JP5226917B2 - Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same - Google Patents

Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same Download PDF

Info

Publication number
JP5226917B2
JP5226917B2 JP2001013642A JP2001013642A JP5226917B2 JP 5226917 B2 JP5226917 B2 JP 5226917B2 JP 2001013642 A JP2001013642 A JP 2001013642A JP 2001013642 A JP2001013642 A JP 2001013642A JP 5226917 B2 JP5226917 B2 JP 5226917B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
composite oxide
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001013642A
Other languages
Japanese (ja)
Other versions
JP2001273900A (en
Inventor
彰彦 白川
孝男 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2001013642A priority Critical patent/JP5226917B2/en
Publication of JP2001273900A publication Critical patent/JP2001273900A/en
Application granted granted Critical
Publication of JP5226917B2 publication Critical patent/JP5226917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Description

本発明は、リチウムイオン二次電池、特に初期放電容量が大きく、かつ60℃の環境下で充放電を繰り返しても放電容量の低下が少ない、スピネル構造を有するMn系正極活物質を用いたりチウムイオン二次電池、及びその正極活物質並びにその正極活物質の製造方法に関する。  The present invention relates to a lithium ion secondary battery, particularly a Mn-based positive electrode active material having a spinel structure, which has a large initial discharge capacity and has a small decrease in discharge capacity even after repeated charge and discharge in an environment of 60 ° C. The present invention relates to a secondary battery, a positive electrode active material thereof, and a method for producing the positive electrode active material.

非水電解質二次電池(又は「非水二次電池」と略する。)の正極活物質には、低コストで資源的な制約がなく安全性に優れたスピネル構造を有するマンガン酸リチウム(又は「スピネル型LiMn」という。)が現在検討されている。スピネル型LiMn(一般にはABの組成を有する。)は、充電と放電を繰り返すと電気容量の低下を起こし、また高温下ではその容量低下が激しくなる等の大きな問題を抱えている。これまで係る問題を解決するために、例えば、特開平2−270268号公報にはリチウムを過剰に添加したマンガン酸リチウムを用いた改善例が、また特開平2−60056号公報にはクロムなどの第三成分を添加したマンガン酸リチウムを用いた改善例が開示されているものの、60℃の環境下では依然として電気容量の低下が激しく、非水二次電池の正極活物質として十分ではない。例えば、このような材料を正極活物質とする非水二次電池では、500回の充電と放電を繰り返した時の放電容量は高くても90mAh/g止まりであり、一層の改善が求められている。The positive electrode active material of a non-aqueous electrolyte secondary battery (or abbreviated as “non-aqueous secondary battery”) is a low-cost lithium manganate (or a spinel structure excellent in safety without resource restrictions) (or “Spinel type LiMn 2 O 4 ”) is currently under investigation. Spinel-type LiMn 2 O 4 (generally having a composition of AB 2 O 4 ) has major problems such as a decrease in electric capacity when repeated charging and discharging, and a significant decrease in capacity at high temperatures. ing. In order to solve the above problems, for example, JP-A-2-270268 discloses an improved example using lithium manganate with excessive addition of lithium, and JP-A-2-60056 discloses chromium or the like. Although an improved example using lithium manganate added with the third component is disclosed, the decrease in electric capacity is still severe under an environment of 60 ° C., which is not sufficient as a positive electrode active material of a non-aqueous secondary battery. For example, in a non-aqueous secondary battery using such a material as a positive electrode active material, the discharge capacity when repeated charging and discharging 500 times is only 90 mAh / g at the highest, and further improvement is required. Yes.

例えば、特開平7−262984号公報には、リチウム化合物とLiMnとの混合物を400℃〜1325℃の温度範囲で熱処理して得られたLiMnO層で表面被覆されたマンガン酸リチウムを正極活物質に用いたことが開示されている。特開平10−172571号公報には、スピネル構造のマンガン酸リチウムをLiイオン又はMnイオンを含有した溶液に浸漬し、これを300℃〜1200℃の温度範囲で熱処理して二層構造のマンガン酸リチウムを用いることが開示されている。For example, in JP-A-7-262984, manganic acid whose surface is coated with a Li 2 MnO 3 layer obtained by heat-treating a mixture of a lithium compound and LiMn 2 O 4 in a temperature range of 400 ° C. to 1325 ° C. It is disclosed that lithium is used as a positive electrode active material. In JP-A-10-172571, spinel-structured lithium manganate is immersed in a solution containing Li ions or Mn ions, and this is heat-treated in a temperature range of 300 ° C. to 1200 ° C. to form a two-layer structure manganate. The use of lithium is disclosed.

発明が解決しようとする課題Problems to be solved by the invention

本発明は、リチウムを活物質とする負極と、非水系電解質と、リチウム、マンガン及び酸素を含むスピネル型複合酸化物を活物質とする正極を備えた非水二次電池において、60℃の環境下で充放電を500回繰り返した時の放電容量が95mAh/g以上に維持できる、優れたサイクル特性を有する非水二次電池、及びこの電池特性を達成できるその正極活物質及びその製造方法を提供する。  The present invention relates to a nonaqueous secondary battery including a negative electrode using lithium as an active material, a nonaqueous electrolyte, and a positive electrode using a spinel composite oxide containing lithium, manganese and oxygen as an active material. A non-aqueous secondary battery having excellent cycle characteristics capable of maintaining a discharge capacity of 95 mAh / g or more when charging / discharging is repeated 500 times, and a positive electrode active material capable of achieving the battery characteristics and a method for producing the same provide.

課題を解決するための手段Means for solving the problem

すなわち、本発明は、
(1)リチウム、マンガン及び酸素を主体とするスピネル構造とβ型MnOを含むことを特徴とする複合酸化物の正極活物質、
(2)前記複合酸化物の表面層が実質的にβ型MnOからなる前項1に記載の複合酸化物の正極活物質、
(3)前記β型MnOが、複合酸化物の1〜13モル%の範囲であることを特徴とする前項1又は前項2に記載の複合酸化物の正極活物質、
(4)前記、リチウム、マンガン及び酸素を主体とするスピネル構造が、リチウム、マンガン及び酸素からなるLiMn、またはLiもしくはMnの一部をクロム、コバルト、アルミニウム、ニッケル、鉄、マグネシウム等の異種元素に置き換えた複合酸化物、Li1+XMn2−x−y(ここで、−0.1≦x≦0.2、0<y≦0.2)であることを特徴とする前項1乃至前項3のいずれか1項に記載の複合酸化物の正極活物質、
That is, the present invention
(1) A composite oxide positive electrode active material comprising a spinel structure mainly composed of lithium, manganese and oxygen and β-type MnO 2 ;
(2) The positive electrode active material of the composite oxide according to item 1 above, wherein the surface layer of the composite oxide is substantially composed of β-type MnO 2 .
(3) The positive electrode active material of the composite oxide according to item 1 or 2, wherein the β-type MnO 2 is in the range of 1 to 13 mol% of the compound oxide.
(4) The spinel structure mainly composed of lithium, manganese and oxygen is LiMn 2 O 4 composed of lithium, manganese and oxygen, or a part of Li or Mn is chromium, cobalt, aluminum, nickel, iron, magnesium, etc. A composite oxide substituted with different elements of Li 1 + X Mn 2−xy M y O 4 (where −0.1 ≦ x ≦ 0.2, 0 <y ≦ 0.2) The positive electrode active material of the composite oxide according to any one of the preceding items 1 to 3,

(5)複合酸化物が、粒子径3μm〜50μmの造粒物であることを特徴とする前項1乃至4のいずれか1項に記載の複合酸化物の正極活物質。
(6)30Å〜400Åの範囲の細孔を有する前項1乃至5のいずれか1項に記載の複合酸化物の正極活物質、
(7)前項1乃至6のいずれか1項に記載の複合酸化物の正極活物質を含んだ電極用ペースト、
(5) The positive electrode active material of composite oxide according to any one of items 1 to 4, wherein the composite oxide is a granulated product having a particle size of 3 μm to 50 μm.
(6) The positive electrode active material of the composite oxide according to any one of items 1 to 5, which has pores in the range of 30 to 400 mm,
(7) An electrode paste containing the composite oxide positive electrode active material according to any one of items 1 to 6,

(8)請求項1乃至6のいずれか1項に記載の複合酸化物の正極活物質を含んだ正極、
(9)リチウム、マンガン及び酸素を主体とするスピネル構造を含んだ複合酸化物を酸処理し、次いで200℃以上、400℃未満の温度範囲で熱処理することを特徴とする前項1乃至6のいずれか1項に記載の複合酸化物の正極活物質の製造方法、
(10)リチウムを活物質とする負極と、非水系電解質と、リチウム、マンガン及び酸素を含む複合酸化物を活物質とする正極を備えた非水二次電池において、該複合酸化物が前項1乃至6のいずれか1項に記載の複合酸化物の正極活物質であることを特徴とする非水二次電池を提供する。
(8) A positive electrode comprising the composite oxide positive electrode active material according to any one of claims 1 to 6,
(9) Any one of items 1 to 6 above, wherein the composite oxide containing a spinel structure mainly composed of lithium, manganese, and oxygen is acid-treated and then heat-treated in a temperature range of 200 ° C. or higher and lower than 400 ° C. A method for producing a composite oxide positive electrode active material according to claim 1,
(10) In a non-aqueous secondary battery including a negative electrode using lithium as an active material, a non-aqueous electrolyte, and a positive electrode using a composite oxide containing lithium, manganese, and oxygen as an active material, the composite oxide includes A non-aqueous secondary battery comprising the composite oxide positive electrode active material according to any one of items 1 to 6 is provided.

以下、本発明を具体的に説明する。
本発明の正極活物質の製造方法は、リチウム、マンガン及び酸素を主体とするスピネル構造の複合酸化物を酸処理して、特定の温度、すなわち200℃以上、400℃未満の特定の温度で熱処理することによって、リチウム、マンガン及び酸素を主体とするスピネル構造とβ型MnOを含む複合酸化物を製造することができる。また、好ましくは複合酸化物の表面層が実質的にβ型MnOからなる複合酸化物を製造することができる。ここで、「リチウム、マンガン及び酸素を主体とするスピネル構造を有する複合酸化物」とは、リチウム、マンガン及び酸素からなるLiMnの他、このLiもしくはMnの一部をクロム、コバルト、アルミニウム、ニッケル、鉄、マグネシウム等の異種元素に置き換えた複合酸化物、Li1+XMn2−x−y(ここで、−0.1≦x≦0.2、0<y≦0.2)を包含する。そして、該複合酸化物の格子定数としては8.240Å以下が好ましい。
Hereinafter, the present invention will be specifically described.
In the method for producing a positive electrode active material of the present invention, a complex oxide having a spinel structure mainly composed of lithium, manganese, and oxygen is acid-treated, and heat treatment is performed at a specific temperature, that is, a specific temperature of 200 ° C. or more and less than 400 ° C. By doing so, a composite oxide containing a spinel structure mainly composed of lithium, manganese and oxygen and β-type MnO 2 can be produced. In addition, it is possible to produce a composite oxide in which the surface layer of the composite oxide is substantially composed of β-type MnO 2 . Here, “a composite oxide having a spinel structure mainly composed of lithium, manganese, and oxygen” means LiMn 2 O 4 composed of lithium, manganese, and oxygen, and a part of this Li or Mn as chromium, cobalt, Complex oxides substituted with different elements such as aluminum, nickel, iron, magnesium, etc., Li 1 + X Mn 2- xy My O 4 (where -0.1 ≦ x ≦ 0.2, 0 <y ≦ 0 .2). The lattice constant of the composite oxide is preferably 8.240 mm or less.

さらに本発明において、前記「実質的に」とは、リチウム、マンガン及び酸素を主体とするスピネル構造を有する複合酸化物の表面層にβ型MnOが少なくとも1格子含まれていればよい。
本発明において、リチウム、マンガン及び酸素を主体とするスピネル構造を有する複合酸化物の製造方法及びその出発原料には特に制限はなく、例えば、製造方法においては、マンガン化合物とリチウム化合物の混合物、またはさらにマンガンと置換し得る異種元素を含む化合物を添加した混合物を大気中または酸素ガスフロー雰囲気中において300℃から850℃の温度下で少なくとも1時間以上焼成すればよい。
Furthermore, in the present invention, the term “substantially” means that at least one β-type MnO 2 lattice is included in the surface layer of the composite oxide having a spinel structure mainly composed of lithium, manganese, and oxygen.
In the present invention, there are no particular limitations on the method for producing a composite oxide having a spinel structure mainly composed of lithium, manganese and oxygen and its starting material. For example, in the production method, a mixture of a manganese compound and a lithium compound, or Further, the mixture to which a compound containing a different element that can substitute for manganese is added may be fired at a temperature of 300 ° C. to 850 ° C. for at least one hour in the air or in an oxygen gas flow atmosphere.

リチウム、マンガン及び酸素を主体とするスピネル構造を有する複合酸化物の結晶性については特に限定はなく、未反応のリチウム化合物とマンガン酸化物が残留していてもかまわない。一方、出発原料のマンガン源としては、電解二酸化マンガン(EMD)、化学合成二酸化マンガン(CMD)、三二酸化マンガン、四三酸化マンガン、オキシ水酸化マンガン、炭酸マンガン、硝酸マンガン等が利用でき、リチウム源としては水酸化リチウム、炭酸リチウム、硝酸リチウム等が使用できる。好ましいマンガン源としては、リチウムとの反応性に富む炭酸マンガンが挙げられる。  There is no particular limitation on the crystallinity of the composite oxide having a spinel structure mainly composed of lithium, manganese, and oxygen, and an unreacted lithium compound and manganese oxide may remain. On the other hand, as a starting manganese source, electrolytic manganese dioxide (EMD), chemically synthesized manganese dioxide (CMD), manganese sesquioxide, manganese tetroxide, manganese oxyhydroxide, manganese carbonate, manganese nitrate, and the like can be used. As the source, lithium hydroxide, lithium carbonate, lithium nitrate or the like can be used. As a preferable manganese source, manganese carbonate rich in reactivity with lithium can be mentioned.

本発明で使用できる酸としては、リチウム、マンガン及び酸素を主体とするスピネル構造の複合酸化物に対し、表面のリチウムとマンガンを溶解できればよく、特に限定はなくブレンステッド酸が用いられる。ブレンステッド酸には、通常、塩酸、臭化水素酸、沃化水素酸、フッ酸、硝酸、アミド硫酸、硫酸、リン酸等の無機酸、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機スルホン酸、トリフルオロ酢酸、トリクロロ酢酸、蟻酸、シュウ酸等の有機カルボン酸等が挙げられる。この中で、塩酸、硝酸、硫酸や有機スルホン酸が好ましい。  The acid that can be used in the present invention is not particularly limited as long as it can dissolve lithium and manganese on the surface of the composite oxide having a spinel structure mainly composed of lithium, manganese, and oxygen, and Bronsted acid is used. Bronsted acids usually include inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, hydrofluoric acid, nitric acid, amidosulfuric acid, sulfuric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, benzene Examples thereof include organic sulfonic acids such as sulfonic acid, toluenesulfonic acid, naphthalenesulfonic acid and naphthalenedisulfonic acid, and organic carboxylic acids such as trifluoroacetic acid, trichloroacetic acid, formic acid and oxalic acid. Among these, hydrochloric acid, nitric acid, sulfuric acid and organic sulfonic acid are preferable.

硝酸を使用した場合には、例えば酸処理により、リチウム、マンガン及び酸素を主体とするスピネル構造の複合酸化物表面層は、下記反応式(1)、
2LiMn + 4HNO → 2LiNO + Mn(NO
+ 3λ-MnO + 2HO・・・・(1)
の反応式に従って、表面のスピネル構造がλ-MnOに変化する。
上記反応式(1)に従って、本発明の正極活物質の製造方法では、スピネル構造からλ-MnOへの変換を、酸性溶液のpHを検出することで反応の完結を知り、添加すべき酸のモル数からスピネル構造の変換率を設計、実施することができる。そして、本発明の正極活物質の製造方法では、酸処理により部分変換したスピネル構造の複合酸化物を200℃以上、400℃未満の特定の温度で熱処理することで、複合酸化物の表面層が実質的にβ型MnOからなる複合酸化物を製造することができる。
When nitric acid is used, for example, by acid treatment, the composite oxide surface layer having a spinel structure mainly composed of lithium, manganese, and oxygen has the following reaction formula (1),
2LiMn 2 O 4 + 4HNO 3 → 2LiNO 3 + Mn (NO 3 ) 2
+ 3λ-MnO 2 + 2H 2 O (1)
According to the reaction formula, the surface spinel structure changes to λ-MnO 2 .
According to the above reaction formula (1), in the method for producing a positive electrode active material of the present invention, the conversion from the spinel structure to λ-MnO 2 is detected, the completion of the reaction is detected by detecting the pH of the acidic solution, and the acid to be added The conversion rate of the spinel structure can be designed and implemented from the number of moles. And in the manufacturing method of the positive electrode active material of this invention, the surface layer of composite oxide is heat-processed by the specific temperature of 200 degreeC or more and less than 400 degreeC in the composite oxide of the spinel structure partially converted by the acid treatment. A composite oxide substantially consisting of β-type MnO 2 can be produced.

本反応に関連し、Journal of Solid State Chemistry 39, 142-147(1981)にはスピネル型LiMnを水溶性酸溶液で処理してλ-MnOに変換できることが報告されているが、スピネル構造の複合体の表層のみをλ-MnOに変換することは記載も示唆もない。また、スピネル型LiMnの表層がλ-MnOである二層構造を有する複合酸化物の記載もなく、さらにはこのような二層構造のスピネル構造体を非水二次電池の正極用活物質に使用することなどの記載も示唆もない。また、Journal of Solid State Chemistry 39, 142-147(1981)には、λ-MnOは準安定相であり十分な加熱処理により安定相のβ-MnOに戻すことが記載されているが、前記のような二層構造のスピネル構造体や非水二次電池の正極用活物質に使用することなどの記載も示唆もない。In connection with this reaction, Journal of Solid State Chemistry 39, 142-147 (1981) reports that spinel-type LiMn 2 O 4 can be converted to λ-MnO 2 by treating it with an aqueous acid solution. There is no description or suggestion that only the surface layer of the composite having a spinel structure is converted to λ-MnO 2 . Further, there is no description of a composite oxide having a two-layer structure in which the surface layer of spinel-type LiMn 2 O 4 is λ-MnO 2 , and further, a spinel structure having such a two-layer structure is used as a positive electrode of a non-aqueous secondary battery. There is no description or suggestion of using it as an active material. Further, Journal of Solid State Chemistry 39, 142-147 (1981) describes that λ-MnO 2 is a metastable phase and is returned to β-MnO 2 as a stable phase by sufficient heat treatment. There is no description or suggestion of using the spinel structure having the two-layer structure as described above or an active material for a positive electrode of a non-aqueous secondary battery.

本発明の製造方法により製造される正極活物質は、リチウム、マンガン及び酸素を主体とするスピネル構造とβ型MnOを含む複合酸化物であり、好ましくは、該スピネル型複合酸化物の表面層が実質的にβ型MnOからなる複合酸化物が非水二次電池の正極材料として有効に使用される。
酸処理による、リチウム、マンガン及び酸素を主体とするスピネル構造の複合酸化物の表面処理は、λ-MnOの目的域の量(モル量)に応じて、添加すべき酸の濃度及び酸のモル量、反応時間を決めることができる。スピネル構造からλ-MnOへの変換モル%は、好ましくは該スピネル構造複合酸化物に対して1〜13モル%であり、さらに好ましくは2〜7モル%、さらに望ましくは3〜5モル%である。λ-MnOへの変換率(モル%)が、1モル%未満では表面処理に伴う期待効果が現れないし、13モル%を越えると電池を構成した時の非水二次電池の初期放電容量の減少量が大きくなりすぎ、好ましくない。
The positive electrode active material produced by the production method of the present invention is a composite oxide containing a spinel structure mainly composed of lithium, manganese and oxygen and β-type MnO 2 , and preferably a surface layer of the spinel-type composite oxide There composite oxide consisting essentially of β-type MnO 2 can be effectively used as a cathode material of a nonaqueous secondary battery.
The surface treatment of the composite oxide having a spinel structure mainly composed of lithium, manganese, and oxygen by the acid treatment is performed according to the concentration of the acid to be added and the acid concentration according to the amount (molar amount) of the target region of λ-MnO 2 . Molar amount and reaction time can be determined. The conversion mol% from the spinel structure to λ-MnO 2 is preferably 1 to 13 mol%, more preferably 2 to 7 mol%, and further desirably 3 to 5 mol% with respect to the spinel structure composite oxide. It is. If the conversion rate to λ-MnO 2 (mol%) is less than 1 mol%, the expected effect associated with the surface treatment does not appear, and if it exceeds 13 mol%, the initial discharge capacity of the non-aqueous secondary battery when the battery is constructed. The amount of decrease is too large, which is not preferable.

また、複合酸化物の表面がλ-MnOのままでは、放電の際にリチウムイオンを取り込み、スピネル構造複合酸化物の単一相に戻ってしまい、表面層を電池の充放電の繰り返しにより安定化できない。従って、本発明の前記正極活物質は、該β型MnOが、スピネル型複合酸化物の1〜13モル%の範囲で形成される複合酸化物が非水二次電池の正極材料に使用される。If the surface of the composite oxide remains λ-MnO 2 , lithium ions are taken in during discharge and return to the single phase of the spinel structure composite oxide, and the surface layer is stabilized by repeated charge and discharge of the battery. Can not be converted. Therefore, in the positive electrode active material of the present invention, a composite oxide in which the β-type MnO 2 is formed in a range of 1 to 13 mol% of the spinel composite oxide is used as a positive electrode material for a non-aqueous secondary battery. The

本発明の非水二次電池において、正極活物質として使用される複合酸化物は、好ましくは表層にβ型MnO相を有する複合酸化物であり、さらに一次粒子径が0.1μm〜1.0μm、好ましくは0.2μm〜0.5μmの該複合酸化物が用いられる。また、本発明においては、この一次粒子を3μm〜50μm、好ましくは5μm〜30μmに造粒した粒子の表層にβ型MnO相を有する複合酸化物も好ましく使用される。In the nonaqueous secondary battery of the present invention, the composite oxide used as the positive electrode active material is preferably a composite oxide having a β-type MnO 2 phase on the surface layer, and further has a primary particle size of 0.1 μm to 1. The composite oxide having a thickness of 0 μm, preferably 0.2 μm to 0.5 μm is used. In the present invention, a composite oxide having a β-type MnO 2 phase on the surface layer of particles obtained by granulating the primary particles to 3 μm to 50 μm, preferably 5 μm to 30 μm is also preferably used.

本発明に使用される、リチウム、マンガン及び酸素を主体とするスピネル構造の複合酸化物としては、その焼成品を解砕後、得られた粉砕粒子(これは1次粒子または1次粒子の集合した二次粒子であり、好ましくは平均粒子径が2μm以下である)に焼結促進助剤(造粒促進剤)を添加混合して造粒焼成された緻密な造粒粒子を使用してもよい。ここで、緻密な造粒粒子とは、該酸化物の1次粒子間に空隙がないまたは少ないことを意味し、焼結促進助剤を使用した以下の方法で製造すことができる。
解砕・粉砕したリチウム、マンガン及び酸素を主体とするスピネル構造の複合酸化物粒子と焼結促進助剤との混合方法は、特に限定はなく、例えば媒体攪拌式粉砕機、ボールミル、ペイントシェーカー、混合ミキサーなどが使用できる。混合方式についても乾式、湿式どちらでもよい。該複合酸化物を解砕・粉砕する際に焼結促進助剤を添加して混合を同時に行ってもよい。
The composite oxide having a spinel structure mainly composed of lithium, manganese, and oxygen used in the present invention is obtained by crushing the fired product and then obtaining pulverized particles (this is a primary particle or a collection of primary particles). Secondary particles, preferably having an average particle diameter of 2 μm or less), and using dense granulated particles that are granulated and fired by adding and mixing a sintering acceleration aid (granulation accelerator). Good. Here, the dense granulated particles mean that there are no or few voids between the primary particles of the oxide, and can be produced by the following method using a sintering accelerator.
The mixing method of the pulverized and pulverized composite oxide particles mainly composed of lithium, manganese and oxygen and the sintering accelerating aid is not particularly limited. For example, a medium agitating pulverizer, a ball mill, a paint shaker, A mixing mixer can be used. The mixing method may be either dry or wet. When the composite oxide is pulverized and pulverized, a sintering accelerator aid may be added and mixed at the same time.

使用できる焼結促進助剤は、該リチウム、マンガン及び酸素を主体とする複合酸化物粒子の解砕・粉砕粒子を造粒のために焼結できるものであればよく、より好ましくは、900℃以下の温度で溶融する化合物、例えば、550℃〜900℃の温度で溶融可能な酸化物またはその酸化物になりうる前駆体もしくはリチウムまたはマンガンと固溶または反応して溶融する酸化物またはその酸化物になりうる化合物であれば良い。例えば、焼結促進助剤には、Bi、B、W、Mo、Pbなどの元素を含む化合物が挙げられ、またこれらの化合物を任意に組み合わせて使用しても良く、またBとLiFを組み合わせた化合物もしくはMnFとLiFを組み合わせた化合物も使用される。中でも、Bi、B、Wの元素を含む化合物は焼結収縮効果が大きいので特に好ましい。The sintering accelerating aid that can be used is only required to be able to sinter the pulverized / pulverized particles of the composite oxide particles mainly composed of lithium, manganese, and oxygen for granulation, and more preferably, 900 ° C. A compound that melts at the following temperature, for example, an oxide that can be melted at a temperature of 550 ° C. to 900 ° C. or a precursor that can be converted to the oxide, or an oxide that is melted by solid solution or reaction with lithium or manganese, or an oxidation thereof Any compound that can become a product may be used. For example, the sintering acceleration aid includes compounds containing elements such as Bi, B, W, Mo, and Pb, and these compounds may be used in any combination, and B 2 O 3 and A compound combining LiF or a compound combining MnF 2 and LiF is also used. Among these, compounds containing Bi, B, and W elements are particularly preferable because they have a large sintering shrinkage effect.

例えば、Bi化合物としては三酸化ビスマス、硝酸ビスマス、安息香酸ビスマス、オキシ酢酸ビスマス、オキシ炭酸ビスマス、クエン酸ビスマス、水酸化ビスマスなどが挙げられる。またB化合物としては、三二酸化硼素、炭化硼素、窒化硼素、硼酸などが挙げられる。W化合物としては、二酸化タングステン、三酸化タングステンなどが挙げられる。
焼結促進助剤の添加量は、添加金属元素換算で該複合酸化物中のMn1モルに対して0.0001〜0.05モルの範囲内が好ましい。添加金属元素換算での添加量が、0.0001モル未満では焼結収縮効果がないし、0.05モルを越えると活物質の初期容量が小さくなりすぎるからである。好ましいのは、0.005〜0.03モルである。
For example, Bi compounds include bismuth trioxide, bismuth nitrate, bismuth benzoate, bismuth oxyacetate, bismuth oxycarbonate, bismuth citrate, bismuth hydroxide, and the like. Examples of the B compound include boron trioxide, boron carbide, boron nitride, and boric acid. Examples of the W compound include tungsten dioxide and tungsten trioxide.
The addition amount of the sintering accelerating aid is preferably in the range of 0.0001 to 0.05 mol with respect to 1 mol of Mn in the composite oxide in terms of added metal element. This is because there is no sintering shrinkage effect if the amount added in terms of added metal element is less than 0.0001 mol, and the initial capacity of the active material becomes too small if it exceeds 0.05 mol. Preference is given to 0.005 to 0.03 mol.

焼結促進助剤は粉末状態でも溶媒に溶解した液体状態で使用しても構わない。粉末状態で添加する場合、焼結促進助剤の平均粒子径は50μm以下が好ましく、さらに好ましくは10μm以下であり、さらに好ましくは3μm以下である。焼結促進助剤は造粒/焼結前に添加した方が好ましいが、造粒後焼結促進助剤が溶融できる温度下で造粒物に含浸させ、焼結させても構わない。  The sintering promoting aid may be used in a powder state or in a liquid state dissolved in a solvent. When added in a powder state, the average particle diameter of the sintering accelerator aid is preferably 50 μm or less, more preferably 10 μm or less, and further preferably 3 μm or less. Although it is preferable to add the sintering promoting aid before granulation / sintering, the granulated product may be impregnated and sintered at a temperature at which the sintering promoting aid can be melted after granulation.

次に造粒方法について説明する。
造粒方法としては、前記焼結促進助剤を使用して噴霧造粒方法、流動造粒方法、圧縮造粒方法、撹拌造粒方法などが挙げられ、また媒体流動乾燥や媒体振動乾燥などの併用をしてもよい。撹拌造粒と圧縮造粒は、二次粒子の密度が高くなるので、また噴霧造粒は造粒粒子形状が真球状となるので特に好ましい。撹拌造粒器の例としては、パウレック(株)社製バーチィカルグラニュレーターや不二パウダル(株)社製スパルタンリューザーなどが挙げられ、圧縮造粒器の例としては、栗本鉄工(株)製ローラーコンパクターMRCP−200型などが挙げられる。噴霧造粒器の例としては、アシザワニロアトマイザー(株)モービルマイナー型スプレードライヤーなどが挙げられる。
Next, the granulation method will be described.
Examples of the granulation method include spray granulation method, fluidized granulation method, compression granulation method, stirring granulation method and the like using the above-mentioned sintering acceleration aid, and also include medium fluidized drying and medium vibration drying. You may use together. Agitation granulation and compression granulation are particularly preferred because the density of secondary particles is increased, and spray granulation is particularly preferred because the granulated particle shape is a perfect sphere. Examples of the agitating granulator include a vertical granulator manufactured by Paulek Co., Ltd. and a Spartan Luther manufactured by Fuji Paudal Co., Ltd. Examples of the compression granulator include Kurimoto Tekko Co., Ltd. Examples thereof include a roller compactor MRCP-200 type. As an example of a spray granulator, Ashizawairo atomizer Co., Ltd. Mobile minor type spray dryer etc. are mentioned.

本発明において、正極に使用される造粒した粒子のサイズには特に制約はない。造粒した粒子の平均粒子径が大きすぎる場合には、造粒直後または焼結後に軽く解砕・粉砕し分級・整粒し希望する粒度にすればよい。造粒効率を高めるためには、有機物系の造粒助剤を添加してもよい。造粒助剤としては、アクリル系樹脂、イソブチレンと無水マレイン酸との共重合体、ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリドン、ハイドロキシプロピルセルロース、メチルセルロース、コーンスターチ、ゼラチン、リグニンなどが挙げられる。
造粒助剤の添加量としては、リチウム、マンガン及び酸素を主体とするスピネル構造を有する複合酸化物及び焼結促進助剤100重量部に対して5重量部以下が好ましく、さらに好ましくは2重量部以下である。
In the present invention, the size of the granulated particles used for the positive electrode is not particularly limited. When the average particle size of the granulated particles is too large, it may be crushed and pulverized lightly immediately after granulation or after sintering, and classified and sized to obtain the desired particle size. In order to increase the granulation efficiency, an organic granulation aid may be added. Examples of the granulation aid include acrylic resins, copolymers of isobutylene and maleic anhydride, polyvinyl alcohol, polyethylene glycol, polyvinyl pyrrolidone, hydroxypropyl cellulose, methyl cellulose, corn starch, gelatin, and lignin.
The addition amount of the granulating aid is preferably 5 parts by weight or less, more preferably 2 parts by weight with respect to 100 parts by weight of the composite oxide having a spinel structure mainly composed of lithium, manganese and oxygen and the sintering promoting aid. Or less.

次に造粒した粒子の焼成方法について説明する。
造粒した粒子の脱脂方法は、大気中または酸素を含有するガス雰囲気中で300℃から550℃の温度範囲で10分以上保持することにより行う。脱脂した造粒物のカーボン残留量としては0.1%以下であることが好ましい。脱脂後の造粒粒子は、大気または酸素を含有する雰囲気中で550℃〜900℃の温度範囲で1分以上保持することにより焼結させる。
また、前述の有機物系の造粒助剤を使用しない造粒物の粒子の焼成も、大気中または酸素を含有するガス雰囲気中で同様に焼結収縮させ、二次粒子の緻密化をはかることができる。
Next, a method for firing the granulated particles will be described.
The granulated particles are degreased by holding them in the air or in a gas atmosphere containing oxygen at a temperature range of 300 ° C. to 550 ° C. for 10 minutes or more. The carbon residue in the defatted granulated product is preferably 0.1% or less. The granulated particles after degreasing are sintered by being held for 1 minute or more in a temperature range of 550 ° C. to 900 ° C. in an atmosphere containing air or oxygen.
In addition, the firing of the granulated particles without using the above-mentioned organic-based granulation aids is similarly performed in the air or in a gas atmosphere containing oxygen to sinter and shrink, thereby densifying the secondary particles. Can do.

このようにして製造された造粒品(二次粒子も含む)または前記1次粒子の表層に、β型MnO相を有する複合酸化物を正極活物質に使用した場合、該非水二次電池の初期放電容量が大きく、60℃の環境下で充放電を繰り返しても放電容量の低下が少ない特徴を有し、β型MnO相の表層厚みは、例えば、造粒した2次粒子が20μmの場合0.02μm〜0.22μm、好ましくは0.05μm〜0.08μmの範囲で形成されたものが好ましい。In the case where a granulated product thus produced (including secondary particles) or a composite oxide having a β-type MnO 2 phase is used as the positive electrode active material on the surface layer of the primary particles, the non-aqueous secondary battery The initial discharge capacity is large, and even when charging / discharging is repeated in an environment of 60 ° C., the discharge capacity is hardly reduced. The surface layer thickness of the β-type MnO 2 phase is, for example, 20 μm of granulated secondary particles. In this case, a film formed in the range of 0.02 μm to 0.22 μm, preferably 0.05 μm to 0.08 μm is preferable.

本発明の正極活物質の製造方法では、該スピネル構造を有する複合酸化物表面のλ-MnOを200℃以上、400℃未満の温度で熱処理することにより、電池充放電に対して安定なβ-MnOに変換させることが特徴であり、熱処理温度が200℃未満では、λ-MnOからβ−MnOへの変化が起こりにくく、400℃以上では該スピネル構造複合酸化物のリチウムが表面に拡散してしまい、該スピネル構造複合酸化物表面を安定化できない。Liが表面に拡散したか否かは、200℃以上、400℃未満で熱処理した時の格子定数よりも格子定数が大きくなることで判別できる。熱処理時間は少なくとも5分以上実施すればよい。In the method for producing a positive electrode active material of the present invention, β-MnO 2 on the surface of the composite oxide having the spinel structure is heat-treated at a temperature of 200 ° C. or more and less than 400 ° C. -MnO 2 is characterized in that when the heat treatment temperature is less than 200 ° C., the change from λ-MnO 2 to β-MnO 2 hardly occurs, and at 400 ° C. or more, the lithium of the spinel structure composite oxide is on the surface. And the spinel structure composite oxide surface cannot be stabilized. Whether or not Li has diffused on the surface can be determined by the fact that the lattice constant becomes larger than the lattice constant when heat-treated at 200 ° C. or higher and lower than 400 ° C. The heat treatment time may be at least 5 minutes.

また、本発明において、リチウム、マンガン及び酸素を主体とするスピネル構造の複合酸化物に酸処理をすることにより、30Å〜400Åの範囲の細孔をもつ粒子に改質することができる。このような細孔状態を有する前記複合酸化物を正極活物質に使用することにより、充放電の際の正極活物質表面の局部的な電流密度を小さくでき、サイクル特性が極めて向上するものと考えられる。
一般的に優れた電池特性を得るためには、正極活物質の副反応を抑制する必要から、比表面積が小さい(1m/g以下)正極活物質の方が望ましいと言われている。しかながら、驚くべきことに本発明の正極活物質の比表面積は、1.5m/g以上と大きいにも関わらず、従来になく優れた電池特性が得られる。
In the present invention, the composite oxide having a spinel structure mainly composed of lithium, manganese, and oxygen can be modified to particles having pores in the range of 30 to 400% by acid treatment. By using the composite oxide having such a pore state as the positive electrode active material, it is considered that the local current density on the surface of the positive electrode active material during charging and discharging can be reduced, and the cycle characteristics are greatly improved. It is done.
In general, in order to obtain excellent battery characteristics, it is said that a positive electrode active material having a small specific surface area (1 m 2 / g or less) is desirable because it is necessary to suppress side reactions of the positive electrode active material. However, surprisingly, although the specific surface area of the positive electrode active material of the present invention is as large as 1.5 m 2 / g or more, superior battery characteristics can be obtained compared to the conventional one.

次に、本発明の前記正極活物質を非水二次電池の正極材料として使用する方法を説明する。
正極材料は、前記正極活物質とカーボンブラック又は黒鉛などの導電性付与剤、及びポリフツ化ビニリデンなどのバインダー(結合材)を溶解した溶液(例えば、N−メチルピロリドンなど)を所定割合で混練して電極ペーストとして集電体に塗布し、次いで乾燥後にロールプレスなどで加圧して製造する。集電体には、アルミニウム、ステンレス、チタン等の公知な金属製集電体が使用される。
Next, a method for using the positive electrode active material of the present invention as a positive electrode material for a non-aqueous secondary battery will be described.
The positive electrode material is a mixture of the positive electrode active material, a conductivity imparting agent such as carbon black or graphite, and a binder (binding material) such as polyvinylidene fluoride dissolved in a predetermined ratio (for example, N-methylpyrrolidone). The electrode paste is applied to the current collector, and then dried and pressed by a roll press or the like. As the current collector, a known metal current collector such as aluminum, stainless steel or titanium is used.

本発明の非水二次電池において使用される電解液中の電解質塩としては、フッ素を含有する公知なリチウム塩が使用できる。例えば、LiPF、LiBF、LiN(CFSO、LiAsF、LiCFSO、LiCSOなどが使用できる。非水二次電池の電解液は、前記フッ素を含有する公知なリチウム塩の少なくとも1種の電解質を非水系電解液に溶解して用いる。前記非水系電解液の非水溶媒には、化学的及び電気化学的に安定で非プロトン性であれば限定されず使用できる。例えば、炭酸ジメチル、炭酸プロピレン、炭酸エチレン、炭酸メチルエチル、炭酸メチルプロピル、炭酸メチルイソプロピル、炭酸メチルブチル、炭酸ジエチル、炭酸エチルプロピル、炭酸ジイソプロピル、炭酸ジブチル、炭酸1,2−ブチレン、炭酸エチルイソプロピル、炭酸エチルブチル等の炭酸エステル類が例示される。また、トリエチレングリコールメチルエーテル、テトラエチレングリコールジメチルエーテル等のオリゴエーテル類、プロピオン酸メチル、蟻酸メチル等の脂肪族エステル類、ベンゾニトリル、トルニトリル等の芳香族ニトリル類、ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、γ−ブチロラクトン等のラクトン類、スルホラン等の硫黄化合物、N−ビニルピロリドン、N−メチルピロリドン、リン酸エステル類等も例示できる。なかでも、本発明では炭酸エステル類、脂肪族エステル類、エーテル類が好ましい。As an electrolyte salt in the electrolytic solution used in the nonaqueous secondary battery of the present invention, a known lithium salt containing fluorine can be used. For example, LiPF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 can be used. The electrolyte solution of the non-aqueous secondary battery is used by dissolving at least one electrolyte of a known lithium salt containing fluorine in a non-aqueous electrolyte solution. The non-aqueous solvent of the non-aqueous electrolyte solution can be used without limitation as long as it is chemically and electrochemically stable and aprotic. For example, dimethyl carbonate, propylene carbonate, ethylene carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, diethyl carbonate, ethyl propyl carbonate, diisopropyl carbonate, dibutyl carbonate, 1,2-butylene carbonate, ethyl isopropyl carbonate, Examples thereof include carbonates such as ethylbutyl carbonate. Also, oligoethers such as triethylene glycol methyl ether and tetraethylene glycol dimethyl ether, aliphatic esters such as methyl propionate and methyl formate, aromatic nitriles such as benzonitrile and tolunitrile, amides such as dimethylformamide, dimethyl Examples include sulfoxides such as sulfoxide, lactones such as γ-butyrolactone, sulfur compounds such as sulfolane, N-vinylpyrrolidone, N-methylpyrrolidone, and phosphate esters. Of these, in the present invention, carbonates, aliphatic esters and ethers are preferred.

本発明の非水二次電池において使用される負極には、リチウムイオンを可逆的に吸蔵放出可能な材料であれば特に制限はなく、例えば、リチウム金属、リチウム合金、炭素材料(黒鉛を含む)、金属カルコゲン等が使用できる。
次に、電極特性の評価方法について説明する。
正極活物質、導電材としてキャボット製バルカンXC−72、結着剤として四フッ化エチレン樹脂を重量比で、50:34:16の割合で混合し、その混合物をトルエンで12時間膨潤する。膨潤した混合物をアルミニウムエキスバンドメタルからなる集電体上に塗り、2t/cmで加圧成形し、トルエンを乾燥して正極とする。一方、負極としては、リチウム箔を用いる。電解液としては、炭酸プロピレンと炭酸ジメチルを体積比で1対2の割合で混合した混合液にLiPFを1モル/リットルの濃度で溶解したものを用いる。セパレーターとしては、ポリプロピレン製のものを用い、負極のデンドライト生成が原因のマイクロショートを防止する目的で、補強材としてアドバンテック東洋(株)製のシリカ繊維濾紙QR−100も併用する。これら正極、負極、電解液、セパレーターと補強材を用いて、2016型コイン電池を作製し、60℃に設定した恒温槽内で500回の充電・放電サイクル試験を行う。測定条件は、定電流定電圧充電−定電流放電、充電及び放電レート1C(充電開始から2.5時間で充電休止)、走査電庄3.1V〜4.3Vである。
The negative electrode used in the nonaqueous secondary battery of the present invention is not particularly limited as long as it is a material capable of reversibly occluding and releasing lithium ions. For example, lithium metal, lithium alloy, carbon material (including graphite) Metal chalcogen etc. can be used.
Next, a method for evaluating electrode characteristics will be described.
A positive electrode active material, a Cabot Vulcan XC-72 as a conductive material, and a tetrafluoroethylene resin as a binder are mixed at a weight ratio of 50:34:16, and the mixture is swollen with toluene for 12 hours. The swollen mixture is applied onto a current collector made of aluminum expanded metal, and pressure-molded at 2 t / cm 2 , and toluene is dried to form a positive electrode. On the other hand, lithium foil is used as the negative electrode. As the electrolytic solution, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / liter in a mixed solution in which propylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1: 2 is used. A separator made of polypropylene is used, and silica fiber filter paper QR-100 manufactured by Advantech Toyo Co., Ltd. is also used as a reinforcing material for the purpose of preventing micro shorts caused by dendrite formation of the negative electrode. Using these positive electrode, negative electrode, electrolytic solution, separator and reinforcing material, a 2016 coin battery is prepared and subjected to 500 charge / discharge cycle tests in a thermostat set at 60 ° C. The measurement conditions are constant current constant voltage charge-constant current discharge, charge and discharge rate 1C (charge suspend in 2.5 hours from the start of charge), and scanning voltage 3.1V to 4.3V.

以下の実施例及び比較例において、本発明の正極活物質及びそれを用いた非水二次電池を具体的に説明するが、本発明はこれらにより何ら制限されるものではない。
本発明の正極活物質の細孔分布測定に関し、400Å以下の細孔の測定には以下の方法を採用した。すなわち、測定装置にはカルロエルバ製2000WS(Porosimeter)を使用し、測定の前処理として正極活物質と水銀を1時間真空保持した後、2000barまで40分間で圧入して正極活物質の細孔を測定した。
正極活物質の構造確認は、X線回折法により以下の条件で測定して決定した。X線源;CuKα、出力;50kV、180mA、スリット;1/2−1/2−0.15mm、測定法;2θ/θ法、測定範囲;20〜90°、スキャン速度5°/min。
In the following examples and comparative examples, the positive electrode active material of the present invention and the non-aqueous secondary battery using the same will be specifically described, but the present invention is not limited to these.
Regarding the pore distribution measurement of the positive electrode active material of the present invention, the following method was adopted for the measurement of pores of 400 mm or less. In other words, CarloWS made by Carlo Elba (Porosimeter) was used as the measuring device, and the positive electrode active material and mercury were held in vacuum for 1 hour as a pretreatment for measurement, and then pressed into 2000 bar for 40 minutes to measure the pores of the positive electrode active material. did.
The structure confirmation of the positive electrode active material was determined by measuring under the following conditions by the X-ray diffraction method. X-ray source: CuKα, output: 50 kV, 180 mA, slit: 1 / 2-1 / 2-0.15 mm, measurement method: 2θ / θ method, measurement range: 20 to 90 °, scan speed 5 ° / min.

(実施例1)
Li/Mn/Alのモル比が1.02:1.967:0.013の組成となるように炭酸マンガンと炭酸リチウムと水酸化アルミニウムをボールミルで混合し、大気雰囲気中650℃で4時間反応させ、再度ボールミルで混合し、大気雰囲気中750℃で20時間焼成して、平均1次粒子径が0.5μm、比表面積4.2m/gのリチウム、マンガン及び酸素を主体とするスピネル構造複合酸化物の粒子を得た。得られたスピネル構造複合酸化物粒子を該複合酸化物に対して5モル%の硝酸を含有する水溶液に投入し、水溶液のpHが中性付近で一定(pH=5)になったことを確認後、濾過・洗浄して100℃で真空乾燥した。そして、300℃で4時間加熱処理し、本発明の正極活物質を得た。ここで得られた正極活物質をX線回折法により測定したところ、未処理のものにはないβ−MnO由来のX線ピークが2θ=30°付近に検出された。
Example 1
Manganese carbonate, lithium carbonate, and aluminum hydroxide were mixed with a ball mill so that the molar ratio of Li / Mn / Al was 1.02: 1.967: 0.013, and the reaction was performed at 650 ° C. for 4 hours in an air atmosphere. Spinel structure mainly composed of lithium, manganese and oxygen having an average primary particle size of 0.5 μm and a specific surface area of 4.2 m 2 / g, mixed again by a ball mill and fired at 750 ° C. for 20 hours in an air atmosphere. Composite oxide particles were obtained. The obtained spinel structure composite oxide particles were put into an aqueous solution containing 5 mol% nitric acid with respect to the composite oxide, and it was confirmed that the pH of the aqueous solution became constant (pH = 5) near neutrality. Then, it filtered and wash | cleaned and vacuum-dried at 100 degreeC. And it heat-processed at 300 degreeC for 4 hours, and obtained the positive electrode active material of this invention. When the positive electrode active material obtained here was measured by an X-ray diffraction method, an X-ray peak derived from β-MnO 2 not found in an untreated material was detected in the vicinity of 2θ = 30 °.

次に、この正極活物質と、導電材としてキャボット製バルカンXC−72、結着剤として四フッ化エチレン樹脂をその重量比が50:34:16の割合に混合して常法により正極集電体上に塗布して正極を作製した。そして正極、リチウム負極、炭酸プロピレンと炭酸ジメチルを体積比で1対2の割合で混合した混合液に、LiPFを1モル/リットルの濃度で溶解した電解液、ポリプロピレン製のセパレーターとシリカ繊維系を含んだ補強材を重ねて、2016型コイン型の非水二次電池を作製した。
次に、60℃に設定した恒温槽内で500回の充電・放電サイクル試験を行った。測定条件は、定電流定電圧充電−定電流放電、充電及び放電レート1C(充電開始から2.5時間で充電休止)、走査電圧3.1V〜4.3Vとした。
結果の詳細を表1に示す。
Next, this positive electrode active material, Cabot Vulcan XC-72 as a conductive material, and tetrafluoroethylene resin as a binder are mixed at a weight ratio of 50:34:16, and positive electrode current collection is performed by a conventional method. The positive electrode was produced by applying on the body. Then, a positive electrode, a lithium negative electrode, an electrolytic solution in which LiPF 6 is dissolved at a concentration of 1 mol / liter in a mixed solution in which propylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1 to 2, a polypropylene separator and a silica fiber system A 2016-type coin-type non-aqueous secondary battery was manufactured by stacking reinforcing materials including the.
Next, 500 charge / discharge cycle tests were performed in a thermostat set to 60 ° C. The measurement conditions were constant current constant voltage charge-constant current discharge, charge and discharge rate 1C (charge suspend in 2.5 hours from the start of charge), and scan voltage 3.1V to 4.3V.
Details of the results are shown in Table 1.

(実施例2)
Li/Mn/Alのモル比が0.968:1.935:0.097の組成となるように炭酸マンガンと炭酸リチウムと水酸化アルミニウムをボールミルで混合したこと以外、実施例1と同様に実施し、電池評価の結果を表1に示す。
(実施例3)
10モル%の硝酸を含有する水溶液で酸処理を行ったこと以外、実施例2と同様に実施し、電池評価の結果を表1に示す。
(Example 2)
Implemented in the same manner as in Example 1 except that manganese carbonate, lithium carbonate, and aluminum hydroxide were mixed by a ball mill so that the molar ratio of Li / Mn / Al was 0.968: 1.935: 0.097. The results of battery evaluation are shown in Table 1.
(Example 3)
The results of battery evaluation are shown in Table 1 in the same manner as in Example 2 except that acid treatment was performed with an aqueous solution containing 10 mol% nitric acid.

(実施例4)
Li/Mnモル比が0.51の組成となるように炭酸マンガンと炭酸リチウムをボールミルで混合し、大気雰囲気中650℃で4時間保持して反応させた。得られた反応物をエタノール溶媒に分散して湿式ボールミルで粉砕して、平均粒子径を0.5μmにした。この粉砕粉に、Bi/Mnのモル比が0.0026の割合となるように平均粒子径が2μmの酸化ビスマスを添加混合して、不二パウダル(株)社製スパルタンリューザーRMO−6Hで造粒した。粉砕した反応物と酸化ビスマスの混合粉100重量部に対して造粒助剤としてポリビニルアルコール1.5重量部を水溶液に溶かして添加し、16分間造粒した。得られた造粒物をミキサーで軽く解砕・粉砕し、風力分級機で平均粒子径20μmに整粒した。整粒した造粒物を大気中500℃で2時間保持して脱脂処理(ポリビニルアルコールを分解)後、大気雰囲気中750℃で20時間焼成して、比表面積1.6m2/gの複合酸化物を得た。以下の操作は、得られたスピネル構造複合酸化物を該複合酸化物に対して2モル%の硝酸を含有する水溶液に投入して酸処理したこと以外、実施例1と同様に行ない、電池評価の結果を表1に示す。
Example 4
Manganese carbonate and lithium carbonate were mixed with a ball mill so that the Li / Mn molar ratio was 0.51, and the reaction was carried out in an air atmosphere at 650 ° C. for 4 hours. The obtained reaction product was dispersed in an ethanol solvent and pulverized with a wet ball mill to make the average particle size 0.5 μm. To this pulverized powder, bismuth oxide having an average particle diameter of 2 μm was added and mixed so that the Bi / Mn molar ratio was 0.0026, and the mixture was mixed with Fuji Powder Co., Ltd. Spartan Luzer RMO-6H. Granulated. As a granulation aid, 1.5 parts by weight of polyvinyl alcohol was dissolved in an aqueous solution and added to 100 parts by weight of the mixed powder of pulverized reactant and bismuth oxide, and granulated for 16 minutes. The obtained granulated material was lightly crushed and pulverized with a mixer, and sized with an air classifier to an average particle size of 20 μm. The sized granulated product is kept in the atmosphere at 500 ° C. for 2 hours, degreased (polyvinyl alcohol is decomposed), and then baked in the atmosphere at 750 ° C. for 20 hours to obtain a composite oxidation with a specific surface area of 1.6 m 2 / g. I got a thing. The following operation was performed in the same manner as in Example 1 except that the obtained spinel structure composite oxide was acid-treated by adding it to an aqueous solution containing 2 mol% nitric acid with respect to the composite oxide. The results are shown in Table 1.

(実施例5)
5モル%の硝酸を含有する水溶液で酸処理を行ったこと以外、実施例4と同様に行ない、電池評価の結果を表1に示す。
(Example 5)
The results of battery evaluation are shown in Table 1 in the same manner as in Example 4 except that acid treatment was performed with an aqueous solution containing 5 mol% nitric acid.

(実施例6)
Li/Mn/Alのモル比が1.02:1.967:0.013の組成となるように炭酸リチウムと炭酸マンガンと気相法アルミナをボールミルで混合し、大気中650℃で4時間反応させた。得られた反応粉に酸化硼素0.8質量%を添加して、水を分散媒にボールミルで湿式粉砕して、平均粒子径0.3μmにした。スラリーを乾燥した後、不二パウダル(株)社製スパルタンリューザーRMO−6Hで造粒した。該粉砕粉に造粒バインダーとして水溶液としたポリビニルアルコールを1.5質量%添加して造粒した。得られた造粒粉をミキサーで軽く粉砕・解砕し、風力分級で20μmに整粒した。整粒した造粒粉を大気中500℃で2時間保持して脱脂処理後、750℃で30分焼成して、1.4m/gの複合酸化物を得た。
(Example 6)
Lithium carbonate, manganese carbonate and vapor phase alumina were mixed with a ball mill so that the molar ratio of Li / Mn / Al was 1.02: 1.967: 0.013, and the reaction was carried out at 650 ° C. for 4 hours in the atmosphere. I let you. Boron oxide (0.8% by mass) was added to the resulting reaction powder, and wet pulverized with a ball mill using water as a dispersion medium to an average particle size of 0.3 μm. After drying the slurry, the slurry was granulated with a Spartan Luser RMO-6H manufactured by Fuji Powder Corporation. The pulverized powder was granulated by adding 1.5% by weight of polyvinyl alcohol as an aqueous solution as a granulating binder. The obtained granulated powder was lightly pulverized and pulverized with a mixer and sized to 20 μm by air classification. The sized granulated powder was kept in the atmosphere at 500 ° C. for 2 hours, degreased, and then baked at 750 ° C. for 30 minutes to obtain a composite oxide of 1.4 m 2 / g.

得られた複合酸化物に純水を添加して固形分濃度20%のスラリーとし、5分間超音波処理し、上澄み液を除去するまでの工程を10回繰り返して洗浄し、乾燥した。100℃で乾燥後、実施例1と同様に酸処理と熱処理を行って、本発明の正極活物質を得た。得られた正極活物質の細孔を測定したところ、未処理品には存在しない50〜320Åの細孔が生成していることが分かった。また、得られた正極活物質をX線回折法により以下の条件で測定したところ、未処理のものにはないβ−MnO由来のX線ピークが2θ=30°付近に検出された。
得られた正極活物質を実施例1に記載の方法と同様にして電池評価を実施し、その結果を表1に示す。
Pure water was added to the obtained composite oxide to form a slurry with a solid content concentration of 20%, ultrasonic treatment was performed for 5 minutes, and the process up to removing the supernatant was repeated 10 times for washing and drying. After drying at 100 ° C., acid treatment and heat treatment were performed in the same manner as in Example 1 to obtain the positive electrode active material of the present invention. When the pores of the obtained positive electrode active material were measured, it was found that 50 to 320 mm pores not present in the untreated product were generated. Further, when the obtained positive electrode active material was measured by the X-ray diffraction method under the following conditions, an X-ray peak derived from β-MnO 2 not found in the untreated material was detected in the vicinity of 2θ = 30 °.
The obtained positive electrode active material was subjected to battery evaluation in the same manner as described in Example 1, and the results are shown in Table 1.

(比較例1)
酸処理及び加熱処理を実施しなかったこと以外、実施例1と同様に行ない、電池評価の結果を表1に示す。
(比較例2)
酸処理後、150℃で4時間熱処理を行ったこと以外、実施例1と同様に行ない、電池評価の結果を表1に示す。
(比較例3)
酸処理後、400℃で4時間熱処理を行ったこと以外、実施例1と同様に行ない、電池評価の結果を表1に示す。300℃で4時間熱処理を行った、実施例1で製造された化合物の格子定数が8.231Åであったのに対し、ここで得られた化合物の格子定数は8.235Åと大きくなっていた。
(Comparative Example 1)
Except that the acid treatment and the heat treatment were not performed, the same procedure as in Example 1 was performed, and the results of battery evaluation are shown in Table 1.
(Comparative Example 2)
Table 1 shows the results of battery evaluation performed in the same manner as in Example 1 except that heat treatment was performed at 150 ° C. for 4 hours after the acid treatment.
(Comparative Example 3)
Table 1 shows the results of battery evaluation performed in the same manner as in Example 1 except that heat treatment was performed at 400 ° C. for 4 hours after the acid treatment. The lattice constant of the compound produced in Example 1, which was heat treated at 300 ° C. for 4 hours, was 8.231 、, whereas the lattice constant of the compound obtained here was as large as 8.235 Å. .

(比較例4)
15モル%の硝酸を含有する水溶液で酸処理を行ったこと以外、実施例4と同様に行ない、電池評価の結果を表1に示す。
(比較例5)
水洗及び酸処理以下の工程を実施しなかったこと以外実施例6と同様に行った。得られた正極活物質を調べたところ、400Å以下の細孔は存在せず、β−MnO由来のX線ピークも検出されなかった。得られた正極活物質を実施例1に記載の方法と同様にして電池評価を実施し、その結果を表1に示す。
(Comparative Example 4)
Table 1 shows the results of battery evaluation performed in the same manner as in Example 4 except that acid treatment was performed with an aqueous solution containing 15 mol% nitric acid.
(Comparative Example 5)
Washing and acid treatment The same steps as in Example 6 were performed except that the following steps were not performed. When the obtained positive electrode active material was examined, pores of 400 mm or less did not exist, and no X-ray peak derived from β-MnO 2 was detected. The obtained positive electrode active material was subjected to battery evaluation in the same manner as described in Example 1, and the results are shown in Table 1.

Figure 0005226917
Figure 0005226917

発明の効果Effect of the invention

本発明の正極活物質は、リチウムを活物質とする負極と、非水系電解質と、リチウム、マンガン及び酸素を含む複合酸化物を活物質とする正極を備えた非水二次電池において、これを正極活物質に使用することにより、従来品では不可能であった、60℃環境下で充放電を500回繰り返した時の放電容量が95mAh/g以上に維持できる、極めて優れた電池特性を提供することができる。
本発明の正極活物質は、リチウム、マンガン及び酸素を主体とするスピネル構造の複合酸化物の表面を酸処理し、特定の温度範囲内で熱処理して該スピネル構造複合酸化物の表面をβ-MnOに変換させて使用することにより、60℃環境下での充放電に対して優れた格別な改善効果を示すものである。
The positive electrode active material of the present invention is a nonaqueous secondary battery including a negative electrode using lithium as an active material, a nonaqueous electrolyte, and a positive electrode using a composite oxide containing lithium, manganese, and oxygen as an active material. By using it as a positive electrode active material, it provides extremely excellent battery characteristics that can be maintained at a discharge capacity of 95 mAh / g or more when charging and discharging are repeated 500 times in an environment of 60 ° C., which was impossible with conventional products. can do.
The positive electrode active material of the present invention is obtained by acid-treating the surface of a spinel structure composite oxide mainly composed of lithium, manganese, and oxygen, and heat-treating the surface of the spinel structure composite oxide within a specific temperature range. By converting it to MnO 2 and using it, it shows an exceptional improvement effect that is excellent with respect to charge and discharge in a 60 ° C. environment.

また、本発明において、リチウム、マンガン及び酸素を主体とするスピネル型複合酸化物の正極活物質に酸処理をすることにより、30Å〜400Åの範囲の細孔をもつ正極活物質(粒子)に改質することができる。このような細孔状態を有する前記複合酸化物を非水二次電池の正極活物質に使用することにより、充放電の際の正極活物質表面の局部的な電流密度を小さくでき、サイクル特性が極めて向上するものと考えられる。  Further, in the present invention, the positive electrode active material (particles) having pores in the range of 30 to 400 mm is obtained by acid treatment of the positive electrode active material of spinel composite oxide mainly composed of lithium, manganese and oxygen. Can be quality. By using the composite oxide having such a pore state as a positive electrode active material of a non-aqueous secondary battery, the local current density on the surface of the positive electrode active material during charge / discharge can be reduced, and cycle characteristics can be reduced. This is considered to be extremely improved.

Claims (10)

リチウムとマンガンと酸素とを主体として含むスピネル構造を有する部分、および
実質的にβ型MnO2からなる表面層
を有する複合酸化物の粒状物からなる正極活物質であって、
前記複合酸化物の粒状物は一次粒子径が0.1μm〜1.0μmである、
正極活物質。
A positive electrode active material comprising a part having a spinel structure mainly comprising lithium, manganese and oxygen , and a composite oxide particulate material having a surface layer substantially comprising β-type MnO 2 ,
The composite oxide granular material has a primary particle diameter of 0.1 μm to 1.0 μm.
Positive electrode active material.
前記複合酸化物中のβ型MnO2の量が1〜13モル%である請求項1に記載の正極活
物質。
The positive electrode active material according to claim 1, wherein the amount of β-type MnO 2 in the composite oxide is 1 to 13 mol%.
リチウムとマンガンと酸素とを主体として含むスピネル構造を有する部分が、
LiMn24、または
Li1+xMn2-x-yy4
(但し、Mは、Cr、Co、Al、Ni、FeまたはMgを示す。また、−0.1<x≦
0.2、0<y≦0.2である。)
で表わされる化合物を含む請求項1または2に記載の正極活物質。
A portion having a spinel structure mainly containing lithium, manganese, and oxygen,
LiMn 2 O 4 or Li 1 + x Mn 2-xy M y O 4,
(However, M represents Cr, Co, Al, Ni, Fe or Mg. Further, −0.1 <x ≦
0.2 and 0 <y ≦ 0.2. )
The positive electrode active material of Claim 1 or 2 containing the compound represented by these .
前記複合酸化物の粒状物は一次粒子径が0.2μm〜0.5μmである請求項1〜3の
いずれか1項に記載の正極活物質。
4. The positive electrode active material according to claim 1, wherein the composite oxide granular material has a primary particle diameter of 0.2 μm to 0.5 μm .
前記複合酸化物の粒状物は一次粒子を粒子径3μm〜50μmに造粒したものである請
求項4に記載の正極活物質。
The positive electrode active material according to claim 4, wherein the composite oxide granular material is obtained by granulating primary particles to a particle diameter of 3 μm to 50 μm.
前記複合酸化物の粒状物は30Å〜400Åの範囲の細孔を有する請求項1〜5のいず
れか1項に記載の正極活物質。
6. The positive electrode active material according to claim 1, wherein the composite oxide granular material has pores in a range of 30 to 400 μm.
請求項1〜6のいずれか1項に記載の正極活物質を含んでなる電極用ペースト。
The paste for electrodes which contains the positive electrode active material of any one of Claims 1-6.
請求項1〜6のいずれか1項に記載の正極活物質を含んでなる正極。
A positive electrode comprising the positive electrode active material according to claim 1.
リチウムとマンガンと酸素とを主体として含むスピネル構造複合酸化物を酸処理し、
次いで200℃以上400℃未満の温度範囲で熱処理することを含む、請求項1〜6のい
ずれか1項に記載の正極活物質の製造方法。
Acid treatment of a composite oxide having a spinel structure mainly containing lithium, manganese, and oxygen;
Then, the manufacturing method of the positive electrode active material of any one of Claims 1-6 including heat-processing in the temperature range of 200 to 400 degreeC.
リチウムイオンを可逆的に吸蔵放出可能な材料からなる負極と、非水系電解質と、請求
項8に記載の正極とを備えた非水二次電池。
A nonaqueous secondary battery comprising a negative electrode made of a material capable of reversibly occluding and releasing lithium ions, a nonaqueous electrolyte, and the positive electrode according to claim 8.
JP2001013642A 2000-01-21 2001-01-22 Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same Expired - Fee Related JP5226917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001013642A JP5226917B2 (en) 2000-01-21 2001-01-22 Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000017811 2000-01-21
JP2000-17811 2000-01-21
JP2000017811 2000-01-21
JP2001013642A JP5226917B2 (en) 2000-01-21 2001-01-22 Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2001273900A JP2001273900A (en) 2001-10-05
JP5226917B2 true JP5226917B2 (en) 2013-07-03

Family

ID=26584223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001013642A Expired - Fee Related JP5226917B2 (en) 2000-01-21 2001-01-22 Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5226917B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100440487B1 (en) * 2001-12-17 2004-07-14 주식회사 엘지화학 Positive active plate for rechargeable lithium battery and rechargeable lithium battery comprising thereof
KR100432649B1 (en) * 2002-01-17 2004-05-22 삼성에스디아이 주식회사 A positive active material for a lithium secondary battery and a lithium secondary battery comprising the same
JP2004339028A (en) * 2003-05-16 2004-12-02 Rikogaku Shinkokai Production method for fired body particle, and production plant for fired body particle
JP3742646B1 (en) 2004-06-22 2006-02-08 三井金属鉱業株式会社 Cathode active material for lithium batteries
JP2006012426A (en) * 2004-06-22 2006-01-12 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5095088B2 (en) * 2004-09-03 2012-12-12 パナソニック株式会社 Lithium primary battery
CN100527480C (en) * 2005-10-27 2009-08-12 比亚迪股份有限公司 Preparation method of plus plate material Li-Ni-Mn-Co-O of lithium ion battery
WO2010150626A1 (en) * 2009-06-25 2010-12-29 日本碍子株式会社 Method for producing spinel type lithium manganate and method for producing positive electrode active material for lithium secondary battery
CN102714313A (en) * 2010-01-08 2012-10-03 三菱化学株式会社 Powder for positive electrode material for lithium secondary battery and process for production thereof, and positive electrode for lithium secondary battery and lithium secondary battery each utilizing the powder
KR101272042B1 (en) * 2010-11-08 2013-06-07 주식회사 포스코이에스엠 Lithuium manganese complex oxide and the manufacturing method thereof
JP2016056072A (en) * 2014-09-11 2016-04-21 旭化成株式会社 Method for producing lithium-containing metal oxide
KR102130484B1 (en) * 2017-11-15 2020-07-06 주식회사 에코프로비엠 Cathode active material and manufacturing method thereof
WO2019226996A1 (en) * 2018-05-25 2019-11-28 American Nano, LLC Batteries incorporating silica fibers
KR102178808B1 (en) * 2018-11-29 2020-11-13 주식회사 포스코 Method of preparing positve active material and rechargeable lithium battery comprising positvie active material prepared by same
CN116199264A (en) * 2023-01-17 2023-06-02 湖北大学 Nonmetal B doped beta-phase MnO 2 Electrode material, preparation method and application thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824043B2 (en) * 1988-11-17 1996-03-06 松下電器産業株式会社 Manufacturing method of non-aqueous electrolyte secondary battery and its positive electrode active material
FR2656957B1 (en) * 1990-01-05 1992-04-03 Accumulateurs Fixes RECHARGEABLE ELECTROCHEMICAL GENERATOR WITH LITHIUM ANODE.
GB2244701B (en) * 1990-05-17 1994-01-12 Technology Finance Corp Manganese oxide compound
JPH04136195A (en) * 1990-09-27 1992-05-11 Tosoh Corp Novel composite material
JPH0766833B2 (en) * 1991-02-25 1995-07-19 日本電池株式会社 Lithium secondary battery
FR2677636B1 (en) * 1991-06-17 1995-09-01 Technology Finance Corp MANGANESE DIOXIDE MATERIAL AND ELECTROCHEMICAL CELL CONTAINING THE SAME.
JPH07142053A (en) * 1993-11-19 1995-06-02 Chuo Denki Kogyo Kk Nonaqueous lithium secondary battery
JPH07288127A (en) * 1994-04-18 1995-10-31 Fuji Photo Film Co Ltd Nonaqueous electrolyte battery
FR2721308B1 (en) * 1994-06-21 1996-10-11 Commissariat Energie Atomique Manganese oxide insertion compounds, usable as a positive electrode in a lithium battery.
CN1049529C (en) * 1994-11-03 2000-02-16 北京有色金属研究总院 Cathode material for lithium secondary battery and method of manufacturing the same
JP4214564B2 (en) * 1997-06-19 2009-01-28 東ソー株式会社 Spinel structure lithium manganese oxide containing other elements, method for producing the same, and use thereof
JP3736169B2 (en) * 1999-01-26 2006-01-18 三菱化学株式会社 Positive electrode material for lithium secondary battery and lithium secondary battery
JPH11329424A (en) * 1999-04-26 1999-11-30 Sanyo Electric Co Ltd Nonaqueous secondary battery
JP3985208B2 (en) * 1999-06-24 2007-10-03 スズキ株式会社 Method for synthesizing LiMn2O4 thin film

Also Published As

Publication number Publication date
JP2001273900A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
JP5464717B2 (en) Method for producing positive electrode active material
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
US7090822B2 (en) Cathode electroactive material, production method therefor and secondary cell
JP3489685B2 (en) Lithium manganate, method for producing the same, and lithium battery using the same
US6673491B2 (en) Cathode electroactive material, production method therefor, and nonaqueous secondary cell using the same
JP5226917B2 (en) Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
EP2169745A1 (en) Cathode material for Li ion secondary battery and Li ion secondary battery using the same
JP3355126B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
WO2007052712A1 (en) Lithium-containing composite oxide and method for production thereof
JP6544579B2 (en) Method for producing lithium tungstate, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery using lithium tungstate
JP2007230784A (en) Manufacturing process of lithium-iron complex oxide
JP2002060225A (en) Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate
JP3819940B2 (en) Nonaqueous electrolyte secondary battery
JP2023015188A (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery
KR102172026B1 (en) Active material precursor and preparing method thereof
JP3503688B2 (en) Lithium secondary battery
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP4543474B2 (en) Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
JP4558229B2 (en) Lithium titanate, method for producing the same, and use thereof
JP2001206722A (en) Lithium manganese multiple oxide, positive electrode material for lithium secondary cell, positive electrode, lithium secondary cell, and manufacturing method of lithium manganese multiple oxide
JP2006273620A (en) Lithium transition metal complex oxide, its manufacturing method, fired precursor for lithium transition metal complex oxide and lithium secondary battery
JP2022177291A (en) Positive electrode active material for high-strength lithium ion secondary battery, and lithium ion secondary battery employing the positive electrode active material
JP2001122626A (en) Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
JP2004155631A (en) Lithium-manganese-based double oxide particle for non-aqueous lithium secondary battery, method for producing the same and non-aqueous lithium secondary battery
JP2002324543A (en) Lithium ion secondary battery and positive electrode active material for the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20010703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees