JPH04136195A - Novel composite material - Google Patents

Novel composite material

Info

Publication number
JPH04136195A
JPH04136195A JP2255256A JP25525690A JPH04136195A JP H04136195 A JPH04136195 A JP H04136195A JP 2255256 A JP2255256 A JP 2255256A JP 25525690 A JP25525690 A JP 25525690A JP H04136195 A JPH04136195 A JP H04136195A
Authority
JP
Japan
Prior art keywords
manganese
composite material
oxide particles
type
containing oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2255256A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoneyama
宏 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2255256A priority Critical patent/JPH04136195A/en
Publication of JPH04136195A publication Critical patent/JPH04136195A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To offer a composite material which is sufficiently electrochemically active by forming the composite material to have such a crystalline structure of manganese-contg. oxide except for an amorphous structure. CONSTITUTION:At least one kind of manganese-contg. oxide particle selected from manganese oxide particle, multiple oxide particle of manganese and alkali metal, and multiple oxide of manganese and alkaline-earth metal, and at least one kind of conductive polymer are incorporated into the composite material. The crystalline structure of the manganese-contg. oxide is specified except for amorphous structure but to beta type, gamma type, gamma,beta type or spinel type. Thereby, the composite material which can be used as the anode material of dry cell can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はマンガン含有酸化物粒子と導電性高分子とを含
んでなる複合材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a composite material comprising manganese-containing oxide particles and a conductive polymer.

このような材料は、例えば電池正極用材料として用いる
ことができる。
Such a material can be used, for example, as a battery positive electrode material.

[従来の技術] 近年、導電性高分子材料と無機正極材料のひとつである
マンガン含有酸化物粒子との複合材料の研究がなされて
おり、これら複合材料は電池正極用材料として応用が期
待されている。このような複合材料を従来の技術で製造
するには、マンガン含有酸化物粒子を懸濁させた電解質
中で電解重合を行なう方法が考えられる。しかしながら
、この方法ではマンガン含有酸化物粒子は導電性高分子
中に分散せず、複合材料は得られないという問題がある
。すなわち、上記方法においては複合材料ではなく、複
合材料と比較して導電性′や電気化学活性の不十分な導
電性高分子のみしか得られない。
[Prior art] In recent years, research has been conducted on composite materials of conductive polymer materials and manganese-containing oxide particles, which is an inorganic positive electrode material, and these composite materials are expected to be applied as battery positive electrode materials. There is. A possible method for producing such a composite material using conventional techniques is to carry out electrolytic polymerization in an electrolyte in which manganese-containing oxide particles are suspended. However, this method has a problem in that the manganese-containing oxide particles are not dispersed in the conductive polymer and a composite material cannot be obtained. That is, in the above method, only a conductive polymer, which is not a composite material but has insufficient conductivity and electrochemical activity compared to a composite material, is obtained.

また、特開昭63−250482号においては、マンガ
ン塩と導電性高分子前駆体からなる電解質を用いて電解
し、上記複合体を作製する方法が開示されているが、こ
の方法で得られる複合材料中に含まれるマンガン酸化物
粒子の結晶構造はアモルファス状であり、このことが複
合材料の電気化学的活性を低下せしめる原因となり、こ
れを例えば電池用正極材料として用いた場合、十分な機
能を果たさないという問題があった。
Furthermore, JP-A No. 63-250482 discloses a method for producing the above composite by electrolyzing using an electrolyte consisting of a manganese salt and a conductive polymer precursor. The crystal structure of the manganese oxide particles contained in the material is amorphous, which causes a decrease in the electrochemical activity of the composite material, and when used as a positive electrode material for batteries, for example, it may not have sufficient functionality. The problem was that it didn't work.

[問題点を解決するための手段] 本発明の目的は、電気化学的に十分に活性であり、電池
用正極材料として用いることのできるマンガン含有酸化
物粒子と導電性高分子とを含んでなる複合材料及びその
製造方法を提供することにある。
[Means for Solving the Problems] The object of the present invention is to provide a material comprising manganese-containing oxide particles and a conductive polymer that are sufficiently electrochemically active and can be used as a positive electrode material for batteries. An object of the present invention is to provide a composite material and a method for manufacturing the same.

[課題を解決するための手段] 本発明者は、上記課題を解決するためにマンガン含有酸
化物粒子と導電性高分子とを含んでなる複合材料につい
て検討を行なった結果、複合材料中のマンガン含有酸化
物粒子の結晶構造を制御することにより、複合材料に電
気化学的活性を十分に与えられることを見出し、本発明
を完成するに至った。すなわち本発明は、マンガン酸化
物粒子、マンガンとアルカリ金属との複合酸化物粒子及
びマンガンとアルカリ土類金属との複合酸化物粒子から
選ばれた少なくとも一種以上のマンガン含有酸化物粒子
と少なくとも一種以上の導電性高分子とを含んでなる複
合材料において、複合材料中のマンガン含有酸化物の結
晶構造がアモルファス以外の結晶構造であることを特徴
とする複合材料及びその製造方法並びに用途である。以
下、本発明を具体的に説明する。
[Means for Solving the Problems] In order to solve the above problems, the present inventor investigated a composite material containing manganese-containing oxide particles and a conductive polymer, and found that manganese in the composite material The present inventors have discovered that sufficient electrochemical activity can be imparted to a composite material by controlling the crystal structure of the oxide particles contained therein, and have completed the present invention. That is, the present invention provides at least one manganese-containing oxide particle selected from manganese oxide particles, composite oxide particles of manganese and an alkali metal, and composite oxide particles of manganese and an alkaline earth metal, and at least one or more manganese-containing oxide particles. A composite material comprising a conductive polymer and a manganese-containing oxide in the composite material has a crystal structure other than an amorphous crystal structure, a method for manufacturing the same, and uses thereof. The present invention will be explained in detail below.

本発明の複合材料はマンガン含有酸化物粒子と導電性高
分子を含んでなるが、本発明において述べる複合材料と
は、上記マンガン含有酸化物粒子と導電性高分子が複合
体中で実質的に均一に存在し、複合体の導電性の制御、
電気化学特性が実用上何ら問題のない状態で複合化され
ているものをいう。このような複合材料は、例えば第2
図のように、マンガン含有酸化物及び導電性高分子に起
因する特徴的なサイクリックポルタモグラムを示すもの
となる。なお、第2図は本発明の複合材料の一例である
、β型のMn O2とポリピロールとを含んでなる複合
材料のサイクリックポルタモグラムを示すが、ポリピロ
ールによる酸化還元ピークに加えて、M n 02に特
有なブロードな酸化還元ピークが認められる。
The composite material of the present invention comprises manganese-containing oxide particles and a conductive polymer, and the composite material described in the present invention is such that the manganese-containing oxide particles and conductive polymer are substantially Uniform presence and control of conductivity of the composite,
It refers to a compound whose electrochemical properties are combined without causing any practical problems. Such a composite material can be used, for example, in a second
As shown in the figure, a characteristic cyclic portamogram caused by the manganese-containing oxide and the conductive polymer is shown. FIG. 2 shows a cyclic portamogram of a composite material containing β-type MnO2 and polypyrrole, which is an example of the composite material of the present invention. A broad redox peak unique to n 02 is observed.

本発明の複合材料を構成するマンガン含有酸化物粒子の
結晶構造はアモルファスでなければ特に限定されないが
、マンガン含有酸化物粒子の結晶構造が得られる複合材
料の電気化学的活性に影響を及ぼし、アモルファスであ
る場合、複合材料の電気化学的活性は不十分となる。従
って、本発明の複合材料に含まれるマンガン含有酸化物
粒子の結晶構造は、アモルファス以外の結晶構造がその
用途によって適宜選択される。例えば複合材料をリチウ
ム電池正極用材料として用いる場合、複合材料にはリチ
ウムイオンの侵入、脱離反応が伴ない、この反応がスム
ーズに行なわれることが好ましい。そのためには、複合
材料に含まれるマンガン含有酸化物は、リチウムイオン
の侵入、脱離反応に適した構造のものが選ばれ、このよ
うな構造を有するマンガン含有酸化物としては、β型ま
たはγ型のMnO□、7.β型のMnO2、Li2M 
n O、とγ、β型のM n O2との複合酸化物ある
いはスピネル型の構造を有するLiMn2O4などが選
択される。更に、本発明の複合材料を構成する導電性高
分子とは電気化学的に活性で、充放電が可能な高分子で
あり、例えばポリアニリン、ポリピロールなど一般に導
電性を有するとされる有機高分子などが挙げられる。
The crystal structure of the manganese-containing oxide particles constituting the composite material of the present invention is not particularly limited as long as it is amorphous, but the crystal structure of the manganese-containing oxide particles affects the electrochemical activity of the resulting composite material, , the electrochemical activity of the composite material will be insufficient. Therefore, as the crystal structure of the manganese-containing oxide particles contained in the composite material of the present invention, a crystal structure other than amorphous is appropriately selected depending on the intended use. For example, when a composite material is used as a material for a positive electrode of a lithium battery, the composite material undergoes an intrusion and desorption reaction of lithium ions, and it is preferable that this reaction occurs smoothly. For this purpose, the manganese-containing oxide contained in the composite material is selected to have a structure suitable for lithium ion penetration and elimination reactions. type MnO□, 7. β-type MnO2, Li2M
A composite oxide of n O, and γ- and β-type M n O2, or LiMn2O4 having a spinel structure is selected. Furthermore, the conductive polymer constituting the composite material of the present invention is a polymer that is electrochemically active and capable of being charged and discharged, such as organic polymers that are generally considered to have conductivity, such as polyaniline and polypyrrole. can be mentioned.

本発明の複合材料は、以上述べたようにマンガン含有酸
化物粒子と導電性高分子が実質的に均一分散して構成さ
れ、また含まれるマンガン含有酸化物粒子の結晶構造が
アモルファス以外であるので、十分な導電性及び電気化
学的活性を有するものとなる。また、本発明の複合材料
はこれら特性に伴ない、マンガン含有酸化物粒子と導電
性高分子を含んでなることから、高い体積当りのエネル
ギー密度を有し、なおかつ高出力で十分高性能を示すと
いう特性を併せもつため、例えば電池正極用材料として
好ましく用いることができる。
As described above, the composite material of the present invention is composed of substantially uniformly dispersed manganese-containing oxide particles and conductive polymer, and the crystal structure of the manganese-containing oxide particles is other than amorphous. , it has sufficient electrical conductivity and electrochemical activity. In addition to these properties, the composite material of the present invention also has a high energy density per volume because it contains manganese-containing oxide particles and a conductive polymer, and also exhibits sufficient performance with high output. Because of these characteristics, it can be preferably used as a material for battery positive electrodes, for example.

次に本発明の複合体の製造方法の一例を説明する。本発
明の複合材料は、例えばアモルファス以外の結晶構造を
有するマンガン酸化物粒子、マンガンとアルカリ金属と
の複合酸化物粒子及びマンガンとアルカリ土類金属との
複合酸化物粒子から選ばれた少なくとも一種以上のマン
ガン含有酸化物粒子、該マンガン含有酸化物粒子に吸着
可能なアニオン種の少なくとも一種及び少なくとも一種
以上の導電性高分子前駆体を含む電解液中にて電解重合
を行なうことにより製造することができる。
Next, an example of the method for manufacturing the composite of the present invention will be explained. The composite material of the present invention includes at least one selected from manganese oxide particles having a crystal structure other than amorphous, composite oxide particles of manganese and an alkali metal, and composite oxide particles of manganese and an alkaline earth metal. manganese-containing oxide particles, at least one kind of anion species that can be adsorbed to the manganese-containing oxide particles, and at least one conductive polymer precursor. can.

この製造方法において、導電性高分子前駆体とは、重合
することにより導電性高分子となり得る低分子有機材料
であり、複合体中を構成する導電性高分子により適宜選
択される。また、アモルファス以外の結晶構造を有する
マンガン含有酸化物は、複合材料の中に含まれる所望の
マンガン含有酸化物粒子と同じ結晶構造のものが用いら
れる。更に、マンガン含有酸化物粒子に吸着可能なアニ
オン種とは、電解液中において、通常単独であれば無電
荷又はカチオン種としての挙動を示すマンガン含有酸化
物と吸着し、マンガン含有酸化物をアニオンとしての挙
動をさせることが可能なものを示す。
In this manufacturing method, the conductive polymer precursor is a low-molecular organic material that can be polymerized to become a conductive polymer, and is appropriately selected depending on the conductive polymer constituting the composite. Further, as the manganese-containing oxide having a crystal structure other than amorphous, one having the same crystal structure as the desired manganese-containing oxide particles contained in the composite material is used. Furthermore, anionic species that can be adsorbed to manganese-containing oxide particles are adsorbed with manganese-containing oxides that normally behave as uncharged or cationic species when used alone in the electrolytic solution, and convert the manganese-containing oxide into anionic species. Indicates something that can behave as follows.

このようなアニオン種は用いる電解液やマンガン含有酸
化物によっても異なるが、I−ClSO42−などが挙
げられる。なお、添加するアニオン種の電荷補償のため
、同時に電解液中にカチオン種を添加してもよい。この
ようなカチオン種はNa、Li等のアルカリ金属カチオ
ン、Ca。
Such anion species vary depending on the electrolytic solution and manganese-containing oxide used, but include I-ClSO42- and the like. Note that, in order to compensate for the charge of the added anion species, a cation species may be added to the electrolytic solution at the same time. Such cation species include alkali metal cations such as Na and Li, and Ca.

Mg等のアルカリ土類金属カチオン、遷移金属カチオン
、プロトン、アンモニウムイオンなどの無機カチオン、
カチオン種を有する有機イオンあるいはカチオン性有機
高分子など電解液中でアニオンと十分な解離度を示し、
添加するアニオン種の吸着特性を妨げないものであれば
特に限定されない。上記方法はこれらのマンガン含有酸
化物粒子、該マンガン含有酸化物粒子に吸着可能なアニ
オン種の少なくとも一種及び少なくとも一種以上の導電
性高分子前駆体を含む電解液中にて電解重合を行なうこ
とであるが、このことにより、アモルファス以外の結晶
構造を有するマンガン含有酸化物粒子は、電解液中に含
まれるアニオン種と共に導電性高分子が析出する正極に
誘導され、その結晶構造を保持したまま導電性高分子中
に実質的に均一に分散して、本発明の複合材料が得られ
る。なお、上記方法において用いられるマンガン含有酸
化物の量は、所望の複合材料の特性により適宜調整し得
るが、電解液に対して 0.1g/j〜50g/lの範
囲で用いることが好ましい。この範囲未満では得られる
複合材料の電気化学的活性は満足できないものとなるお
それがあり、越える量を用いてもマンガン含有酸化物の
導電性高分子中に分散する量は増えず、あまり意味がな
い。特に好ましくは5g71〜30g/lである。また
、添加するマンガン含有酸化物粒子に吸着可能なアニオ
ンの量は、特異吸着能を発揮し得る量を添加すれば如何
なる量でも良いが、好ましくは電解液に対して0.1〜
1.01mal/I−特に好ましくは0.3〜0.8曽
−〇1/1の範囲で用いられる。更に電解重合の条件は
、従来知られている導電性高分子前駆体から電解重合に
より導電性高分子を製造できるあらゆる条件が適用可能
である。
Alkaline earth metal cations such as Mg, transition metal cations, protons, inorganic cations such as ammonium ions,
Organic ions with cationic species or cationic organic polymers exhibit a sufficient degree of dissociation with anions in the electrolyte,
It is not particularly limited as long as it does not interfere with the adsorption properties of the anionic species to be added. The above method involves performing electrolytic polymerization in an electrolytic solution containing these manganese-containing oxide particles, at least one type of anion species that can be adsorbed to the manganese-containing oxide particles, and at least one conductive polymer precursor. However, due to this, the manganese-containing oxide particles having a crystal structure other than amorphous are guided to the positive electrode where the conductive polymer is deposited together with the anion species contained in the electrolyte, and they become conductive while maintaining their crystal structure. The composite material of the present invention is obtained by being substantially uniformly dispersed in the organic polymer. The amount of the manganese-containing oxide used in the above method can be adjusted as appropriate depending on the properties of the desired composite material, but it is preferably used in the range of 0.1 g/j to 50 g/l relative to the electrolytic solution. If the amount is less than this range, the electrochemical activity of the resulting composite material may be unsatisfactory, and if the amount exceeds this range, the amount of manganese-containing oxide dispersed in the conductive polymer will not increase and is of little significance. do not have. Particularly preferred is 5g/71 to 30g/l. Further, the amount of anions that can be adsorbed to the manganese-containing oxide particles to be added may be any amount as long as the amount can exhibit specific adsorption ability, but it is preferably 0.1 to 0.1 to the electrolytic solution.
1.01 mal/I, particularly preferably 0.3 to 0.8 so, is used in the range of 1/1. Further, as the conditions for electrolytic polymerization, any conditions that can produce a conductive polymer by electrolytic polymerization from a conventionally known conductive polymer precursor can be applied.

上述の方法によれば、導電性高分子とマンガン含有酸化
物粒子を容易に均一に複合化でき、また複合化されるマ
ンガン酸化物粒子の結晶構造も保持されるので、本発明
の複合体を製造することができる。
According to the above method, the conductive polymer and the manganese-containing oxide particles can be easily and uniformly composited, and the crystal structure of the composited manganese oxide particles is also maintained, so that the composite of the present invention can be easily and uniformly composited. can be manufactured.

[実施例] 以下、本発明を実施例に基づき説明するが、本発明は以
下の実施例に何ら限定されない。
[Examples] The present invention will be described below based on Examples, but the present invention is not limited to the following Examples.

参照例1 5mMのNal水溶液に、β型のM n 02粒子を2
g/f1分散させて電気泳動実験を行なったところ、M
 n 02粒子は正極側に移動した。このことから、l
−は本発明において述べるマンガン含有酸化物粒子に特
異吸着するアニオンであることが確認された。
Reference Example 1 Two β-type M n 02 particles were added to a 5 mM Nal aqueous solution.
When an electrophoresis experiment was conducted with g/f1 dispersion, M
The n 02 particles moved to the positive electrode side. From this, l
It was confirmed that - is an anion that specifically adsorbs to the manganese-containing oxide particles described in the present invention.

実施例1 0.1mMのピロール水溶液に、0.5mMのNalを
添加し、更にこれにβ型のM n 02粒子を2g/i
t分散させた。その後、この水溶液を0.3mA/cシ
の電流密度で2001C/c−電解を行ったところ、陽
極にポリピロール膜が形成された。
Example 1 0.5 mM Nal was added to a 0.1 mM pyrrole aqueous solution, and 2 g/i of β-type M n 02 particles were added to this.
t dispersed. Thereafter, when this aqueous solution was subjected to 2001C/c-electrolysis at a current density of 0.3 mA/c, a polypyrrole film was formed on the anode.

得られたポリピロール膜は、450”Cで一晩焼成した
後、過ヨウ素酸カリウム酸化吸光光度法により測定した
ところ、19重量%のM n O2を含む複合材料であ
ることが確認された。また、元素分析の結果、この複合
材料中には0.06%のヨウ素がドープされていること
がわかった。更に、この複合材料から第1図に示すX線
回折パターン(実線)が得られた。なお、β型のM n
 O2は第1図のうち、破線により示されるX線回折パ
ターンを示すことから、複合材料中のM n O2の結
晶型は、原料として用いたM n 02と同一のβ型の
構造を保持していることが確認された。
The obtained polypyrrole film was baked at 450"C overnight and then measured by potassium periodate oxidation spectrophotometry, and it was confirmed that it was a composite material containing 19% by weight of MnO2. As a result of elemental analysis, it was found that this composite material was doped with 0.06% iodine.Furthermore, the X-ray diffraction pattern (solid line) shown in Figure 1 was obtained from this composite material. .In addition, β-type M n
Since O2 shows the X-ray diffraction pattern indicated by the broken line in Figure 1, the crystal type of M n O2 in the composite material maintains the same β-type structure as M n 02 used as the raw material. It was confirmed that

次に、上記により得られた複合材料のサイクッリクボル
タモグラムをIMのL i C(104を溶解したプロ
ピレンカーボネート(以下、PCと略す)と1,2−ジ
メトキシエタン(以下、DMEと略す)の等量混合溶液
中で測定した。その結果を第2図に示す。第2図から、
得られた複合材料のサイクッリクボルタモグラムには0
.5V付近のポリピロールによる酸化還元ピークに加え
て、1.9vと1.1v付近ニM n O2ニ特有ノフ
ロードな酸化還元ピークが現れることが確認され、この
ことから複合材料中のM n O2は有効に酸化還元反
応を行っていることがわかった。
Next, the cyclic voltammogram of the composite material obtained above was plotted using IM L i C (propylene carbonate (hereinafter abbreviated as PC) in which 104 was dissolved and 1,2-dimethoxyethane (hereinafter abbreviated as DME), etc. The amount was measured in a mixed solution.The results are shown in Figure 2.From Figure 2,
The cyclic voltammogram of the obtained composite material shows 0
.. In addition to the redox peak due to polypyrrole around 5V, it was confirmed that low-load redox peaks unique to MnO2 appeared around 1.9v and 1.1v, and this indicates that MnO2 in the composite material is effective. It was found that an oxidation-reduction reaction took place.

実施例2 重合電流密度を0.1mA/c−とし、重合電気量を2
00mC/cdとした以外は実施例1と同様の方法で複
合材料を得た。
Example 2 The polymerization current density was 0.1 mA/c-, and the amount of polymerization electricity was 2.
A composite material was obtained in the same manner as in Example 1 except that the temperature was 00 mC/cd.

その後、得られた複合材料の充放電特性を、PCとDM
Eの等量混合溶液中にLiCllO4を0.1M溶解し
た溶液中で行なった。その結果を第3図(実線)に示す
。また、このときの放電電気量は、8 mc/ c−で
あった。
Afterwards, the charge-discharge characteristics of the obtained composite material were evaluated using PC and DM.
The experiment was carried out in a solution in which 0.1 M of LiClO4 was dissolved in a mixed solution of equal amounts of E. The results are shown in Figure 3 (solid line). Further, the amount of discharged electricity at this time was 8 mc/c-.

実施例3 電解電流密度を1.0mA/c−とした以外は、実施例
1と同様の方法で複合材料を得た。
Example 3 A composite material was obtained in the same manner as in Example 1, except that the electrolytic current density was 1.0 mA/c-.

なお、得られた複合材料のX線パターンより、複合材料
中のM n O2の結晶型は、原料として用いたβ型の
M n O2と同一であることが確認された。
In addition, from the X-ray pattern of the obtained composite material, it was confirmed that the crystal type of M n O2 in the composite material was the same as the β-type M n O2 used as a raw material.

更に得られた複合材料の充放電特性を実施例2と同様に
測定した。その結果を第3図(破線)に示す。また、こ
のときの放電電気量は15 Ilc/ cdであった。
Furthermore, the charge/discharge characteristics of the obtained composite material were measured in the same manner as in Example 2. The results are shown in Figure 3 (dashed line). Further, the amount of discharged electricity at this time was 15 Ilc/cd.

比較例l MnO2を分散させなかった以外は、実施例2と同様の
方法で電解を行なった結果、ポリピローを得た。
Comparative Example 1 Polypillows were obtained as a result of electrolysis performed in the same manner as in Example 2 except that MnO2 was not dispersed.

さらに実施例2と同様に電池テストを行った結果を第三
図(点線)に示す。また、このときの放電電気量は4m
C/cdであった。
Furthermore, the results of a battery test conducted in the same manner as in Example 2 are shown in Figure 3 (dotted line). Also, the amount of electricity discharged at this time was 4 m
It was C/cd.

参照例2 5mMの塩化テトラエチルアンモニウム(以下TEAC
Jと略す)を含むPC溶液中にβ型のM n 02粒子
を2g/II分散させて電気泳動実験を行なったところ
、M n 02粒子は正極側に移動した。このことから
、Cj7−は本発明で述べる、マンガン含有酸化物粒子
に特異吸着するアニオンであることが確認された。
Reference example 2 5mM tetraethylammonium chloride (hereinafter referred to as TEAC)
When an electrophoresis experiment was conducted by dispersing β-type M n 02 particles at 2 g/II in a PC solution containing PC, the M n 02 particles moved to the positive electrode side. From this, it was confirmed that Cj7- is an anion specifically adsorbed to the manganese-containing oxide particles described in the present invention.

実施例4 0.1mMのピロールを溶解したPC溶液に、0.5m
MのT E A CIIを添加し、更にこれにβ型のM
 n 02粒子を10g/N分散させた。その後、この
PC溶液を攪拌しながら0.1mA/c−の電流密度で
200mC/cd電解を行なったところ、陽極に50重
量%のM n O2とポリピロールとの複合材料が形成
された。更に、この複合材料のX線回折パターンから、
複合材料中のM n O2の結晶型は、原料として用い
たM n O2と同一のβ型の構造を保持していること
が確認された。
Example 4 Add 0.5mM to a PC solution containing 0.1mM pyrrole
M TEA CII is added, and β-type M is added to this.
n 02 particles were dispersed at 10 g/N. Thereafter, electrolysis was performed at 200 mC/cd at a current density of 0.1 mA/c- while stirring this PC solution, and a composite material of 50% by weight MnO2 and polypyrrole was formed on the anode. Furthermore, from the X-ray diffraction pattern of this composite material,
It was confirmed that the crystal type of M n O2 in the composite material maintained the same β-type structure as the M n O2 used as the raw material.

次に、得られた複合材料の充放電特性を実施例2と同様
の方法で測定した結果、その放電容量は37sC/c−
であった。
Next, the charge/discharge characteristics of the obtained composite material were measured in the same manner as in Example 2, and as a result, the discharge capacity was 37 sC/c-
Met.

実施例5 MnO2を10 g/it分散させた以外は実施例4と
同様の方法で複合材料を得た。なお、得られた複合材料
中のM n 02の結晶型は、この複合材料のX線回折
パターンから。原料として用いたM n O2と同一の
β型の構造を保持していることが確認された。また、複
合材料中のM n O2含有量は50重量%であった。
Example 5 A composite material was obtained in the same manner as in Example 4 except that 10 g/it of MnO2 was dispersed. The crystal type of M n 02 in the obtained composite material was determined from the X-ray diffraction pattern of this composite material. It was confirmed that the same β-type structure as M n O2 used as a raw material was maintained. Moreover, the M n O2 content in the composite material was 50% by weight.

次に、得られた複合材料の充放電特性を実施例2と同様
の方法で測定した結果、その放電容量は48sC/c−
であった。
Next, the charge and discharge characteristics of the obtained composite material were measured in the same manner as in Example 2, and the discharge capacity was 48 sC/c-
Met.

比較例2 M n 02を分散させなかった以外は、実施例4と同
様の方法で電解を行なった。その結果、ポリピールが得
られた。得られたポリピロールの充放電特性を実施例2
と同様の方法で測定した結果、その放電容量は271C
/c−であった。
Comparative Example 2 Electrolysis was performed in the same manner as in Example 4, except that M n 02 was not dispersed. As a result, a polypeel was obtained. Example 2 shows the charge-discharge characteristics of the obtained polypyrrole.
As a result of measurement using the same method, the discharge capacity was 271C.
/c-.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1において得られた複合材料の
X線回折パターン及びβ型のM n O2のX線回折パ
ターンを示す図である。図中、実線は複合材料、破線は
β型のM n O2のパターンを各々示す。 第2図は本発明の複合材料のサイクリックポルタモグラ
ムの一例を示す図である。 第3図は本発明の複合材料の充放電特性の一例を示す図
である。 強度
FIG. 1 is a diagram showing the X-ray diffraction pattern of the composite material and the X-ray diffraction pattern of β-type M n O2 obtained in Example 1 of the present invention. In the figure, the solid line shows the pattern of the composite material, and the broken line shows the pattern of β-type M n O2. FIG. 2 is a diagram showing an example of a cyclic portamogram of the composite material of the present invention. FIG. 3 is a diagram showing an example of charge/discharge characteristics of the composite material of the present invention. Strength

Claims (6)

【特許請求の範囲】[Claims] (1)マンガン酸化物粒子、マンガンとアルカリ金属と
の複合酸化物粒子及びマンガンとアルカリ土類金属との
複合酸化物粒子から選ばれた少なくとも一種以上のマン
ガン含有酸化物粒子と少なくとも一種以上の導電性高分
子とを含んでなる複合材料において、複合材料中のマン
ガン含有酸化物の結晶構造がアモルファス以外の結晶構
造であることを特徴とする複合材料。
(1) At least one manganese-containing oxide particle selected from manganese oxide particles, composite oxide particles of manganese and alkali metals, and composite oxide particles of manganese and alkaline earth metals, and at least one conductive particle. 1. A composite material comprising: a manganese-containing oxide having a crystalline structure other than an amorphous crystalline structure;
(2)マンガン含有酸化物の結晶構造が、β型、γ型、
γ、β型またはスピネル型である請求項第(1)項に記
載の複合材料。
(2) The crystal structure of the manganese-containing oxide is β type, γ type,
The composite material according to claim 1, which is of γ, β type or spinel type.
(3)アモルファス以外の結晶構造を有するマンガン酸
化物粒子、マンガンとアルカリ金属との複合酸化物粒子
及びマンガンとアルカリ土類金属との複合酸化物粒子か
ら選ばれた少なくとも一種以上のマンガン含有酸化物粒
子、該マンガン含有酸化物粒子に吸着可能なアニオン種
の少なくとも一種及び少なくとも一種以上の導電性高分
子前駆体を含む電解液中にて電解重合を行なうことを特
徴とするマンガン含有酸化物粒子と導電性高分子とを含
む複合材料の製造方法。
(3) At least one manganese-containing oxide selected from manganese oxide particles having a crystal structure other than amorphous, composite oxide particles of manganese and alkali metals, and composite oxide particles of manganese and alkaline earth metals. Manganese-containing oxide particles, characterized in that electrolytic polymerization is carried out in an electrolytic solution containing particles, at least one kind of anion species that can be adsorbed to the manganese-containing oxide particles, and at least one conductive polymer precursor. A method for producing a composite material containing a conductive polymer.
(4)マンガン含有酸化物の結晶構造が、β型、γ型、
γ、β型またはスピネル型である請求項第(3)項に記
載の複合材料の製造方法。
(4) The crystal structure of the manganese-containing oxide is β type, γ type,
The method for producing a composite material according to claim 3, wherein the composite material is of γ, β type, or spinel type.
(5)マンガン含有酸化物粒子に吸着可能なアニオン種
がCl−及び/又はI^−である請求項第(3)項に記
載の複合材料の製造方法。
(5) The method for producing a composite material according to claim (3), wherein the anion species that can be adsorbed to the manganese-containing oxide particles are Cl- and/or I^-.
(6)マンガン酸化物粒子、マンガンとアルカリ金属と
の複合酸化物粒子及びマンガンとアルカリ土類金属との
複合酸化物粒子から選ばれた少なくとも一種以上のマン
ガン含有酸化物粒子と少なくとも一種以上の導電性高分
子とを含んでなる複合材料において、複合材料中のマン
ガン含有酸化物の結晶構造がアモルファス以外の結晶構
造である複合材料を含んでなる電池正極用材料。
(6) At least one kind of manganese-containing oxide particle selected from manganese oxide particles, composite oxide particles of manganese and alkali metals, and composite oxide particles of manganese and alkaline earth metals and at least one kind of conductive material. 1. A material for a battery positive electrode, which comprises a composite material comprising a polymorphous polymer, in which the crystal structure of the manganese-containing oxide in the composite material is other than amorphous.
JP2255256A 1990-09-27 1990-09-27 Novel composite material Pending JPH04136195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2255256A JPH04136195A (en) 1990-09-27 1990-09-27 Novel composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2255256A JPH04136195A (en) 1990-09-27 1990-09-27 Novel composite material

Publications (1)

Publication Number Publication Date
JPH04136195A true JPH04136195A (en) 1992-05-11

Family

ID=17276218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2255256A Pending JPH04136195A (en) 1990-09-27 1990-09-27 Novel composite material

Country Status (1)

Country Link
JP (1) JPH04136195A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0589294A1 (en) * 1992-09-25 1994-03-30 Sanyo Electric Co., Ltd. Nonaqueous secondary battery
JP2001273900A (en) * 2000-01-21 2001-10-05 Showa Denko Kk Positive active material, method of manufacturing same, and nonaqueous secondary battery using the active material
JP2006076865A (en) * 2004-09-13 2006-03-23 Yamaguchi Univ Method for manufacturing layered manganese oxide
WO2013115335A1 (en) * 2012-02-03 2013-08-08 東ソー株式会社 Electrolytic manganese dioxide, method for producing same, and use of same
US8950019B2 (en) 2007-09-20 2015-02-10 Bradley Fixtures Corporation Lavatory system
US8997271B2 (en) 2009-10-07 2015-04-07 Bradley Corporation Lavatory system with hand dryer
US9758953B2 (en) 2012-03-21 2017-09-12 Bradley Fixtures Corporation Basin and hand drying system
US10041236B2 (en) 2016-06-08 2018-08-07 Bradley Corporation Multi-function fixture for a lavatory system
US10100501B2 (en) 2012-08-24 2018-10-16 Bradley Fixtures Corporation Multi-purpose hand washing station
US11015329B2 (en) 2016-06-08 2021-05-25 Bradley Corporation Lavatory drain system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0589294A1 (en) * 1992-09-25 1994-03-30 Sanyo Electric Co., Ltd. Nonaqueous secondary battery
JP2001273900A (en) * 2000-01-21 2001-10-05 Showa Denko Kk Positive active material, method of manufacturing same, and nonaqueous secondary battery using the active material
JP2006076865A (en) * 2004-09-13 2006-03-23 Yamaguchi Univ Method for manufacturing layered manganese oxide
JP4547495B2 (en) * 2004-09-13 2010-09-22 国立大学法人山口大学 Method for producing layered manganese oxide thin film
US8950019B2 (en) 2007-09-20 2015-02-10 Bradley Fixtures Corporation Lavatory system
US8997271B2 (en) 2009-10-07 2015-04-07 Bradley Corporation Lavatory system with hand dryer
WO2013115335A1 (en) * 2012-02-03 2013-08-08 東ソー株式会社 Electrolytic manganese dioxide, method for producing same, and use of same
US9758953B2 (en) 2012-03-21 2017-09-12 Bradley Fixtures Corporation Basin and hand drying system
US10100501B2 (en) 2012-08-24 2018-10-16 Bradley Fixtures Corporation Multi-purpose hand washing station
US10041236B2 (en) 2016-06-08 2018-08-07 Bradley Corporation Multi-function fixture for a lavatory system
US11015329B2 (en) 2016-06-08 2021-05-25 Bradley Corporation Lavatory drain system

Similar Documents

Publication Publication Date Title
JP2019033075A (en) Hybrid aqueous secondary battery
JP2903469B1 (en) Method for producing anode material for lithium ion battery
CN1152443C (en) Method for production of lithium nickelate positive electrode and lithium cell using said electrode
CN102598372A (en) Coated positive electrode materials for lithium ion batteries
JP2003017057A (en) Lithium-vanadium compound oxide for negative electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery using the same
JP3702353B2 (en) Method for producing positive electrode active material for lithium battery and lithium battery
JP2014053190A (en) Sodium secondary battery
US5660953A (en) Rechargeable manganese dioxide cathode
JP2945377B2 (en) Method for producing positive electrode active material for secondary battery
JP2000138072A (en) Nonaqueous electrolyte secondary battery
CN103947019A (en) Negative electrode active material, electrical storage device, and method for producing negative electrode active material
JPH11292547A (en) Lithium cobaltate, its production and lithium cell using that
EP1009056B1 (en) Non-aqueous electrolyte secondary battery
JPH04136195A (en) Novel composite material
Chen et al. A new Li2Mn3O7 cathode for aqueous Zn-Ion battery with high specific capacity and long cycle life based on the realization of the reversible Li+ and H+ co-extraction/insertion
JP6047086B2 (en) Sodium secondary battery
JPH1021898A (en) Lithium battery
EP3806219B1 (en) Cathode material for secondary manganese dioxide aqueous batteries
JP2015115283A (en) Sodium secondary battery, and method for manufacturing positive electrode material used therefor
WO2012094761A1 (en) Ion-exchange battery
JP2512241B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP6002110B2 (en) Sodium secondary battery
JP2000149943A (en) Process for lithium manganese compound oxide for lithium secondary battery positive active material
JP2692932B2 (en) Non-aqueous secondary battery
JP2000124082A (en) Energy-storing element and manufacture thereof