JP2512241B2 - Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof - Google Patents
Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereofInfo
- Publication number
- JP2512241B2 JP2512241B2 JP3054524A JP5452491A JP2512241B2 JP 2512241 B2 JP2512241 B2 JP 2512241B2 JP 3054524 A JP3054524 A JP 3054524A JP 5452491 A JP5452491 A JP 5452491A JP 2512241 B2 JP2512241 B2 JP 2512241B2
- Authority
- JP
- Japan
- Prior art keywords
- active material
- positive electrode
- electrode active
- lithium
- aqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は非水電解液二次電池およ
びその正極活物質の製造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery and a method for producing a positive electrode active material thereof.
【0002】[0002]
【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解液二次電池は高電圧、高エネルギー密度と
なることが期待され、実用化に向けて数多くの研究が行
なわれている。2. Description of the Related Art A non-aqueous electrolyte secondary battery having lithium or a lithium compound as a negative electrode is expected to have a high voltage and a high energy density, and many studies have been conducted for practical use.
【0003】これまでに、非水電解液二次電池の正極活
物質としてV2O5、Cr2O5、MnO2、TiS2、など
が知られており、また最近タックレイらによってLiM
n2O4が上記電池系の正極活物質になりうることが報告
された。(マテリアル リサーチ ブレチン 1983
年18巻461−472ページ)図において、電位曲線
は4.0V付近と2.8V付近に平坦部をもち、2段と
なる。ここで、高エネルギー密度を得るには、充放電の
電圧範囲を4.5Vから3Vまでとし、4.0V付近の
電位平坦部を用いて、充放電サイクルを行なう必要があ
る。しかし、上記電位平坦部を用い、電圧範囲4.5V
から3Vまでの充放電を行なう場合、充放電のサイクル
寿命は短く、50サイクル程度で放電容量は半分以下に
低下する。Up to now, V 2 O 5 , Cr 2 O 5 , MnO 2 , TiS 2 , etc. have been known as positive electrode active materials for non-aqueous electrolyte secondary batteries, and recently, LiM by Tacley et al.
It was reported that n 2 O 4 could be a positive electrode active material for the battery system. (Material Research Bulletin 1983
(Vol. 18, pp. 461-472) In the figure, the potential curve has flat parts near 4.0V and 2.8V, and has two stages. Here, in order to obtain a high energy density, it is necessary to set the charge / discharge voltage range from 4.5 V to 3 V and perform the charge / discharge cycle using the potential flat portion around 4.0 V. However, using the above potential flat portion, the voltage range is 4.5V.
When charging / discharging up to 3 V, the cycle life of charging / discharging is short, and the discharge capacity decreases to less than half in about 50 cycles.
【0004】そこで正極活物質LiMn2O4の改良がな
され、LixMyMn(2-y)O4(MはCo,Cr,Ni,
Feから選ばれる少なくとも1種の元素、かつ0.85
≦x≦1.15であり、0.02≦y≦0.5)を用い
ることによりサイクル特性の向上が図られた。また、
0.3<y≦0.5の範囲のものは過放電特性に優れて
いることがわかった。Therefore, the positive electrode active material LiMn 2 O 4 was improved so that Li x M y Mn (2-y) O 4 (M is Co, Cr, Ni,
At least one element selected from Fe, and 0.85
≦ x ≦ 1.15, and by using 0.02 ≦ y ≦ 0.5), cycle characteristics were improved. Also,
It was found that those having a range of 0.3 <y ≦ 0.5 had excellent over-discharge characteristics.
【0005】[0005]
【発明が解決しようとする課題】しかし、上記のよう
に、過放電特性向上のために、正極活物質LiMn2O4
のMnの15%以上をCo,Cr,Ni,Feから選ば
れる少なくとも1種の元素で置換することにより、10
〜20%程度の容量低下が生じる。本発明はこのような
課題を解決するもので、電池の容量低下を伴わず、過放
電特性を向上する非水電解液二次電池およびその正極活
物質の製造法を提供することを目的とする。However, as described above, in order to improve the overdischarge characteristics, the positive electrode active material LiMn 2 O 4 is used.
By substituting at least one element selected from Co, Cr, Ni, and Fe for 15% or more of Mn of
The capacity is reduced by about 20%. The present invention solves such a problem, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery that improves over-discharge characteristics and a method for producing a positive electrode active material thereof without reducing the capacity of the battery. .
【0006】[0006]
【課題を解決するための手段】この課題を解決するため
本発明の非水電解液二次電池およびその正極活物質の製
造法は、正極活物質として、リチウムマンガン複合酸化
物LixMn(2-y)Al yO4(0.85≦x≦1.15、
0.02≦y≦0.5)を用いるものである。[Means for Solving the Problem] To solve this problem
Manufacture of non-aqueous electrolyte secondary battery of the present invention and its positive electrode active material
The manufacturing method uses lithium manganese composite oxide as the positive electrode active material.
Thing LixMn(2-y)Al yOFour(0.85 ≦ x ≦ 1.15,
0.02 ≦ y ≦ 0.5) is used.
【0007】さらに、上記リチウムマンガン複合酸化物
を合成する際、Alの出発原料として塩化アルミニウ
ム、臭化アルミニウムまたは硝酸アルミニウムを用いる
ものである。Further, when synthesizing the lithium manganese composite oxide, aluminum chloride, aluminum bromide or aluminum nitrate is used as a starting material of Al.
【0008】[0008]
【作用】この構成により本発明の非水電解液二次電池お
よびその正極活物質の製造法は、LiMn2O4中のMn
の一部をCo、Cr、Ni、Feで置換することにより
充放電のサイクル性を著しく向上させることができ、さ
らに置換量が15%より多く、25%以下の場合、充放
電の容量低下はあるが、過放電特性を向上させることが
できた。MnをCoで置換することを例にとると、Li
Mn2O4の格子定数は8.25Åであるのに対し、Co
で5%置換した場合8.23Å、15%置換した場合
8.20Å、25%置換した場合8.15Åとなる。こ
のように、置換量の増加とともに活物質の格子定数は減
少する傾向にある。また、LiCoyMn(2-y)O4にお
いて、0.3<y≦0.5の範囲で、y値を増加させる
ほど、活物質の結晶格子を収縮させ、過放電による過剰
のLiイオンの侵入を抑制し、過放電特性に優れた正極
活物質となることがわかった。しかし、y値の増加は充
放電容量の低下をもたらす。本発明では、LiMn2O4
中のMnの一部をCo、Cr、Ni、Feよりもイオン
半径の小さいAlで置換することにより、結晶格子の収
縮の割合を高め、かつ、置換量を減少させることによ
り、容量低下を伴わず過放電特性に優れた活物質を得る
ことができる。With this structure, the method for producing the non-aqueous electrolyte secondary battery and the positive electrode active material thereof according to the present invention is based on Mn in LiMn 2 O 4.
By substituting a part of Co with Cr, Ni, Fe, the charging / discharging cycle property can be remarkably improved. Further, when the substitution amount is more than 15% and 25% or less, the charge / discharge capacity is not lowered. However, the over-discharge characteristics could be improved. Taking the example of substituting Co for Mn, Li
The lattice constant of Mn 2 O 4 is 8.25 Å, while Co
In the case of 5% replacement, 8.23Å, in the case of 15% replacement 8.20Å, and in the case of 25% replacement, 8.15Å. As described above, the lattice constant of the active material tends to decrease as the substitution amount increases. Further, in LiCo y Mn (2-y) O 4 , the crystal lattice of the active material shrinks as the y value increases in the range of 0.3 <y ≦ 0.5, and excess Li ions due to overdischarge are generated. It has been found that a positive electrode active material having excellent over-discharge characteristics can be obtained by suppressing the intrusion of hydrogen. However, an increase in y value causes a decrease in charge / discharge capacity. In the present invention, LiMn 2 O 4
By substituting a part of Mn in Al with Al having an ionic radius smaller than Co, Cr, Ni, and Fe, the contraction ratio of the crystal lattice is increased, and the substitution amount is decreased, so that the capacity is reduced. In addition, an active material having excellent overdischarge characteristics can be obtained.
【0009】[0009]
【実施例】以下本発明の一実施例の非水電解液二次電池
およびその正極活物質の製造法について図面を基にして
詳細に説明する。EXAMPLE A method for producing a non-aqueous electrolyte secondary battery and a positive electrode active material thereof according to an example of the present invention will be described in detail below with reference to the drawings.
【0010】(実施例1)本実施例では、正極活物質と
してLiMn2O4のMnの一部をAlで置換したLix
Mn(2-y)AlyO4(0.85≦x≦1.15、0.0
2≦y≦0.5)について検討した。また、比較例とし
て、LiMn(2-y)CoyO4(y=0.5)をもちい
た。Example 1 In this example, Li x was obtained by substituting a part of Mn of LiMn 2 O 4 with Al as a positive electrode active material.
Mn (2-y) Al y O 4 (0.85 ≦ x ≦ 1.15, 0.0
2 ≦ y ≦ 0.5) was examined. As a comparative example, LiMn (2-y) Co y O 4 (y = 0.5) was used.
【0011】LiMn2O4は以下の方法で作製した。L
i2CO3が3モルに対しMn3O4を4モルの割合でよく
混合したのち、混合物を大気中で900℃で10時間加
熱し、正極活物質LiMn2O4を得た。LiMn 2 O 4 was prepared by the following method. L
After thoroughly mixing 4 mol of Mn 3 O 4 with 3 mol of i 2 CO 3 , the mixture was heated in the air at 900 ° C. for 10 hours to obtain a positive electrode active material LiMn 2 O 4 .
【0012】LiMn1.5Co0.5O4は以下の方法によ
り作製した。Li2CO3とCoCO3とMn3O4を用
い、Liの原子数が1に対して、Mnの原子数が1.
5、Coの原子数が0.5となるように秤量、混合し、
大気中、900℃で10時間加熱して正極活物質LiM
n1.5Co0.5O4を得た。LiMn 1.5 Co 0.5 O 4 was prepared by the following method. Using Li 2 CO 3 , CoCO 3 and Mn 3 O 4 , the number of Li atoms is 1 and the number of Mn atoms is 1.
5, weigh and mix so that the number of Co atoms is 0.5,
Positive electrode active material LiM by heating in air at 900 ° C. for 10 hours
n 1.5 Co 0.5 O 4 was obtained.
【0013】LiMn(2-y)AlyO4(0.02≦y≦
0.5)は以下の方法により作製した。Li2CO3とM
n3O4と硝酸アルミニウムを用い、Liの原子数が1に
対して、Mnの原子数が(2−y)、Alの原子数がy
(y=0.1,0.2,0.3,0.5,0.8,1.
0)となるように秤量、混合し、大気中、900で10
時間加熱して正極活物質LiMn(2-y)AlyO4(y=
0.1,0.2,0.3,0.5,0.8,1.0)を
得た。しかし、これらのうち、粉末X線回折により、A
lの置換量yが0.5をこえるものは、単一相として得
られなかった。また、格子定数を調べると、例えばy=
0.2については8.19Åが得られた。 次に、電池
の製造法および充放電条件について説明する。上記、正
極活物質と導電剤としてのアセチレンブラックおよび結
着剤としてのポリ4弗化エチレン樹脂を重量比で7:
2:1の割合で混合して正極合剤とした。また、正極合
剤0.1グラムを直径17.5mmに2トン/cm2で
プレス成型して、正極とした。図2において、成型した
正極1をケース2に置く。正極1の上にセパレータ3と
して、多孔性ポリプロピレンフィルムを置いた。負極4
として直径17.5mm、厚さ0.3mmのリチウム板
を、ポリプロピレン製ガスケット6を付けた封口板5に
圧着した。非水電解液として、1モル/lの過塩素酸リ
チウムを溶解したプロピレンカーボネート溶液を用い、
これをセパレータ3上および負極4上に加えた。その後
電池を封口した。正極活物質としてLiMn1.9Al0.1
O4を用いたコイン型電池を(A)、LiMn1.8Al
0.2O4を用いたものを(B)、LiMn1.7Al0.3O4
を用いたものを(C)、そしてLiMn1.5Al0.5O4
を用いたコイン型電池を(D)とした。また比較例とし
てLiMn2O4を活物質として用いたコイン型電池を
(E)、LiMn1.5Co0.5O4を用いたコイン型電池
を(F)とした。LiMn (2-y) Al y O 4 (0.02≤y≤
0.5) was produced by the following method. Li 2 CO 3 and M
Using n 3 O 4 and aluminum nitrate, the number of Li atoms is 1, the number of Mn atoms is (2-y), and the number of Al atoms is y.
(Y = 0.1, 0.2, 0.3, 0.5, 0.8, 1.
0) Weigh and mix so that
And heating time positive electrode active material LiMn (2-y) Al y O 4 (y =
0.1, 0.2, 0.3, 0.5, 0.8, 1.0) was obtained. However, among these, by powder X-ray diffraction, A
Those in which the substitution amount y of 1 exceeded 0.5 were not obtained as a single phase. Moreover, when the lattice constant is examined, for example, y =
For 0.2, 8.19Å was obtained. Next, a battery manufacturing method and charge / discharge conditions will be described. The above positive electrode active material, acetylene black as a conductive agent, and polytetrafluoroethylene resin as a binder in a weight ratio of 7:
The mixture was mixed at a ratio of 2: 1 to obtain a positive electrode mixture. Further, 0.1 gram of the positive electrode mixture was press-molded into a diameter of 17.5 mm at 2 ton / cm 2 to obtain a positive electrode. In FIG. 2, the molded positive electrode 1 is placed in the case 2. A porous polypropylene film was placed as the separator 3 on the positive electrode 1. Negative electrode 4
As a result, a lithium plate having a diameter of 17.5 mm and a thickness of 0.3 mm was pressure-bonded to the sealing plate 5 provided with the polypropylene gasket 6. As the non-aqueous electrolyte, a propylene carbonate solution in which 1 mol / l lithium perchlorate is dissolved is used,
This was added on the separator 3 and the negative electrode 4. Thereafter, the battery was sealed. LiMn 1.9 Al 0.1 as the positive electrode active material
A coin-type battery using O 4 (A), LiMn 1.8 Al
The one using 0.2 O 4 is (B), LiMn 1.7 Al 0.3 O 4
(C), and LiMn 1.5 Al 0.5 O 4
The coin-type battery using was designated as (D). Further, as a comparative example, a coin battery using LiMn 2 O 4 as an active material was designated as (E), and a coin battery using LiMn 1.5 Co 0.5 O 4 was designated as (F).
【0014】電池の過放電特性試験は次の方法で行なっ
た。電池を2mAの定電流で4.5Vまで充電し、3.
0Vまで放電する。この電圧範囲で充放電を5サイクル
程度繰り返した後、電圧範囲を4.5V〜0Vまでに切
り替え、充放電を50サイクル行ない、再び3.0V〜
4.5Vの電圧範囲で充放電を繰り返した。この試験を
各活物質を用いた電池(A)〜(F)で行ない、その後
の充放電挙動を比較した。比較のために過放電サイクル
前の放電容量で過放電サイクル後の放電容量を除した値
を放電容量維持率とし、この値で過放電に対する耐久性
を評価した。すなわちこの放電容量維持率が大きいほど
過放電特性に優れた電池であるといえる。The overdischarge characteristic test of the battery was conducted by the following method. 2. Charge the battery to 4.5V with a constant current of 2mA.
Discharge to 0V. After repeating charging / discharging for about 5 cycles in this voltage range, the voltage range is switched to 4.5V to 0V, charging / discharging is performed for 50 cycles, and 3.0V ~ again.
Charging and discharging were repeated in the voltage range of 4.5V. This test was performed on the batteries (A) to (F) using each active material, and the subsequent charge / discharge behaviors were compared. For comparison, the value obtained by dividing the discharge capacity after the over-discharge cycle by the discharge capacity before the over-discharge cycle was defined as the discharge capacity retention rate, and the durability against over-discharge was evaluated by this value. That is, it can be said that the larger the discharge capacity maintenance rate, the more excellent the over-discharge characteristics the battery has.
【0015】図1において、これは、電池(A)、
(D)、(E)、(F)について過放電サイクルの前後
での充放電曲線を示している。放電曲線側のX軸の目盛
は電池の放電容量、充電曲線側のX軸の目盛は電池の残
存未充電容量を示す。比較例である電池(E)は、過放
電サイクル後著しく容量の低下が認められる。また、も
う一つの比較例である電池(F)は過放電サイクル前後
の容量低下は5%程度であるが、初期の充放電容量が電
池(E)に比べ、25%程度低下している。これに対し
て、本実施例の電池(A)、(D)は電池(E)に比
べ、初期容量および過放電サイクル前後の容量低下は、
ほとんど認められず、初期容量については増加している
ことがわかる。また、(表1)には電池(A)〜(F)
の過放電サイクル前後の放電容量と放電容量維持率を示
した。In FIG. 1, this is the battery (A),
The charge-discharge curves before and after the over-discharge cycle are shown for (D), (E), and (F). The X-axis scale on the discharge curve side shows the discharge capacity of the battery, and the X-axis scale on the charge curve side shows the remaining uncharged capacity of the battery. In the battery (E) which is a comparative example, the capacity is remarkably reduced after the overdischarge cycle. The battery (F), which is another comparative example, has a capacity decrease of about 5% before and after the over-discharge cycle, but the initial charge / discharge capacity is about 25% lower than that of the battery (E). On the other hand, in the batteries (A) and (D) of this example, compared with the battery (E), the initial capacity and the capacity decrease before and after the over-discharge cycle were
It can be seen that there is almost no evidence that the initial capacity is increasing. Also, in (Table 1), batteries (A) to (F)
The discharge capacity and the discharge capacity retention rate before and after the over-discharge cycle were shown.
【0016】[0016]
【表1】 [Table 1]
【0017】このようにLiMn2O4中のMnの一部を
Alで置換することにより、容量低下を伴わず、過放電
特性に優れた電池が得られる。また、置換元素であるA
lがMnより軽い元素であるため、初期放電容量は電池
(C)が最も大きく、かつ過放電特性の最も優れた電池
であることがわかる。By substituting a part of Mn in LiMn 2 O 4 with Al as described above, a battery excellent in over-discharge characteristics can be obtained without lowering the capacity. In addition, the substitution element A
Since 1 is an element lighter than Mn, it is understood that the battery (C) has the largest initial discharge capacity and the battery having the best over-discharge characteristics.
【0018】(実施例2)次に、LiMn(2-y)AlyO
4(0.02≦y≦0.5)の製造法について検討し
た。ここでは、活物質LiMn1.8Al0.2O4を用いて
詳細に説明する。Example 2 Next, LiMn (2-y) Al y O
4 (0.02 ≦ y ≦ 0.5) was investigated. Here, the active material LiMn 1.8 Al 0.2 O 4 will be described in detail.
【0019】LiMn1.8Al0.2O4は以下の方法によ
り作製した。Li2CO3とMn3O4を用い、Alの出発
原料として塩化アルミニウム、臭化アルミニウム、硝酸
アルミニウム、または水酸化アルミニウムを用い、Li
の原子数が1に対して、Mnの原子数が1.8、Alの
原子数が0.2となるように秤量、溶媒に水を用いて湿
式混合し、大気中、900℃で10時間、加熱して正極
活物質LiMn1.8Al0.2O4を得た。このようにして
得た活物質の評価のため、実施例1と同様の方法でコイ
ン形電池を作製した。ここで、Alの出発原料として、
硝酸アルミニウムを用いた活物質で作製した電池を
(G)、塩化アルミニウムを用いたものを(H)、臭化
アルミニウムを用いたものを(I)、そして水酸化アル
ミニウムを用いたものを(J)とする。LiMn 1.8 Al 0.2 O 4 was prepared by the following method. Li 2 CO 3 and Mn 3 O 4 are used, and aluminum chloride, aluminum bromide, aluminum nitrate, or aluminum hydroxide is used as a starting material of Al.
The number of atoms is 1, the number of Mn atoms is 1.8, and the number of Al atoms is 0.2, and the mixture is wet-mixed with water as a solvent, and the temperature is 900 ° C. for 10 hours. and heated to give a positive electrode active material LiMn 1.8 Al 0.2 O 4. In order to evaluate the active material thus obtained, a coin-type battery was produced in the same manner as in Example 1. Here, as a starting material of Al,
A battery made of an active material using aluminum nitrate (G), a battery using aluminum chloride (H), a battery using aluminum bromide (I), and a battery using aluminum hydroxide (J). ).
【0020】これらの電池(G)〜(J)を電圧範囲
4.5V〜3.0Vで、2mA定電流の充放電試験を行
ない、初期の放電容量を比較した。(表2)にその結果
を示す。These batteries (G) to (J) were subjected to a charge / discharge test at a constant current of 2 mA in a voltage range of 4.5 V to 3.0 V, and the initial discharge capacities were compared. The results are shown in (Table 2).
【0021】[0021]
【表2】 [Table 2]
【0022】Alの出発原料としては硝酸アルミニウム
が最も放電容量が大きく、次いで、塩化アルミニウム、
臭化アルミニウムと続く。水酸化アルミニウムはこの結
果から原材料としてあまり適していないように思われ
る。このことは、原料の水への溶解度に起因していると
思われる。Alの出発源として水への溶解度が大きいも
のを用いた場合、原材料の混合がより均一に行なわれ、
原材料の分散状態が良好で、より微細な正極活物質を得
ることができたとおもわれる。このため、電池の放電容
量が増大したと思われる。Aluminum nitrate has the largest discharge capacity as a starting material of Al, and then aluminum chloride,
Followed by aluminum bromide. From this result aluminum hydroxide appears to be less suitable as a raw material. This seems to be due to the solubility of the raw material in water. When a material having a high solubility in water is used as a starting source of Al, the raw materials are mixed more uniformly,
It is considered that the raw material was dispersed well and a finer positive electrode active material could be obtained. Therefore, it seems that the discharge capacity of the battery increased.
【0023】また、本実施例で、電池の負極材料として
金属リチウムを用いているが、負極材料として、リチウ
ム合金またはリチウムを吸蔵、放出することができるリ
チウム化合物を用いた場合も同様の結果を得ている。In this embodiment, metallic lithium is used as the negative electrode material of the battery, but the same results are obtained when a lithium alloy or a lithium compound capable of absorbing and releasing lithium is used as the negative electrode material. It has gained.
【0024】さらに、炭酸リチウムの代わりに、水酸化
リチウム、硝酸リチウムなどのリチウム化合物を用い、
Mn3O4の代わりに、Mn2O3、硝酸マンガンのような
Mn化合物を、用いた場合も同様の結果を得た。Further, instead of lithium carbonate, lithium compounds such as lithium hydroxide and lithium nitrate are used,
Similar results were obtained when Mn compounds such as Mn 2 O 3 and manganese nitrate were used instead of Mn 3 O 4 .
【0025】[0025]
【発明の効果】以上の実施例の説明で明らかなように、
本発明の非水電解液二次電池およびその正極活物質の製
造法は負極にリチウム、リチウム合金またはリチウムを
吸蔵、放出することができるリチウム化合物を、電解液
にリチウム塩を含む非水電解液を用い、正極活物質とし
て式LixMn(2-y)AlyO4(0.85≦x≦1.1
5、0.02≦y≦0.5)で表わされる物質を用いる
ことにより、容量低下を伴わず、過放電特性に優れた正
極活物質を提供することができ、産業上の意義は大き
い。As is apparent from the above description of the embodiments,
The method for producing a non-aqueous electrolyte secondary battery and a positive electrode active material thereof according to the present invention is a non-aqueous electrolyte containing lithium, a lithium alloy or a lithium compound capable of absorbing and releasing lithium in the negative electrode, and a lithium salt in the electrolyte. using the formula Li x Mn (2-y) Al y O 4 (0.85 ≦ x ≦ 1.1 as a positive electrode active material
5, 0.02 ≦ y ≦ 0.5), it is possible to provide a positive electrode active material excellent in over-discharge characteristics without lowering the capacity, which has great industrial significance.
【図1】本発明の非水電解液二次電池およびその正極活
物質の製造法の実施例1のLiMn(2-y)AlyO4(y
=0.1、0.5)と比較例であるLiMn2O4および
LiMn1.5Co0.5O4の充放電曲線を表わしたグラフ[1] LiMn (2-y) of Example 1 of the non-aqueous electrolyte secondary battery and a positive electrode active material of the production process of the present invention Al y O 4 (y
= 0.1, 0.5) and a charge / discharge curve of LiMn 2 O 4 and LiMn 1.5 Co 0.5 O 4 which are comparative examples.
【図2】同実施例1および2で試験に用いたコイン形電
池の縦断面図FIG. 2 is a vertical cross-sectional view of coin-shaped batteries used in the tests in Examples 1 and 2;
【図3】LixMn2O4正極活物質中のx値とこれを用
いた非水電解液二次電池の開路電圧との関係を示すグラ
フFIG. 3 is a graph showing a relationship between an x value in a Li x Mn 2 O 4 positive electrode active material and an open circuit voltage of a non-aqueous electrolyte secondary battery using the same.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 美藤 靖彦 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 豊口 吉徳 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yasuhiko Mito 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Yoshinori Toyokuchi 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co. In the company
Claims (2)
ウムを吸蔵、放出することができるリチウム化合物を、
電解液にリチウム塩を含む非水電解液を用い、正極活物
質として式LixMn(2-y)AlyO4(0.85≦x≦
1.15、0.02≦y≦0.5)で表わされる物質を
用いる非水電解液二次電池。1. A negative electrode is made of lithium, a lithium alloy or a lithium compound capable of absorbing and releasing lithium.
Solution using a nonaqueous electrolyte containing lithium salt in the electrolyte, wherein Li x Mn (2-y) Al y O 4 as a positive electrode active material (0.85 ≦ x ≦
1.15, 0.02 ≦ y ≦ 0.5) A non-aqueous electrolyte secondary battery using a substance.
ウムを吸蔵、放出することができるリチウム化合物を、
電解液にリチウム塩を含む非水電解液を用い、正極活物
質として式LixMn(2-y)AlyO4(0.85≦x≦
1.15、0.02≦y≦0.5)で表わされる物質を
用いる非水電解液二次電池において、前記式LixMn
(2-y)AlyO4(0.85≦x≦1.15、0.02≦
y≦0.5)で表わされる正極活物質の合成において、
Alの出発原料を塩化アルミニウム、臭化アルミニウム
または硝酸アルミニウムとする非水電解液二次電池用正
極活物質の製造法。2. A negative electrode containing lithium, a lithium alloy, or a lithium compound capable of inserting and extracting lithium,
Solution using a nonaqueous electrolyte containing lithium salt in the electrolyte, wherein Li x Mn (2-y) Al y O 4 as a positive electrode active material (0.85 ≦ x ≦
1.15, 0.02 ≦ y ≦ 0.5) in a non-aqueous electrolyte secondary battery using a substance represented by the above formula Li x Mn
(2-y) Al y O 4 (0.85 ≦ x ≦ 1.15, 0.02 ≦
y ≦ 0.5) In the synthesis of the positive electrode active material,
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the starting material of Al is aluminum chloride, aluminum bromide or aluminum nitrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3054524A JP2512241B2 (en) | 1991-03-19 | 1991-03-19 | Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3054524A JP2512241B2 (en) | 1991-03-19 | 1991-03-19 | Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04289662A JPH04289662A (en) | 1992-10-14 |
JP2512241B2 true JP2512241B2 (en) | 1996-07-03 |
Family
ID=12973050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3054524A Expired - Fee Related JP2512241B2 (en) | 1991-03-19 | 1991-03-19 | Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2512241B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4734684B2 (en) * | 1998-10-22 | 2011-07-27 | 株式会社豊田中央研究所 | Positive electrode active material for lithium secondary battery, method for producing the same, lithium secondary battery using the same, and aging treatment method for the secondary battery |
JP4891473B2 (en) * | 2000-07-14 | 2012-03-07 | 三井金属鉱業株式会社 | Lithium-manganese positive electrode material and lithium secondary battery using the positive electrode material |
JP4797230B2 (en) * | 2000-08-30 | 2011-10-19 | 株式会社デンソー | Lithium ion secondary battery |
EP1233001B1 (en) | 2001-02-16 | 2010-09-15 | Tosoh Corporation | Lithium-manganese complex oxide, production method thereof and use thereof |
JP5344111B2 (en) | 2007-03-30 | 2013-11-20 | 戸田工業株式会社 | Method for producing lithium manganate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
US9299475B2 (en) | 2010-11-05 | 2016-03-29 | Nec Corporation | Positive electrode active material for secondary battery and secondary battery using the same |
WO2013153690A1 (en) | 2012-04-13 | 2013-10-17 | 日本電気株式会社 | Positive electrode active material for secondary cell, and secondary cell using same |
-
1991
- 1991-03-19 JP JP3054524A patent/JP2512241B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04289662A (en) | 1992-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5626635A (en) | Processes for making positive active material for lithium secondary batteries and secondary batteries therefor | |
US7309546B2 (en) | Positive active material for rechargeable lithium battery | |
JP3024636B2 (en) | Non-aqueous electrolyte secondary battery | |
US5084366A (en) | Non-aqueous electrolyte secondary cell | |
JP3506397B2 (en) | Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same | |
JPH0732017B2 (en) | Non-aqueous electrolyte secondary battery | |
US6335119B1 (en) | Lithium battery and method of producing positive electrode active material therefor | |
JP3260282B2 (en) | Non-aqueous electrolyte lithium secondary battery | |
WO2003069701A1 (en) | Production methods for positive electrode active matter and non-aqueous electrolytic battery | |
JPH09259863A (en) | Nonaqueous electrolyte secondary battery and its manufacture | |
JP3003431B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2512241B2 (en) | Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof | |
JPH09265984A (en) | Nonaqueous electrolyte secondary battery | |
JP2584123B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH0935712A (en) | Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it | |
JP2517176B2 (en) | Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof | |
JP2512239B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery | |
JP2000077097A (en) | Nonaqueous electrolyte secondary battery | |
JP3475480B2 (en) | Non-aqueous electrolyte secondary battery and method of manufacturing the same | |
JPH0734368B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3282495B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH0734367B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3104321B2 (en) | Non-aqueous electrolyte lithium secondary battery and method for producing the same | |
JP2002184404A (en) | Positive electrode material and nonaqueous electrolyte battery | |
JPH02270268A (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |