JP4685651B2 - Method for producing iron oxide powder for red pigment - Google Patents

Method for producing iron oxide powder for red pigment Download PDF

Info

Publication number
JP4685651B2
JP4685651B2 JP2006028083A JP2006028083A JP4685651B2 JP 4685651 B2 JP4685651 B2 JP 4685651B2 JP 2006028083 A JP2006028083 A JP 2006028083A JP 2006028083 A JP2006028083 A JP 2006028083A JP 4685651 B2 JP4685651 B2 JP 4685651B2
Authority
JP
Japan
Prior art keywords
iron oxide
iron
mass
particle size
red
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006028083A
Other languages
Japanese (ja)
Other versions
JP2007204348A (en
Inventor
孝宏 菊地
聡志 後藤
広幸 峰村
愼一 来島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2006028083A priority Critical patent/JP4685651B2/en
Publication of JP2007204348A publication Critical patent/JP2007204348A/en
Application granted granted Critical
Publication of JP4685651B2 publication Critical patent/JP4685651B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、赤色顔料用酸化鉄粉に関し、特に、鮮やかな赤色を呈する塩化鉄系の赤色顔料用酸化鉄粉の製造方法に関するものである。 The present invention relates to an iron oxide powder for a red pigment, and more particularly to a method for producing an iron chloride powder for an iron chloride red pigment exhibiting a bright red color.

酸化鉄(ヘマタイト)は、人体に対する安全性が高く、耐候性や耐薬品性にも優れていることから、赤色の無機顔料として古くから用いられており、現在でも、コンクリートやアスファルト、ゴム、プラスチック、陶磁器などの様々な分野で着色剤として用いられている。   Iron oxide (hematite) has long been used as a red inorganic pigment because of its high safety to the human body and excellent weather resistance and chemical resistance. Even today, concrete, asphalt, rubber, and plastic are used. It is used as a colorant in various fields such as ceramics.

従来、赤色顔料用酸化鉄粉には、鮮やかな赤色を示す硫酸鉄を原料とする硫酸鉄系酸化鉄粉(以降、酸化鉄粉は「酸化鉄」とも略記する。)が主に用いられてきた。この硫酸鉄系酸化鉄は、硫酸第一鉄溶液とアルカリ溶液を原料として、湿式法でマグネタイトやゲータイト等を合成し、その後、これらを熱処理することにより製造されている。しかし、湿式法を用いる製法は、合成がバッチ処理になること、硫酸第一鉄溶液を中和するためのアルカリ溶液を必要とすること、得られたマグネタイトやゲータイト等を熱処理する工程が必要であること、工程が複雑で長く製造コストが高いこと等の問題がある。   Conventionally, iron sulfate powders for iron pigments that use bright red iron sulfate as a raw material have been mainly used as iron oxide powders for red pigments (hereinafter, iron oxide powders are also abbreviated as “iron oxide”). It was. This iron sulfate-based iron oxide is manufactured by using a ferrous sulfate solution and an alkaline solution as raw materials, synthesizing magnetite, goethite, and the like by a wet method and then heat-treating them. However, the production method using the wet method requires that the synthesis be batch processing, an alkali solution for neutralizing the ferrous sulfate solution, and a step of heat-treating the obtained magnetite or goethite. In addition, there are problems such as complicated processes and long manufacturing costs.

赤色顔料用酸化鉄としては、他に塩化鉄系酸化鉄も用いられている。この塩化鉄系酸化鉄は、鉄鋼の製造過程で発生する酸洗廃液(塩化鉄溶液)を原料とし、これを噴霧焙焼して熱分解することにより製造している。塩化鉄を熱分解する方法としては、ルスナー法、ルルギ法、ケミライト法などが知られているが、これらの方法は、酸化鉄を連続的に大量に生産することができる。そのため、塩化鉄系酸化鉄は、硫酸鉄系酸化鉄に比べて、コスト的に有利である。   As iron oxide for red pigments, iron chloride-based iron oxide is also used. This iron chloride-based iron oxide is produced by using a pickling waste solution (iron chloride solution) generated in the production process of steel as a raw material, spray roasting and pyrolyzing it. As a method for thermally decomposing iron chloride, the Rusner method, the Lurgi method, the chemilite method, and the like are known, and these methods can produce iron oxide continuously in large quantities. Therefore, iron chloride-based iron oxide is advantageous in terms of cost compared to iron sulfate-based iron oxide.

しかしながら、塩化鉄溶液を熱分解して製造する酸化鉄は、色調が茶色や紫色掛かった色をしており、鮮やかな赤色顔料用と言うには程遠く、顔料用としては適さない。そのため、顔料として用いられるにしても、ごく限られた色にのみ使われる程度で、その用途は極めて限定されているのが実情である。   However, iron oxide produced by thermally decomposing an iron chloride solution has a brown or purple color, which is far from being used for a bright red pigment and is not suitable for a pigment. Therefore, even if it is used as a pigment, it is used only for a very limited color, and its use is extremely limited.

酸化鉄の色調に影響を与える因子としては、粒子サイズや粒度分布(凝集状態)があり、粒子サイズが小さいほど鮮やかな赤色になり、逆に、大きいほど暗い赤色となること、また、粒度分布がブロードで粒子が凝集しているほど暗い赤色となり、逆に、粒度分布がシャープなほど鮮やかな赤色となることが知られている。   Factors affecting the color tone of iron oxide include particle size and particle size distribution (aggregation state). The smaller the particle size, the brighter the red color, and vice versa. However, it is known that the broader the particles are, the darker the color is red, and the sharper the particle size distribution is, the brighter the color is.

しかし、酸化鉄の色調に対して、粒子サイズや粒度分布と並んで大きな影響を及ぼすのが、酸化鉄中に含まれるMn量である。Mn量は、多いほど酸化鉄の色調が黒ずんだものとなり、鮮やかな赤色顔料用には適さないものとなる。塩化鉄系酸化鉄の色調が劣るのは、このMn量が多いためであり、Mnを多く含む場合には、粒子サイズを小さくしたり、粒度分布を改善したりしても、色鮮やかな赤色は得ることができない。噴霧焙焼して製造する塩化系酸化鉄にMnが多く含まれる理由は、原料となる酸洗廃液中に、鋼板を起源とするMnが含まれていて、それがそのまま酸化鉄に取り込まれてしまうためである。   However, the amount of Mn contained in iron oxide has a great influence on the color tone of iron oxide along with the particle size and particle size distribution. The larger the amount of Mn, the darker the color tone of iron oxide, and the more unsuitable for vivid red pigments. The color tone of iron chloride-based iron oxide is inferior because of the large amount of Mn, and when it contains a large amount of Mn, even if the particle size is reduced or the particle size distribution is improved, a bright red color Can't get. The reason why a large amount of Mn is contained in the chlorinated iron oxide produced by spray roasting is that the pickling waste liquid used as a raw material contains Mn originating from a steel plate, and it is directly taken into the iron oxide. It is because it ends.

従来、酸化鉄中のMn量を低減し、色鮮やかな赤色顔料用酸化鉄を得るために、各種の技術が開発されている。例えば、硫酸鉄系赤色顔料用酸化鉄の主要な製法である湿式法では、特許文献1に、Mnイオンを不純物として含む硫酸第一鉄溶液に、当量以上のアルカリを添加して得たFe(OH)とMn(OH)とを含むアルカリ性白色懸濁液に、60〜90℃に加温した状態で酸化性ガスを吹き込み、液中のFe(OH)の量がMn(OH)の量の少なくとも2倍量になる迄の時点で酸化反応を停止し、液中に残存するFe(OH)とMn(OH)とを酸処理によって溶解し、その後、液中に残存するFe粒子の沈殿物を濾過回収することによりMn量の少ない原料粉末を得る方法が提案されている。 Conventionally, various techniques have been developed in order to reduce the amount of Mn in iron oxide and to obtain colorful iron oxide for red pigments. For example, in the wet method which is the main production method of iron oxide for iron sulfate-based red pigment, Patent Document 1 discloses Fe (obtained by adding an equivalent amount or more of alkali to a ferrous sulfate solution containing Mn ions as impurities. An oxidizing gas is blown into an alkaline white suspension containing OH) 2 and Mn (OH) 2 while being heated to 60 to 90 ° C., and the amount of Fe (OH) 2 in the liquid is Mn (OH). The oxidation reaction is stopped until the amount reaches at least twice the amount of 2, and Fe (OH) 2 and Mn (OH) 2 remaining in the solution are dissolved by acid treatment, and then remain in the solution. There has been proposed a method of obtaining a raw material powder with a small amount of Mn by filtering and collecting a precipitate of Fe 3 O 4 particles.

また、特許文献2には、不純物としてMnを含む硫酸第一鉄溶液にアルカリを加えつつ酸化性ガスを吹き込んで鉄酸化物の沈殿を生成させる際に、溶液中の鉄イオン濃度がマンガンイオン濃度より低くならない状態で反応を停止する方法が提案されている。さらに、特許文献3には、塩化第一鉄溶液を用いる湿式合成法おいて、低Mnの黄色酸化鉄や黒色酸化鉄を生成させ、これを熱処理することにより赤色酸化鉄を得る方法が提案されている。しかし、これらの技術は、いずれも湿式法を用いているため、噴霧焙焼法を用いる場合よりもコストが高いという問題がある。   Further, in Patent Document 2, when an oxidizing gas is blown into a ferrous sulfate solution containing Mn as an impurity to generate an iron oxide precipitate, the iron ion concentration in the solution is the manganese ion concentration. Methods have been proposed to stop the reaction without lowering. Further, Patent Document 3 proposes a method of obtaining red iron oxide by producing low-Mn yellow iron oxide or black iron oxide in a wet synthesis method using a ferrous chloride solution and heat-treating it. ing. However, since these techniques all use the wet method, there is a problem that the cost is higher than that in the case of using the spray roasting method.

一方、噴霧焙焼法では、例えば、特許文献4には、塩化第一鉄主体の水溶液を500℃以下の温度で噴霧することにより、赤色酸化鉄を得る方法が提案されている。しかし、この方法は、未反応の化合物が酸化鉄中に残存するため、鮮やかさに欠けるものとなる他、Mnにより色調が黒ずむ影響を抑制することはできない。また、特許文献5には、SiOやAlを添加した塩化鉄溶液を噴霧焙焼する製法が提案されている。しかし、SiOやAlを添加することで酸化鉄が微粒化し、色調が改善することは記載されているものの、Mnの効果を抑制することについては触れられていない。
特開昭54−064099号公報 特開昭63−117915号公報 特開平11−228144号公報 特開2004−175596号公報 特開昭60−215530号公報
On the other hand, in the spray roasting method, for example, Patent Document 4 proposes a method of obtaining red iron oxide by spraying an aqueous solution mainly composed of ferrous chloride at a temperature of 500 ° C. or lower. However, this method is not vivid because unreacted compounds remain in the iron oxide, and cannot suppress the effect of blackening the color tone due to Mn. Patent Document 5 proposes a method of spray roasting an iron chloride solution to which SiO 2 or Al is added. However, although it has been described that iron oxide is atomized and color tone is improved by adding SiO 2 or Al, there is no mention of suppressing the effect of Mn.
Japanese Patent Laid-Open No. 54-064099 JP 63-117915 A JP-A-11-228144 JP 2004-175596 A JP 60-215530 A

上記のように、塩化鉄溶液を噴霧焙焼する製法で、Mnにより色調が黒ずむ影響を抑制して鮮やかな赤色顔料用酸化鉄を得る技術は、今のところ確立されていないのが実情である。また、近年になり、赤色顔料用の硫酸鉄系酸化鉄に対して、製造コストの低減が求められるようになり、それに伴って、湿式法よりも安価な噴霧焙焼法で製造される塩化鉄系酸化鉄を、赤色顔料に適用することが検討され始めている。   As described above, in the manufacturing method of spraying and roasting iron chloride solution, the technology to obtain the vivid iron oxide for red pigment by suppressing the effect of darkening the color tone by Mn has not been established so far. . In recent years, reduction in manufacturing cost has been required for iron sulfate-based iron oxide for red pigments, and accordingly, iron chloride produced by spray roasting, which is cheaper than wet methods. Application of iron oxide to red pigments is beginning to be studied.

一方、塩化鉄系酸化鉄は、従来、ハードフェライトやソフトフェライトの原料として主に用いられてきたが、フェライト産業の海外移転等に伴って、フェライト以外の分野への用途開発が望まれるようになった。   On the other hand, iron chloride-based iron oxide has been used mainly as a raw material for hard ferrites and soft ferrites, but with the overseas transfer of the ferrite industry, development of applications in fields other than ferrite is desired. became.

そこで、本発明の目的は、酸化鉄中に含まれるMnの影響を抑制し、鮮やか赤色を示す塩化鉄系赤色顔料用酸化鉄粉の有利な製造方法を提案することにある。 Then, the objective of this invention is suppressing the influence of Mn contained in iron oxide, and is proposing the advantageous manufacturing method of the iron oxide powder for iron chloride type | system | group red pigments which show bright red.

発明者らは、酸化鉄中に含まれるMnの影響を抑制するための技術について鋭意検討を重ねた。その結果、不純物としてMnが含まれる酸化鉄に、適正量のAlを添加してやることで、上記課題を解決でき、鮮やかな赤色顔料用酸化鉄粉を得ることができることを見出し、本発明を完成させた。   Inventors repeated earnest examination about the technique for suppressing the influence of Mn contained in iron oxide. As a result, it was found that by adding an appropriate amount of Al to iron oxide containing Mn as an impurity, the above-mentioned problems can be solved and a bright iron oxide powder for a red pigment can be obtained, and the present invention has been completed. It was.

すなわち、本発明は、酸化鉄換算で、Mnを0.1〜3mass%、Alを0.03〜3mass%含有し、AlとMnとの質量比(Al/Mn)が0.3〜25である塩化鉄溶液を、550〜800℃の温度で噴霧焙焼し、その後さらに粉砕して、比表面積が6〜14m /gの酸化鉄粉を得ることを特徴とする赤色顔料用酸化鉄粉の製造方法である。
また、本発明の上記製造方法は、レーザー回折式粒度分布測定装置で測定したD 50 が0.7μm以下で、2μm以上の凝集粒子が5vol%以下である酸化鉄粉を得ることを特徴とする。
That is , the present invention contains 0.1 to 3 mass% of Mn and 0.03 to 3 mass% of Al in terms of iron oxide, and the mass ratio of Al to Mn (Al / Mn) is 0.3 to 25. An iron chloride powder for red pigments, characterized in that a certain iron chloride solution is spray roasted at a temperature of 550 to 800 ° C. and then pulverized to obtain an iron oxide powder having a specific surface area of 6 to 14 m 2 / g. It is a manufacturing method.
Further, the production method of the present invention, D 50 was measured with a laser diffraction type particle size distribution measuring apparatus with 0.7μm or less, 2 [mu] m or more aggregated particles and obtaining the iron oxide powder is less than 5 vol% .

本発明によれば、塩化鉄溶液を噴霧焙焼する製造方法で、Mnによって酸化鉄の色調が黒ずむ影響を抑制した、鮮やかな赤色を呈する赤色顔料用酸化鉄粉を得ることができるので、従来の硫酸鉄系の赤色顔料に比べて、大幅にコストを下げることが可能になる。   According to the present invention, it is possible to obtain an iron oxide powder for a red pigment exhibiting a vivid red color, which suppresses the influence of iron oxide color tone blackening by Mn in a manufacturing method of spray roasting an iron chloride solution. Compared with the iron sulfate-based red pigment, the cost can be greatly reduced.

本発明の赤色顔料用酸化鉄粉は、塩化鉄溶液を噴霧焙焼し、熱分解することにより製造される。この製造方法は、連続的に大量生産するのに適しており、硫酸鉄系酸化鉄粉の製造方法に比べて、コスト的に優れている。原料となる塩化鉄溶液は、塩化第一鉄溶液、塩化第二鉄溶液あるいは第一鉄溶液と第二鉄溶液の混合液を用いることができる。通常、塩化第一鉄溶液を用いることが多い。   The iron oxide powder for red pigment of the present invention is produced by spray roasting and pyrolyzing an iron chloride solution. This manufacturing method is suitable for continuous mass production, and is superior in cost compared to a manufacturing method of iron sulfate-based iron oxide powder. As the iron chloride solution as a raw material, a ferrous chloride solution, a ferric chloride solution, or a mixed solution of a ferrous solution and a ferric solution can be used. Usually, ferrous chloride solution is often used.

本発明に係る赤色顔料用酸化鉄粉について説明する。
Mn:0.1〜3mass%
噴霧焙焼により製造される塩化鉄系酸化鉄粉は、一般に、鋼材を酸洗した廃液から得た塩化鉄溶液を原料に用いるため、鋼材起源のMnが不可避的に含まれる。本発明の酸化鉄中に含まれるMn量は、0.1〜3mass%であることが必要である。酸化鉄中に含まれるMn量が0.1mass%未満であれば、Mnの影響は小さく、そのままでも鮮やかな赤色を呈するので、本発明を適用する必要はない。一方、Mn量が0.1mass%を超えると、Mnの影響により酸化鉄の色調は黒ずんだものとなる。このMnの悪影響は、後述するように、Alの添加により抑制され、鮮やかな赤色を得ることができる。しかし、酸化鉄中に含まれるMn量が3mass%を超えると、Alを加えても鮮やかな赤色を得るのが困難である。よって、酸化鉄中のMn量は0.1〜3mass%の範囲とする。
The iron oxide powder for red pigment according to the present invention will be described.
Mn: 0.1-3 mass%
In general, iron chloride-based iron oxide powder produced by spray roasting uses an iron chloride solution obtained from a waste solution obtained by pickling steel as a raw material, so that Mn derived from steel is inevitably included. The amount of Mn contained in the iron oxide of the present invention needs to be 0.1 to 3 mass%. If the amount of Mn contained in the iron oxide is less than 0.1 mass%, the influence of Mn is small and a bright red color is exhibited as it is, so that it is not necessary to apply the present invention. On the other hand, when the amount of Mn exceeds 0.1 mass%, the color tone of iron oxide becomes dark due to the influence of Mn. As will be described later, the adverse effect of Mn is suppressed by the addition of Al, and a bright red color can be obtained. However, if the amount of Mn contained in iron oxide exceeds 3 mass%, it is difficult to obtain a bright red color even if Al is added. Therefore, the amount of Mn in the iron oxide is in the range of 0.1 to 3 mass%.

Al:0.03〜3mass%
Alは、上述したように、Mnによる色調が黒ずむ影響を抑制し、鮮やかな赤色を得るのに有効な成分である。Alの含有量が0.03mass%未満では、Mnの悪影響を抑制する効果が充分ではなく、鮮やかな赤色は得られない。逆に、Alが3mass%を超えると、Alの固溶限を超えるため、AlFeOやα−Al等の酸化鉄(ヘマタイト)以外の相が生成するなどの問題が生じる。よって、Alの含有量は0.03〜3mass%の範囲とする。好ましいAl含有量は0.1〜2.5mass%であり、より好ましくは0.15〜2mass%である。
Al: 0.03 to 3 mass%
As described above, Al is an effective component for suppressing the influence of darkening of the color tone due to Mn and obtaining a bright red color. When the Al content is less than 0.03 mass%, the effect of suppressing the adverse effect of Mn is not sufficient, and a bright red color cannot be obtained. On the other hand, when Al exceeds 3 mass%, since the solid solubility limit of Al is exceeded, problems such as generation of phases other than iron oxide (hematite) such as AlFeO 3 and α-Al 2 O 3 occur. Therefore, the Al content is in the range of 0.03 to 3 mass%. A preferable Al content is 0.1 to 2.5 mass%, more preferably 0.15 to 2 mass%.

AlおよびMnの質量比(Al/Mn):0.3〜25
酸化鉄中に含まれるAlおよびMnの質量比(Al/Mn)は、0.3〜25であることが好ましい。Mnによる色調が黒ずむ悪影響を抑制するためには、Mnに対して一定量以上のAlを含むことが望ましいからである。Al/Mnが0.3未満では、Mnの影響を抑制するのに充分ではなく、一方、25を超えると、顔料の色調に黄色味が強くなったり、Alの固溶限を超えるためAlFeOやα−Al等の酸化鉄(ヘマタイト)以外の相が生成したりするなどの問題が生じるからである。
Mass ratio of Al and Mn (Al / Mn): 0.3-25
The mass ratio (Al / Mn) of Al and Mn contained in the iron oxide is preferably 0.3 to 25. This is because it is desirable to contain a certain amount or more of Al with respect to Mn in order to suppress the adverse effect of blackening the color tone due to Mn. If Al / Mn is less than 0.3, it is not sufficient to suppress the influence of Mn. On the other hand, if it exceeds 25, the color tone of the pigment becomes yellow or exceeds the solid solubility limit of Al, so that AlFeO 3 This is because a problem occurs in that a phase other than iron oxide (hematite) such as α-Al 2 O 3 is formed.

なお、本発明の酸化鉄粉は、MnやAlの他に、SiOやCa,Ni,Co,Mg,P,Cl,Sなど、酸化鉄に含まれる一般的な不純物を含んでいても、その効果は失われるものではない。 The iron oxide powder of the present invention may contain general impurities contained in iron oxide, such as SiO 2 , Ca, Ni, Co, Mg, P, Cl, and S, in addition to Mn and Al. The effect is not lost.

比表面積:6〜14m/g
本発明の赤色顔料用酸化鉄粉は、比表面積が6〜14m/gのものであることが好ましい。赤色酸化鉄の色調は、粒子径に依存することが知られており、粒子径が大きい場合には、紫色や茶色掛かった色となるが、粒子径が小さくなるにつれ、暗赤→赤→黄赤の順に変化する。噴霧焙焼により製造される酸化鉄の比表面積は、一般には3〜4m/g程度で、粒径が小さい酸化鉄であっても5m/g程度である。つまり、顔料用の鮮やかな赤色の酸化鉄と比べると粒径が大きいため、茶色や紫色掛かった色をしていて、鮮やかな赤色顔料には程遠いものである。
Specific surface area: 6 to 14 m 2 / g
The iron oxide powder for red pigment of the present invention preferably has a specific surface area of 6 to 14 m 2 / g. It is known that the color tone of red iron oxide depends on the particle size. When the particle size is large, the color tone is purple or brown, but as the particle size decreases, dark red → red → yellow It changes in the order of red. The specific surface area of iron oxide produced by spray roasting is generally about 3 to 4 m 2 / g, and even iron oxide with a small particle size is about 5 m 2 / g. That is, since the particle size is larger than that of bright red iron oxide for pigments, it has a brown or purple color and is far from a bright red pigment.

しかし、噴霧焙焼の条件を適正化することにより、一次粒子を小さく、かつ、比表面積を6〜14m/gとすることができ、鮮やかな赤色を得ることが可能となる。比表面積が6m/g未満では、上述した理由により、鮮やかな赤色顔料には使用できない。一方、比表面積が14m/gを超えると、赤味は弱くなって黄色味が強くなるため好ましくない。また、細かくなることにより凝集が激しくなり、粉砕してもD50を0.7μm以下にすることが難しくなる。また、粉砕を行っても、後述する、2μm以上の粗粒量が5vol%以下にならないため、色調が悪化し好ましくない。より好ましい比表面積は6〜12m/g、さらに好ましくは7〜10m/gである。 However, by optimizing the conditions for spray roasting, the primary particles can be made small and the specific surface area can be made 6 to 14 m 2 / g, and a bright red color can be obtained. When the specific surface area is less than 6 m 2 / g, it cannot be used for a bright red pigment for the above-described reason. On the other hand, when the specific surface area exceeds 14 m 2 / g, the reddishness becomes weak and the yellowishness becomes strong. Moreover, intensified agglomeration by finer, be a 0.7μm or less becomes difficult to be D 50 and pulverized. Moreover, even if it grind | pulverizes, since the coarse particle amount of 2 micrometers or more mentioned later does not become 5 vol% or less, a color tone deteriorates and it is unpreferable. A more preferable specific surface area is 6 to 12 m 2 / g, and further preferably 7 to 10 m 2 / g.

50:0.7μm以下、2μm以上の凝集粒子:5vol%以下
さらに、本発明の酸化鉄は、レーザー回折式の粒度分布測定装置で測定したD50(粉体の粒径分布において、ある粒子径より大きい粒子の質量が、全粉体のそれの50%を占めるときの粒子径、メディアン径とも言う)が0.7μm以下で、かつ、2μm以上の凝集粒子の量が5vol%以下であること好ましい。前述したように、粒径が大きいと、色調が黒ずんだものとなり、鮮やかな色の赤色顔料として用いるには適切ではないからである。しかし、塩化鉄溶液を噴霧熱分解して製造する酸化鉄は、高温で焙焼して製造されるため、一般に、製造時の熱により凝集が生じやすい。そのため、硫酸鉄系の顔料用酸化鉄と比較すると、凝集粒を多く含み、D50が大きいという問題がある。したがって、鮮やかな色調の赤色顔料を得るためには、大きな凝集粒子を低減し、D50を小さくすることが必要であり、特に、D50が0.7μmを超えると、色が黒ずむため、D50は0.7μm以下とするのが好ましい。より好ましいD50は0.6μm以下、さらに好ましくは0.5μm以下である。
D 50 : 0.7 μm or less Agglomerated particles of 2 μm or more: 5 vol% or less Further, the iron oxide of the present invention has a D 50 (particle size distribution in powder particle size distribution) measured with a laser diffraction type particle size distribution analyzer. The particle diameter when the mass of particles larger than the diameter occupies 50% of the total powder is also referred to as a median diameter) is 0.7 μm or less, and the amount of aggregated particles of 2 μm or more is 5 vol% or less. It is preferable. As described above, when the particle size is large, the color tone becomes dark and is not suitable for use as a bright red pigment. However, iron oxide produced by spray pyrolysis of an iron chloride solution is produced by roasting at a high temperature, and therefore generally tends to agglomerate due to heat during production. Therefore, there is a problem that it contains a large amount of aggregated particles and has a large D 50 compared to iron sulfate pigment iron oxide. Accordingly, in order to obtain a red pigment having a vivid color tone, it is necessary to reduce large agglomerated particles and make D 50 small. Particularly, when D 50 exceeds 0.7 μm, the color becomes dark. 50 is preferably 0.7 μm or less. D 50 is more preferably 0.6 μm or less, and even more preferably 0.5 μm or less.

また、凝集粒子は、粒径が大きい一次粒子と同じように振舞うため、凝集粒子が多く存在する場合には、色調は黒ずんだものとなり、鮮やかな色の赤色顔料として用いるには適切ではない。2μm以上の凝集粒子は、色調に大きく影響し、特に、この凝集粒子量が5vol%よりも多い場合には,色調は黒ずんだものとなり、好ましくない。よって、2μm以上の凝集粒子は、5vol%以下とするのが好ましい。より好ましくは3%以下、さらに好ましくは1%以下であり、理想的には0%が望ましい。なお、上述した、レーザー回折式の粒度分布測定装置は、一般に市販されているものが使用できる。   Further, since the aggregated particles behave in the same manner as primary particles having a large particle size, when there are many aggregated particles, the color tone becomes dark and is not suitable for use as a brightly colored red pigment. Aggregated particles having a size of 2 μm or more greatly affect the color tone. In particular, when the amount of aggregated particles is more than 5 vol%, the color tone becomes dark, which is not preferable. Therefore, the aggregated particle size of 2 μm or more is preferably 5 vol% or less. More preferably, it is 3% or less, more preferably 1% or less, and ideally 0% is desirable. As the above-described laser diffraction type particle size distribution measuring apparatus, commercially available ones can be used.

次に、本発明に係る酸化鉄の製造方法について説明する。
本発明の酸化鉄の製造方法は、不可避的に含まれるMnを、酸化鉄換算で0.1〜3mass%含有し、さらにAlを酸化鉄換算で0.03〜3mass%含有し、上記AlおよびMnの含有量の比(Al/Mn)が0.3〜25の範囲にある塩化鉄溶液を、550〜800℃の温度で噴霧焙焼し、その後、粉砕することを特徴とする。
Next, the manufacturing method of the iron oxide which concerns on this invention is demonstrated.
The method for producing iron oxide of the present invention contains Mn inevitably contained in an amount of 0.1 to 3 mass% in terms of iron oxide, and further contains Al in an amount of 0.03 to 3 mass% in terms of iron oxide. An iron chloride solution having a Mn content ratio (Al / Mn) in the range of 0.3 to 25 is spray roasted at a temperature of 550 to 800 ° C. and then pulverized.

原料となる塩化鉄溶液中に含まれるMn量が、酸化鉄換算で0.1mass%未満であれば、得られる酸化鉄のMnによる色調への悪影響は小さく、そのままでも鮮やかな赤色の酸化鉄を得ることができる。しかし、Mn量が0.1mass%を超えると、Mnの影響により酸化鉄の色調は黒ずんだものとなるが、Mn量が0.1〜3mass%であればAlの添加により、Mnの影響を抑制して鮮やかな赤色を得ることができる。一方、塩化鉄溶液中に含まれるMn量が3mass%を超えると、Alを加えても鮮やかな赤色を得るのは困難である。   If the amount of Mn contained in the iron chloride solution as a raw material is less than 0.1 mass% in terms of iron oxide, the resulting iron oxide has little adverse effect on the color tone due to Mn, and vivid red iron oxide can be used as it is. Obtainable. However, if the amount of Mn exceeds 0.1 mass%, the color tone of iron oxide becomes dark due to the influence of Mn, but if the amount of Mn is 0.1 to 3 mass%, the addition of Al will affect the influence of Mn. It can be suppressed to obtain a bright red color. On the other hand, if the amount of Mn contained in the iron chloride solution exceeds 3 mass%, it is difficult to obtain a bright red color even if Al is added.

また原料となる塩化鉄溶液には、Mnの他に、Alを酸化鉄換算で、0.03〜3mass%含有することが必要である。Alを含有することで、Mnによる色調が黒ずむ影響を抑制し、鮮やかな赤色を得ることができるためである。Alが0.03mass%未満では、Mnの影響を抑制する効果が充分ではなく、鮮やかな赤色は得られない。逆に、Alが3mass%を超えると、Alの固溶限を超えるため酸化鉄以外の相が生成するなどの問題が生じる。塩化鉄溶液中の好ましいAl含有量は、酸化鉄換算で、0.1〜2.5mass%、さらに好ましくは、0.15〜2mass%である。   In addition to Mn, the iron chloride solution as a raw material must contain 0.03 to 3 mass% of Al in terms of iron oxide. This is because the inclusion of Al suppresses the effect of darkening the color tone due to Mn, and a bright red color can be obtained. When Al is less than 0.03 mass%, the effect of suppressing the influence of Mn is not sufficient, and a bright red color cannot be obtained. On the other hand, when Al exceeds 3 mass%, the solid solubility limit of Al is exceeded, and thus problems such as generation of phases other than iron oxide occur. The preferable Al content in the iron chloride solution is 0.1 to 2.5 mass%, more preferably 0.15 to 2 mass%, in terms of iron oxide.

また、原料塩化鉄溶液に含まれるAlおよびMnの質量比(Al/Mn)は、0.3〜25である。Mnにより色調が黒ずむ効果を抑制するためには、一定量以上のAlを含む必要があるためである。質量比Al/Mnが0.3未満では、Mnの影響を抑制するのに充分ではなく、25を超えると、Alの固溶限を超えるためAlFeOやα−Al等の酸化鉄(ヘマタイト)以外の相が生成するなどの問題が生じる。Alの添加方法としては、塩化アルミニウム、水酸化アルミニウムなどを、塩化鉄溶液に添加すればよい。 Moreover, the mass ratio (Al / Mn) of Al and Mn contained in the raw iron chloride solution is 0.3 to 25. This is because it is necessary to contain a certain amount or more of Al in order to suppress the effect of darkening the color tone due to Mn. If the mass ratio Al / Mn is less than 0.3, it is not sufficient to suppress the influence of Mn. If it exceeds 25, the solid solubility limit of Al is exceeded, so iron oxides such as AlFeO 3 and α-Al 2 O 3 Problems such as generation of phases other than (hematite) occur. As a method for adding Al, aluminum chloride, aluminum hydroxide, or the like may be added to the iron chloride solution.

熱分解のための噴霧焙焼温度は、550〜800℃であることが好ましい。噴霧焙焼温度が800℃よりも高い場合には、一次粒子が成長して大きくなり易く、また熱により一次粒子同士が焼結して凝集粒を作るなどの問題が生じるため、粒径が小さい比表面積6〜14m/gの鮮やかな赤色の酸化鉄が得られない。逆に、噴霧焙焼温度が550℃よりも低い場合には、熱分解が完全に起こらないため、未分解の塩化鉄が残留したり、酸化鉄中に未酸化のFe2+が存在したりするため、色調が悪い酸化鉄となる。なお、噴霧焙焼温度の他に、ノズル径を小さくする、塩化鉄溶液の濃度を下げる、塩化鉄溶液の噴霧量を減らす等も、本発明の粒径の小さい酸化鉄を得るためには有効である。 The spray roasting temperature for thermal decomposition is preferably 550 to 800 ° C. When the spray roasting temperature is higher than 800 ° C., the primary particles are likely to grow and become large, and the primary particles sinter with each other due to heat to produce agglomerated particles, so the particle size is small. A bright red iron oxide having a specific surface area of 6 to 14 m 2 / g cannot be obtained. On the other hand, when the spray roasting temperature is lower than 550 ° C., thermal decomposition does not occur completely, so that undecomposed iron chloride remains or unoxidized Fe 2+ exists in iron oxide. Therefore, it becomes iron oxide with a poor color tone. In addition to the spray roasting temperature, reducing the nozzle diameter, reducing the concentration of the iron chloride solution, and reducing the spray amount of the iron chloride solution are also effective for obtaining iron oxide with a small particle size according to the present invention. It is.

本発明の酸化鉄の製造方法では、焙焼後に粉砕を行う必要がある。というのは、本発明の酸化鉄は、製法上、噴霧焙焼時に凝集粒子が生成してしまうため、凝集粒子を砕いてシャープな粒度分布にする必要があるためである。粉砕により、レーザー回折式の粒度分布測定装置で測定したD50が0.7μm以下で、かつ2μm以上の凝集粒子が5vol%以下になるように粉砕するのが好ましい。粉砕方法としては、ジェットミルや振動ミル、アトマイザーなど、公知の粉砕方法を用いることができる。またアトライターやボールミル、ビーズミルなどの湿式粉砕を用いることもできる。 In the iron oxide production method of the present invention, it is necessary to grind after roasting. This is because the iron oxide of the present invention produces aggregated particles at the time of spray roasting because of the manufacturing method, and thus it is necessary to crush the aggregated particles to obtain a sharp particle size distribution. It is preferable that the pulverization is performed so that the D 50 measured by a laser diffraction particle size distribution analyzer is 0.7 μm or less and the aggregated particles of 2 μm or more are 5 vol% or less. As a pulverization method, a known pulverization method such as a jet mill, a vibration mill, or an atomizer can be used. Also, wet grinding such as attritor, ball mill, and bead mill can be used.

表1に(発明例1〜19)および(比較例1〜)として示した、酸化鉄に換算したMn,Alの含有量がそれぞれ異なるFe濃度が120g/lの塩化第一鉄溶液を噴霧焙焼して塩化鉄系酸化鉄とし、これをアトマイザー、振動ミル、ジェットミルを用いて粉砕し、以下の評価に供した。また、従来例として、市販の塩化鉄系一般酸化鉄(従来例1)、市販の塩化鉄系高純度酸化鉄(従来例2)および市販の赤色顔料用の硫酸鉄系酸化鉄(従来例3)についても同様の評価を行った。
(a)酸化鉄中のMn、Al含有量:ICPで分析
(b)比表面積:BET法にて測定
(c)D50および2μm以上の粗粒量:レーザー回折式粒度分布測定装置(HRA、Microtrac社製)を使用
(d)色調:酸化鉄1gにあまに油0.6gを加えてフーバーマーラーでペースト化し、得られたペーストに透明ラッカー12gを加えて、アプリケーターにて厚み0.2mmの塗膜試料を作製し、得られた試料について、日本電色製の色差計を用いて、L値、a値およびb値を測定し、従来の塩化鉄系一般酸化鉄(従来例1)のL値、a値、b値を基準(0)とし、これからのずれ値(ΔL、Δa、Δb)を求めた。
Spraying ferrous chloride solutions having Fe concentrations of 120 g / l with different contents of Mn and Al in terms of iron oxide, shown as (Invention Examples 1 to 19 ) and (Comparative Examples 1 to 7 ) in Table 1 It was roasted to obtain iron chloride-based iron oxide, which was pulverized using an atomizer, a vibration mill, and a jet mill and subjected to the following evaluation. Further, as conventional examples, commercially available iron chloride-based general iron oxide (conventional example 1), commercially available iron chloride-based high purity iron oxide (conventional example 2), and commercially available iron sulfate-based iron oxide for red pigment (conventional example 3). ) Was also evaluated in the same manner.
(A) Mn and Al content in iron oxide: analyzed by ICP (b) Specific surface area: measured by BET method (c) Coarse grain size of D 50 and 2 μm or more: Laser diffraction particle size distribution analyzer (HRA, (D) Color tone: Add 0.6 g of oil to 1 g of iron oxide, paste it with a Hoovermarler, add 12 g of transparent lacquer to the resulting paste, and use an applicator with a thickness of 0.2 mm. A coated film sample was prepared, and the L value, a value, and b value were measured using a color difference meter made by Nippon Denshoku for the obtained sample, and the conventional iron chloride based general iron oxide (conventional example 1) was measured. The L value, a value, and b value were used as a reference (0), and deviation values (ΔL, Δa, Δb) from this were determined.

上記測定の結果を、表1に併記して示した。この結果から、噴霧焙焼温度が550〜800℃で、比表面積が6〜14m/g、酸化鉄中のMnが0.1〜3mass%、Alが0.03〜3mass%、AlおよびMnの質量比(Al/Mn)が0.3〜25、D50が0.7μm以下、2μm以上の凝集粒子が5vol%以下の条件を満たす酸化鉄は、従来の塩化鉄系一般酸化鉄(従来例1)や塩化鉄系高純度酸化鉄(従来例2)に比べて、ΔL、Δa、Δbが大きくて市販の硫酸鉄系酸化鉄(従来例3)に近く、赤色顔料として適していることがわかる。 The results of the above measurements are shown together in Table 1. From this result, spray roasting temperature is 550-800 degreeC, a specific surface area is 6-14 m < 2 > / g, Mn in iron oxide is 0.1-3 mass%, Al is 0.03-3 mass%, Al and Mn The iron oxide satisfying the condition that the mass ratio (Al / Mn) is 0.3 to 25, D 50 is 0.7 μm or less, and the aggregated particles of 2 μm or more are 5 vol% or less is a conventional iron chloride-based general iron oxide (conventional Compared to Example 1) and iron chloride-based high-purity iron oxide (Conventional Example 2), ΔL, Δa, and Δb are large and close to commercially available iron sulfate-based iron oxide (Conventional Example 3) and suitable as a red pigment. I understand.

本発明の技術は、一般の赤色顔料用酸化鉄だけでなく、より耐熱性が求められる用途にも適用することができる。   The technology of the present invention can be applied not only to general iron oxides for red pigments but also to applications that require higher heat resistance.

Claims (2)

酸化鉄換算で、Mnを0.1〜3mass%、Alを0.03〜3mass%含有し、AlとMnとの質量比(Al/Mn)が0.3〜25である塩化鉄溶液を、550〜800℃の温度で噴霧焙焼し、その後さらに粉砕して、比表面積が6〜14m /gの酸化鉄粉を得ることを特徴とする赤色顔料用酸化鉄粉の製造方法。 An iron chloride solution containing 0.1 to 3 mass% of Mn and 0.03 to 3 mass% of Al in terms of iron oxide and having a mass ratio of Al to Mn (Al / Mn) of 0.3 to 25, A method for producing iron oxide powder for red pigment, characterized by obtaining iron oxide powder having a specific surface area of 6 to 14 m 2 / g by spray roasting at a temperature of 550 to 800 ° C. and then further pulverizing. レーザー回折式粒度分布測定装置で測定したDD measured with a laser diffraction particle size analyzer 5050 が0.7μm以下で、2μm以上の凝集粒子が5vol%以下である酸化鉄粉を得ることを特徴とする請求項1に記載の赤色顔料用酸化鉄粉の製造方法。The method for producing an iron oxide powder for red pigment according to claim 1, wherein the iron oxide powder has a particle size of 0.7 μm or less and aggregated particles of 2 μm or more is 5 vol% or less.
JP2006028083A 2006-02-06 2006-02-06 Method for producing iron oxide powder for red pigment Expired - Fee Related JP4685651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006028083A JP4685651B2 (en) 2006-02-06 2006-02-06 Method for producing iron oxide powder for red pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006028083A JP4685651B2 (en) 2006-02-06 2006-02-06 Method for producing iron oxide powder for red pigment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011002762A Division JP2011102238A (en) 2011-01-11 2011-01-11 Iron oxide powder for red pigment

Publications (2)

Publication Number Publication Date
JP2007204348A JP2007204348A (en) 2007-08-16
JP4685651B2 true JP4685651B2 (en) 2011-05-18

Family

ID=38484135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006028083A Expired - Fee Related JP4685651B2 (en) 2006-02-06 2006-02-06 Method for producing iron oxide powder for red pigment

Country Status (1)

Country Link
JP (1) JP4685651B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5610183B2 (en) * 2009-11-11 2014-10-22 戸田工業株式会社 Infrared reflective black pigment, paint and resin composition using the infrared reflective black pigment
JP5466127B2 (en) 2010-10-12 2014-04-09 株式会社ミツトヨ Origin position detection circuit
JP6989833B2 (en) 2018-06-21 2022-01-12 学校法人 工学院大学 Iron oxide powder, composition, ceramics, iron oxide powder precursor, iron oxide powder precursor manufacturing method, and iron oxide powder manufacturing method.
WO2021125231A1 (en) * 2019-12-20 2021-06-24 学校法人工学院大学 Iron oxide powder and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352539A (en) * 1976-10-25 1978-05-13 Toda Kogyo Corp Method of preparing dark red system pigments of iron oxide
JPS63112663A (en) * 1986-10-24 1988-05-17 バスフ アクチェンゲゼルシャフト Thin plate-shaped pigment based on iron oxide and its production
JPH01208332A (en) * 1988-02-15 1989-08-22 Sumitomo Metal Ind Ltd Desilication of iron oxide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910600B1 (en) * 1969-09-20 1974-03-12

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352539A (en) * 1976-10-25 1978-05-13 Toda Kogyo Corp Method of preparing dark red system pigments of iron oxide
JPS63112663A (en) * 1986-10-24 1988-05-17 バスフ アクチェンゲゼルシャフト Thin plate-shaped pigment based on iron oxide and its production
JPH01208332A (en) * 1988-02-15 1989-08-22 Sumitomo Metal Ind Ltd Desilication of iron oxide

Also Published As

Publication number Publication date
JP2007204348A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP5619257B2 (en) Yellow iron oxide pigment
US6616747B2 (en) Process for producing granular hematite particles
JP4685651B2 (en) Method for producing iron oxide powder for red pigment
JP4977967B2 (en) Iron-based black particle powder, black paint and rubber / resin composition using the iron-based black particle powder
US4631089A (en) Color-intensive iron oxide black pigments and process for their production
JP3934858B2 (en) Black complex oxide particles and method for producing the same
US7465495B2 (en) Composite black oxide particle, method for producing same, black coating material and black matrix
JP4732969B2 (en) Iron oxide powder for red pigment
JP4473860B2 (en) Iron oxide pigments
JP2005289653A (en) Composite black oxide particle, method for producing the same, black coating material, and black matrix
JP2011102238A (en) Iron oxide powder for red pigment
JP4750445B2 (en) Method for producing iron oxide for iron chloride red pigment
US7438754B2 (en) Cobalt-containing black pigment particulates
JP3552015B2 (en) Nonmagnetic black pigment powder, nonmagnetic black paint using the nonmagnetic black pigment powder, and black rubber / resin composition using the nonmagnetic black pigment powder
JP2003201122A (en) Method for manufacturing granular hematite particle powder
JPH06345427A (en) Zinc oxide powder and production thereof
JP4815075B2 (en) Magnetite containing toner
JP2005139063A (en) Composite black oxide particle, its manufacturing method, black paint and black matrix
JP2004175596A (en) Method of manufacturing red iron oxide
JP4682063B2 (en) Low magnetic black pigment particles, electrophotographic toner, and image forming method
JP3828566B2 (en) Cobalt-containing granular black pigment
JP2003160339A (en) Production method for ferric oxide particle
JP2001010821A (en) Iron oxide particle and its production
JP3512052B2 (en) Lepidocrocite particle powder and method for producing the same
JP5029981B2 (en) Black composite iron oxide particles, electrophotographic toner using the same, and image forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees