JPH1021898A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JPH1021898A
JPH1021898A JP8174453A JP17445396A JPH1021898A JP H1021898 A JPH1021898 A JP H1021898A JP 8174453 A JP8174453 A JP 8174453A JP 17445396 A JP17445396 A JP 17445396A JP H1021898 A JPH1021898 A JP H1021898A
Authority
JP
Japan
Prior art keywords
mixed valence
lithium
lithium battery
valence complex
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8174453A
Other languages
Japanese (ja)
Inventor
Naoki Kinugasa
直己 衣笠
Takashi Yamagishi
隆司 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Glass Fiber Co Ltd
Original Assignee
Nippon Glass Fiber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Glass Fiber Co Ltd filed Critical Nippon Glass Fiber Co Ltd
Priority to JP8174453A priority Critical patent/JPH1021898A/en
Publication of JPH1021898A publication Critical patent/JPH1021898A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a lithium battery capable of large-current charging and discharging by employing an active substance of a positive electrode as a mixed valence complex in a lithium battery made of positive and negative electrodes and non-aqueous electrolyte containing a lithium ion that are capable of performing reversible electrochemical reaction with the lithium ion. SOLUTION: In a lithium battery made of positive and negative electrodes and a non-aqueous electrolyte that are capable of performing reversible electrochemical reaction with a lithium ion, an activated substance of this positive electrode is employed as a mixed valence complex. As the mixed valence complex, a transient metal with its different oxidation state is preferably employed, iron ruthenium, osmium, chromium, manganese, nickel, cobalt or the like is preferably employed for this transient metal, and as the mixed valence complex, Prussian blue (KFe [Fe (CN)6 ], (NH4 ) Fe [Fe (CN)6 ], NaFe [Fe (CN)6 ]) is employed. Thus, a lithium secondary battery with its charging and discharging capacity and energy density per positive electrode active substance weight, its long cyclic service life, and its high stability is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム電池、特に
非水電解液リチウム電池の正極活物質に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery, and more particularly to a positive electrode active material for a non-aqueous electrolyte lithium battery.

【0002】[0002]

【従来の技術】近年、カメラ一体型VTR、CDプレー
ヤー、ノート型コンピューター、携帯用電話などの電子
機器の小型軽量化、携帯化が進み、その電源として高エ
ネルギー密度の電池の開発が待たれている。こうした要
求に応える電池として、ニッケルカドニウム電池、ニッ
ケル水素電池、鉛蓄電池等の二次電池に比べ、高電圧、
高エネルギー密度を有しているリチウム二次電池が期待
されている。
2. Description of the Related Art In recent years, electronic devices such as a camera-integrated VTR, a CD player, a notebook computer, and a portable telephone have been reduced in size and weight and have been portable, and the development of a high energy density battery as a power source has been awaited. I have. Batteries that meet these demands have higher voltages and higher voltages than secondary batteries such as nickel-cadmium batteries, nickel-metal hydride batteries, and lead-acid batteries.
A lithium secondary battery having a high energy density is expected.

【0003】これらの要望を満たすリチウム二次電池の
正極活物質としては、リチウムイオンと可逆的な電気化
学反応が可能な材料として、リチウムを吸蔵・放出する
ことのできるチタン、モリブデン、タングステン、ニオ
ブ、バナジウム、マンガン、鉄、クロム、ニッケル、コ
バルト、セレンなどの金属の複合酸化物や複合硫化物な
どが提案されている(日本MRSシンポジウム Q「ク
ロモジェニック材料」講演予講集、10ページ、199
6年)。特に、リチウムに対し高電位を示すコバルト、
ニッケル、マンガンなどの複合酸化物は、その結晶構造
も含め多く検討され、一部、リチウム二次電池として実
用化されている。
[0003] As a positive electrode active material of a lithium secondary battery satisfying these demands, a material capable of reversibly electrochemically reacting with lithium ions, such as titanium, molybdenum, tungsten, and niobium capable of inserting and extracting lithium. Oxides and sulfides of metals such as vanadium, manganese, iron, chromium, nickel, cobalt, and selenium have been proposed. (Japan MRS Symposium Q “Chromogenic Materials” Preliminary Lectures, 10 pages, 199
6 years). In particular, cobalt showing a high potential with respect to lithium,
Many studies have been made on composite oxides such as nickel and manganese, including their crystal structures, and some have been put to practical use as lithium secondary batteries.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような正極活物質を用いたリチウム二次電池において、
例えば、コバルトの複合酸化物およびマンガンの複合酸
化物は、負極に対する電位が約4Vと高いものの、リチ
ウムイオンを吸蔵・放出できる正極活物質重量あたりの
容量は約120mAh/gとそれほど高いものではな
い。また、ニッケルの複合酸化物の重量あたりの容量は
約180mAh/gと高いものの、活物質の劣化が進行
し易く、放電特性が悪くなる、サイクル寿命が短いなど
の課題を抱え、未だ実用化には至っていない。
However, in a lithium secondary battery using the above positive electrode active material,
For example, although the composite oxide of cobalt and the composite oxide of manganese have a high potential of about 4 V with respect to the negative electrode, the capacity per unit weight of the positive electrode active material capable of inserting and extracting lithium ions is not so high as about 120 mAh / g. . Further, although the capacity per weight of the nickel composite oxide is as high as about 180 mAh / g, it has problems such as deterioration of the active material, deterioration of discharge characteristics, and short cycle life. Has not been reached.

【0005】本発明は、前記従来技術の問題点を解決
し、正極活物質重量あたりの容量およびエネルギー密度
が高く、充放電容量が大きく、大電流での充放電が可能
で、サイクル寿命が長い正極活物質を用いたリチウム二
次電池を提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art, and has a high capacity per weight of the positive electrode active material, a high energy density, a large charge / discharge capacity, a charge / discharge with a large current, and a long cycle life. It is an object to provide a lithium secondary battery using a positive electrode active material.

【0006】[0006]

【課題を解決するための手段】本発明は、リチウムイオ
ンと可逆的な電気化学反応が可能な正極、負極、および
リチウムイオン含有非水電解質から成るリチウム電池に
おいて、前記正極の活物質が混合原子価錯体であること
を特徴とするリチウム電池である。
The present invention provides a lithium battery comprising a positive electrode capable of reversible electrochemical reaction with lithium ions, a negative electrode, and a lithium ion-containing nonaqueous electrolyte, wherein the active material of the positive electrode is a mixed atom. A lithium battery, which is a multivalent complex.

【0007】本発明において、正極活物質として用いる
混合原子価錯体とは分子内に酸化状態が異なる元素を含
む錯体であり、好ましくは2価の価数を有する金属と3
価の価数を有する金属の三次元混合原子価錯体、特に酸
化状態が異なる遷移金属の混合原子価錯体が好適であ
る。この遷移金属としては鉄、ルテニウム、オスミウ
ム、クロム、マンガン、ニッケル、コバルト、バナジウ
ム、タングステン、チタニウム、金、銀、銅およびセリ
ウムが好適に用いられ、その中で特に鉄、ルテニウム、
オスミウム、クロム、マンガン、ニッケル、およびコバ
ルトが好ましく、更に鉄、ルテニウム、およびオスミウ
ムが特に好適である。そしてこれら遷移金属の混合原子
価シアノ錯体が好ましく用いられ、またこれらのシアノ
基の少なくとも一部をカルボニル、アンモニウム、フッ
素、OH2、NO基もしくはNO2基で置換した混合原子
価錯体も用いることができる。
In the present invention, the mixed valence complex used as the positive electrode active material is a complex containing an element having a different oxidation state in the molecule.
A three-dimensional mixed valence complex of a metal having a valence of valence, particularly a mixed valence complex of a transition metal having a different oxidation state is suitable. As this transition metal, iron, ruthenium, osmium, chromium, manganese, nickel, cobalt, vanadium, tungsten, titanium, gold, silver, copper and cerium are preferably used, and among them, iron, ruthenium,
Osmium, chromium, manganese, nickel and cobalt are preferred, and iron, ruthenium and osmium are particularly preferred. Mixed valence cyano complexes of these transition metals are preferably used, and mixed valence complexes in which at least a part of these cyano groups are substituted with carbonyl, ammonium, fluorine, OH 2 , NO group or NO 2 group are also used. Can be.

【0008】上記混合原子価錯体は好ましくは化学式1The mixed valence complex is preferably a compound represented by the formula

【化1】Q+ x4[R(CN)6・A- y3 (1) (ここでQ+ は1価陽イオン、Mは鉄(Fe)、ルテニ
ウム(Ru)、およびオスミウム(Os)からなる群よ
り選ばれた少なくとも1種であり、Rは鉄、ルテニウ
ム、オスミウムからなる群より選ばれた少なくとも1種
であり、A- は一価の陰イオンであり、xは0または4
以下の正数、yは0または1以下の正数である。)で表
される化合物である。
## STR1 ## Q + x M 4 [R ( CN) 6 · A - y] 3 (1) ( wherein Q + is a monovalent cation, M is iron (Fe), ruthenium (Ru), and osmium ( Os), at least one selected from the group consisting of iron, ruthenium, and osmium; A - is a monovalent anion; x is 0 or 4
The following positive number, y is a positive number equal to or less than 0 or 1. ).

【0009】MとRは異なる元素でもよく、同種の元素
でもよい。上記1価陽イオンQ+ は好ましくはアルカリ
金属イオンまたはアンモニウムイオンである。上記1価
陰イオンA-としては電解液中の陰イオンまたはCl-
オン、またはClO4 -イオンが好ましい。上記x、yな
らびに、MおよびRの価数は、この化合物の中のMおよ
びRの酸化・還元状態、すなわち電解液中での充放電の
状態によって変化する。x,yは通常ゼロであり、電池
作動時にゼロ以外の数値をとる。
M and R may be different elements or the same kind of element. The monovalent cation Q + is preferably an alkali metal ion or an ammonium ion. The monovalent anion A is preferably an anion or Cl ion or ClO 4 ion in the electrolytic solution. The valences of x and y and the valences of M and R vary depending on the oxidation / reduction state of M and R in the compound, that is, the state of charge and discharge in the electrolytic solution. x and y are usually zero, and take a non-zero value when the battery is operated.

【0010】例えばMおよびRが例えばそれぞれFe3+
およびRuIIであるとする(高スピンイオンFeをFe
3+、Fe2+と、低スピンイオンRuをRuIII、RuII
とそれぞれ表す)と、2価のRuイオンが最も酸化状態
になってすべてRuIII となったとき(電池の正極が充
電完了したときに相当する)には上記化学式1は、
For example, if M and R are each Fe 3+
And Ru II (the high spin ion Fe is replaced by Fe
3+ , Fe 2+ , and low spin ions Ru by Ru III , Ru II
And when the divalent Ru ions are in the most oxidized state and all become Ru III (corresponding to the time when the positive electrode of the battery is completely charged), the above chemical formula 1 becomes

【化2】Fe3+ 4[RuIII(CN)6・A-3 となる。ここでA-は電解液中の陰イオン例えばCl-
ある。逆に3価のFeイオンが最も還元状態になってす
べてFe2+になったとき(電池の正極が放電完了したと
きに相当する)には上記化学式1は、
[ Image Omitted] Fe 3+ 4 [Ru III (CN) 6 .A ] 3 Here, A is an anion in the electrolytic solution, for example, Cl . Conversely, when the trivalent Fe ions are in the most reduced state and all become Fe 2+ (corresponding to the time when the positive electrode of the battery is completely discharged), the above chemical formula 1

【化3】Q+ 4Fe2+ 4[RuII(CN)63 となる。## STR3 ## Q + 4 Fe 2 + 4 [Ru II (CN) 6 ] 3

【0011】上記1価陽イオンQ+ は電池の正極として
作動するときは電解液中のリチウムイオンがこのイオン
+のところに位置する。従って1価陽イオンQ+がリチ
ウム以外のアルカリ金属またはアンモニウムイオンであ
るときは、これは不純物となり電池の寿命を短くさせる
一因になるので、1価陽イオンQ+ はリチウムである
か、またはxがゼロであるのが最も好ましい。同様に上
記1価陰イオンA- が電池の正極として作動するとき
は、電解液中の陰イオンA-がこのイオンQ+のところに
位置する。従って1価陰イオンA- が電解液中の陰イオ
ン以外のものであるときは、これは不純物となり電池の
寿命を短くさせる一因になるので、1価陰イオンA-
電解液中の陰イオンであるか、またはyがゼロであるの
が最も好ましい。
When the monovalent cation Q + operates as the positive electrode of the battery, lithium ions in the electrolyte are located at this ion Q + . Therefore, when the monovalent cation Q + is an alkali metal or ammonium ion other than lithium, which becomes an impurity and contributes to shortening the life of the battery, the monovalent cation Q + is lithium, or Most preferably, x is zero. Likewise the 1 dianion A - when operates as a positive electrode of the battery, the anion A in the electrolyte solution - is located at the ion Q +. Thus 1 dianion A - when is other than anions in the electrolyte, since this will contribute to shorten the life of the battery becomes impurities, 1 dianion A - Yin in the electrolyte Most preferably, it is an ion or y is zero.

【0012】上記式のシアノ基の少なくとも一部、例え
ば6個のシアノ基の中の1個をカルボニル、アンモニウ
ム、フッ素、OH2、NO基またはNO2基で置換した化
合物も使用することができる。
A compound in which at least a part of the cyano group of the above formula, for example, one of the six cyano groups is substituted with a carbonyl, ammonium, fluorine, OH 2 , NO group or NO 2 group can also be used. .

【0013】該混合原子価錯体としてよく知られている
のは、プルシアンブルー(KFe[Fe(CN)6]、
(NH4)Fe[Fe(CN)6]、NaFe[Fe(C
N)6])であり、本発明で好適に使用することができ
る。また、鉄(Fe)の代わりに同族のルテニウム(R
u)を用いたルテニウムパープル、同じくオスミウム
(Os)を用いたオスミウムパープルも本発明で好適に
使用することができる。プルシアンブルー、ルテニウム
パープル、オスニウムパープルのシアノ基の一部をカル
ボニル基やアンモニウム基などで置換してもよい。また
プルシアンブルーの2価の鉄FeIIの一部をコバルト、
ルテニウム、オスミウム、ニッケル、銀、または金で置
換してもよく、また、プルシアンブルーの3価の鉄Fe
3+の一部をコバルトまたは銅で置換してもよい。
Well-known mixed valence complexes include Prussian blue (KFe [Fe (CN) 6 ],
(NH 4 ) Fe [Fe (CN) 6 ], NaFe [Fe (C
N) 6 ]), which can be suitably used in the present invention. In addition, instead of iron (Fe), a ruthenium (R
Ruthenium purple using u) and osmium purple using osmium (Os) can also be suitably used in the present invention. A part of the cyano group of Prussian blue, ruthenium purple, and osnium purple may be substituted with a carbonyl group, an ammonium group, or the like. Also, a part of Prussian blue divalent iron Fe II is cobalt,
It may be replaced by ruthenium, osmium, nickel, silver, or gold, and Prussian blue trivalent iron Fe
Part of 3+ may be replaced by cobalt or copper.

【0014】プルシアンブルーは、3価の鉄イオン(例
えばFeCl3 )を含む水溶液とフェロシアン化イオン
(K4FeII(CN)6:Kはカチオン)を含む水溶液を
混ぜると沈殿として得られる。このプルシアンブルー
は、格子常数約10.2オングストロームの面心立方格
子の結晶構造をとり、各格子点に2価と3価の鉄イオン
が交互に存在し、その間をシアノ基が架橋しており、水
に対して不溶である。これをリチウム二次電池の正極材
料として使用したときに、電解液中のカチオンであるL
iの可逆的な吸蔵・放出により、以下のような電荷移動
反応を行う。
Prussian blue is obtained as a precipitate when an aqueous solution containing trivalent iron ions (eg, FeCl 3 ) and an aqueous solution containing ferrocyanide ions (K 4 Fe II (CN) 6 : K is a cation) are mixed. This Prussian blue has a crystal structure of a face-centered cubic lattice having a lattice constant of about 10.2 angstroms, and divalent and trivalent iron ions are alternately present at each lattice point, and a cyano group is bridged between them. , Insoluble in water. When this is used as a positive electrode material of a lithium secondary battery, the cation L
The following charge transfer reaction is performed by reversible occlusion and release of i.

【0015】[0015]

【化4】Fe3+ 4[FeII(CN)63+4e-+4Li
+←→ Li+ 4Fe2+ 4[FeII(CN)63 ここで、←方向の反応は充電を、→方向の反応は放電を
表す。
Embedded image Fe 3+ 4 [Fe II (CN) 6 ] 3 + 4e + 4Li
+ ← → Li + 4 Fe 2+ 4 [Fe II (CN) 6 ] 3 Here, the reaction in the ← direction indicates charging, and the reaction in the → direction indicates discharging.

【0016】[0016]

【化5】Fe3+ 4[FeII(CN)63−3e-+3A-
←→ Fe3+ 4[FeIII(CN)6・A-3 ここで、A- は電解液中のアニオンを表し、←方向の反
応は充電を、→方向の反応は放電を表している。
Embedded image Fe 3+ 4 [Fe II (CN) 6 ] 3 -3e + 3A
← → Fe 3+ 4 [Fe III (CN) 6 .A ] 3 where A represents an anion in the electrolyte, the reaction in the ← direction represents charging, and the reaction in the → direction represents discharging. .

【0017】本発明において、混合原子価錯体を正極活
物質として用いることにより、正極活物質重量あたりの
充放電容量およびエネルギー密度が高く、大電流での充
放電が可能で、サイクル寿命が長くなるという効果が生
じる理由は次のように考えられる。
In the present invention, by using the mixed valence complex as the positive electrode active material, the charge / discharge capacity per unit weight of the positive electrode active material and the energy density are high, charging / discharging at a large current is possible, and the cycle life is extended. The reason why the effect is generated is considered as follows.

【0018】一般に、リチウム電池の正極活物質として
は、リチウムイオンの可逆的な注入/抽出が可能なサイ
トを持つホスト構造であること、それに伴う酸化還元が
可能であること、さらに、リチウム金属に対して高い電
位を持つことなどの特性が要求される。これらの要求を
満たす物質として、遷移金属の酸化物が多く研究されて
きた。
In general, a positive electrode active material of a lithium battery has a host structure having a site where lithium ions can be reversibly injected / extracted, and can be associated with redox. On the other hand, characteristics such as having a high potential are required. Many transition metal oxides have been studied as materials meeting these requirements.

【0019】例えば、リチウムとマンガンやコバルトと
の複合酸化物は、その結晶構造は最密充填であり、上記
サイトを多く持ち大容量の充放電が可能と考えられる
が、熱力学的な安定性から、予めリチウムがそれらのサ
イトを埋めた状態でしか合成できず、それらのサイトを
埋めたリチウムは移動し難いためリチウムが可逆的に出
入りできるサイトは多くなく、従って実際の充放電容量
はそれほど大きくはない。一部、リチウムとニッケルの
複合酸化物のように充放電容量の比較的大きな物質も存
在するが、正極活物質としたときの安定性の確保が難し
く、未だ実用化には至っていない。また、最密充填であ
り、かつ、熱力学的に安定な酸化タングステンのような
物質はリチウムに対する電位が低く、それほど大きなエ
ネルギー密度は得られていない。
For example, a composite oxide of lithium and manganese or cobalt has a close-packed crystal structure, and is considered to have a large number of sites and to be capable of large-capacity charge / discharge. Therefore, lithium can be synthesized only in the state where lithium is buried in those sites in advance, and lithium buried in those sites is difficult to move, so there are not many sites where lithium can reversibly enter and exit, so the actual charge and discharge capacity is not so much Not big. Some substances have relatively large charge / discharge capacities, such as composite oxides of lithium and nickel, but it is difficult to ensure stability when used as a positive electrode active material, and it has not yet been put to practical use. Further, a substance such as tungsten oxide, which is a close-packed and thermodynamically stable substance, has a low potential with respect to lithium, and a very large energy density is not obtained.

【0020】本発明における混合原子価錯体は上記の正
極活物質に要求される特性を全て満足し、かつ、錯体を
構成する配位子のサイズが大きく、ゼオライトのように
構造内に連結した大きな隙間を作りやすい。この隙間を
リチウムイオンが拡散するので、従来の遷移金属酸化物
に比べ高速充放電が可能となる。また、結晶としての充
填度は低いものの、リチウムとの複合化合物である必要
はなく、例えば代表的な混合原子価錯体である水不溶性
プルシアンブルー(Fe3+ 4[FeII(CN)63)の
結晶構造は原子価の異なる2種の鉄イオン、高スピン鉄
イオンFe3+ および低スピン鉄イオンFeII、がシア
ノ基を介して交互に格子点に存在し、Fe3+はCN基の
窒素側に、FeIIは炭素側にそれぞれ配置する面心立方
体であり、通常の無機結晶の格子定数よりも大きい1
0.2オングストロームの格子定数を有し、1/8格子
の各面には3.2オングストロームの直径のゼオライト
性の細孔が存在する。8個の格子の一つおきに合計で4
個の格子内の空間がリチウムイオンが注入/抽出する実
際のサイトとなるのでサイト数は多く、大きな充放電容
量が得られると考えられる。また、混合原子価錯体の状
態によっては、通常の充放電に関与する酸化還元電位よ
りも高い酸化還元電位で電解液の陰イオンが注入/抽出
されることがあり、さらに大きな充放電容量が得られ
る。また充放電の繰り返しによる不可逆物質の生成など
の劣化がほとんど見られず、極めて安定で過充放電に対
して安全な電池正極材料である。
The mixed valence complex according to the present invention satisfies all the characteristics required for the above-mentioned positive electrode active material, and has a large ligand constituting the complex, and is connected to a large structure like a zeolite. Easy to make a gap. Since lithium ions diffuse in the gap, high-speed charging and discharging can be performed as compared with the conventional transition metal oxide. In addition, although the degree of filling as a crystal is low, it is not necessary to be a complex compound with lithium. For example, water-insoluble Prussian blue (Fe 3 + 4 [Fe II (CN) 6 ] 3 ) which is a typical mixed valence complex is used. In the crystal structure of (2), two kinds of iron ions having different valences, a high spin iron ion Fe 3+ and a low spin iron ion Fe II , are alternately present at lattice points via a cyano group, and Fe 3+ is a CN group. On the nitrogen side, Fe II is a face-centered cubic arranged on the carbon side, and has a lattice constant larger than the lattice constant of ordinary inorganic crystals.
It has a lattice constant of 0.2 angstroms, and zeolite pores of 3.2 angstroms in diameter are present on each face of the 1/8 lattice. 4 out of every 8 grids for a total of 4
Since the space in each lattice is an actual site where lithium ions are implanted / extracted, the number of sites is large, and it is considered that a large charge / discharge capacity can be obtained. Further, depending on the state of the mixed valence complex, anions of the electrolytic solution may be injected / extracted at an oxidation-reduction potential higher than the oxidation-reduction potential involved in normal charge / discharge, so that a larger charge / discharge capacity is obtained. Can be In addition, almost no deterioration such as generation of irreversible substances due to repeated charge and discharge is observed, and the battery is a cathode material that is extremely stable and safe from overcharging and discharging.

【0021】本発明において、工業的に顔料としての製
造方法が確立されているプルシアンブルーを正極活物質
として用いる場合には、安価なリチウム二次電池を提供
することができる。また、プルシアンブルーは資源とし
て豊富な鉄化合物であり、環境汚染の少ないリチウム二
次電池を提供することができる。
In the present invention, when Prussian blue, whose production method is industrially established as a pigment, is used as a positive electrode active material, an inexpensive lithium secondary battery can be provided. Prussian blue is an iron compound that is abundant as a resource, and can provide a lithium secondary battery with low environmental pollution.

【0022】本発明の正極活物質である混合原子価錯体
は通常は粒径が0.02〜0.2μmの粉体の形で製造
される。これを正極として用いる形態としては、アセチ
レンブラックのような電子伝導性付与剤と結着剤として
のフッ素系樹脂を該正極活物質に適量混合した後、板状
に成形し、正極とすることができる。混合原子価錯体は
例えば公知の電解薄膜合成法や無電解析出法により薄膜
状に形成させることができるので、金属材料(例えば白
金、ニッケル、ステンレススチール等およびITO電導
膜被覆基材)や半導体、グラファイト等の電子伝導性を
持つ材料からできた非多孔質または多孔質の、シート状
または可撓性フィルム状の正極基材の表面に混合原子価
錯体を薄膜状に、例えば0.05〜5μmの厚みに形成
させることもできる。また金属繊維やグラファイト繊維
をウェッブ状にした正電極基材の個々の繊維表面に正極
活物質である混合原子価錯体の薄膜を被覆形成しても良
い。
The mixed valence complex as the positive electrode active material of the present invention is usually produced in the form of a powder having a particle size of 0.02 to 0.2 μm. As a mode for using this as a positive electrode, after mixing an appropriate amount of a fluorine-based resin as a binder and an electron conductivity imparting agent such as acetylene black, the mixture is formed into a plate shape to obtain a positive electrode. it can. The mixed valence complex can be formed into a thin film by, for example, a known electrolytic thin film synthesis method or an electroless deposition method, so that a metal material (for example, platinum, nickel, stainless steel or the like and a substrate coated with an ITO conductive film), a semiconductor, A non-porous or porous sheet-like or flexible film-like positive electrode substrate made of a material having electron conductivity such as graphite is coated with a mixed valence complex in a thin film form, for example, 0.05 to 5 μm. It can also be formed to a thickness of. Alternatively, a thin film of a mixed valence complex, which is a positive electrode active material, may be formed on the surface of each fiber of a positive electrode substrate in which a metal fiber or a graphite fiber is formed into a web shape.

【0023】本発明のリチウム二次電池における負極活
物質としては、リチウムイオンを可逆的に吸蔵・放出可
能なリチウム金属やリチウム合金、さらに炭素質材料や
酸化錫材料を用いることができる。
As the negative electrode active material in the lithium secondary battery of the present invention, a lithium metal or lithium alloy capable of reversibly occluding and releasing lithium ions, a carbonaceous material or a tin oxide material can be used.

【0024】本発明のリチウム二次電池の非水電解質と
しては、過塩素酸リチウム、LiPF6 などのリチウム
塩を溶質として溶媒に通常は約1モル/Lの濃度で溶解
したものが用いられる。陰イオンとして小さな寸法を有
する例えばClイオンを有するものが好ましく用いられ
る。溶媒としては、プロピレンカーボネート、エチレン
カーボネートなどの鎖状エステル類、γ−ブチロラクト
ンなどのγ−ラクトン類、エトキシメトキシエタンなど
の鎖状エーテル類、テトラヒドロフランなどの環状エー
テル類、アセトニトリルなどのニトリル類、及びその混
合溶媒を用いることができる。
As the non-aqueous electrolyte of the lithium secondary battery of the present invention, a non-aqueous electrolyte obtained by dissolving a lithium salt such as lithium perchlorate or LiPF 6 as a solute in a solvent usually at a concentration of about 1 mol / L is used. As the anion, those having a small size, for example, Cl ion are preferably used. As the solvent, propylene carbonate, chain esters such as ethylene carbonate, γ-lactones such as γ-butyrolactone, chain ethers such as ethoxymethoxyethane, cyclic ethers such as tetrahydrofuran, nitriles such as acetonitrile, and The mixed solvent can be used.

【0025】以上は混合原子価錯体の正極活物質をリチ
ウム二次電池に適用する場合について説明したが、本発
明における正極活物質はリチウム一次電池にも適用する
ことができる。ただしリチウム一次電池では負極とし
て、MnO2 その他の材料が用いられる。
Although the case where the cathode active material of the mixed valence complex is applied to a lithium secondary battery has been described above, the cathode active material in the present invention can also be applied to a lithium primary battery. However, in the lithium primary battery, MnO 2 and other materials are used as the negative electrode.

【0026】[0026]

【発明の実施の形態】以下、実施例により本発明をさら
に詳しく説明するが、本発明はその要旨を越えない限
り、これら実施例に限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail with reference to the following examples, which, however, are not intended to limit the scope of the invention.

【0027】(実施例1)20ミリモルの塩化第二鉄の
6水和物と20ミリモルのフェリシアン化カリウムとの
等量混合水溶液に次亜リン酸2.5ミリモルを添加し、
生じた沈殿を取り出し60℃の恒温槽に入れて48時間
保持、乾燥して、粒径が約0.1μmの粉末状の水不溶
性プルシアンブルーを得た。このプルシアンブルー80
重量部に、導電性付与剤としての粉末状のアセチレンブ
ラック20重量部および粘結剤としてのペレット状のポ
リテトラフルオロエチレン0.1重量部を添加し、混練
したものを、直径0.05mmのステンレス線製の網を
芯にしてその上に圧着して約0.1mmの厚みのシート
を得た。これを正極とし、リチウム金属製の厚み0.1
mmのシートを負極とし、セパレータとして厚みが0.
2mmのポリプロピレン不織布を用い、LiClO4
プロピレンカーボネートに1モル/Lの濃度になるよう
に溶解したものを電解液としたコイン型電池を、十分に
アルゴンで置換したグローボックス内で作成した。この
電池の充放電特性を電池自動充放電装置を用いて、充電
時および放電時の電流密度(電極単位面積あたり)を5
00μA/cm2 の一定値に保って測定した。その結果
を図1に示す。図において、横軸に正極活物質単位重量
あたりの充電容量および放電容量(mAh/g)を、縦
軸に電池の端子電圧(V)をとっている。初期の充電特
性1および放電特性4、充放電繰り返し50回目の充電
特性2および放電特性5、ならびに、充放電繰り返し1
00回目の充電特性3および放電特性6を示している。
Example 1 2.5 mmol of hypophosphorous acid was added to an aqueous solution of an equal amount of 20 mmol of ferric chloride hexahydrate and 20 mmol of potassium ferricyanide.
The resulting precipitate was taken out, placed in a thermostat at 60 ° C., kept for 48 hours, and dried to obtain a powdery water-insoluble Prussian blue having a particle size of about 0.1 μm. This Prussian Blue 80
To the parts by weight, 20 parts by weight of powdered acetylene black as a conductivity-imparting agent and 0.1 parts by weight of pelletized polytetrafluoroethylene as a binder were added and kneaded to obtain a mixture having a diameter of 0.05 mm. A stainless steel wire net was used as a core and pressed onto the core to obtain a sheet having a thickness of about 0.1 mm. This was used as a positive electrode, and made of lithium metal having a thickness of 0.1.
mm sheet as a negative electrode and a separator having a thickness of 0.
Using a 2 mm polypropylene non-woven fabric, a coin-type battery using LiClO 4 dissolved in propylene carbonate at a concentration of 1 mol / L as an electrolyte was prepared in a glow box sufficiently substituted with argon. The charge / discharge characteristics of this battery were measured using an automatic battery charge / discharge device, and the current density (per unit area of the electrode) at the time of charging and discharging was 5%.
The measurement was performed while maintaining a constant value of 00 μA / cm 2 . The result is shown in FIG. In the figure, the horizontal axis represents the charge capacity and the discharge capacity (mAh / g) per unit weight of the positive electrode active material, and the vertical axis represents the terminal voltage (V) of the battery. Initial charge characteristic 1 and discharge characteristic 4, charge characteristic 2 and discharge characteristic 5 in the 50th charge / discharge cycle, and charge / discharge cycle 1
A charge characteristic 3 and a discharge characteristic 6 at the 00th time are shown.

【0028】なおこの充放電完了時の正極活物質は、ほ
ぼ次の化合物に近い状態になっていると思われる。 充電完了時−−Fe3+ 4[FeII(CN)63 放電完了時−−Li+ 4Fe2+ 4[FeII(CN)63
It is considered that the positive electrode active material at the time of completion of the charge / discharge is almost in the state similar to the following compound. When charging is completed--Fe 3+ 4 [Fe II (CN) 6 ] 3 When discharging is completed--Li + 4 Fe 2+ 4 [Fe II (CN) 6 ] 3

【0029】図1から明らかなようにプルシアンブルー
を正極活物質に用いることにより約3.0Vの高電圧が
得られ、約90mAh/gの充放電容量、約230mW
h/gのエネルギー密度で100回以上のサイクル寿命
のリチウム二次電池が得られることがわかる。さらに、
本発明の電池の測定は500μA/cm2 の高い電流密
度で行うことができ、後述の比較例1のリチウム二次電
池の数倍の電流が観測された。このようにプルシアンブ
ルーを正極活物質に用いることにより高速充放電可能な
リチウム二次電池が得られることがわかる。
As apparent from FIG. 1, a high voltage of about 3.0 V can be obtained by using Prussian blue as the positive electrode active material, a charge / discharge capacity of about 90 mAh / g, and about 230 mW.
It can be seen that a lithium secondary battery having a cycle life of 100 times or more at an energy density of h / g can be obtained. further,
The battery of the present invention can be measured at a high current density of 500 μA / cm 2, and a current several times that of the lithium secondary battery of Comparative Example 1 described later was observed. Thus, it can be seen that a lithium secondary battery capable of high-speed charge and discharge can be obtained by using Prussian blue as the positive electrode active material.

【0030】なお、本実施例では電解液の陰イオンはC
lO4 -であり、プルシアンブルーの単位格子の隙間であ
る約3.2オングストロームの孔には入りにくいが、電
解液としてLiClをプロピレンカーボネートに溶解し
たものを使用すると電解液の陰イオンはCl-となり格
子の孔に入りやすくなるため、より高い電圧(約4
V)、ならびにより高い高充放電容量(約200mAh
/g)および高いエネルギー密度が得られる。この際の
充放電完了時の正極活物質はほぼ次の化合物に近い状態
になっていると思われる。 充電完了時−−Fe3+ 4[FeIII(CN)6・Cl-3 放電完了時−−Li+ 4Fe2+ 4[FeII(CN)63
In this embodiment, the anion of the electrolyte is C
lO 4 - a and hardly enters the pores of about 3.2 angstroms which is the gap of the unit cell of the Prussian blue, but the anion of the electrolyte solution and to use those dissolved in propylene carbonate LiCl as electrolyte Cl - Higher voltage (approximately 4
V), as well as higher high charge / discharge capacity (about 200 mAh
/ G) and a high energy density. At this time, it is considered that the positive electrode active material at the time of completion of charge / discharge is almost in a state close to the next compound. When charging is completed -- Fe 3+ 4 [Fe III (CN) 6 .Cl ] 3 When discharging is completed -- Li + 4 Fe 2+ 4 [Fe II (CN) 6 ] 3

【0031】(比較例1)実施例1で用いた正極の代わ
りにLixCoO2を正極材料とした以外は実施例1と同
様にしてリチウム二次電池を作製し、実施例1と同様に
充放電特性を測定したが、その結果は、電圧、充放電容
量、エネルギー密度、高速充放電およびサイクル寿命の
いずれも実施例1に比して、低い値しか得られなかっ
た。
Comparative Example 1 A lithium secondary battery was fabricated in the same manner as in Example 1 except that Li x CoO 2 was used as the cathode material instead of the positive electrode used in Example 1. The charge / discharge characteristics were measured, and as a result, all of the voltage, charge / discharge capacity, energy density, high-speed charge / discharge, and cycle life were lower than those in Example 1.

【0032】[0032]

【発明の効果】以上説明した通り、リチウムイオンが可
逆的に吸蔵・放出できるサイトを従来の金属酸化物に比
べ、単位格子当たりに多く持つ混合原子価錯体を正極活
物質に用いることにより、正極活物質重量あたりの充放
電容量およびエネルギー密度が高く、大電流での充放電
が可能で、サイクル寿命が長く、安定性が高いリチウム
二次電池を提供することができる。
As described above, by using a mixed valence complex having a larger number of sites per unit cell as a positive electrode active material as compared with a conventional metal oxide at sites capable of reversibly storing and releasing lithium ions, A lithium secondary battery with high charge / discharge capacity and energy density per active material weight, charge / discharge at a large current, a long cycle life, and high stability can be provided.

【0033】さらに、例えばプルシアンブルーは、資源
的にも豊富にある鉄の混合原子価錯体であり、安価で環
境汚染の少ない正極活物質を用いたリチウム二次電池を
提供することができる。またプルシアンブルーは、エレ
クトロクロミック性を有しているので充放電の状態を正
極の色変化として見ることができ、充放電状態をモニタ
ーすることができる。
Further, for example, Prussian blue is a mixed valence complex of iron which is abundant in resources, and can provide a lithium secondary battery using a positive electrode active material which is inexpensive and has low environmental pollution. Further, since Prussian blue has electrochromic properties, the state of charge and discharge can be viewed as a color change of the positive electrode, and the state of charge and discharge can be monitored.

【0034】またリチウム一次電池に適用した場合に
も、高い放電容量、高いエネルギー密度、および大電流
放電性能が期待される。
Also, when applied to a lithium primary battery, high discharge capacity, high energy density, and high current discharge performance are expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電池特性を示すグラフ。FIG. 1 is a graph showing battery characteristics of the present invention.

【符号の説明】[Explanation of symbols]

1・・初期の充電特性 2・・充放電繰り返し50回目の充電特性 3・・充放電繰り返し100回目の充電特性 4・・初期の放電特性 5・・充放電繰り返し50回目の放電特性 6・・充放電繰り返し100回目の放電特性 1. Initial charging characteristics 2. Charging / discharging 50th charging characteristics 3. Charging / discharging 100th charging characteristics 4. Initial discharging characteristics 5. 50th charging / discharging 50th discharging characteristics 6. Discharge characteristics at the 100th charge / discharge cycle

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンと可逆的な電気化学反応
が可能な正極、負極、およびリチウムイオン含有非水電
解質から成るリチウム電池において、前記正極の活物質
が混合原子価錯体であることを特徴とするリチウム電
池。
1. A lithium battery comprising a positive electrode capable of reversible electrochemical reaction with lithium ions, a negative electrode, and a lithium ion-containing non-aqueous electrolyte, wherein the active material of the positive electrode is a mixed valence complex. Lithium battery.
【請求項2】 該混合原子価錯体が酸化状態が異なる遷
移金属の混合原子価錯体である請求項1に記載のリチウ
ム電池。
2. The lithium battery according to claim 1, wherein the mixed valence complex is a mixed valence complex of a transition metal having a different oxidation state.
【請求項3】 該混合原子価錯体が鉄、ルテニウム、オ
スミウム、クロム、マンガン、ニッケル、コバルト、バ
ナジウム、タングステン、チタニウム、金、銀、銅およ
びセリウムからなる群より選ばれた少なくとも1種の金
属の混合原子価錯体である請求項1に記載のリチウム電
池。
3. The mixed valence complex is at least one metal selected from the group consisting of iron, ruthenium, osmium, chromium, manganese, nickel, cobalt, vanadium, tungsten, titanium, gold, silver, copper and cerium. The lithium battery according to claim 1, which is a mixed valence complex of
【請求項4】 該混合原子価錯体が該金属の混合原子価
シアノ錯体、またはこれらのシアノ基の少なくとも一部
をカルボニル、アンモニウム、フッ素、OH2、NO
基、もしくはNO2基で置換した混合原子価錯体である
請求項3に記載のリチウム電池。
4. The mixed valence complex is a mixed valence cyano complex of the metal or at least a part of these cyano groups is carbonyl, ammonium, fluorine, OH 2 , NO.
The lithium battery according to claim 3, which is a mixed valence complex substituted with a group or a NO 2 group.
【請求項5】 該混合原子価錯体が化学式1 【化1】Q+ x4[R(CN)6・A- y3 (1) (ここでQ+ は1価陽イオン、Mは鉄、ルテニウム、お
よびオスミウムからなる群より選ばれた少なくとも1種
であり、Rは鉄、ルテニウム、およびオスミウムからな
る群より選ばれた少なくとも1種であり、A- は1価陰
イオンであり、xは0または4以下の正数、yは0また
は1以下の正数である。)で表される化合物または上記
式のシアノ基の少なくとも一部をカルボニル、アンモニ
ウム、フッ素、OH2、NO基、またはNO2基で置換し
た化合物である請求項4に記載のリチウム電池。
Wherein said mixed-valence complex is formula 1 ## STR1 ## Q + x M 4 [R ( CN) 6 · A - y] 3 (1) ( wherein Q + is a monovalent cation, M is At least one selected from the group consisting of iron, ruthenium, and osmium, R is at least one selected from the group consisting of iron, ruthenium, and osmium; A - is a monovalent anion; x is 0 or a positive number of 4 or less, and y is a positive number of 0 or 1 or less, or at least a part of the cyano group of the above formula is a carbonyl, ammonium, fluorine, OH 2 , NO group or lithium battery according to claim 4 which is a compound substituted with NO 2 group.
【請求項6】 該混合原子価錯体が、前記化学式1で表
される化合物であり、化学式1において、Q+ がアルカ
リ金属イオンまたはアンモニウムイオンであり、Mおよ
びRがともに鉄である請求項5に記載のリチウム電池。
6. The mixed valence complex is a compound represented by the above chemical formula 1, wherein Q + is an alkali metal ion or an ammonium ion, and M and R are both iron. The lithium battery according to 1.
【請求項7】 該混合原子価錯体が、前記化学式1で表
される化合物であり、ここで化学式1のQ+ がリチウム
であるかまたはxがゼロであり、前記化学式1のMおよ
びRがともに鉄である請求項5に記載のリチウム電池。
7. The mixed valence complex is a compound represented by the above formula 1, wherein Q + in the formula 1 is lithium or x is zero, and M and R in the formula 1 are The lithium battery according to claim 5, wherein both are iron.
【請求項8】 該混合原子価錯体がプルシアンブルーで
ある請求項5に記載のリチウム電池。
8. The lithium battery according to claim 5, wherein the mixed valence complex is Prussian blue.
JP8174453A 1996-07-04 1996-07-04 Lithium battery Pending JPH1021898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8174453A JPH1021898A (en) 1996-07-04 1996-07-04 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8174453A JPH1021898A (en) 1996-07-04 1996-07-04 Lithium battery

Publications (1)

Publication Number Publication Date
JPH1021898A true JPH1021898A (en) 1998-01-23

Family

ID=15978765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8174453A Pending JPH1021898A (en) 1996-07-04 1996-07-04 Lithium battery

Country Status (1)

Country Link
JP (1) JPH1021898A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100735588B1 (en) * 1999-08-20 2007-07-04 아르끄마 프랑스 Cathode for electrolysing aqueous solutions
JP2011180469A (en) * 2010-03-03 2011-09-15 National Institute Of Advanced Industrial Science & Technology Electrochemical element having prussian blue type metal complex nanoparticle, electrochromic element and secondary battery using the same
JP2011246303A (en) * 2010-05-26 2011-12-08 National Institute Of Advanced Industrial Science & Technology Lithium ion secondary battery electrode material using prussian blue analog
JP2012046399A (en) * 2010-08-30 2012-03-08 National Institute Of Advanced Industrial Science & Technology Electrode material for lithium ion secondary battery using non-defective prussian blue analogue
WO2012127790A1 (en) * 2011-03-18 2012-09-27 国立大学法人 筑波大学 Binder-free battery, and binder-free positive electrode member for battery
JP2013095609A (en) * 2011-10-28 2013-05-20 National Institute Of Advanced Industrial Science & Technology Electrode material for lithium ion secondary battery using nitroprusside compound
WO2013157660A1 (en) * 2012-04-17 2013-10-24 Sharp Kabushiki Kaisha Alkali and alkaline-earth ion batteries with hexacyanometallate cathode and non-metal anode
JP2014075284A (en) * 2012-10-04 2014-04-24 Nippon Telegr & Teleph Corp <Ntt> Sodium secondary battery
WO2014178170A1 (en) * 2013-04-29 2014-11-06 Sharp Kabushiki Kaisha Protected transition metal hexacyanoferrate battery electrode
US9246164B2 (en) 2012-03-28 2016-01-26 Sharp Laboratories Of America, Inc. Protected transition metal hexacyanoferrate battery electrode
US9559358B2 (en) 2012-03-28 2017-01-31 Sharp Laboratories Of America, Inc. Alkali and alkaline-earth ion batteries with hexacyanometallate cathode and non-metal anode
CN107369846A (en) * 2017-07-14 2017-11-21 北京理工大学 Electrode slice and preparation method thereof and aluminium ion battery
EP3614468A4 (en) * 2017-05-18 2020-06-03 Contemporary Amperex Technology Co., Limited Prussian blue positive electrode material, preparation method therefor, and electrochemical energy storage device
JP2021105140A (en) * 2019-12-27 2021-07-26 財團法人工業技術研究院Industrial Technology Research Institute Ionic conductive material, core-shell structure containing the same, as well as, electrode formed therewith and metal ion battery
US11539046B2 (en) 2019-12-27 2022-12-27 Industrial Technology Research Institute Ion-conducting material, core-shell structure containing the same, electrode prepared with the core-shell structure and metal-ion battery employing the electrode

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100735588B1 (en) * 1999-08-20 2007-07-04 아르끄마 프랑스 Cathode for electrolysing aqueous solutions
JP2011180469A (en) * 2010-03-03 2011-09-15 National Institute Of Advanced Industrial Science & Technology Electrochemical element having prussian blue type metal complex nanoparticle, electrochromic element and secondary battery using the same
JP2011246303A (en) * 2010-05-26 2011-12-08 National Institute Of Advanced Industrial Science & Technology Lithium ion secondary battery electrode material using prussian blue analog
JP2012046399A (en) * 2010-08-30 2012-03-08 National Institute Of Advanced Industrial Science & Technology Electrode material for lithium ion secondary battery using non-defective prussian blue analogue
WO2012127790A1 (en) * 2011-03-18 2012-09-27 国立大学法人 筑波大学 Binder-free battery, and binder-free positive electrode member for battery
JP6004540B2 (en) * 2011-03-18 2016-10-12 国立大学法人 筑波大学 Binder-free battery
JPWO2012127790A1 (en) * 2011-03-18 2014-07-24 国立大学法人 筑波大学 Binder-free battery and binder-free positive electrode member for battery
JP2013095609A (en) * 2011-10-28 2013-05-20 National Institute Of Advanced Industrial Science & Technology Electrode material for lithium ion secondary battery using nitroprusside compound
US9559358B2 (en) 2012-03-28 2017-01-31 Sharp Laboratories Of America, Inc. Alkali and alkaline-earth ion batteries with hexacyanometallate cathode and non-metal anode
US9246164B2 (en) 2012-03-28 2016-01-26 Sharp Laboratories Of America, Inc. Protected transition metal hexacyanoferrate battery electrode
CN104247131A (en) * 2012-04-17 2014-12-24 夏普株式会社 Alkali and alkaline-earth ion batteries with hexacyanometallate cathode and non-metal anode
JP2015515081A (en) * 2012-04-17 2015-05-21 シャープ株式会社 Alkaline ion battery and alkaline earth metal ion battery comprising a hexacyanometallate positive electrode and a nonmetallic negative electrode
WO2013157660A1 (en) * 2012-04-17 2013-10-24 Sharp Kabushiki Kaisha Alkali and alkaline-earth ion batteries with hexacyanometallate cathode and non-metal anode
JP2014075284A (en) * 2012-10-04 2014-04-24 Nippon Telegr & Teleph Corp <Ntt> Sodium secondary battery
WO2014178170A1 (en) * 2013-04-29 2014-11-06 Sharp Kabushiki Kaisha Protected transition metal hexacyanoferrate battery electrode
EP3614468A4 (en) * 2017-05-18 2020-06-03 Contemporary Amperex Technology Co., Limited Prussian blue positive electrode material, preparation method therefor, and electrochemical energy storage device
US11424450B2 (en) 2017-05-18 2022-08-23 Contemporary Amperex Technology Co., Limited Prussian blue positive electrode material, preparation method therefor, and electrochemical energy storage device
CN107369846A (en) * 2017-07-14 2017-11-21 北京理工大学 Electrode slice and preparation method thereof and aluminium ion battery
JP2021105140A (en) * 2019-12-27 2021-07-26 財團法人工業技術研究院Industrial Technology Research Institute Ionic conductive material, core-shell structure containing the same, as well as, electrode formed therewith and metal ion battery
US11539046B2 (en) 2019-12-27 2022-12-27 Industrial Technology Research Institute Ion-conducting material, core-shell structure containing the same, electrode prepared with the core-shell structure and metal-ion battery employing the electrode

Similar Documents

Publication Publication Date Title
US7468224B2 (en) Battery having improved positive electrode and method of manufacturing the same
KR100809854B1 (en) Positive electrode active material and non-aqueous electrolyte cell
JP3687513B2 (en) battery
EP1094532A1 (en) Method for manufacturing active material of positive plate and method for manufacturing nonaqueous electrolyte secondary cell
JPH06338347A (en) Nonaqueous electrolytic secondary battery
JPH1021898A (en) Lithium battery
CN108886168A (en) Additive for non-aqueous electrolytic solution, the non-aqueous electrolytic solution for lithium secondary battery and the lithium secondary battery including the non-aqueous electrolytic solution
EP1009056B1 (en) Non-aqueous electrolyte secondary battery
JP3252414B2 (en) Non-aqueous electrolyte secondary battery
CN106207253A (en) A kind of aqueous solution lithium ion secondary battery negative pole, electrolyte and battery
JPH0520874B2 (en)
JP3015411B2 (en) Polyaniline battery
JP4830207B2 (en) battery
JP2000251932A (en) Nonaqueous electrolyte battery
JP3547575B2 (en) Lithium iron oxide, method for producing the same, and lithium battery
JP2003242972A (en) Negative active material and non-aqueous electrolyte secondary battery and their manufacturing method
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP2004179169A (en) Secondary battery
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
JP4967352B2 (en) Non-aqueous electrolyte electrochemical cell active material, method for producing the same, and non-aqueous electrolyte electrochemical cell including the same
JP3403858B2 (en) Organic electrolyte battery
JP2001143701A (en) Non-aqueous electrolyte secondary battery cell
JPS63102162A (en) Secondary battery
JPH11111335A (en) Nonaqueous electrolyte secondary battery
JPS62176054A (en) Lithium battery