JP2512239B2 - Method for producing positive electrode active material for non-aqueous electrolyte secondary battery - Google Patents

Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Info

Publication number
JP2512239B2
JP2512239B2 JP3044729A JP4472991A JP2512239B2 JP 2512239 B2 JP2512239 B2 JP 2512239B2 JP 3044729 A JP3044729 A JP 3044729A JP 4472991 A JP4472991 A JP 4472991A JP 2512239 B2 JP2512239 B2 JP 2512239B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
aqueous electrolyte
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3044729A
Other languages
Japanese (ja)
Other versions
JPH04282560A (en
Inventor
靖彦 美藤
修二 伊藤
祐之 村井
正樹 長谷川
吉徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3044729A priority Critical patent/JP2512239B2/en
Publication of JPH04282560A publication Critical patent/JPH04282560A/en
Application granted granted Critical
Publication of JP2512239B2 publication Critical patent/JP2512239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池用正
極活物質の製造法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】負極にリチウム、リチウムを吸蔵、放出
する事ができる酸化物あるいはリチウム合金、電解液に
有機電解液を使用した非水電解液二次電池を実用化する
試みは現在盛んに行なわれており、従来正極活物質とし
て遷移金属の硫化物または酸化物などを用いて電池を構
成することはよく知られたことである。しかしこれらの
正極活物質として硫化物あるいは酸化物を用いる非水電
解液二次電池は放電電圧が低い、放電容量が小さい、充
放電サイクル寿命が短いなどいずれかの欠点があり、高
エネルギー密度、長寿命の非水電解液二次電池は得られ
ていない。
2. Description of the Related Art Attempts to put a non-aqueous electrolyte secondary battery using lithium, an oxide or a lithium alloy capable of absorbing and releasing lithium, and an organic electrolyte as an electrolyte into a negative electrode have been actively made. It is well known that a battery is conventionally constructed by using a sulfide or oxide of a transition metal as a positive electrode active material. However, non-aqueous electrolyte secondary batteries using sulfides or oxides as these positive electrode active materials have any of the drawbacks such as low discharge voltage, small discharge capacity, short charge / discharge cycle life, high energy density, Long-life non-aqueous electrolyte secondary batteries have not been obtained.

【0003】近年、高電圧、高エネルギー密度電池の開
発において正極活物質としてLiMn24やLiCoO
2などが注目され、様々な研究がなされている。
In recent years, LiMn 2 O 4 and LiCoO have been used as positive electrode active materials in the development of high voltage and high energy density batteries.
2, etc. have been noticed and various researches have been made.

【0004】[0004]

【発明が解決しようとする課題】現在、高エネルギー密
度を期待できる正極活物質としてコバルトの複合酸化物
やマンガンの複合酸化物などがあり、これらの研究が盛
んに行なわれているが、高電圧、高エネルギー密度とい
う特徴は有しているものの充放電サイクル寿命が短いと
いった課題を有しており、実用電池としての利用には至
っていない。
At present, there are cobalt complex oxides and manganese complex oxides as positive electrode active materials for which high energy density can be expected, and these studies have been actively conducted. Although it has a feature of high energy density, it has a problem of short charge / discharge cycle life, and has not yet been used as a practical battery.

【0005】現在有望な正極活物質としてLiMn24
があるが、4.5V〜3Vの電圧範囲でのサイクル特性
は悪く、約50サイクル程度で放電容量は半分に低下す
る。そこでこの活物質の改良としてLiMn24のMn
の一部をCo、Ni、Fe、Crなどの金属で置換する
試みがなされ、著しくサイクル特性を向上させることが
できた。しかしMnを他の金属で置換することによって
容量の低下が生じる。
LiMn 2 O 4 is a currently promising positive electrode active material.
However, the cycle characteristics in the voltage range of 4.5 V to 3 V are poor, and the discharge capacity decreases to half in about 50 cycles. Therefore, as an improvement of this active material, Mn of LiMn 2 O 4
An attempt was made to replace a part of the metal with a metal such as Co, Ni, Fe, or Cr, and the cycle characteristics could be significantly improved. However, substituting Mn with another metal causes a decrease in capacity.

【0006】本発明はこのような課題を解決するもので
充放電容量を増加した非水電解液二次電池を提供する非
水電解液二次電池用正極活物質の製造法を提供すること
を目的とする。
The present invention solves the above problems and provides a method for manufacturing a positive electrode active material for a non-aqueous electrolyte secondary battery, which provides a non-aqueous electrolyte secondary battery having an increased charge / discharge capacity. To aim.

【0007】[0007]

【課題を解決するための手段】この課題を解決するため
本発明の非水電解液用二次電池の正極活物質の製造法
は、正極活物質であるマンガン複合酸化物のLixMn
(2-y)y4(0.85≦x≦1.15、0.02≦y
≦0.5、MはCo,Fe,Ni、Crから選ばれる少
なくとも1種の金属)の製造法においてMn、Co,F
e,Ni、Crの出発物質の少なくとも1つに前記金属
のアセチルアセトナ−ト錯体を用いるものである。
In order to solve this problem, a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is to use a manganese composite oxide Li x Mn which is a positive electrode active material.
(2-y) M y O 4 (0.85 ≦ x ≦ 1.15,0.02 ≦ y
≦ 0.5, M is Mn, Co, F in the manufacturing method of at least one metal selected from Co, Fe, Ni and Cr).
The acetylacetonate complex of the metal is used as at least one of the starting materials of e, Ni and Cr.

【0008】[0008]

【作用】この構成により本発明の非水電解液二次電池用
正極活物質の製造法は、LiMn24はスピネル構造を
した立方晶の結晶構造であり、充電により結晶よりLi
が抜き取られ、放電によりLiが結晶中に入る。充電、
放電のサイクルを繰り返した後のLiMn24をX線回
折で調べると結晶性が低下していることがわかった。
With this structure, in the method for producing the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, LiMn 2 O 4 has a cubic crystal structure having a spinel structure, and LiMn 2 O 4 is converted to Li from the crystal by charging.
Is extracted, and Li enters the crystal due to discharge. charging,
When the LiMn 2 O 4 after repeating the discharge cycle was examined by X-ray diffraction, it was found that the crystallinity was lowered.

【0009】LiMn24の結晶性の低下を防ぐためL
iMn24中のMnの一部をCoやCr、Fe、Niに
置換することによって、活物質の格子定数を制御し、サ
イクル特性の向上を行なうことができた。このとき置換
元素の量は多いほどサイクル特性が良好になったが、置
換元素量の増加にともない充放電容量の低下も認められ
た。
In order to prevent deterioration of the crystallinity of LiMn 2 O 4 , L
By substituting a part of Mn in iMn 2 O 4 with Co, Cr, Fe, and Ni, it was possible to control the lattice constant of the active material and improve the cycle characteristics. At this time, the larger the amount of the substituting element, the better the cycle characteristics, but the increase in the amount of the substituting element also decreased the charge / discharge capacity.

【0010】そこでMn、Co,Fe,Ni、Cr各金
属のアセチルアセトナ−ト錯体を用いた正極活物質を合
成し、これを用いて電池を作成したところ、充放電容量
が従来より増加することがわかった。この理由として
は、金属のアセチルアセトナ−ト錯体を用い、エチルア
ルコ−ルなどの有機溶媒に溶解させた状態でLi2CO3
等の他の原料と混合することにより、出発材料の分散が
良好で、焼成後非常に微細な活物質が得られたことに起
因していると考えられる。
Therefore, when a positive electrode active material using an acetylacetonate complex of each metal of Mn, Co, Fe, Ni, and Cr was synthesized and a battery was made using this, the charge / discharge capacity was increased more than before. I understand. The reason for this is that a metal acetylacetonate complex is used and Li 2 CO 3 is dissolved in an organic solvent such as ethyl alcohol.
It is considered that this is because the starting material was dispersed well by mixing with other raw materials such as, and an extremely fine active material was obtained after firing.

【0011】[0011]

【実施例】以下本発明の一実施例の非水電解液二次電池
用正極活物質の製造法について図面を基にして説明す
る。
EXAMPLES A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to an example of the present invention will be described below with reference to the drawings.

【0012】(実施例1)LiMn24のMnの10%
をCo,Ni,Fe,Crから選ばれた少なくとも一種
の元素に置換した活物質を調製する際、Mnの出発物質
にはMn34を用い、Co,Ni,Fe,Crから選ば
れた少なくとも一種の元素の出発原料としては各金属の
アセチルアセトナ−ト錯体を用いた。
(Example 1) 10% of Mn in LiMn 2 O 4
When preparing an active material in which is substituted with at least one element selected from Co, Ni, Fe and Cr, Mn 3 O 4 is used as a starting material of Mn and selected from Co, Ni, Fe and Cr. An acetylacetonate complex of each metal was used as a starting material for at least one element.

【0013】組成をLixMn(2-y)y4で表すと、M
は上記金属元素であり、0.85≦X≦1.15の範囲
のx=1、0.02≦Y≦0.5の範囲のy=0.2の
正極活物質である。
[0013] represents the composition in Li x Mn (2-y) M y O 4, M
Is the above metal element, and is a positive electrode active material with x = 1 in the range of 0.85 ≦ X ≦ 1.15 and y = 0.2 in the range of 0.02 ≦ Y ≦ 0.5.

【0014】次に、このLiMn1.80.24(M=C
o、Fe、Ni、Crから選ばれた少なくとも一種の元
素)の合成方法について説明する。
Next, this LiMn 1.8 M 0.2 O 4 (M = C
A method of synthesizing at least one element selected from o, Fe, Ni, and Cr) will be described.

【0015】Li2CO3とCo,Fe,Ni,Crのア
セチルアセトナ−ト錯体のうちの一つとMn34を用
い、Li原子数が1に対して、Mn原子数が1.8、M
の原子数が0.2となるように秤量し、エチルアルコ−
ルを用いて混合し、大気中、900℃で10時間加熱
し、正極活物質とした。
Using Li 2 CO 3 and one of the acetylacetonate complexes of Co, Fe, Ni and Cr and Mn 3 O 4 , the number of Li atoms is 1 and the number of Mn atoms is 1.8. , M
Is weighed so that the number of atoms in the
Were mixed with each other and heated in air at 900 ° C. for 10 hours to obtain a positive electrode active material.

【0016】また、従来例として、Co,Fe,Ni,
Crのアセチルアセトナ−ト錯体に代えて、各金属の酸
化物を用いて合成した正極活物質を上記の合成方法によ
り製造した。
As conventional examples, Co, Fe, Ni,
A positive electrode active material synthesized by using an oxide of each metal in place of the acetylacetonate complex of Cr was manufactured by the above-described synthesis method.

【0017】ここでの各金属の酸化物としては、Co3
4,Fe23,NiO,Cr23を使用した。
The oxide of each metal here is Co 3
O 4 , Fe 2 O 3 , NiO and Cr 2 O 3 were used.

【0018】このようにして得られた正極活物質と、導
電剤であるアセチレンブラックと結着剤であるポリ4フ
ッ化エチレンを、重量比で7:2:1になるように秤量
し、混合して正極合剤とした。正極合剤0.1gを直径
17.5mmに1トン/cm 2でプレス成型して、正極
とした。図1において、成型した正極1をケース2に置
く。正極1の上にセパレータ3としての多孔性ポリプロ
ピレンフィルムを置いた。負極4として直径17.5m
m厚さ0.3mmのリチウム板を、ポリプロピレン製ガ
スケット5を付けた封口板6に圧着した。非水電解質と
して、1モル/lの過塩素酸リチウムを溶解したプロピ
レンカーボネート溶液を用い、これをセパレータ3上お
よび負極4上に加えた。その後電池を封口した。
The positive electrode active material thus obtained and the conductive material
Acetylene black, which is an electric agent, and poly-4, which is a binder.
Weigh ethylene fluoride so that the weight ratio is 7: 2: 1.
Then, they were mixed to obtain a positive electrode mixture. Diameter of positive electrode mixture 0.1g
1 ton / cm for 17.5 mm 2Press molded with
And In FIG. 1, the molded positive electrode 1 is placed in the case 2.
Ku. Porous polypropylene as the separator 3 on the positive electrode 1
A pyrene film was placed. Diameter of negative electrode 4 is 17.5 m
m 0.3 mm thick lithium plate
It was pressure-bonded to the sealing plate 6 to which the sket 5 was attached. With non-aqueous electrolyte
To give 1 mol / l of lithium perchlorate
Using a ren carbonate solution, place this on the separator 3.
And on the negative electrode 4. After that, the battery was sealed.

【0019】これらの電池の充放電サイクル特性の比較
を行なった。なお本実施例における充放電サイクル試験
は、充放電電流0.5mA、電圧範囲が4.3Vから
3.0Vの間で定電流充放電することで行なった。
The charge / discharge cycle characteristics of these batteries were compared. The charging / discharging cycle test in this example was performed by charging / discharging at a constant current of 0.5 mA and a voltage range of 4.3V to 3.0V.

【0020】(表1)に初期放電容量ならびに初期放電
容量に対する100サイクル目の放電容量の容量維持率
を示す。サンプル数nはそれぞれ50個とした。
Table 1 shows the initial discharge capacity and the capacity retention ratio of the discharge capacity at the 100th cycle with respect to the initial discharge capacity. The number of samples n was 50 for each.

【0021】ここでの放電容量は正極活物質1g当りに
換算している。
The discharge capacity here is converted per 1 g of the positive electrode active material.

【0022】[0022]

【表1】 [Table 1]

【0023】(表1)に示すようにCo,Fe,Ni,
Crのアセチルアセトナ−ト錯体を出発原料に用いた活
物質はCo,Fe,Ni,Cr各金属の酸化物を出発原
料に用いた活物質に比べて、いずれも初期放電容量が増
大している。また、100サイクルでの容量維持率は出
発物質による違いはみられなかった。
As shown in (Table 1), Co, Fe, Ni,
The active material using the acetylacetonate complex of Cr as the starting material has an initial discharge capacity higher than that of the active material using the oxide of each metal of Co, Fe, Ni and Cr as the starting material. There is. Further, the capacity retention rate at 100 cycles did not differ depending on the starting material.

【0024】例えば、LiMn1.8Co0.24について
見ると、Coの出発原料として酸化物を用いた場合、初
期放電容量は115mAh/g、容量維持率は87%で
あるのに対して、Coの出発原料としてアセチルアセト
ナ−ト錯体を用いた活物質では初期放電容量は125m
Ah/g、容量維持率は88%を示した。したがって、
優れたサイクル特性を保ちながら初期放電容量を大きく
向上させることができている。
Looking at, for example, LiMn 1.8 Co 0.2 O 4 , when an oxide is used as a starting material for Co, the initial discharge capacity is 115 mAh / g and the capacity retention rate is 87%, whereas An active material using an acetylacetonate complex as a starting material has an initial discharge capacity of 125 m.
Ah / g and capacity retention ratio were 88%. Therefore,
The initial discharge capacity can be greatly improved while maintaining excellent cycle characteristics.

【0025】さらに、この結果はFe,Ni,Crにつ
いても同様な傾向にあることがわかる。
Further, it can be seen that this result has a similar tendency for Fe, Ni and Cr.

【0026】(実施例2)次に、活物質のMnの出発原
料もアセチルアセトナ−ト錯体とした場合の検討を行な
った。実施例1と同様にLiMn24のMnの10%を
Co,Ni,Fe,Crから選ばれた少なくとも一種の
元素に置換した活物質を調製する際、Co,Ni,F
e,Crから選ばれた少なくとも一種の元素の出発原料
としては各金属のアセチルアセトナ−ト錯体を用いた。
(Example 2) Next, a study was conducted in the case where the starting material of Mn of the active material was also an acetylacetonate complex. When preparing an active material in which 10% of Mn of LiMn 2 O 4 is replaced with at least one element selected from Co, Ni, Fe, and Cr as in Example 1, Co, Ni, and F are prepared.
An acetylacetonate complex of each metal was used as a starting material for at least one element selected from e and Cr.

【0027】組成をLixMn(2-y)y4で表すと、M
は上記金属元素であり、0.85≦X≦1.15の範囲
のx=1、0.02≦Y≦0.5の範囲のy=0.2の
正極活物質である。
[0027] represents the composition in Li x Mn (2-y) M y O 4, M
Is the above metal element, and is a positive electrode active material with x = 1 in the range of 0.85 ≦ X ≦ 1.15 and y = 0.2 in the range of 0.02 ≦ Y ≦ 0.5.

【0028】次に、このLiMn1.80.24(M=C
o、Fe、Ni、Crから選ばれた少なくとも一種の元
素)の合成方法について説明する。
Next, this LiMn 1.8 M 0.2 O 4 (M = C
A method of synthesizing at least one element selected from o, Fe, Ni, and Cr) will be described.

【0029】Li2CO3とMn,Co,Fe,Ni,C
rのアセチルアセトナ−ト錯体を用い、Li原子数が1
に対して、Mn原子数が1.8、Mの原子数が0.2と
なるように秤量し、エチルアルコ−ルを用いて混合し、
大気中、900℃で10時間加熱し、正極活物質とし
た。
Li 2 CO 3 and Mn, Co, Fe, Ni, C
Using an acetylacetonate complex of r, the number of Li atoms is 1
On the other hand, the number of Mn atoms was 1.8 and the number of M atoms was 0.2, and they were mixed by using ethyl alcohol.
It was heated in air at 900 ° C. for 10 hours to obtain a positive electrode active material.

【0030】また、比較例として、Co,Fe,Ni,
Crのアセチルアセトナ−ト錯体に代えて、各金属の酸
化物を用いた正極活物質を上記の合成方法により製造し
た。
As comparative examples, Co, Fe, Ni,
A positive electrode active material using an oxide of each metal in place of the acetylacetonate complex of Cr was manufactured by the above-described synthesis method.

【0031】ここでの各金属の酸化物としては、Co3
4,Fe23,NiO,Cr23を使用した。なお、
Mnの出発原料はアセチルアセトナ−ト錯体を使用し
た。
The oxide of each metal here is Co 3
O 4 , Fe 2 O 3 , NiO and Cr 2 O 3 were used. In addition,
An acetylacetonate complex was used as a starting material for Mn.

【0032】このようにして得られた正極活物質と導電
剤であるアセチレンブラックと結着剤であるポリ4フッ
化エチレンを重量比で7:2:1になるように秤量し、
混合して正極合剤とした。正極合剤0.1gを直径1
7.5mmに1トン/cm2でプレス成型して、正極と
した。図1におい、成型した正極1をケース2に置く。
正極1の上にセパレータ3としての多孔性ポリプロピレ
ンフィルムを置いた。負極4として直径17.5mm厚
さ0.3mmのリチウム板を、ポリプロピレン製ガスケ
ット5を付けた封口板6に圧着した。非水電解質とし
て、1モル/lの過塩素酸リチウムを溶解したプロピレ
ンカーボネート溶液を用い、これをセパレータ3上およ
び負極4上に加えた。その後電池を封口した。
The positive electrode active material thus obtained, acetylene black as a conductive agent, and polytetrafluoroethylene as a binder were weighed in a weight ratio of 7: 2: 1,
The mixture was mixed to obtain a positive electrode mixture. 0.1g of positive electrode mixture 1
It was press-molded into 7.5 mm at 1 ton / cm 2 to obtain a positive electrode. In FIG. 1, the molded positive electrode 1 is placed in the case 2.
A porous polypropylene film as the separator 3 was placed on the positive electrode 1. As the negative electrode 4, a lithium plate having a diameter of 17.5 mm and a thickness of 0.3 mm was pressure-bonded to the sealing plate 6 provided with the polypropylene gasket 5. As the non-aqueous electrolyte, a propylene carbonate solution in which 1 mol / l lithium perchlorate was dissolved was used and added to the separator 3 and the negative electrode 4. Thereafter, the battery was sealed.

【0033】これらの電池の充放電サイクル特性の比較
を行なった。なお本実施例における充放電サイクル試験
は、充放電電流0.5mA、電圧範囲が4.3Vから
3.0Vの間で定電流充放電することで行なった。
The charge / discharge cycle characteristics of these batteries were compared. The charging / discharging cycle test in this example was performed by charging / discharging at a constant current of 0.5 mA and a voltage range of 4.3V to 3.0V.

【0034】(表2)に初期放電容量ならびに初期放電
容量に対する100サイクル目の放電容量の容量維持率
を示す。サンプル数nはそれぞれ50個とした。
Table 2 shows the initial discharge capacity and the capacity retention ratio of the discharge capacity at the 100th cycle with respect to the initial discharge capacity. The number of samples n was 50 for each.

【0035】ここでの放電容量は正極活物質1g当りに
換算している。
The discharge capacity here is converted per 1 g of the positive electrode active material.

【0036】[0036]

【表2】 [Table 2]

【0037】(表2)に示すようにCo,Fe,Ni,
Crのアセチルアセトナ−ト錯体を出発原料に用いた活
物質はCo,Fe,Ni,Cr各金属の酸化物を出発原
料に用いた活物質に比べて、いずれも初期放電容量が大
きく増加し、また、100サイクルでの容量維持率は8
5%以上を示している。
As shown in (Table 2), Co, Fe, Ni,
An active material using a Cr acetylacetonate complex as a starting material has a large increase in initial discharge capacity as compared with an active material using an oxide of each metal of Co, Fe, Ni and Cr as a starting material. Also, the capacity retention rate at 100 cycles is 8
It shows 5% or more.

【0038】また、(表1)と比較すると、Mnの出発
原料のみを酸化物からアセチルアセトナ−ト錯体とする
ことによっても初期放電容量が増加し、優れたサイクル
特性を維持することもわかる。
Further, as compared with (Table 1), it can be seen that the initial discharge capacity is increased and the excellent cycle characteristics are maintained by changing only the Mn starting material from the oxide to the acetylacetonate complex. .

【0039】このように、Mn、Co,Fe,Ni,C
r各金属の出発原料の1つをアセチルアセトナ−ト錯体
とすることによりサイクルに伴う放電容量の減少の少な
い初期容量の大きな活物質を得ることができる。
In this way, Mn, Co, Fe, Ni, C
r By using one of the starting materials for each metal as an acetylacetonate complex, it is possible to obtain an active material having a large initial capacity and a small decrease in discharge capacity with the cycle.

【0040】(実施例3)さらに、活物質のMnの1部
を置換する金属量についても出発原料をアセチルアセト
ナ−ト錯体とした場合の検討を行なった。
(Example 3) Furthermore, the amount of metal substituting a part of Mn of the active material was examined when the starting material was an acetylacetonate complex.

【0041】LiMn24のMnの1部をCoに置換す
る場合について説明する。活物質を調製する際、Mnの
出発物質にはMn34を用い、Coの出発原料としては
アセチルアセトナ−ト錯体を用いた。
The case where a part of Mn of LiMn 2 O 4 is replaced with Co will be described. When preparing the active material, Mn 3 O 4 was used as the Mn starting material, and an acetylacetonate complex was used as the Co starting material.

【0042】合成した正極活物質の組成をLiMn
(2-y)Coy4で表すと、y=0.02、0.1、0.
2、0.3、0.5の5種類である。
The composition of the synthesized positive electrode active material was changed to LiMn.
Expressed as (2-y) Co y O 4 , y = 0.02, 0.1, 0.
There are five types: 2, 0.3, and 0.5.

【0043】合成方法および電池の製造法は実施例1お
よび実施例2と同様に行なった。また、得られた電池の
充放電サイクル特性の試験条件も実施例1および実施例
2と同様に行なった。また、比較例としてCoの出発原
料として酸化物を用いた活物質について同様な試験を行
なった。この結果を(表3)に示す。
The synthesis method and the battery manufacturing method were the same as in Example 1 and Example 2. Also, the test conditions of the charge / discharge cycle characteristics of the obtained battery were the same as in Example 1 and Example 2. As a comparative example, the same test was performed on an active material using an oxide as a starting material of Co. The results are shown in (Table 3).

【0044】[0044]

【表3】 [Table 3]

【0045】(表3)に示すようにCoのアセチルアセ
トナ−ト錯体を出発原料に用いた活物質はCoのそれぞ
れの置換量(y値)において比較すると、Coの酸化物
を出発原料に用いた活物質に比べて、いずれも初期放電
容量が大きく増加し、また、100サイクルでの容量維
持率は同様な値を示している。
As shown in (Table 3), the active materials using the Co acetylacetonate complex as the starting material are compared in terms of the Co substitution amounts (y values). Compared with the active materials used, the initial discharge capacities greatly increased, and the capacity retention ratio after 100 cycles showed the same value.

【0046】また、ここではLixMn(2-y)y4(M
はCo、Fe、Ni、Crより選ばれる少なくとも一種
の元素)についてx=1,y=0.02、0.1、0.
2、0.3、0.5の活物質について説明したが、更な
る検討の結果、0.85≦x≦1.15、0.02≦y
≦0.5の範囲で同様の効果があった。
[0046] Further, where the Li x Mn (2-y) M y O 4 (M
Is at least one element selected from Co, Fe, Ni and Cr), x = 1, y = 0.02, 0.1, 0.
The active materials of 2, 0.3 and 0.5 have been described, but as a result of further study, 0.85 ≦ x ≦ 1.15 and 0.02 ≦ y
The same effect was obtained in the range of ≦ 0.5.

【0047】さらに、従来のLiMn24について評価
した結果、初期放電容量は127mAh/gであり、1
00サイクルでの容量維持率は48%となった。本実施
例の活物質のうち、例えばLiMn1.8Co0.24(表
3参照)では、初期放電容量は125mAh/gであ
り、100サイクルでの容量維持率は88%であること
から同等な容量を有し、かつ、サイクル特性の優れた活
物質を得られることがわかる。
Further, as a result of evaluating the conventional LiMn 2 O 4 , the initial discharge capacity was 127 mAh / g, and
The capacity retention rate at 00 cycles was 48%. Among the active materials of this example, for example, LiMn 1.8 Co 0.2 O 4 (see Table 3), the initial discharge capacity was 125 mAh / g, and the capacity retention ratio after 100 cycles was 88%, so that the equivalent capacity was It can be seen that an active material having the following characteristics and excellent cycle characteristics can be obtained.

【0048】以上のように正極活物質の製造法におい
て、Mn、Co、Ni、Fe、Crの出発物質として各
金属のアセチルアセトナ−ト錯体を用いることにより、
高容量で、安定した充放電サイクル特性を有する4.0
V級の非水電解液二次電池を得ることができる。
As described above, in the method for producing a positive electrode active material, by using an acetylacetonate complex of each metal as a starting material for Mn, Co, Ni, Fe and Cr,
4.0 with high capacity and stable charge / discharge cycle characteristics
A V-class non-aqueous electrolyte secondary battery can be obtained.

【0049】このような放電容量が大きく増加する理由
は明確ではないが、金属のアセチルアセトナ−ト錯体を
用い、エチルアルコ−ルなどの有機溶媒に溶解させた状
態でLi2CO3等の他の原料と混合することにより、出
発材料の分散が良好で、焼成後非常に微細な活物質が得
られたことに起因していると考えられる。
Although the reason why the discharge capacity greatly increases is not clear, other than Li 2 CO 3 or the like in the state of being dissolved in an organic solvent such as ethyl alcohol using a metal acetylacetonate complex. It is considered that this is because the starting material was well dispersed and a very fine active material was obtained after firing by mixing with the raw material.

【0050】以上の実施例では、電解液として1モル/
lの過塩素酸リチウムを溶解したプロピレンカーボネー
ト溶液を用いた場合の結果であるが、電解液としてこれ
以外に、溶質として過塩素酸リチウム、6フッ化燐酸リ
チウムやトリフロロメタンスルフォン酸リチウム、ホウ
フッ化リチウム、溶媒としてプロピレンカーボネート、
エチレンカーボネートなどのカーボネート類、ガンマー
ブチロラクトン、酢酸メチルなどのエステル類およびジ
メトキシエタンや、テトラヒドロフランなどのエーテル
類を用いた電解液を用いた場合にも同様の効果が得られ
ることを確認した。なお、実施例ではMnの置換金属M
の塩として硝酸塩を用いて検討したが、硝酸塩の代わり
にCo、Ni、Fe、Crの炭酸塩、酸化物、水酸化物
を用いた場合も同様にMnの出発物質による充放電容量
への効果があることを確認している。
In the above examples, the electrolyte solution was 1 mol / mol.
This is the result when a propylene carbonate solution in which 1 liter of lithium perchlorate was dissolved was used. Lithium fluoride, propylene carbonate as a solvent,
It was confirmed that the same effect can be obtained when an electrolytic solution using carbonates such as ethylene carbonate, gamma-butyrolactone, esters such as methyl acetate and dimethoxyethane, or ethers such as tetrahydrofuran is used. In the examples, the substitution metal M of Mn
However, the effect of Mn on the charge and discharge capacity by the starting material is similarly observed when using a carbonate, an oxide or a hydroxide of Co, Ni, Fe or Cr instead of the nitrate. Have confirmed that there is.

【0051】[0051]

【発明の効果】以上の実施例の説明で明らかなように、
本発明の非水電解液二次電池の製造法によれば、負極に
リチウムあるいはリチウム合金と、リチウム塩を含む非
水電解質を用い、正極活物質としてLiMn(2-y)y
4(MはCo,Ni,Fe,Crから選ばれる少なくと
も1種の金属、0.85≦x≦1.15、0.02≦y
≦0.5)を用いる非水電解液二次電池を製造する上で
Mn、Co,Ni,Fe,Crの出発物質として前記金
属のアセチルアセトナ−ト錯体を用いることは充放電の
容量増大に寄与し、産業上の意義は大きい。
As is apparent from the above description of the embodiments,
According to the preparation of non-aqueous electrolyte secondary battery of the present invention, a lithium or lithium alloy as a negative electrode, using a non-aqueous electrolyte containing a lithium salt, LiMn (2-y) as a positive electrode active material M y O
4 (M is at least one metal selected from Co, Ni, Fe and Cr, 0.85 ≦ x ≦ 1.15, 0.02 ≦ y
The use of the acetylacetonate complex of the metal as a starting material for Mn, Co, Ni, Fe, and Cr in manufacturing a non-aqueous electrolyte secondary battery using ≦ 0.5) increases the charge / discharge capacity. Contribute to the industry and have great industrial significance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の非水電解液二次電池用正極
活物質の製造法の試験に用いたコイン形電池の縦断面図
FIG. 1 is a vertical cross-sectional view of a coin battery used in a test of a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 ケ−ス 3 セパレ−タ 4 負極 5 ガスケット 6 封口板 1 Positive Electrode 2 Case 3 Separator 4 Negative Electrode 5 Gasket 6 Sealing Plate

フロントページの続き (72)発明者 長谷川 正樹 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 豊口 吉徳 大阪府門真市大字門真1006番地 松下電 器産業株式会社内Front page continuation (72) Inventor Masaki Hasegawa 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウム、リチウム合金またはリチウム化
合物を負極、式LixMn(2-y)y4(MはCo,N
i,Fe,Crから選ばれる少なくとも1種の元素、
0.85≦x≦1.15、0.02≦y≦0.5)で表
わされる複合酸化物を活物質とする正極および非水電解
液を有する非水電解液電池の正極活物質の製造法であっ
て、Mn、Co、Ni、Fe、Crの出発物質の少なく
とも1つが前記金属のアセチルアセトナ−ト錯体である
非水電解液二次電池用正極活物質の製造法。
1. A lithium negative electrode and a lithium alloy or a lithium compound of formula Li x Mn (2-y) M y O 4 (M is Co, N
at least one element selected from i, Fe and Cr,
0.85 ≦ x ≦ 1.15, 0.02 ≦ y ≦ 0.5) Production of a positive electrode active material for a non-aqueous electrolyte battery having a positive electrode and a non-aqueous electrolyte solution using a positive electrode having a composite oxide as an active material A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein at least one of the starting materials of Mn, Co, Ni, Fe and Cr is an acetylacetonate complex of the metal.
JP3044729A 1991-03-11 1991-03-11 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Expired - Fee Related JP2512239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3044729A JP2512239B2 (en) 1991-03-11 1991-03-11 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3044729A JP2512239B2 (en) 1991-03-11 1991-03-11 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04282560A JPH04282560A (en) 1992-10-07
JP2512239B2 true JP2512239B2 (en) 1996-07-03

Family

ID=12699535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3044729A Expired - Fee Related JP2512239B2 (en) 1991-03-11 1991-03-11 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2512239B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110417A (en) * 1999-10-07 2001-04-20 Sony Corp Nonaqueous electrolytic solution secondary battery
JP2002134110A (en) * 2000-10-23 2002-05-10 Sony Corp Method of producing positive electrode active material and method of producing nonaqueous electrolyte battery
JP4924860B2 (en) * 2003-11-18 2012-04-25 株式会社Gsユアサ Method for producing non-aqueous electrolyte secondary battery
KR100824247B1 (en) 2004-04-02 2008-04-24 에이지씨 세이미 케미칼 가부시키가이샤 Process for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP4994631B2 (en) * 2005-10-12 2012-08-08 パナソニック株式会社 Nonaqueous electrolyte secondary battery and positive electrode active material thereof
WO2012060444A1 (en) 2010-11-05 2012-05-10 日本電気株式会社 Positive electrode active material for secondary battery, and secondary battery using same
US9236602B2 (en) 2012-04-13 2016-01-12 Nec Corporation Positive electrode active material for secondary battery and secondary battery using the same

Also Published As

Publication number Publication date
JPH04282560A (en) 1992-10-07

Similar Documents

Publication Publication Date Title
JPH0732017B2 (en) Non-aqueous electrolyte secondary battery
JP3611190B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPH08213015A (en) Positive active material for lithium secondary battery and lithium secondary battery
JP2000077071A (en) Nonaqueous electrolyte secondary battery
JPH08213052A (en) Nonaqueous electrolyte secondary battery
JP3260282B2 (en) Non-aqueous electrolyte lithium secondary battery
KR20080031470A (en) Positive electrode active material, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP3858699B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP2020524384A (en) Method for manufacturing positive electrode active material
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP2512239B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2584123B2 (en) Non-aqueous electrolyte secondary battery
JPH0878006A (en) Lithium secondary battery
JPH06283174A (en) Positive electrode for lithium secondary battery and manufacture thereof
KR101981659B1 (en) Positive electrode active material for rechargable lithium battery and rechargable lithium battery including the same
JP2512241B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP2022512443A (en) Positive electrode active material for lithium secondary batteries and lithium secondary batteries containing them
KR101602419B1 (en) Cathode active material cathode comprising the same and lithium battery using the cathode
JP2000077097A (en) Nonaqueous electrolyte secondary battery
JP3231813B2 (en) Organic electrolyte battery
JP4106651B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2517176B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JPH0734368B2 (en) Non-aqueous electrolyte secondary battery
KR20040086813A (en) Cathode Material, Method of Manufacturing the Same, and Battery Using the Same
JPH05325961A (en) Lithium battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees