JP2007302491A - Cobalt hydroxide particle and cobalt oxide particle - Google Patents
Cobalt hydroxide particle and cobalt oxide particle Download PDFInfo
- Publication number
- JP2007302491A JP2007302491A JP2006130989A JP2006130989A JP2007302491A JP 2007302491 A JP2007302491 A JP 2007302491A JP 2006130989 A JP2006130989 A JP 2006130989A JP 2006130989 A JP2006130989 A JP 2006130989A JP 2007302491 A JP2007302491 A JP 2007302491A
- Authority
- JP
- Japan
- Prior art keywords
- cobalt
- particles
- particle
- divalent
- cobalt hydroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本発明は、水酸化コバルト粒子に関し、更に詳しくは、板状を呈する特定の粒度、あるいは粒度分布を示すことを特徴とする、特にブラックマトリックス用着色組成物、プラズマディスプレイ、プラズマアドレス液晶等の黒色電極、遮光層形成用等に用いられる、黒色度に優れ、かつ高電気抵抗の酸化コバルト粒子を得る原料として好適な水酸化コバルト粒子に関する。また、その水酸化コバルト粒子により得られる酸化コバルト粒子に関する。 The present invention relates to cobalt hydroxide particles. More specifically, the present invention is characterized by exhibiting a specific particle size or particle size distribution in the form of a plate, particularly black color such as a coloring composition for a black matrix, a plasma display, and a plasma address liquid crystal. The present invention relates to cobalt hydroxide particles suitable for use as a raw material for obtaining cobalt oxide particles having excellent blackness and high electrical resistance, which are used for forming electrodes, light shielding layers, and the like. The present invention also relates to cobalt oxide particles obtained from the cobalt hydroxide particles.
塗料用、インキ用、トナー用、ゴム・プラスチック用等に用いられる黒色顔料は、黒色度、色相、着色力、隠ぺい力等の特性に優れ、かつ安価であることが求められており、カーボンブラックやマグネタイトをはじめとする酸化鉄系顔料、その他複合酸化物顔料が用途に応じて利用されている。 Black pigments used in paints, inks, toners, rubbers and plastics, etc. are required to be excellent in properties such as blackness, hue, coloring power, hiding power, etc. and inexpensive. Carbon black Iron oxide pigments such as magnetite and other complex oxide pigments are used depending on the application.
さらに、プラズマディスプレイ、プラズマアドレス液晶等のブラックマトリックスオンアレイ型高遮光性膜形成においては、特許文献1に開示されているように、電極間の導通防止の為、高電気抵抗であることが要求されており、必然的に用いられる黒色顔料も高電気抵抗であることが好ましいのは言うまでもない。 Further, in forming a black matrix on array type high light-shielding film such as a plasma display or a plasma address liquid crystal, as disclosed in Patent Document 1, it is required to have a high electric resistance to prevent conduction between electrodes. Needless to say, it is preferable that the black pigment inevitably used also has a high electric resistance.
上記用途に対し、金属酸化物を主成分とする黒色顔料の代表例としては、酸化マンガン、酸化銅といった単独組成の金属酸化物粒子や、それら金属元素の複合酸化物粒子が挙げられる。上記金属酸化物粒子の内、酸化コバルトは、黒色度に優れるものとして注目されており、酸化コバルト粒子を得る手段としては、水溶性コバルト塩水溶液を水酸化アルカリで中和して、水酸化コバルト粒子を液中で湿式酸化させるか、もしくは水酸化コバルト粒子をろ過、洗浄、乾燥の後、熱処理を加えることにより製造する方法が一般的であり、この酸化コバルト粒子の出発原料である水酸化コバルト粒子については、特許文献1および2に代表されるような技術の開示がある。 For the above applications, typical examples of black pigments mainly composed of metal oxides include metal oxide particles having a single composition such as manganese oxide and copper oxide, and composite oxide particles of these metal elements. Of the above metal oxide particles, cobalt oxide is attracting attention as having excellent blackness. As a means for obtaining cobalt oxide particles, a water-soluble cobalt salt aqueous solution is neutralized with an alkali hydroxide to obtain cobalt hydroxide. Cobalt hydroxide, which is a starting material for the cobalt oxide particles, is generally produced by wet oxidation of the particles in a liquid, or by adding heat treatment after filtering, washing and drying the cobalt hydroxide particles. As for the particles, there are disclosures of techniques represented by Patent Documents 1 and 2.
上述の中和法による水酸化コバルト粒子については、アンモニウム化合物を用いて、コバルト塩を錯化させる製造方法であるが、いずれも条件によって、得られる酸化コバルト粒子の特徴が大きく変動するものである。 The cobalt hydroxide particles obtained by the neutralization method described above are production methods in which a cobalt salt is complexed using an ammonium compound. In any case, the characteristics of the obtained cobalt oxide particles vary greatly depending on conditions. .
しかし、水酸化コバルト粒子に関する従来技術においては、粒度およびその分布、特に粒子の凝集度合いについて言及されたものがなく、そのため、得られる酸化コバルト粒子に要求される各種特性、特に黒色度や電気抵抗等も満足のゆくものが得られなかった。 However, in the prior art relating to the cobalt hydroxide particles, there is no mention of the particle size and its distribution, particularly the degree of aggregation of the particles, and therefore various characteristics required for the obtained cobalt oxide particles, in particular, blackness and electrical resistance. Etc. were not satisfactory.
従って本発明は、酸化コバルト粒子の優れた特性を引き出す水酸化コバルト粒子を提供することを目的とする。
また、プラズマディスプレイ、プラズマアドレス液晶等の黒色電極、遮光層形成用の黒色顔料粉として好適な黒色度と高電気抵抗とを兼ね備えた酸化コバルト粒子を提供するものである。
Therefore, an object of this invention is to provide the cobalt hydroxide particle which draws out the outstanding characteristic of a cobalt oxide particle.
Further, the present invention provides cobalt oxide particles having both blackness and high electrical resistance suitable as a black electrode for a plasma display, a plasma address liquid crystal or the like, and a black pigment powder for forming a light shielding layer.
本発明者等は鋭意検討の結果、特定の粒度やその分布、プロフィールを特定する水酸化物粒子とすることにより、得られる酸化コバルト粒子の黒色度をはじめとする、各種特性に優れるものであることを知見した。 As a result of intensive studies, the present inventors are excellent in various characteristics including the blackness of the resulting cobalt oxide particles by making hydroxide particles that specify a specific particle size, its distribution, and profile. I found out.
すなわち、本発明の水酸化コバルト粒子は、SEM観察による一次粒子面方向平均径が0.05μm〜0.7μmであり、かつ粒子形状が板状であることを特徴とする。 That is, the cobalt hydroxide particles of the present invention are characterized in that the average primary particle surface direction diameter by SEM observation is 0.05 μm to 0.7 μm and the particle shape is plate-like.
本発明の水酸化コバルト粒子は、粒度、あるいはその分布、粒子の凝集度合いを特定したことに起因して、これを原料として得られる酸化コバルト粒子は、黒色度に優れ、かつ高電気抵抗を有するため、プラズマディスプレイ、プラズマアドレス液晶等の黒色電極、遮光層形成用の黒色顔料粉等の用途に好適である。 The cobalt hydroxide particles of the present invention have a high blackness and high electrical resistance because the cobalt hydroxide particles of the present invention have a specified particle size, distribution thereof, or degree of particle aggregation. Therefore, it is suitable for applications such as black electrodes such as plasma displays and plasma address liquid crystals, and black pigment powder for forming a light shielding layer.
以下、本発明を、その好ましい形態に基づき説明する。
本発明で言う水酸化コバルト粒子とは、少なくともその主成分がコバルトであり、黒色度を更に改善する等、必要な特性向上のため、Si、Al、Mn、Ni、Zn、Cu、Mg、Ti、Zr、W、Mo、P等を少なくとも1種以上選択し、含有させても良い。
Hereinafter, the present invention will be described based on preferred forms thereof.
The cobalt hydroxide particles referred to in the present invention are at least the main component of which is cobalt, and Si, Al, Mn, Ni, Zn, Cu, Mg, Ti, and the like in order to improve necessary properties such as further improving the blackness. , Zr, W, Mo, P or the like may be selected and contained.
本発明の水酸化コバルト粒子は、SEM観察による一次粒子面方向平均径が0.05μm〜0.7μmであり、かつ粒子形状が板状であることを特徴とする。 The cobalt hydroxide particles of the present invention are characterized in that the average primary particle surface direction diameter by SEM observation is 0.05 μm to 0.7 μm and the particle shape is plate-like.
製造方法に起因すると推測されるが、従来技術における水酸化コバルト粒子は、総じて粒度が大きい。 Although estimated to be due to the production method, the cobalt hydroxide particles in the prior art generally have a large particle size.
上記一次粒子面方向平均径が0.05μm未満の場合、粒子が微細すぎて酸化コバルト粒子に加工した際に、凝集粒子となりやすいのみならず、その後、ペースト化した際の隠ぺい力に劣る。0.7μmを超える場合、粒子が粗大なことに起因して、その結果、酸化コバルト粒子も粗大になる。 When the average diameter in the primary particle surface direction is less than 0.05 μm, the particles are too fine and not only become aggregated particles when processed into cobalt oxide particles, but also have poor hiding power when formed into a paste. When it exceeds 0.7 μm, the particles are coarse, and as a result, the cobalt oxide particles are also coarse.
また、粒子の形状は、酸化コバルト粒子の粒度が微細かつ凝集の少ない粒子を得ようとする場合、板状の水酸化コバルト粒子である方が好適なことが知見された。 Further, it has been found that the shape of the particles is preferably plate-like cobalt hydroxide particles when the particle size of the cobalt oxide particles is fine and particles with little aggregation are to be obtained.
上記板状粒子の好ましい特徴としては、一次粒子の平均厚みが0.01μm〜0.06μmである。
上記平均厚みが0.01μm未満の場合、粒子が薄すぎることに起因して、酸化コバルト粒子に加工した際に、凝集粒子となりやすい。0.06μmを超える場合、粒子が粗大なことに起因して、その結果、酸化コバルト粒子も粗大になる。
As a preferable feature of the plate-like particles, the average thickness of the primary particles is 0.01 μm to 0.06 μm.
When the average thickness is less than 0.01 μm, the particles are too thin and tend to be aggregated particles when processed into cobalt oxide particles. When it exceeds 0.06 μm, the particles are coarse, and as a result, the cobalt oxide particles are also coarse.
また、本発明の水酸化コバルト粒子は、一次粒子面方向径/厚みの比が5〜20であると好ましい。
この比はアスペクト比として捉えられるもので、この値が5未満の場合、粒子の面方向径が厚みに比して小さいので、板状の度合いが低く、粒度にバラツキが生じ易い。また、この値が20を超える場合、粒子は略フレーク状となり、粒子の凝集が著しくなる。
The cobalt hydroxide particles of the present invention preferably have a primary particle surface direction diameter / thickness ratio of 5 to 20.
This ratio is regarded as an aspect ratio. When this value is less than 5, the surface diameter of the particles is smaller than the thickness, so the degree of plate shape is low and the particle size tends to vary. On the other hand, when this value exceeds 20, the particles are substantially flaky and the particles are significantly aggregated.
また、本発明の水酸化コバルト粒子は、かさ密度が0.1g/cm3〜0.3g/cm3であることが好ましい。
このかさ密度が0.1g/cm3未満の場合、嵩高いため保管するのに大きな容器を必要とするため好ましくない。0.3g/cm3を超える場合、酸化コバルト粒子に加工した際に凝集粒子となりやすい。
Furthermore, cobalt hydroxide particles of the present invention is preferably a bulk density of 0.1g / cm 3 ~0.3g / cm 3 .
When the bulk density is less than 0.1 g / cm 3 , it is bulky and is not preferable because a large container is required for storage. When it exceeds 0.3 g / cm 3 , it tends to be aggregated particles when processed into cobalt oxide particles.
また、本発明の水酸化コバルト粒子は、粒子中の全コバルトに対し、2価のコバルトの比率が80%以上であると好ましい。
この2価のコバルトの比率は、高く確保されるほど、加工後の酸化コバルト粒子の黒色度が確保できる。この2価のコバルトの比率について上限を設けていないが、95%以上の比率とすることは困難とみられる。
The cobalt hydroxide particles of the present invention preferably have a divalent cobalt ratio of 80% or more with respect to the total cobalt in the particles.
The higher the ratio of the divalent cobalt, the higher the blackness of the processed cobalt oxide particles. There is no upper limit for the ratio of the divalent cobalt, but it seems difficult to achieve a ratio of 95% or more.
また、本発明の水酸化コバルト粒子は、レーザー回折散乱式粒度分布測定法によるD50が0.1μm〜1μmであると好ましい。
本発明の水酸化コバルト粒子は、凝集度が低い特徴を有していることから、上記粒度分布測定により捉えられる凝集粒子径の代表値D50は小さいレベルになる。
Further, the cobalt hydroxide particles of the present invention preferably have a D 50 of 0.1 μm to 1 μm as measured by a laser diffraction / scattering particle size distribution measurement method.
Since the cobalt hydroxide particles of the present invention have a feature that the degree of aggregation is low, the representative value D 50 of the aggregate particle diameter captured by the particle size distribution measurement is at a small level.
このD50が0.1μm未満の場合、一次粒子が相当微細なことから、酸化コバルト粒子に加工され、その後、ペースト化した際の隠ぺい力に劣る。D50が1μmを超える場合、凝集度合いが大きすぎ、酸化コバルト粒子に加工した際に粗大粒子となるおそれがある。 If this D 50 is less than 0.1 [mu] m, since the primary particles is considerable fine, it is processed into cobalt oxide particles, then poor hiding power at the time of a paste. If D 50 exceeds 1 [mu] m, agglomeration degree is too large, it may become coarse particles when processed into cobalt oxide particles.
また、本発明の水酸化コバルト粒子は、レーザー回折散乱式粒度分布測定法によるDMAXが4μm以下であると好ましい。
本発明の水酸化コバルト粒子は、凝集した粗大粒子が少ない。従って、上記粒度分布測定により捉えられる粗大凝集粒子径の代表値DMAXは小さいレベルになる。
The cobalt hydroxide particles of the present invention preferably have a D MAX of 4 μm or less as measured by a laser diffraction / scattering particle size distribution measurement method.
The cobalt hydroxide particles of the present invention have few aggregated coarse particles. Therefore, the representative value D MAX of the coarse aggregate particle diameter captured by the particle size distribution measurement is at a small level.
このDMAXが4μmを超える場合、酸化コバルト粒子に加工した際にそのまま粗大粒子が残留し、ペースト化して用いた際の塗膜平滑化を阻害する。このDMAXについて下限を設けていないが、実質一次粒子の下限から見て0.1μm以下とすることは困難と考えられる。 When this D MAX exceeds 4 μm, coarse particles remain as they are when processed into cobalt oxide particles, which hinders smoothing of the coating film when used as a paste. Although there is no lower limit for this D MAX , it is considered difficult to make it 0.1 μm or less when viewed from the lower limit of the substantially primary particles.
また、本発明の水酸化コバルト粒子は、レーザー回折散乱式粒度分布測定法によるD90が0.2μm〜2μmであると好ましい。
このD90もD50と同様、粒子の凝集度合いをみる代表値であり、本発明の水酸化コバルト粒子においては、小さいレベルになる。
The cobalt hydroxide particles of the present invention preferably have a D 90 of 0.2 μm to 2 μm as measured by a laser diffraction / scattering particle size distribution measurement method.
Similarly this D 90 also D 50, a representative value look aggregation degree of the particles, in the cobalt hydroxide particles of the present invention, it becomes small level.
このD90が0.2μm未満の場合、一次粒子が相当微細なことから、酸化コバルト粒子に加工され、その後、ペースト化した際の隠ぺい力に劣る。D90が2μmを超える場合、凝集度合いが大きすぎ、酸化コバルト粒子に加工した際に粗大粒子となるおそれがある。 If this D 90 of less than 0.2 [mu] m, since the primary particles is considerable fine, is processed into cobalt oxide particles, then poor hiding power at the time of a paste. If D 90 of greater than 2 [mu] m, agglomeration degree is too large, it may become coarse particles when processed into cobalt oxide particles.
また、本発明の水酸化コバルト粒子は、D50/一次粒子面方向平均径の比が1〜2 であることが好ましい。このような範囲の数値を示す水酸化コバルト粒子であれば、凝集度合いが小さいながらも、加工した際に隠ぺい性も確保できた酸化コバルト粒子を得ることができ、好適である。 Furthermore, cobalt hydroxide particles of the present invention is preferably D 50 / primary particle surface direction ratio of the average diameter of 1-2. Cobalt hydroxide particles exhibiting a numerical value in such a range are preferable because cobalt oxide particles that have a low degree of aggregation and that can also ensure concealment properties when processed.
また、本発明の酸化コバルト粒子は、上述した水酸化コバルトを加熱、酸化して得られるものである。本発明においては、上述したように、粒度、あるいはその分布、粒子の凝集度合いを特定した水酸化コバルト粒子の特徴を反映して、得られる酸化コバルト粒子も、凝集度合いが小さく、黒色度や高電気抵抗性に優れている。 The cobalt oxide particles of the present invention are obtained by heating and oxidizing the above-described cobalt hydroxide. In the present invention, as described above, the cobalt oxide particles obtained reflect the characteristics of the cobalt hydroxide particles that specify the particle size or distribution thereof, and the degree of aggregation of particles. Excellent electrical resistance.
また、本発明の酸化コバルト粒子は、全コバルト含有量に占める2価コバルトの比率が40〜70%であると好ましい。
全コバルト含有量に占める2価コバルトの比率とは粒子全体に含有される2価のコバルト含有量を粒子全体に含有される全コバルト含有量で除した値に100を乗じた値である。酸化コバルトの一般的な形態としては四酸化三コバルト(Co3O4)、酸化コバルト(CoOやCo2O3)がある。Co3O4は全コバルト中における2価のコバルトが占める割合は33%である。またCoOは全コバルト全てが2価のコバルトであり、Co2O3は全コバルトが全てが3価である。
The cobalt oxide particles of the present invention preferably have a ratio of divalent cobalt in the total cobalt content of 40 to 70%.
The ratio of divalent cobalt in the total cobalt content is a value obtained by multiplying 100 by the value obtained by dividing the divalent cobalt content contained in the whole particle by the total cobalt content contained in the whole particle. Common forms of cobalt oxide include tricobalt tetroxide (Co 3 O 4 ) and cobalt oxide (CoO and Co 2 O 3 ). Co 3 O 4 accounts for 33% of the total cobalt content of divalent cobalt. In addition, all the cobalt in CoO is divalent cobalt, and all the cobalt in Co 2 O 3 is trivalent.
そのような酸化コバルトに対して本発明の酸化コバルト粒子は全コバルト中に占める2価コバルトの割合が異なり、その元素構成により本発明の効果である黒色性、高電気抵抗性の両立が達成される。
全コバルト中の2価のコバルトが占める割合が40%未満の場合、黒色度が不十分となり、また、70%超の場合黒色顔料ではなく青緑色を呈した顔料となってしまい本発明の効果を発揮できない。上記2価コバルトの割合については、更に好ましくは40〜60%である。
The cobalt oxide particles of the present invention are different from the cobalt oxide in the proportion of divalent cobalt in the total cobalt, and both blackness and high electrical resistance, which are the effects of the present invention, are achieved depending on the element configuration. The
When the proportion of divalent cobalt in the total cobalt is less than 40%, the blackness is insufficient, and when it exceeds 70%, the pigment exhibits a blue-green color instead of a black pigment. Can not demonstrate. About the ratio of the said bivalent cobalt, More preferably, it is 40 to 60%.
また、本発明の酸化コバルト粒子はその粒子形状が粒状であると好ましい。板状等の形状を呈した粒子は分散性、流動性の点で劣るのみならず、板状粒子の場合はその厚み方向の粒子サイズが数十nm程度となり、光の吸収波長に偏りが生じ、黒色顔料としての色相が悪化してしまい、黒色度を重要視するプラズマディスプレイ、プラズマアドレス液晶等の黒色電極、遮光層形成用途として不十分である。ここで言う粒状とは球状、紡錘状などを意味し、板状粒子等は除外される。 The cobalt oxide particles of the present invention are preferably granular in shape. Particles with a plate-like shape are not only inferior in terms of dispersibility and fluidity, but in the case of plate-like particles, the particle size in the thickness direction is about several tens of nanometers, and the light absorption wavelength is biased. As a result, the hue as a black pigment deteriorates, and it is insufficient for forming a black electrode such as a plasma display or a plasma addressed liquid crystal in which blackness is important, and a light shielding layer. The term “granular” as used herein means a spherical shape or a spindle shape, and excludes plate-like particles.
また、本発明の酸化コバルト粒子は、粒子全体に対する全コバルト含有量が60〜80質量%であり、かつ、粒子全体に対する2価のコバルト含有量は25〜50質量%であることが好ましい。 In addition, the cobalt oxide particles of the present invention preferably have a total cobalt content of 60 to 80% by mass with respect to the entire particle, and a divalent cobalt content of 25 to 50% by mass with respect to the entire particle.
粒子全体に対する全コバルト含有量については、理論上60質量%未満となることはなく、またコバルト以外の他元素を大量に含ませた場合、黒色度や抵抗への悪影響が懸念され、好ましくない。また、80質量%超の場合、コバルトと酸素の電荷バランスがとりにくくなり、生産物の安定性に欠け、好ましくない。 The total cobalt content with respect to the entire particle is not theoretically less than 60% by mass, and when a large amount of other elements than cobalt is included, there is a concern about adverse effects on blackness and resistance, which is not preferable. On the other hand, if it exceeds 80% by mass, it is difficult to balance the charge of cobalt and oxygen, and the stability of the product is lacking.
また、粒子全体に対する2価のコバルト含有量が20質量%未満の場合黒色度が不十分となり、また、50質量%超の場合においても同様に黒色度が不十分となり好ましくない。上記全コバルト含有量と2価のコバルト含有量については、全コバルト含有量は65〜75質量%であり、かつ、粒子全体に対する2価のコバルト含有量は30〜45質量%であると更に好ましい。 Further, when the divalent cobalt content with respect to the whole particle is less than 20% by mass, the blackness is insufficient, and when it is more than 50% by mass, the blackness is similarly insufficient, which is not preferable. Regarding the total cobalt content and the divalent cobalt content, the total cobalt content is preferably 65 to 75% by mass, and the divalent cobalt content with respect to the entire particle is more preferably 30 to 45% by mass. .
また、本発明の酸化コバルト粒子は一次粒子径が0.02〜0.6μmである方が好ましい。一次粒子径が0.02μm未満の場合、その色味が赤みを呈したり、分散性に問題が生じたりして、好ましくない。また、逆に0.6μm超の場合、色味は十分なものの、着色力が不足したりする等の問題が生じやすい。上記一次粒子径は、0.05〜0.3μmであると色相、着色力のバランスがとりやすく、更に好ましい。 The cobalt oxide particles of the present invention preferably have a primary particle size of 0.02 to 0.6 μm. When the primary particle diameter is less than 0.02 μm, the color becomes reddish or a problem occurs in dispersibility, which is not preferable. On the other hand, when it exceeds 0.6 μm, although the color is sufficient, problems such as insufficient coloring power tend to occur. The primary particle diameter is more preferably 0.05 to 0.3 μm because it is easy to balance hue and coloring power.
また、本発明の酸化コバルト粒子は着色性評価時のL値が38以下、b値が0以下であることが好ましい。着色性の評価方法は、黒色粒子0.5gと酸化チタン(石原産業社製R800)1.5gにヒマシ油1.3ccを加え、フーバー式マーラーで練り込む。この練り込んだサンプル2.0gにラッカー4.5gを加え、さらに練り込んだ後、これをミラーコート紙上に4milのアプリケータを用いて塗布し、乾燥後、色差計(東京電色社製カラーアナライザーTC−1800型)にて黒色度(L値)及び色相(a値、b値)を測定することにより得られる。L値が37よりも高い場合、十分な着色性とは言えず、また、b値が0よりも高い場合、色相が黄色みを呈していることとなり好ましくない。上記黒色度及び色相については、更に好ましくはL値が36以下、b値が−0.5以下である。 Further, the cobalt oxide particles of the present invention preferably have an L value of 38 or less and a b value of 0 or less at the time of evaluating the colorability. The coloring property is evaluated by adding 1.3 cc of castor oil to 0.5 g of black particles and 1.5 g of titanium oxide (R800 manufactured by Ishihara Sangyo Co., Ltd.), and kneading with a Hoover type Mahler. After adding 4.5 g of lacquer to 2.0 g of this kneaded sample and further kneading, this is applied onto a mirror-coated paper using a 4 mil applicator, dried, and then a color difference meter (Color by Tokyo Denshoku Co., Ltd.). It is obtained by measuring blackness (L value) and hue (a value, b value) with an analyzer TC-1800 type. When the L value is higher than 37, it cannot be said that the coloring property is sufficient, and when the b value is higher than 0, the hue is yellow, which is not preferable. The blackness and hue are more preferably an L value of 36 or less and a b value of -0.5 or less.
また、本発明の酸化コバルト粒子は電気抵抗が高いことが特徴である。具体的には電気抵抗値が1×105Ωcm以上であることが好ましい。電気抵抗が1×105Ωcmよりも低い場合、プラズマディスプレイ、プラズマアドレス液晶等のブラックマトリックスオンアレイ型高遮光性膜形成の材料としてはその機能を十分に高めることができなくなり好ましくない。更に好ましくは5×105Ωcm以上、より更に好ましくは1×106Ωcmである。 The cobalt oxide particles of the present invention are characterized by high electrical resistance. It is preferred in particular is the electrical resistance of 1 × 10 5 Ωcm or more. When the electric resistance is lower than 1 × 10 5 Ωcm, it is not preferable because the function cannot be sufficiently enhanced as a material for forming a black matrix on array type high light-shielding film such as a plasma display or a plasma addressed liquid crystal. More preferably, it is 5 × 10 5 Ωcm or more, and still more preferably 1 × 10 6 Ωcm.
次に、本発明の水酸化コバルト粒子の好ましい製造方法について説明する。 Next, the preferable manufacturing method of the cobalt hydroxide particle | grains of this invention is demonstrated.
本発明の水酸化コバルト粒子は、コバルト(2価)塩水溶液と水酸化アルカリ水溶液とを、pH10〜13にて混合中和し、混合中和開始以降、あるいは混合中和終了以降、反応スラリーの温度を10℃〜40℃に維持しながら、酸素含有ガスを連続的にバブリングすることにより製造できる。 The cobalt hydroxide particles of the present invention are obtained by mixing and neutralizing a cobalt (divalent) salt aqueous solution and an alkali hydroxide aqueous solution at a pH of 10 to 13, and after the start of mixing neutralization or after the end of mixing neutralization, It can manufacture by bubbling oxygen-containing gas continuously, maintaining temperature at 10 to 40 degreeC.
この製造方法において、まず、コバルト(2価)塩水溶液とアルカリ溶液とを混合中和する際のpHを10〜13にて行うことが重要である。この中和時のpHは、得られる水酸化コバルト粒子中のコバルトの形態をほぼ2価とすることができる。 In this production method, first, it is important that the pH at the time of mixing and neutralizing the cobalt (divalent) salt aqueous solution and the alkali solution is 10 to 13. The pH at the time of neutralization can make the form of cobalt in the obtained cobalt hydroxide particles almost divalent.
上記中和pHが10よりも低い場合、中和の際、3価のコバルト水酸化物を生じ易く、水酸化物コバルト粒子生成に障害をきたすのみならず、水酸化コバルト粒子の粒度が微細となり、ろ過性が悪化したり、後述する焼成を行う際に粒子同士の焼結が起こりやすい等の不具合が生じるため好ましくない。
逆にpHが13よりも高い場合は、コバルト(2価)塩が過度の酸化を受けやすく、3価のコバルト水酸化物を生成するおそれがあり、好ましくない。このような水酸化コバルト粒子を用いて、次工程以降の処理を行うと、均整な形状や酸化の制御が困難であり、2価のコバルト含有量の高い酸化コバルト粒子が得られない。水酸化コバルト粒子のより安定的な生成を考慮すると、中和時のpHは11〜12であると、さらに好ましい。
When the neutralization pH is lower than 10, trivalent cobalt hydroxide is easily generated during neutralization, which not only hinders the production of hydroxide cobalt particles, but also makes the particle size of the cobalt hydroxide particles fine. Further, it is not preferable because filterability deteriorates and problems such as easy sintering of particles occur when firing described later.
On the other hand, when the pH is higher than 13, cobalt (divalent) salt is liable to be excessively oxidized and may produce trivalent cobalt hydroxide, which is not preferable. When the treatment after the next step is performed using such cobalt hydroxide particles, it is difficult to control a uniform shape and oxidation, and cobalt oxide particles having a high divalent cobalt content cannot be obtained. Considering more stable production of cobalt hydroxide particles, the pH during neutralization is more preferably 11-12.
また、コバルト(2価)塩水溶液とアルカリ溶液との混合中和開始以降、あるいは混合中和終了以降、反応スラリーを温度10℃〜40℃を維持しながら、酸素含有ガスを連続的にバブリングすることも重要である。 In addition, the oxygen-containing gas is continuously bubbled while maintaining the temperature of the reaction slurry at 10 ° C. to 40 ° C. after the start of mixed neutralization of the cobalt (divalent) salt aqueous solution and the alkali solution or after the end of the mixed neutralization. It is also important.
殊に、前述のpHを10〜13に制御し、かつ反応スラリーの温度を10℃〜40℃に維持することが、好適な水酸化コバルト粒子を得る上で重要である。この温度が40℃を超える場合、酸素含有ガスを連続的にバブリングしていることもあいまって、水酸化コバルト(2価)の酸化が進み、3価のオキシ水酸化コバルト(3価)が析出しやすいばかりか、特許文献1に開示されているように、この時点で四酸化三コバルトが生成することもあり得るため、本発明が目的するところの、2価のコバルト含有比率の高く、かつ均整な酸化コバルト粒子を得るための、安定した水酸化コバルト粒子が得られない。逆に、温度が10℃未満の場合は、水酸化コバルト生成の妨げとなるし、液温を下げることによる効果は何らなく、実用的でもない。 In particular, it is important to control the above-mentioned pH to 10 to 13 and maintain the temperature of the reaction slurry at 10 ° C. to 40 ° C. in order to obtain suitable cobalt hydroxide particles. When this temperature exceeds 40 ° C, the oxidation of cobalt hydroxide (divalent) proceeds due to continuous bubbling of the oxygen-containing gas, and trivalent cobalt oxyhydroxide (trivalent) precipitates. In addition, as disclosed in Patent Document 1, tricobalt tetroxide may be formed at this time, so that the content ratio of the divalent cobalt as intended by the present invention is high, and Stable cobalt hydroxide particles for obtaining uniform cobalt oxide particles cannot be obtained. On the other hand, when the temperature is less than 10 ° C., it hinders the production of cobalt hydroxide, has no effect by lowering the liquid temperature, and is not practical.
また、上記混合中和開始以降、あるいは混合中和終了以降、反応スラリー中に酸素含有ガスを連続的にバブリングする必要がある。この操作を行わない場合、得られる生成物である水酸化コバルト粒子が凝集しやすく、微粒かつ粒度が揃ったものとならない。 Further, it is necessary to continuously bubble the oxygen-containing gas into the reaction slurry after the start of the mixed neutralization or after the completion of the mixed neutralization. If this operation is not performed, the resulting product, cobalt hydroxide particles, is likely to aggregate, and the particles are not fine and uniform in size.
この理由は十分究明されていないが、低温度域で酸素含有ガスを連続的にバブリングすることにより、反応スラリー中のコバルト(2価)塩から2価の水酸化コバルト前駆体を生成させる際に、バブリング酸素含有ガスが、凝集しようとする粒子間に入り込み、薄層の酸化膜が粒子間に形成され、粒子の凝集を妨げる役割を果たしているものとみられる。この効果は単なる機械攪拌では得られない。 The reason for this has not been fully investigated, but when a divalent cobalt hydroxide precursor is produced from a cobalt (divalent) salt in a reaction slurry by continuously bubbling an oxygen-containing gas at a low temperature range. The bubbling oxygen-containing gas enters between the particles to be agglomerated, and a thin oxide film is formed between the particles, which seems to play a role of preventing the agglomeration of the particles. This effect cannot be obtained by simple mechanical stirring.
なお、バブリング酸素含有ガスには実用上、空気を用いれば良い。バブリング酸素含有ガスに空気を用いた場合、反応スラリー量当たり0.01Nリットル/L・分〜0.3Nリットル/L・分で1時間〜3時間程度バブリングするのが好ましい。 In practice, air may be used as the bubbling oxygen-containing gas. When air is used as the bubbling oxygen-containing gas, it is preferably bubbled at a rate of 0.01 N liter / L · min to 0.3 N liter / L · min per reaction slurry for about 1 to 3 hours.
なお、出発原料として用いられるコバルト(2価)塩としては硫酸コバルト(2価)、塩化コバルト(2価)、硝酸コバルト(2価)等、水に可溶な塩であることが好ましい。また、中和に用いられるアルカリとしては水酸化ナトリウム、水酸化カリウムなどのアルカリ金属塩を含む水酸化アルカリ水溶液が工業的に用いられる。アンモニアあるいはその化合物を用いると、錯塩が生じ、得られる粒子が粗大化したり、形状が非板状となるので避ける。 The cobalt (divalent) salt used as a starting material is preferably a water-soluble salt such as cobalt sulfate (divalent), cobalt chloride (divalent), cobalt nitrate (divalent), or the like. As the alkali used for neutralization, an aqueous alkali hydroxide solution containing an alkali metal salt such as sodium hydroxide or potassium hydroxide is industrially used. Use of ammonia or a compound thereof is avoided because complex salts are formed, resulting in coarse particles or non-plate shapes.
また、水酸化コバルト粒子を生成させる際に主成分がコバルト(2価)塩である水溶液とアルカリ溶液とを単に混合しただけでは、混合開始当初の混合液量が少ないときに十分な撹拌ができず、均一な水酸化コバルト粒子を得ることが難しい場合がある。このようなときには、撹拌するに十分な量のpH10〜13の範囲に調製したアルカリ溶液を準備しておき、そのアルカリ溶液に、コバルト(2価)塩水溶液を添加して水酸化コバルト粒子を生成させても良い。そのような場合であっても、更にアルカリ溶液を追加しながら、水酸化コバルト粒子スラリーのpHを10〜13に維持することが重要である。 In addition, when cobalt hydroxide particles are produced, simply mixing an aqueous solution whose main component is a cobalt (divalent) salt and an alkali solution allows sufficient stirring when the amount of the liquid mixture at the beginning of mixing is small. Therefore, it may be difficult to obtain uniform cobalt hydroxide particles. In such a case, an alkali solution prepared in a pH range of 10 to 13 sufficient for stirring is prepared, and cobalt (divalent) salt aqueous solution is added to the alkali solution to produce cobalt hydroxide particles. You may let them. Even in such a case, it is important to maintain the pH of the cobalt hydroxide particle slurry at 10 to 13 while further adding an alkaline solution.
このようにして得られた水酸化コバルト粒子スラリーは、ろ過、洗浄を行い、含有している水分を蒸発させ、水酸化コバルト粒子を得る。 The cobalt hydroxide particle slurry thus obtained is filtered and washed to evaporate water contained therein to obtain cobalt hydroxide particles.
このようにして得られた水酸化コバルト粒子から酸化コバルト粒子を得るには、密閉された大気中、あるいは若干酸素を窒素等不活性ガスで希釈した空気中で、500℃〜850℃にて0.5〜3時間焼成すれば良い。このような条件で処理することにより、粒子全体に対する2価のコバルト含有量の高い酸化コバルト粒子が得られる。 In order to obtain cobalt oxide particles from the cobalt hydroxide particles obtained in this manner, 0 ° C. at 500 ° C. to 850 ° C. in a sealed atmosphere or in an air slightly diluted with an inert gas such as nitrogen. It may be fired for 5 to 3 hours. By treating under such conditions, cobalt oxide particles having a high divalent cobalt content relative to the entire particles can be obtained.
こうして得られた焼成品は、若干の凝集・固化状態を呈するので、常法の解砕処理を行うことにより、酸化コバルト粒子とすることができる。 Since the baked product thus obtained exhibits a slight aggregation / solidification state, cobalt oxide particles can be obtained by performing a conventional pulverization treatment.
以下、実施例等により本発明を具体的に説明する。しかしながら、本発明の範囲はかかる実施例に制限されない。 Hereinafter, the present invention will be specifically described with reference to examples and the like. However, the scope of the present invention is not limited to such examples.
〔実施例1〕
pH12の水酸化ナトリウム水溶液80リットルを200リットルの反応容器に投入した。次いで1.2mol/リットルのコバルト(2価)を含有する硫酸コバルト(2価)水溶液60リットルを1リットル/分の速度で前記反応容器に連続投入し、同時に12mol/リットルの水酸化ナトリウム水溶液も連続的に添加した。水酸化ナトリウムの添加流速は反応容器中のスラリーpHを常時測定し、そのスラリーのpHが12となるように適宜調節した。その間、スラリー温度は35℃を維持し、常時、空気を5リットル/分の速度で吹き込み続けた。
混合終了後も、更に空気バブリングと撹拌を継続し、バブリング総通気時間を90分とした。
[Example 1]
80 liters of pH 12 sodium hydroxide aqueous solution was put into a 200 liter reaction vessel. Next, 60 liters of cobalt sulfate (divalent) aqueous solution containing 1.2 mol / liter of cobalt (divalent) was continuously charged into the reaction vessel at a rate of 1 liter / minute, and at the same time, 12 mol / liter of sodium hydroxide aqueous solution was also added. Added continuously. The flow rate of sodium hydroxide was adjusted appropriately so that the slurry pH in the reaction vessel was constantly measured and the pH of the slurry was 12. Meanwhile, the slurry temperature was maintained at 35 ° C., and air was continuously blown at a rate of 5 liters / minute.
Even after mixing, air bubbling and stirring were further continued, and the total bubbling time was 90 minutes.
得られた水酸化コバルト(2価)スラリーをろ過、洗浄し、得られた含水水酸化コバルト(2価)を80℃にて乾燥させた。更に、乾燥された水酸化コバルト(2価)をハンマーミルで解砕し水酸化コバルト粒子粉末を得た。 The obtained cobalt hydroxide (divalent) slurry was filtered and washed, and the obtained hydrous cobalt hydroxide (divalent) was dried at 80 ° C. Further, the dried cobalt hydroxide (divalent) was pulverized with a hammer mill to obtain cobalt hydroxide particle powder.
得られた水酸化コバルト粒子粉末は以下に示す方法で評価した。評価した結果を表2に示す。 The obtained cobalt hydroxide particle powder was evaluated by the following method. The evaluation results are shown in Table 2.
〔評価方法〕
(a)SEM観察による粒子形状、一次粒子面方向平均径、平均厚み
走査型顕微鏡(倍率4万倍)により、粒子形状を観察した。同時に、任意に200個の粒子の面方向フェレ径と粒子厚みを計測し、それぞれの個数平均値を以って一次粒子面方向平均径、平均厚みとした。
(b)一次粒子面方向径/厚み
(a)の観察における200個の個別の一次粒子面方向径/厚み値より平均を求めた。
(c)レーザー回折散乱式粒度分布測定法によるD50D90DMAX
0.1%に調整したヘキサメタリン酸ナトリウム水溶液100mlに試料0.1gを添加して、BRANSON2200超音波バス浴中で3分間分散させた。その分散液をベックマンコールター社製LS-230を用いて測定した。
(d)かさ密度
試料をふるい等を使用せず、そのまま内容量100cm3 の容器に投入し、重量を測定し単位体積当たりの重量を求めた。
(e)粒子中の全コバルトに対する2価のコバルトの比率
コバルト含有粒状黒色顔料を酸に完全に溶解し、ICPにてコバルトの含有量を求め、粒子全体に対する全コバルト含有量を求めた。
次に、硫酸アンモニウム鉄(2価)溶液へコバルト含有粒状黒色顔料を加え酸で完全に溶解し、溶液中の2価の鉄イオン濃度をジフェニルアミンスルフォン酸ナトリウムを指示薬として二クロム酸カリウム標準液を用いた滴定により求めた。
次に、あらかじめ添加した2価の鉄イオン濃度と、滴定によって求められた2価の鉄イオン濃度の差を計算によって求め、3価の鉄イオン濃度を求めた。
3価の鉄イオンは以下の化学反応によって生成するため、この濃度を試料に含有されていた3価のコバルトイオン濃度とした。
Co3+ + Fe2+ → Co2+ + Fe3+
これより粒子全体に対する3価のコバルト含有量を求め、全コバルト含有量から3価のコバルト含有量を差し引いて、2価のコバルト含有量を求めた。
そして、(2価のコバルト含有量)/(全コバルト含有量)×100にて粒子中の全コバルトに対する2価のコバルトの比率を求めた。
〔Evaluation methods〕
(A) Particle shape by SEM observation, primary particle surface direction average diameter, average thickness The particle shape was observed with a scanning microscope (magnification 40,000 times). Simultaneously, the surface direction ferret diameter and particle thickness of 200 particles were arbitrarily measured, and the number average value of each was used as the primary particle surface direction average diameter and average thickness.
(B) The average was obtained from 200 individual primary particle surface direction diameter / thickness values in observation of primary particle surface direction diameter / thickness (a).
(C) D 50 D 90 D MAX by laser diffraction scattering type particle size distribution measurement method
0.1 g of a sample was added to 100 ml of a sodium hexametaphosphate aqueous solution adjusted to 0.1% and dispersed in a BRANSON 2200 ultrasonic bath for 3 minutes. The dispersion was measured using LS-230 manufactured by Beckman Coulter.
(D) Bulk density The sample was put into a container having an internal volume of 100 cm 3 without using a sieve or the like, and the weight was measured to determine the weight per unit volume.
(E) Ratio of divalent cobalt to total cobalt in particles The cobalt-containing granular black pigment was completely dissolved in an acid, the content of cobalt was determined by ICP, and the total cobalt content relative to the entire particles was determined.
Next, the cobalt-containing granular black pigment is added to the ammonium iron sulfate (divalent) solution and completely dissolved with an acid. The divalent iron ion concentration in the solution is determined using sodium diphenylamine sulfonate as an indicator and using a potassium dichromate standard solution. Was determined by titration.
Next, the difference between the divalent iron ion concentration added in advance and the divalent iron ion concentration determined by titration was determined by calculation to determine the trivalent iron ion concentration.
Since trivalent iron ions are generated by the following chemical reaction, this concentration was defined as the trivalent cobalt ion concentration contained in the sample.
Co 3+ + Fe 2+ → Co 2+ + Fe 3+
From this, trivalent cobalt content with respect to the whole particle | grain was calculated | required, and trivalent cobalt content was subtracted from total cobalt content, and bivalent cobalt content was calculated | required.
And the ratio of the bivalent cobalt with respect to the total cobalt in a particle | grain was calculated | required in (divalent cobalt content) / (total cobalt content) x100.
〔実施例2〜4、比較例1〜5〕
表1に記載した条件変更以外は実施例1と同様に行い、水酸化コバルト粒子粉末を得た。得られたものを実施例1と同様の方法で評価した。評価した結果を表2に示す。
[Examples 2 to 4, Comparative Examples 1 to 5]
A cobalt hydroxide particle powder was obtained in the same manner as in Example 1 except that the conditions described in Table 1 were changed. What was obtained was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
表2からも明らかなように、実施例1から4の水酸化コバルト粒子は一次粒子の粒度が微細、かつ粒子形状は均整な板状を呈するものであった。また、粒度分布特性値も小さいことから、凝集度合いが小さく、粗粒が少ないことがうかがえる。また、粒子中の全コバルトに対し、2価のコバルトの比率が高い。このような水酸化コバルト粒子を加工して酸化コバルト粒子を得ると、黒色度に優れ、かつ高電気抵抗を示し、ブラックマトリックス用着色組成物、プラズマディスプレイ、プラズマアドレス液晶等の黒色電極、遮光層形成用等の材料として優れたものとなる。 As is clear from Table 2, the cobalt hydroxide particles of Examples 1 to 4 had a plate shape with a fine primary particle size and an even particle shape. Further, since the particle size distribution characteristic value is also small, it can be seen that the degree of aggregation is small and the number of coarse particles is small. Moreover, the ratio of bivalent cobalt is high with respect to the total cobalt in particle | grains. When such cobalt hydroxide particles are processed to obtain cobalt oxide particles, the blackness is excellent and high electrical resistance is exhibited. Black matrix coloring composition, black electrode such as plasma display and plasma address liquid crystal, light shielding layer It is an excellent material for forming.
実施例1の水酸化コバルト粒子粉末を密閉された大気中で700℃にて2時間焼成して得られた酸化コバルト粒子粉末は、JIS K5101−1991に準拠して測定した黒色度L値が35.8で、58.9MPaの圧力を加えて25mmφの錠剤型に成形後、14.7MPaの加圧状態で測定した圧粉電気抵抗が4.2×106Ω・cmと、黒色度、高電気抵抗性に優れるものであった。 The cobalt oxide particle powder obtained by firing the cobalt hydroxide particle powder of Example 1 in a sealed atmosphere at 700 ° C. for 2 hours has a blackness L value of 35 measured according to JIS K5101-1991. in .8, after molding into a tablet-type 25mmφ by applying a pressure of 58.9MPa, and powder electrical resistance 4.2 × 10 6 Ω · cm measured in the pressurized state of 14.7 MPa, blackness, high It was excellent in electrical resistance.
それに対して、比較例の水酸化コバルト粒子粉末は、一次粒子が大きいものや、粒子形状が不定形状、あるいは形状が一様でないものであった。加えて、粒度分布特性値も大きいことから、凝集度合いが大きく、粒度と、凝集度合いの面で劣るものであった。また、粒子中の全コバルトに対し、2価のコバルトの比率が低いものもあり、加工して酸化コバルト粒子とした際に、黒色度の面でも劣るものと考えられる。
On the other hand, the cobalt hydroxide particle powder of the comparative example had a large primary particle, an irregular particle shape, or a non-uniform shape. In addition, since the particle size distribution characteristic value is large, the degree of aggregation is large, and the particle size and the degree of aggregation are inferior. Moreover, there are some which have a low ratio of divalent cobalt to the total cobalt in the particles, and when processed into cobalt oxide particles, it is considered that the blackness is inferior.
Claims (6)
Cobalt oxide particles obtained by heating and oxidizing the cobalt hydroxide particles according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006130989A JP4746476B2 (en) | 2006-05-10 | 2006-05-10 | Cobalt hydroxide particles and cobalt oxide particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006130989A JP4746476B2 (en) | 2006-05-10 | 2006-05-10 | Cobalt hydroxide particles and cobalt oxide particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007302491A true JP2007302491A (en) | 2007-11-22 |
JP4746476B2 JP4746476B2 (en) | 2011-08-10 |
Family
ID=38836757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006130989A Expired - Fee Related JP4746476B2 (en) | 2006-05-10 | 2006-05-10 | Cobalt hydroxide particles and cobalt oxide particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4746476B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105271443A (en) * | 2015-11-16 | 2016-01-27 | 江西省钨与稀土产品质量监督检验中心(江西省钨与稀土研究院) | Method for preparing flaky nano CoO or Co3O4 through assistant microwave heating |
CN116199270A (en) * | 2022-12-20 | 2023-06-02 | 科立鑫(珠海)新能源有限公司 | Treatment process for reducing wastewater in cobalt oxide production process |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11292549A (en) * | 1998-04-13 | 1999-10-26 | Ishihara Sangyo Kaisha Ltd | Cobalt hydroxide and its production |
JP2001106533A (en) * | 1999-10-12 | 2001-04-17 | Dainippon Ink & Chem Inc | Cobalt hydroxide for manufacturing metallic soap and method for manufacturing metallic soap |
JP2002060225A (en) * | 2000-08-18 | 2002-02-26 | Ishihara Sangyo Kaisha Ltd | Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate |
JP2002068750A (en) * | 2000-08-24 | 2002-03-08 | Ishihara Sangyo Kaisha Ltd | Method of producing tricobalt tetraoxide |
JP2002321922A (en) * | 2001-04-23 | 2002-11-08 | Toyota Central Res & Dev Lab Inc | Cobalt hydroxide oxide lamellar particle and its manufacturing method |
JP2003503300A (en) * | 1999-06-29 | 2003-01-28 | オーエムジー・フィンランド・オイ | Method for producing cobalt hydroxide or cobalt mixed hydroxide of high density and large particle size and product produced by this method |
-
2006
- 2006-05-10 JP JP2006130989A patent/JP4746476B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11292549A (en) * | 1998-04-13 | 1999-10-26 | Ishihara Sangyo Kaisha Ltd | Cobalt hydroxide and its production |
JP2003503300A (en) * | 1999-06-29 | 2003-01-28 | オーエムジー・フィンランド・オイ | Method for producing cobalt hydroxide or cobalt mixed hydroxide of high density and large particle size and product produced by this method |
JP2001106533A (en) * | 1999-10-12 | 2001-04-17 | Dainippon Ink & Chem Inc | Cobalt hydroxide for manufacturing metallic soap and method for manufacturing metallic soap |
JP2002060225A (en) * | 2000-08-18 | 2002-02-26 | Ishihara Sangyo Kaisha Ltd | Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate |
JP2002068750A (en) * | 2000-08-24 | 2002-03-08 | Ishihara Sangyo Kaisha Ltd | Method of producing tricobalt tetraoxide |
JP2002321922A (en) * | 2001-04-23 | 2002-11-08 | Toyota Central Res & Dev Lab Inc | Cobalt hydroxide oxide lamellar particle and its manufacturing method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105271443A (en) * | 2015-11-16 | 2016-01-27 | 江西省钨与稀土产品质量监督检验中心(江西省钨与稀土研究院) | Method for preparing flaky nano CoO or Co3O4 through assistant microwave heating |
CN116199270A (en) * | 2022-12-20 | 2023-06-02 | 科立鑫(珠海)新能源有限公司 | Treatment process for reducing wastewater in cobalt oxide production process |
CN116199270B (en) * | 2022-12-20 | 2023-08-11 | 科立鑫(珠海)新能源有限公司 | Treatment process for reducing wastewater in cobalt oxide production process |
Also Published As
Publication number | Publication date |
---|---|
JP4746476B2 (en) | 2011-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008230915A (en) | Electrically conductive zinc oxide particle and method for manufacturing the same | |
JP4976052B2 (en) | Cobalt-containing black pigment | |
JP4746476B2 (en) | Cobalt hydroxide particles and cobalt oxide particles | |
JP4495995B2 (en) | Method for producing composite black oxide particles, black paint and black matrix | |
JP4929002B2 (en) | Method for producing granular cobalt oxide black pigment | |
JP4685651B2 (en) | Method for producing iron oxide powder for red pigment | |
JP4688708B2 (en) | Black composite oxide particles, production method thereof, black paste and black matrix | |
KR101089954B1 (en) | Granular black pigment containing cobalt | |
JP4746477B2 (en) | Cobalt hydroxide particles and cobalt oxide particles | |
JP4336227B2 (en) | Composite black oxide particles, method for producing the same, black paint and black matrix | |
JP3828566B2 (en) | Cobalt-containing granular black pigment | |
JP4732969B2 (en) | Iron oxide powder for red pigment | |
JP4444061B2 (en) | Composite black oxide particles, method for producing the same, black paint and black matrix | |
JP4336224B2 (en) | Composite black oxide particles, method for producing the same, black paint and black matrix | |
KR101246150B1 (en) | Black double oxide particles, process for production thereof, black pastes, and black matrixes | |
JP4682074B2 (en) | Composite oxide particles exhibiting black color | |
JP4682072B2 (en) | Black composite oxide particles, production method thereof, black slurry, black paste, and black matrix | |
US20090269585A1 (en) | Black complex oxide particles | |
JP4682063B2 (en) | Low magnetic black pigment particles, electrophotographic toner, and image forming method | |
JP5080840B2 (en) | Black complex oxide particles, black slurry, black paste, and black matrix | |
JP4839043B2 (en) | Composite oxide black particles, method for producing the same, black paint and black matrix | |
JP3595197B2 (en) | Iron oxide particles and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110201 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20110224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110331 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110510 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110513 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140520 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |