium cobalt composite oxide for positive electrode of lithium secondary battery
US7501209B2 (en) 2002-09-03 2009-03-10 Seimi Chemical Co., Ltd. Process for producing a lithium-cobalt composite oxide for a positive electrode for a lithium secondary cell
WO2004030126A1 (en) * 2002-09-25 2004-04-08 Seimi Chemical Co., Ltd. Positive electrode material for lithium secondary battery and process for producing the same
KR101021991B1 (en) 2002-09-25 2011-03-16 에이지씨 세이미 케미칼 가부시키가이샤 Positive electrode material for lithium secondary battery and process for producing the same
JPWO2004030126A1 (en) * 2002-09-25 2006-01-26 セイミケミカル株式会社 Positive electrode material for lithium secondary battery and method for producing the same
WO2004051771A1 (en) * 2002-11-29 2004-06-17 Seimi Chemical Co., Ltd. Method for preparing positive electrode active material for lithium secondary cell
CN100337351C (en) * 2002-11-29 2007-09-12 清美化学股份有限公司 Method for preparing positive electrode active material for lithium secondary cell
US7192672B2 (en) 2002-11-29 2007-03-20 Seimi Chemical Co., Ltd. Process for producing positive electrode active material for lithium secondary battery
US7927743B2 (en) 2003-03-04 2011-04-19 Canon Kabushiki Kaisha Lithium metal composite oxide particles, process of producing lithium metal composite oxide particles, electrode structure containing lithium metal composite oxide particles, process of producing electrode structure, and lithium secondary battery having electrode structure
US7510805B2 (en) 2003-03-04 2009-03-31 Canon Kabushiki Kaisha Lithium metal composite oxide particles having particles with columnar or planar shape
US7682595B2 (en) 2003-03-04 2010-03-23 Canon Kabushiki Kaisha Process of producing lithium metal composite oxide particles
JP2005071623A (en) * 2003-08-21 2005-03-17 Seimi Chem Co Ltd Producing method for lithium cobalt composite oxide for secondary battery positive electrode
US8287828B2 (en) 2004-04-30 2012-10-16 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
JP2006160571A (en) * 2004-12-08 2006-06-22 Tanaka Chemical Corp Mg SOLID SOLUTION COBALT OXYHYDROXIDE PARTICLE AND ITS PRODUCING METHOD
JP4652791B2 (en) * 2004-12-08 2011-03-16 株式会社田中化学研究所 Mg solid solution cobalt oxyhydroxide particles and production method thereof
CN1322614C (en) * 2005-07-08 2007-06-20 清华大学 Macro-grain LiCoO2 of anode material for lithium ion cell and preparing process thereof
JP2007055817A (en) * 2005-08-22 2007-03-08 Dainichiseika Color & Chem Mfg Co Ltd Particulate tricobalt tetroxide pigment, and method for producing the same
US7749482B2 (en) 2005-09-27 2010-07-06 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
JP2007119340A (en) * 2005-09-29 2007-05-17 Seimi Chem Co Ltd Method for producing lithium-containing multiple oxide
JP2007145695A (en) * 2005-10-31 2007-06-14 Agc Seimi Chemical Co Ltd Method for producing lithium-containing multiple oxide
US7709148B2 (en) 2005-11-02 2010-05-04 Agc Seimi Chemical Co., Ltd. Lithium-containing composite oxide and its production process
JP2007302491A (en) * 2006-05-10 2007-11-22 Mitsui Mining & Smelting Co Ltd Cobalt hydroxide particle and cobalt oxide particle
JP4746476B2 (en) * 2006-05-10 2011-08-10 三井金属鉱業株式会社 Cobalt hydroxide particles and cobalt oxide particles
JP4746477B2 (en) * 2006-05-10 2011-08-10 三井金属鉱業株式会社 Cobalt hydroxide particles and cobalt oxide particles
JP2007302492A (en) * 2006-05-10 2007-11-22 Mitsui Mining & Smelting Co Ltd Cobalt hydroxide particle and cobalt oxide particle
JP2010120842A (en) * 2008-10-24 2010-06-03 Soshin Kagaku Sangyo Kk Method for producing tri-metal tetraoxide
JP2010105833A (en) * 2008-10-28 2010-05-13 Sekko Seiho Kogokin Shinzairyo Kk Method for producing tricobalt tetroxide
EP2362972A4 (en) * 2008-11-10 2012-06-27 Daejung Em Co Ltd Cathode active material for lithium secondary batteries with high safety and method of preparing for the same and lithium secondary batteries comprising the same
EP2362972A1 (en) * 2008-11-10 2011-09-07 Daejung EM Co., Ltd. Cathode active material for lithium secondary batteries with high safety and method of preparing for the same and lithium secondary batteries comprising the same
US8367247B2 (en) 2008-11-10 2013-02-05 Daejung Em Co., Ltd. Cathode active material for lithium secondary batteries with high safety, method of preparing the same and lithium secondary batteries comprising the same
US20100173204A1 (en) * 2008-12-24 2010-07-08 Ngk Insulators, Ltd. Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, method for manufacturing the same, method for manufacturing a cathode active material of a lithium secondary battery, and a lithium secondary battery
JP2012074366A (en) * 2010-09-02 2012-04-12 Nippon Chem Ind Co Ltd Lithium cobaltate, production method therefor, cathode active material for lithium-ion secondary battery, and lithium-ion secondary battery
JP2012072050A (en) * 2010-09-02 2012-04-12 Nippon Chem Ind Co Ltd Cobalt hydroxide, method for producing the same, cobalt oxide and method for producing the same
WO2012029729A1 (en) * 2010-09-02 2012-03-08 日本化学工業株式会社 Cobalt hydroxide, method for producing same, cobalt oxide, and method for producing same
WO2012029730A1 (en) * 2010-09-02 2012-03-08 日本化学工業株式会社 Lithium cobalt oxide, process for producing same, positive active material for lithium secondary battery, and lithium secondary battery
CN103201222A (en) * 2010-09-02 2013-07-10 日本化学工业株式会社 Cobalt hydroxide, method for producing same, cobalt oxide, and method for producing same
TWI508923B (en) * 2010-09-02 2015-11-21 Nippon Chemical Ind Cobalt hydroxide and its production method and cobalt oxide and its manufacturing method
JP2014503942A (en) * 2010-11-25 2014-02-13 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing transition metal composite oxide precursor
JP2014523383A (en) * 2011-05-31 2014-09-11 オーエムジー・コッコラ・ケミカルズ・オイ Lithium cobalt oxide material
KR20150115532A (en) * 2014-04-04 2015-10-14 삼성에스디아이 주식회사 Composite precursor of cathode active material, cathode active material, cathode and lithium battery containing material and preparation method of composite precursor
KR102195723B1 (en) * 2014-04-04 2020-12-28 삼성에스디아이 주식회사 Composite precursor of cathode active material, cathode active material, cathode and lithium battery containing material and preparation method of composite precursor
US11142465B2 (en) 2014-04-04 2021-10-12 Samsung Sdi Co., Ltd. Composite precursor of cathode active material, cathode active material, cathode and lithium battery containing the cathode active material, and method of preparing composite precursor

Similar Documents

Publication Publication Date Title
JP2002060225A (en) Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate
KR101929961B1 (en) Precursor Synthetic method for lithium-ion secondary battery cathode active material from waste battery material, and manufacturing method of the cathode active material made by the same
JP4949561B2 (en) Titanium dioxide powder as lithium ion secondary battery electrode active material production raw material, lithium titanate as lithium ion secondary battery electrode active material, and method for producing the same
JP3489685B2 (en) Lithium manganate, method for producing the same, and lithium battery using the same
JP4894969B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2005347134A (en) Manufacturing method of positive electrode active material for lithium ion secondary battery
JP2005310744A (en) Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator
WO2012020769A1 (en) Method for producing nickel-containing complex compound
KR20110044936A (en) Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same
JP4066472B2 (en) Plate-like nickel hydroxide particles, method for producing the same, and method for producing lithium / nickel composite oxide particles using the same as a raw material
JPH11292547A (en) Lithium cobaltate, its production and lithium cell using that
JP2004281253A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method and nonaqueous system lithium secondary battery using the material
JP5226917B2 (en) Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
JP2019175694A (en) Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery, and molded body
JP2002068750A (en) Method of producing tricobalt tetraoxide
US6899860B2 (en) Process for producing lithium manganate and lithium battery using the lithium manganate
JP4179075B2 (en) Method for producing lithium manganese composite oxide granules
KR101893956B1 (en) Methods of preparation for electrode active materials of lithium secondary batteries and lithium secondary batteries containing the electrode active materials
JP2022177291A (en) Positive electrode active material for high-strength lithium ion secondary battery, and lithium ion secondary battery employing the positive electrode active material
JP2004010375A (en) Processes for preparing tricobalt tetraoxide and lithium cobaltate
JP2004155631A (en) Lithium-manganese-based double oxide particle for non-aqueous lithium secondary battery, method for producing the same and non-aqueous lithium secondary battery
JP2005346956A (en) Positive electrode active material for nonaqueous lithium secondary battery, manufacturing method thereof, and nonaqueous lithium secondary battery using the positive electrode active material
JP3822437B2 (en) Method for producing lithium manganate and lithium battery using the lithium manganate
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same