JPH09259863A - Nonaqueous electrolyte secondary battery and its manufacture - Google Patents

Nonaqueous electrolyte secondary battery and its manufacture

Info

Publication number
JPH09259863A
JPH09259863A JP8062354A JP6235496A JPH09259863A JP H09259863 A JPH09259863 A JP H09259863A JP 8062354 A JP8062354 A JP 8062354A JP 6235496 A JP6235496 A JP 6235496A JP H09259863 A JPH09259863 A JP H09259863A
Authority
JP
Japan
Prior art keywords
phosphorus
manganese
positive electrode
battery
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8062354A
Other languages
Japanese (ja)
Inventor
Noriko Tanaka
紀子 田中
Teruyoshi Morita
彰克 守田
Yumiko Kawamura
弓子 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8062354A priority Critical patent/JPH09259863A/en
Publication of JPH09259863A publication Critical patent/JPH09259863A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery keeping a high operating voltage and excellent charge and discharge cycle characteristics by providing a specified positive electrode, a negative electrode, and a nonaqueous electrolyte. SOLUTION: This secondary battery has a positive electrode 1 mainly composed of LiMn2 O4 which is a composite oxide of Li and Mn and having P or P oxide added thereto, the adding ratio of P being preferably 0.02-0.1 by mole ratio to Mn, a negative electrode 3, and a nonaqueous electrolyte. A part of Mn is preferably substituted by Co, Ni. The material for the positive electrode active material of this battery is obtained by mixing a Li compound (e.g. Li2 Co3 ), a Mn compound (e.g. Mn3 O4 ), and P or a P compound (e.g. P2 O5 ), and thermally treating the mixture in oxidizing atmosphere, for example, at a high temperature of 650-900%oC to cover the particle surface of LiMn2 O4 which is the composite oxide of Li and Mn with P.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電
池、特にリチウム複合酸化物を正極に用いた電池の特性
改良とその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a battery characteristic improvement using a lithium composite oxide as a positive electrode and a method for producing the same.

【0002】[0002]

【従来の技術】電子機器の小型化、軽量化が進むにつ
れ、その電源としての電池に対しても小型化、軽量化の
要望が高まっている。なかでも高電圧、高エネルギー密
度を有する非水電解液リチウム二次電池への期待は大き
い。近年リチウム二次電池の正極活物質として遷移金属
の硫化物または酸化物などを用いた電池を実用化する試
みが盛んに行われている。米国特許第4,302,51
8号で正極活物質としてLiCoO2を用いた電池が提
案され、また1992年にこの正極と負極にカーボンを
用いた円筒型電池が深い深度の充放電において、120
0サイクル経過後も初期の70%以上の容量が保持され
たとの報告があり、現在では各社で4V級リチウムイオ
ン二次電池として実用化されている。また次の正極活物
質としてLiNiO2を実用化する試みも進んでいる。
しかし、Co,Niは資源が乏しく、高価である問題点
がある。それに対して、資源が豊富で安価であるマンガ
ンを使用した正極活物質として、LiMn24(特公平
4−30146号公報)が提案されている。この酸化物
の放電電位は、4V付近と2.8V付近の2段の放電電
位となる。この4V付近のプラトーな領域を使用し、
4.5V〜3.0Vまでの電圧範囲で充放電を繰り返す
ことで高電位、高エネルギー密度を達成することができ
る。
2. Description of the Related Art As electronic devices have become smaller and lighter, there has been an increasing demand for smaller and lighter batteries as power sources. In particular, expectations are high for non-aqueous electrolyte lithium secondary batteries having high voltage and high energy density. In recent years, many attempts have been made to put batteries using transition metal sulfides or oxides as positive electrode active materials for lithium secondary batteries into practical use. U.S. Pat. No. 4,302,51
In No. 8, a battery using LiCoO 2 as a positive electrode active material was proposed, and in 1992, a cylindrical battery using carbon for the positive electrode and the negative electrode showed 120
It has been reported that the capacity of 70% or more of the initial capacity was retained even after the lapse of 0 cycle, and it is now put into practical use as a 4V class lithium ion secondary battery by each company. Further, attempts are being made to put LiNiO 2 into practical use as the next positive electrode active material.
However, Co and Ni have a problem that they are scarce in resources and expensive. On the other hand, LiMn 2 O 4 (Japanese Patent Publication No. 4-30146) has been proposed as a positive electrode active material using manganese, which has abundant resources and is inexpensive. The discharge potential of this oxide has a two-stage discharge potential of around 4V and around 2.8V. Using this plateau area around 4V,
By repeating charging and discharging in the voltage range of 4.5 V to 3.0 V, high potential and high energy density can be achieved.

【0003】特開平5−47383号公報においてLi
CoO2が4V以上の高い電位になると分解しそれが電
池特性に悪影響を与えており、主活物質LiCoO2
モルに対しリンを所定量添加することでサイクル特性に
優れた非水電解液二次電池が得られるとされている。
In JP-A-5-47383, Li
When CoO 2 has a high potential of 4 V or higher, it decomposes and adversely affects the battery characteristics. The main active material LiCoO 2 1
It is said that by adding a predetermined amount of phosphorus to the moles, a non-aqueous electrolyte secondary battery having excellent cycle characteristics can be obtained.

【0004】[0004]

【発明が解決しようとする課題】マンガンの複合酸化物
であるLiMn24は、高電圧、高エネルギー密度とい
う特徴は有しているが、充放電サイクルに伴う容量低下
という課題があり、実用電池としての利用には至ってい
ない。本発明はこのような課題を解決するもので、高い
作動電圧を維持すると共に、優れた充放電特性を有する
二次電池を提供することを目的とするものである。
LiMn 2 O 4, which is a complex oxide of manganese, has the characteristics of high voltage and high energy density, but it has a problem of capacity decrease with charge / discharge cycles, and is practically used. It has not been used as a battery. The present invention solves such a problem, and an object thereof is to provide a secondary battery which maintains a high operating voltage and has excellent charge and discharge characteristics.

【0005】[0005]

【課題を解決するための手段】これらの課題を解決する
ために本発明は、正極活物質を主体となって構成するリ
チウムとマンガンの複合酸化物にリンを添加して、複合
酸化物の粒子表面をリンで被覆した正極活物質を提供
し、高電圧を有しかつ優れた充放電サイクル特性を示す
非水電解液二次電池を提供するものである。
In order to solve these problems, the present invention is to add phosphorus to a composite oxide of lithium and manganese mainly composed of a positive electrode active material to form particles of the composite oxide. The present invention provides a positive electrode active material having a surface coated with phosphorus, and provides a non-aqueous electrolyte secondary battery having a high voltage and exhibiting excellent charge / discharge cycle characteristics.

【0006】LiMn24の場合は、LiCoO2より
はより高電位で安定ではあるものの、リチウムが抜けた
Li1-XMn24はマンガンが一部電解液中へ溶出し、
このため電池の充放電サイクル特性に悪影響を及ぼすと
いう現象がみられた。従って、マンガンの溶出に対し高
電位でも安定な状態を保つ正極活物質を開発するため
に、本発明はリチウムとマンガンとの複合酸化物LiM
24に対しリンを所定量添加することによりLiMn
24の粒子表面がリンで被覆され、その結果高電位でも
マンガンが電解液中へ溶出することなく、また充放電サ
イクル特性に優れた活物質が得られるということ、特に
LiCoO2の場合、高電圧において分解を抑止するた
めLiCoO2に対し所定のリン量が必要であるのに対
し、このリチウムとマンガンの複合酸化物の場合、化合
物中のマンガンの溶出が問題となるため、添加するリン
は化合物中のマンガン量に対し所定量必要であることを
見いだしたものである。即ち添加するリンは化合物中の
マンガンに対しモル比で0.02〜0.1の範囲が最適
であることを見いだしたものである。LiMn24は炭
酸リチウム、硝酸リチウムなどのリチウム塩と炭酸マン
ガン、酸化マンガンなどのマンガン塩を混合し、酸化雰
囲気中で650〜900℃の高温で熱処理合成して得ら
れる。その合成の際、原材料中にリンの化合物を混入し
熱処理することによってできあがったLiMn24の粒
子表面がリンで被覆される。このようにLiMn24
リンを添加した正極を用いることにより、高電圧、高エ
ネルギー密度で充放電特性に優れた非水電解液二次電池
を提供する。
LiMn 2 O 4 is more stable than LiCoO 2 at a higher potential, but Li 1 -X Mn 2 O 4 from which lithium has been removed has manganese partially eluted into the electrolytic solution.
For this reason, a phenomenon was observed that adversely affects the charge / discharge cycle characteristics of the battery. Therefore, in order to develop a positive electrode active material which maintains a stable state even at a high potential with respect to elution of manganese, the present invention provides a composite oxide LiM of lithium and manganese.
LiMn by adding a predetermined amount of phosphorus to n 2 O 4
The surface of 2 O 4 particles is coated with phosphorus, so that manganese does not elute into the electrolytic solution even at a high potential, and an active material excellent in charge / discharge cycle characteristics can be obtained, particularly in the case of LiCoO 2 , In order to suppress decomposition at high voltage, a predetermined amount of phosphorus is required for LiCoO 2, whereas in the case of this lithium-manganese composite oxide, the elution of manganese in the compound poses a problem, so the phosphorus added is Was found to be necessary for a predetermined amount of manganese in the compound. That is, it has been found that the phosphorus added is optimal in a molar ratio range of 0.02 to 0.1 with respect to manganese in the compound. LiMn 2 O 4 is obtained by mixing a lithium salt such as lithium carbonate and lithium nitrate with a manganese salt such as manganese carbonate and manganese oxide, and heat-synthesizing at a high temperature of 650 to 900 ° C. in an oxidizing atmosphere. During the synthesis, the surface of the particles of LiMn 2 O 4 produced by mixing the phosphorus compound in the raw material and heat-treating is coated with phosphorus. By using the positive electrode in which phosphorus is added to LiMn 2 O 4 as described above, a non-aqueous electrolyte secondary battery having high voltage and high energy density and excellent charge / discharge characteristics is provided.

【0007】[0007]

【発明の実施の形態】以下、図面と共に本発明の実施の
形態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0008】(実施例1)図1にその円筒形電池の断面
図を示す。図において1の正極はLiMn24に、導電
材としてカーボンブラック、結着剤としてポリ4フッ化
エチレンの水性ディスパージョンを重量化で100:
2.5:7.5の割合で混合したものをアルミニウム箔
芯材に両面塗着、乾燥、圧延した後所定の大きさに切断
して2のチタン製リードをスポット溶接している。なお
結着剤のポリ4フッ化エチレンの水性ディスパージョン
の混合比率は、その固形分で計算している。3の負極は
炭素質材料を主活物質にスチレンブタジエンゴム系結着
剤(SBR)を重量比で95:3.5の割合で混合し、
銅箔芯材に両面塗着、乾燥、圧延した後所定の大きさに
切断して、4の銅製リードをスポットしている。負極の
場合も結着剤SBRの混合比率はその固形分で計算して
いる。5はポリプロピレン製の微孔性フィルムからなる
セパレータで正極1と負極2をセパレータ5を介して渦
巻き状に巻回して極板群を構成する。極板群の上下それ
ぞれにポリプロピレン樹脂製の絶縁板6、7を配して鉄
にニッケルメッキしたケース8に挿入し、正極リード2
をチタン製の封口板10に、負極リード4をケース8の
底部にそれぞれスポットを溶接した後、電解液を注入
し、ガスケット9を介して電池を封口して完成電池とす
る。この電池の寸法は直径17mm、高さ50mmであ
る。11は電池の正極端子であり、負極端子は電池ケー
スがこれを兼ねている。
(Embodiment 1) FIG. 1 shows a sectional view of the cylindrical battery. In the figure, the positive electrode of 1 is LiMn 2 O 4 , an aqueous dispersion of carbon black as a conductive material and polytetrafluoroethylene as a binder, weighted to 100:
A mixture of 2.5: 7.5 was applied to both sides of an aluminum foil core material, dried, rolled, cut into a predetermined size, and 2 titanium leads were spot-welded. The mixing ratio of the aqueous dispersion of polytetrafluoroethylene as the binder is calculated by its solid content. For the negative electrode of 3, a carbonaceous material was mixed with a main active material and a styrene-butadiene rubber-based binder (SBR) was mixed at a weight ratio of 95: 3.5.
A copper foil core material is coated on both sides, dried, rolled, and then cut into a predetermined size to spot 4 copper leads. Also in the case of the negative electrode, the mixing ratio of the binder SBR is calculated by its solid content. Reference numeral 5 is a separator made of a polypropylene microporous film, and the positive electrode 1 and the negative electrode 2 are spirally wound via the separator 5 to form an electrode plate group. Insulating plates 6 and 7 made of polypropylene resin are arranged on the upper and lower sides of the electrode plate group respectively, and the insulating plates 6 and 7 are inserted into a case 8 nickel-plated with iron to form a positive electrode lead 2
After spot welding the negative electrode lead 4 to the bottom of the case 8 on the titanium sealing plate 10, the electrolytic solution is injected, and the battery is sealed via the gasket 9 to complete the battery. The dimensions of this battery are 17 mm in diameter and 50 mm in height. Reference numeral 11 denotes a positive electrode terminal of the battery, and the battery case also serves as the negative electrode terminal.

【0009】電解液はエチレンカーボネートとエチルメ
チルカーボネートを体積比1:3で混合し、6フッ化リ
ン酸リチウムを1.5mol/dm3で溶解したものを
用いた。
The electrolyte used was a mixture of ethylene carbonate and ethylmethyl carbonate in a volume ratio of 1: 3, and lithium hexafluorophosphate dissolved at 1.5 mol / dm 3 .

【0010】上記正極活物質は酸化マンガン(Mn
34)と炭酸リチウム(Li2CO3)をモル比で4:3
の割合で混合したものに五酸化二リン(P25)を添加
し、酸素中800℃で20時間熱処理して合成した。五
酸化二リンの添加割合は合成したLiMn24中のマン
ガン1モルに対しリンのモル比で表すものとし、(表
1)に示した5種類の検討を行った。
The positive electrode active material is manganese oxide (Mn
3 O 4 ) and lithium carbonate (Li 2 CO 3 ) in a molar ratio of 4: 3.
Diphosphorus pentoxide (P 2 O 5 ) was added to the mixture at the ratio of, and heat treatment was performed in oxygen at 800 ° C. for 20 hours to synthesize. The addition ratio of diphosphorus pentoxide was represented by the molar ratio of phosphorus to 1 mol of manganese in the synthesized LiMn 2 O 4 , and the five types shown in (Table 1) were examined.

【0011】[0011]

【表1】 [Table 1]

【0012】それぞれの電池を2セルずつ製作し、1セ
ルは20℃で充放電電流を120mAとし、充電終止電
圧4.3V、放電終止電圧3.0Vの条件で充放電試験
を5サイクル行った後、充電状態で80℃で3日保存し
た。その後電池を分解し電解液中へのマンガンの溶出量
を測定した。その結果を図2に示す。他の1セルは20
℃で充放電電流を120mAとし、充電終止電圧4.3
V、放電終止電圧3.0Vの条件で充放電サイクル試験
を行った。また電池A〜Eの充放電初期(10サイクル
目)の放電容量と300サイクル時点での放電容量の容
量維持率を図3に示す。
Two cells of each battery were manufactured, and one cell was charged and discharged at a charge and discharge current of 120 mA at 20 ° C., and a charge and discharge test was conducted for 5 cycles under the conditions of a charge end voltage of 4.3 V and a discharge end voltage of 3.0 V. After that, it was stored in a charged state at 80 ° C. for 3 days. After that, the battery was disassembled and the amount of manganese eluted into the electrolytic solution was measured. The result is shown in FIG. The other cell is 20
The charge / discharge current is 120 mA at ℃, and the charge end voltage is 4.3.
A charge / discharge cycle test was performed under the conditions of V and a discharge end voltage of 3.0V. Further, FIG. 3 shows the discharge capacity at the initial charging / discharging (10th cycle) of the batteries A to E and the capacity retention rate of the discharge capacity at the time of 300 cycles.

【0013】図2よりリンを全く添加していない電池A
は電解液中へのマンガンの溶出量が非常に多いが、リン
を添加することによりその溶出量は添加量に伴い減少す
ることが分かる。そして、図3よりリンの添加なしの電
池Aは初期の放電容量は大きいが、充放電サイクルに伴
う容量低下も大きく、300サイクル時点で初期容量の
約40%になる。リンの添加がモル比0.01の電池B
の場合、電池Aと比べ容量維持率は向上するものの、6
0%程度と不十分である。これはリン添加量が少ないた
めに、LiMn24粒子表面のリンの被覆が不十分で電
解液中へのマンガンの溶出がまだかなり起こっているた
めと考えられる。これがリン添加量をさらに多くした電
池C,D,E,Fでは初期容量は電池Aより少なくなる
が、容量低下率が小さく、300サイクル時点で初期容
量の約80%以上を維持する。一方、リンをモル比0.
15添加した電池Fはサイクルによる容量低下は電池C
〜Eよりも優れるが、初期の絶対容量が電池C〜Eに比
べて小さい。これはリンの添加量が多すぎるとLiMn
24の粒子の表面を被覆するリンの厚みが厚くなりすぎ
て、LiMn24の反応が妨げられたためと考えられ
る。以上のように電池の絶対容量及び充放電サイクルに
伴う容量維持率を考慮すると、リンをマンガンとのモル
比0.02〜0.1添加したLiMn24を正極活物質
として用いることにより充放電サイクル特性に優れ、高
容量の非水電解液二次電池が得られる。
From FIG. 2, battery A containing no phosphorus was added.
It can be seen that the amount of manganese eluted into the electrolytic solution is very large, but the amount of manganese eluted decreases with the addition of phosphorus. Further, as shown in FIG. 3, the battery A without addition of phosphorus has a large initial discharge capacity, but also has a large decrease in capacity with charge / discharge cycles, and reaches about 40% of the initial capacity at the time of 300 cycles. Battery B containing phosphorus at a molar ratio of 0.01
In the case of, although the capacity retention rate is improved compared to Battery A, 6
It is insufficient at about 0%. This is presumably because the amount of phosphorus added was small, so that the surface of the LiMn 2 O 4 particles was not sufficiently covered with phosphorus, and the elution of manganese into the electrolytic solution was still considerable. In the batteries C, D, E, and F in which the added amount of phosphorus was further increased, the initial capacity was smaller than that of the battery A, but the capacity reduction rate was small, and about 300% of the initial capacity was maintained. On the other hand, phosphorus is added in a molar ratio of 0.
Battery F with 15 addition shows a decrease in capacity due to cycling to Battery C.
~ E, but the initial absolute capacity is smaller than the batteries C ~ E. This is because if too much phosphorus is added, LiMn
It is considered that this is because the phosphorus coating the surface of the 2 O 4 particles became too thick and the reaction of LiMn 2 O 4 was hindered. As described above, considering the absolute capacity of the battery and the capacity retention rate with charge / discharge cycles, LiMn 2 O 4 containing phosphorus in a molar ratio of 0.02 to 0.1 is used as a positive electrode active material. A high-capacity non-aqueous electrolyte secondary battery having excellent discharge cycle characteristics can be obtained.

【0014】(実施例2) (実施例1)と同様の電池構成で負極活物質と正極活物
質の製造方法を変えて検討した。図1の負極は金属リチ
ウム箔を用い、正極の製造法としては、マンガナイト
(MnOOH)と炭酸リチウム(Li2CO3)をモル比
で4:1の割合で混合したものにリン酸(H3PO4)を
添加し、空気中900℃で20時間熱処理して合成し
た。リン酸の添加割合は合成した主活物質LiMn24
のマンガン1モルに対しリンのモル比で、(表2)に示
すように5種類の検討を行った。
Example 2 The same battery configuration as in Example 1 was examined by changing the manufacturing method of the negative electrode active material and the positive electrode active material. The negative electrode of FIG. 1 uses a metallic lithium foil, and as a method of manufacturing the positive electrode, a mixture of manganite (MnOOH) and lithium carbonate (Li 2 CO 3 ) at a molar ratio of 4: 1 is used. 3 PO 4 ) was added and heat treatment was performed in air at 900 ° C. for 20 hours to synthesize. The proportion of phosphoric acid added was the main active material LiMn 2 O 4 synthesized.
As shown in (Table 2), 5 types of studies were conducted in a molar ratio of phosphorus to 1 mol of manganese.

【0015】[0015]

【表2】 [Table 2]

【0016】電池評価試験は(実施例1)と同様、20
℃で充放電電流120mA、充電終止電圧4.3V、放
電終止電圧3.0Vの条件で充放電サイクル試験を行っ
た。このときの電池A’〜F’の充放電初期の放電容量
と300サイクル時点での放電容量の容量維持率を図4
に示す。図4より正極活物質の出発物質及び合成条件な
どの製造法、負極活物質を変えたにもかかわらず、(実
施例1)と同様に大きい放電容量と良好なサイクル特性
を示すリンの添加割合のモル比範囲は0.02〜0.1
であることが分かった。また、正極の製造法として、酸
化マンガン(MN34)と炭酸リチウム(Li2CO3
と炭酸コバルト(CoCO3)をモル比6:5:2の割
合で混合したものに五酸化二リン(P25)を添加し酸
素中800℃で20時間熱処理して合成した、マンガン
の一部をコバルトで置換した正極活物質の場合も同様の
結果が得られた。
The battery evaluation test was conducted in the same manner as in (Example 1).
A charge / discharge cycle test was performed under the conditions of a charge / discharge current of 120 mA, a charge end voltage of 4.3 V, and a discharge end voltage of 3.0 V at 0 ° C. FIG. 4 shows the discharge capacities of the batteries A ′ to F ′ at the initial stage of charge and discharge and the discharge capacity at 300 cycles.
Shown in As shown in FIG. 4, although the manufacturing method such as the starting material of the positive electrode active material and the synthesis conditions and the negative electrode active material were changed, the addition ratio of phosphorus showing a large discharge capacity and good cycle characteristics as in (Example 1). The molar ratio range of 0.02-0.1
It turned out to be. Further, as a method for manufacturing the positive electrode, manganese oxide (MN 3 O 4 ) and lithium carbonate (Li 2 CO 3 ) are used.
And cobalt carbonate (CoCO 3 ) were mixed at a molar ratio of 6: 5: 2, diphosphorus pentoxide (P 2 O 5 ) was added, and heat treatment was performed in oxygen at 800 ° C. for 20 hours to synthesize manganese. Similar results were obtained in the case of the positive electrode active material in which a part was replaced with cobalt.

【0017】(実施例3) (実施例1)と同様の電池構成で正極活物質のリン添加
方法を変えて検討した。(実施例1)でのリンを添加し
ない電池A”、正極活物質を酸化マンガン(Mn34
と炭酸リチウム(Li2CO3)をモル比で4:3の割合
で混合したものに五酸化二リン(P25)を添加し、酸
素中800℃で20時間熱処理して合成した、リン/マ
ンガン比が0.05の電池D”、そして、あらかじめ酸
化マンガン(Mn34)と炭酸リチウム(Li2CO3
をモル比で4:3の割合で混合し、酸素中800℃で2
0時間熱処理して合成したLiMn24単体に五酸化二
リンをリン/マンガン比0.05に添加した電池Gにつ
いて検討を行った。電池A”,D”,Gの充放電初期
(10サイクル目)の放電容量と、300サイクル時点
での放電容量の容量維持率を図5に示す。実施例1でも
述べたように、リンの添加なしの電池A”は初期の放電
容量は大きいが、充放電サイクルに伴う容量低下も大き
く、300サイクル時点で初期容量の約40%になる。
これがリンを添加した電池D”では初期容量は電池A”
より少なくなるが、容量低下率が小さく、300サイク
ル時点で初期容量の80%以上を維持する。しかし、電
池Gは電池D”と同比率のリンを添加しているにもかか
わらず、300サイクル時点での初期容量の維持率は電
池A”と殆ど変わらず約40%で、リン添加の効果はみ
られなかった。以上のことから充放電サイクル特性に優
れた非水電解液二次電池のための正極活物質の合成法と
しては、LiMn24を合成する際にあらかじめリン化
合物を添加し、熱処理して合成することにより、LiM
24の粒子表面をリンで被覆し、マンガンの電解液中
への溶出をおさえた正極活物質が得られる。
Example 3 The same battery configuration as in Example 1 was examined by changing the method of adding phosphorus to the positive electrode active material. The battery A ″ in which phosphorous was not added in Example 1 and the positive electrode active material was manganese oxide (Mn 3 O 4 )
And lithium carbonate (Li 2 CO 3 ) were mixed at a molar ratio of 4: 3, diphosphorus pentoxide (P 2 O 5 ) was added, and the mixture was heat treated in oxygen at 800 ° C. for 20 hours to synthesize. Battery D ″ with a phosphorus / manganese ratio of 0.05, and previously manganese oxide (Mn 3 O 4 ) and lithium carbonate (Li 2 CO 3 )
Are mixed in a molar ratio of 4: 3, and are mixed in oxygen at 800 ° C. for 2 times.
A battery G in which diphosphorus pentoxide was added at a phosphorus / manganese ratio of 0.05 to LiMn 2 O 4 simple substance synthesized by heat treatment for 0 hour was examined. FIG. 5 shows the discharge capacities of the batteries A ″, D ″, and G at the initial stage of charge / discharge (10th cycle) and the discharge capacity at 300 cycles. As described in Example 1, the battery A ″ without addition of phosphorus has a large initial discharge capacity, but the capacity also decreases greatly with charge / discharge cycles, and becomes about 40% of the initial capacity at the time of 300 cycles.
This is a battery D "with phosphorus added, and the initial capacity is battery A"
Although it is smaller, the capacity decrease rate is small, and 80% or more of the initial capacity is maintained at the time of 300 cycles. However, although the battery G added phosphorus at the same ratio as the battery D ″, the initial capacity retention rate at the time of 300 cycles was about 40%, which was almost the same as that of the battery A ″. I couldn't see it. From the above, as a method for synthesizing a positive electrode active material for a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics, a phosphorus compound is added in advance when LiMn 2 O 4 is synthesized, and heat treatment is performed. By doing, LiM
By coating the surface of n 2 O 4 particles with phosphorus, a positive electrode active material in which the elution of manganese into the electrolytic solution is suppressed can be obtained.

【0018】上記実施例では正極活物質としてLiMn
24のみを用いたが、化合物中のマンガンを他の遷移金
属例えば、コバルトやニッケルで置換した化合物でも同
様の効果が認められる。また、負極として、炭素材料、
リチウム金属を用いたがリチウム合金やリチウムを吸
蔵、放出できる他の材料でもよい。さらに電解液として
エチレンカーボネートとエチルメチルカーボネートとの
混合溶媒に六フッ化リン酸リチウムを溶解したものを用
いたが、他の溶媒にリチウム塩を溶解した電解液でも同
様である。
In the above embodiment, LiMn was used as the positive electrode active material.
Although only 2 O 4 was used, a similar effect can be observed in a compound in which manganese in the compound is replaced with another transition metal such as cobalt or nickel. Also, as the negative electrode, a carbon material,
Although lithium metal is used, a lithium alloy or another material capable of inserting and extracting lithium may be used. Further, as the electrolytic solution, a solution obtained by dissolving lithium hexafluorophosphate in a mixed solvent of ethylene carbonate and ethyl methyl carbonate was used, but the same applies to an electrolytic solution in which a lithium salt is dissolved in another solvent.

【0019】[0019]

【発明の効果】以上のように本発明により、正極活物質
LiMn24に適正量のリンを添加することにより、充
放電サイクル特性に優れた非水電解液リチウム二次電池
を得ることができる。
As described above, according to the present invention, by adding an appropriate amount of phosphorus to the positive electrode active material LiMn 2 O 4 , it is possible to obtain a non-aqueous electrolyte lithium secondary battery having excellent charge-discharge cycle characteristics. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の円筒形電池の縦断面図FIG. 1 is a longitudinal sectional view of a cylindrical battery of the present invention.

【図2】電池の充電後のマンガンの電解液中への溶出量
を示す図
FIG. 2 is a diagram showing the elution amount of manganese into an electrolytic solution after charging a battery.

【図3】電池A〜Eの放電初期容量と、300サイクル
時点での容量維持率を示す図
FIG. 3 is a diagram showing initial discharge capacities of batteries A to E and capacity retention ratios at 300 cycles.

【図4】電池A’〜F’の放電初期容量と、300サイ
クル時点での容量維持率を示す図
FIG. 4 is a diagram showing the initial discharge capacity of batteries A ′ to F ′ and the capacity retention ratio at the time of 300 cycles.

【図5】電池A”,D”,Gの放電初期容量と、300
サイクル時点での容量維持率を示す図
FIG. 5 shows initial discharge capacities of batteries A ″, D ″ and G, and 300
Diagram showing capacity retention rate at the time of cycle

【符号の説明】[Explanation of symbols]

1 正極 2 正極リード板 3 負極 4 負極リード板 5 セパレータ 6 上部絶縁板 7 下部絶縁板 8 ケース 9 ガスケット 10 封口板 11 正極端子 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Positive electrode lead plate 3 Negative electrode 4 Negative electrode lead plate 5 Separator 6 Upper insulating plate 7 Lower insulating plate 8 Case 9 Gasket 10 Sealing plate 11 Positive electrode terminal

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウムとマンガンとの複合酸化物であ
るLiMn24を主体とし、これにリンまたはリン酸化
物を添加した正極と、負極と、非水電解液とを有する非
水電解液二次電池。
1. A non-aqueous electrolytic solution containing LiMn 2 O 4 , which is a composite oxide of lithium and manganese, as a main component, and having a positive electrode to which phosphorus or a phosphorus oxide is added, a negative electrode, and a non-aqueous electrolytic solution. Secondary battery.
【請求項2】 マンガンの一部をCo,Niで置換した
請求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein part of manganese is replaced by Co and Ni.
【請求項3】 リンの添加割合がマンガンに対しモル比
で0.02〜0.1である請求項1または2記載の非水
電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the addition ratio of phosphorus is 0.02 to 0.1 in terms of molar ratio with respect to manganese.
【請求項4】 リチウム化合物とマンガン化合物および
リンまたはリン化合物を混合し、この混合物を酸化雰囲
気中で熱処理して、リチウムとマンガンとの複合酸化物
であるLiMn24の粒子表面をリンで被覆した非水電
解液二次電池用正極活物質材料の製造法。
4. A lithium compound, a manganese compound, and phosphorus or a phosphorus compound are mixed, and this mixture is heat-treated in an oxidizing atmosphere so that the particle surface of LiMn 2 O 4 , which is a composite oxide of lithium and manganese, is changed to phosphorus. A method for producing a coated positive electrode active material for a non-aqueous electrolyte secondary battery.
【請求項5】 マンガン以外の遷移金属の化合物を前記
混合物中に混入した請求項4記載の材料の製造法。
5. The method for producing a material according to claim 4, wherein a compound of a transition metal other than manganese is mixed in the mixture.
JP8062354A 1996-03-19 1996-03-19 Nonaqueous electrolyte secondary battery and its manufacture Pending JPH09259863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8062354A JPH09259863A (en) 1996-03-19 1996-03-19 Nonaqueous electrolyte secondary battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8062354A JPH09259863A (en) 1996-03-19 1996-03-19 Nonaqueous electrolyte secondary battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH09259863A true JPH09259863A (en) 1997-10-03

Family

ID=13197706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8062354A Pending JPH09259863A (en) 1996-03-19 1996-03-19 Nonaqueous electrolyte secondary battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH09259863A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090933A (en) * 1998-07-13 2000-03-31 Ngk Insulators Ltd Lithium secondary battery
KR100393684B1 (en) * 2001-10-25 2003-08-06 삼성에스디아이 주식회사 A positive active material for lithium secondary battery and a method of preparing same
KR100424637B1 (en) * 2001-10-25 2004-03-24 삼성에스디아이 주식회사 A thin film for lithium secondary battery and a method of preparing the same
KR100424646B1 (en) * 2001-06-14 2004-03-31 삼성에스디아이 주식회사 Active material for battery and a method of preparing same
KR100437339B1 (en) * 2002-05-13 2004-06-25 삼성에스디아이 주식회사 A method of preparing active material for battery and active material prepared therefrom
KR100437340B1 (en) * 2002-05-13 2004-06-25 삼성에스디아이 주식회사 Method of preparing positive active material for rechargeable lithium battery
KR100441520B1 (en) * 2002-05-28 2004-07-23 삼성에스디아이 주식회사 A positive active material for lithium secondary battery and a method of preparing same
JP2008091196A (en) * 2006-10-02 2008-04-17 Samsung Sdi Co Ltd Lithium secondary battery
WO2009084214A1 (en) 2007-12-28 2009-07-09 Toda Kogyo Corporation Lithium manganate for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP2010205436A (en) * 2009-02-27 2010-09-16 Sony Corp Nonaqueous electrolyte secondary battery
WO2011083861A1 (en) 2010-01-08 2011-07-14 三菱化学株式会社 Powder for positive electrode material for lithium secondary battery and process for production thereof, and positive electrode for lithium secondary battery and lithium secondary battery each utilizing the powder
JP2014130774A (en) * 2012-12-28 2014-07-10 Toyota Motor Corp Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2016110798A (en) * 2014-12-04 2016-06-20 旭化成株式会社 Cathode active material, cathode, and nonaqueous electrolyte secondary battery
KR20220128951A (en) 2021-03-15 2022-09-22 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090933A (en) * 1998-07-13 2000-03-31 Ngk Insulators Ltd Lithium secondary battery
US6368750B1 (en) 1998-07-13 2002-04-09 Ngk Insulators, Ltd. Lithium secondary battery
KR100424646B1 (en) * 2001-06-14 2004-03-31 삼성에스디아이 주식회사 Active material for battery and a method of preparing same
KR100393684B1 (en) * 2001-10-25 2003-08-06 삼성에스디아이 주식회사 A positive active material for lithium secondary battery and a method of preparing same
KR100424637B1 (en) * 2001-10-25 2004-03-24 삼성에스디아이 주식회사 A thin film for lithium secondary battery and a method of preparing the same
KR100437339B1 (en) * 2002-05-13 2004-06-25 삼성에스디아이 주식회사 A method of preparing active material for battery and active material prepared therefrom
KR100437340B1 (en) * 2002-05-13 2004-06-25 삼성에스디아이 주식회사 Method of preparing positive active material for rechargeable lithium battery
KR100441520B1 (en) * 2002-05-28 2004-07-23 삼성에스디아이 주식회사 A positive active material for lithium secondary battery and a method of preparing same
JP2008091196A (en) * 2006-10-02 2008-04-17 Samsung Sdi Co Ltd Lithium secondary battery
JP2009176732A (en) * 2007-12-28 2009-08-06 Toda Kogyo Corp Lithium manganate for nonaqueous electrolyte secondary battery and its manufacturing method, and nonaqueous electrolyte secondary battery
WO2009084214A1 (en) 2007-12-28 2009-07-09 Toda Kogyo Corporation Lithium manganate for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
EP2226293A1 (en) * 2007-12-28 2010-09-08 Toda Kogyo Corporation Lithium manganate for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
US8323612B2 (en) 2007-12-28 2012-12-04 Toda Kogyo Corporation Lithium manganate for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
EP2226293A4 (en) * 2007-12-28 2012-12-26 Toda Kogyo Corp Lithium manganate for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP2010205436A (en) * 2009-02-27 2010-09-16 Sony Corp Nonaqueous electrolyte secondary battery
US9843068B2 (en) 2009-02-27 2017-12-12 Sony Corporation Nonaqueous electrolyte secondary battery
US10403926B2 (en) 2009-02-27 2019-09-03 Murata Manufacturing Co., Ltd. Nonaqueous electrolyte secondary battery
WO2011083861A1 (en) 2010-01-08 2011-07-14 三菱化学株式会社 Powder for positive electrode material for lithium secondary battery and process for production thereof, and positive electrode for lithium secondary battery and lithium secondary battery each utilizing the powder
JP2014130774A (en) * 2012-12-28 2014-07-10 Toyota Motor Corp Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2016110798A (en) * 2014-12-04 2016-06-20 旭化成株式会社 Cathode active material, cathode, and nonaqueous electrolyte secondary battery
KR20220128951A (en) 2021-03-15 2022-09-22 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 Nonaqueous electrolyte secondary battery and manufacturing method thereof
EP4075546A2 (en) 2021-03-15 2022-10-19 Prime Planet Energy & Solutions, Inc. Nonaqueous electrolyte secondary battery and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7309546B2 (en) Positive active material for rechargeable lithium battery
US7473493B2 (en) Process of preparing active material for battery and active material for battery prepared therefrom
JP4713051B2 (en) Battery active material and method for producing the same
US6878487B2 (en) Active material for battery and method of preparing same
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
JP3111791B2 (en) Non-aqueous electrolyte secondary battery
JP5114998B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
KR101488043B1 (en) Method for activating high capacity lithium secondary battery
KR20020025815A (en) Nonaqueous Electrolyte Secondary Battery
US11677065B2 (en) Cathode active material of lithium secondary battery
JP2002015735A (en) Lithium iron compound oxide for lithium secondary cell positive active material, its manufacturing method and lithium secondary cell using the same
JP5516463B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JPH09259863A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH08171935A (en) Lithium secondary battery
JPH09265984A (en) Nonaqueous electrolyte secondary battery
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
JPH09213305A (en) Nonaqueous electrolyte secondary cell
US10096821B2 (en) Lithium secondary battery
JP3054829B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2007134274A (en) Electrode material, electrode, and lithium ion battery
JP3044812B2 (en) Non-aqueous electrolyte secondary battery
KR101986165B1 (en) A transition metal composite precursor and cathode materials for secondary battery
JP3227771B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2000215895A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031216