JPH06338347A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JPH06338347A
JPH06338347A JP5129493A JP12949393A JPH06338347A JP H06338347 A JPH06338347 A JP H06338347A JP 5129493 A JP5129493 A JP 5129493A JP 12949393 A JP12949393 A JP 12949393A JP H06338347 A JPH06338347 A JP H06338347A
Authority
JP
Japan
Prior art keywords
secondary battery
metal
lithium
aqueous electrolyte
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5129493A
Other languages
Japanese (ja)
Other versions
JP3259436B2 (en
Inventor
Momoe Saitou
百恵 齋藤
Ryuichi Shimizu
竜一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP12949393A priority Critical patent/JP3259436B2/en
Publication of JPH06338347A publication Critical patent/JPH06338347A/en
Application granted granted Critical
Publication of JP3259436B2 publication Critical patent/JP3259436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a nonaqueous electrolytic secondary battery, which has excellently safety, and in which the energy density is not reduced. CONSTITUTION:A negative electrode is made of carbon material into and out of which a metal material primarily consisting of lithium or lithium can be doped or undoped, and a positive electrode is a complex oxide of lithium and transition metal, in a nonaqueous electrolytic secondary battery. Metal ions or metal complex indicating oxygen reduction electric potential of 3.8V-4.8V in relation to lithium, is added to the electrolyte of the nonaqueous electrolytic secondary battery. As the metal ion, rare earth ion, particularly cerium ion is used. As the metal complex, the polypyridine complex of transition metal or rare earth element is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウムイオンの出入
りにより起電力を得る非水電解液二次電池に関するもの
であり、いわゆるレドックスシャトルによる過充電防止
技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery which obtains an electromotive force by the entry and exit of lithium ions, and more particularly to a so-called redox shuttle overcharge prevention technique.

【0002】[0002]

【従来の技術】リチウム二次電池(非水電解液二次電
池)において、安全性確保は最も重要な課題のひとつで
あり、なかでも過充電保護は重要である。例えば、ニッ
ケル−カドミウム電池においては、充電電圧が上がると
水の化学反応による充電エネルギーの消費により過充電
防止機構が働くが、非水系であるリチウム二次電池では
別の機構が必要になる。
2. Description of the Related Art In a lithium secondary battery (non-aqueous electrolyte secondary battery), ensuring safety is one of the most important issues, and above all, overcharge protection is important. For example, in a nickel-cadmium battery, when the charging voltage rises, an overcharge prevention mechanism works due to consumption of charging energy by a chemical reaction of water, but a non-aqueous lithium secondary battery requires another mechanism.

【0003】リチウム二次電池における過充電防止機構
としては、化学反応による方法と電子回路による方法が
提案され、実用的には後者が主に採用されている。しか
しながら、電子回路による方法では、コスト高になるば
かりか、商品設計上、種々の制約が生ずることになる。
As a mechanism for preventing overcharge in a lithium secondary battery, a method by a chemical reaction and a method by an electronic circuit have been proposed, and the latter is mainly adopted practically. However, the method using an electronic circuit not only increases the cost but also causes various restrictions in product design.

【0004】そこで、化学反応により過充電を防止する
技術の開発も進められており、化学的過充電保護手段と
して、非水系においては適当な酸化還元試薬を電解液に
添加する方法が試みられている。酸化還元試薬の反応の
可逆性が良い場合には、正負極間を往復して過充電電流
を消費する保護機構が成立する。
Therefore, the development of a technique for preventing overcharge by a chemical reaction is also in progress, and a method of adding an appropriate redox reagent to an electrolytic solution in a non-aqueous system has been attempted as a chemical overcharge protection means. There is. When the reversibility of the reaction of the redox reagent is good, a protection mechanism that reciprocates between the positive and negative electrodes and consumes the overcharge current is established.

【0005】このような酸化還元試薬はレドックスシャ
トル等と呼ばれている。レドックスシャトルによってリ
チウム二次電池の安全装置を簡略化することは、電子回
路式より低コストであり、また、安全装置による電池エ
ネルギー密度の低下がない等の利点がある。
Such a redox reagent is called a redox shuttle or the like. Simplifying the safety device of the lithium secondary battery by the redox shuttle has advantages that it is lower in cost than the electronic circuit type and that the safety device does not reduce the battery energy density.

【0006】上記レドックスシャトルのリチウム二次電
池への適用の可能性は、3V級のリチウム二次電池に関
しては既に報告されている。すなわち、3V級のリチウ
ム二次電池に対しては、フェロセン類がレドックスシャ
トルとして有用であることが報告されている。(例えば
特開平1−206571号公報)
The possibility of applying the above redox shuttle to a lithium secondary battery has already been reported for a 3V class lithium secondary battery. That is, it has been reported that ferrocenes are useful as redox shuttles for 3V class lithium secondary batteries. (For example, Japanese Patent Laid-Open No. 1-206571)

【0007】[0007]

【発明が解決しようとする課題】ところで、フェロセン
類についての研究から、次のデータが得られている。 酸化還元電位:E=3.1〜3.5V(対Li/L
+ ) このように、フェロセン類の酸化還元電位は、対リチウ
ムで3.1〜3.5Vであるから、電池電圧が更に大き
い電池には適用できない。例えば、4V級の電池である
カーボン−LiCoO2 型のリチウムイオン電池に対し
ては、対リチウムで4.0〜4.5V程度の酸化還元電
位を示す化合物が必要になる。
By the way, the following data have been obtained from research on ferrocenes. Redox potential: E = 3.1 to 3.5 V (vs. Li / L
i + ) As described above, the redox potential of ferrocenes is 3.1 to 3.5 V with respect to lithium, and therefore cannot be applied to a battery having a higher battery voltage. For example, for a carbon-LiCoO 2 type lithium ion battery, which is a 4V class battery, a compound having an oxidation-reduction potential of about 4.0 to 4.5V with respect to lithium is required.

【0008】しかしながら、これまで、このような高い
電位で反応し、かつ電池添加物として適当である酸化還
元試薬は知られていない。4.2V程度の酸化還元電位
を有する化合物としては、金属錯体関係の化合物で非常
に多くのものが報告されているが、多くは安定性の点で
問題がある。
However, until now, no redox reagent has been known which reacts at such a high potential and is suitable as a battery additive. As a compound having an oxidation-reduction potential of about 4.2 V, a great number of compounds related to metal complexes have been reported, but most of them have problems in stability.

【0009】そこで本発明は、前述の従来の実情に鑑み
て提案されたものであって、4V級のリチウム二次電池
の化学的過充電保護手段を提供し、これにより低コスト
でエネルギー密度の高い非水電解液二次電池を提供する
ことを目的とする。
Therefore, the present invention has been proposed in view of the above-mentioned conventional circumstances, and provides a chemical overcharge protection means for a 4V class lithium secondary battery. An object is to provide a high non-aqueous electrolyte secondary battery.

【0010】[0010]

【課題を解決するための手段】本発明は、上述の目的を
達成するため、負極にリチウムを主体とする金属材料ま
たはリチウムをドープ・脱ドープ可能な炭素材料を用
い、正極にリチウムと遷移金属の複合酸化物を用いてな
る非水電解液二次電池において、非水電解液がリチウム
に対して3.8V〜4.8Vの酸化還元電位を示す金属
イオンまたは金属錯体を含有することを特徴とするもの
である。
In order to achieve the above-mentioned object, the present invention uses a metallic material mainly containing lithium or a carbon material capable of doping / dedoping lithium in the negative electrode, and using lithium and a transition metal in the positive electrode. In the non-aqueous electrolyte secondary battery using the complex oxide of No. 3, the non-aqueous electrolyte contains a metal ion or a metal complex having a redox potential of 3.8 V to 4.8 V with respect to lithium. It is what

【0011】非水電解液に添加される金属錯体として
は、リチウムに対して3.8V〜4.8Vの酸化還元電
位を示すものであれば如何なるものであってもよいが、
具体的にはポリピリジン錯体が挙げられる。このポリピ
リジン錯体が、一定の過充電電流を輸送するのに充分な
濃度で非水電解液に溶解していればよい。具体的な濃度
としては、1×10-3モル/リットル以上であり、1×
10-2モル/リットル〜1モル/リットルとすることが
好ましい。
The metal complex added to the non-aqueous electrolyte may be any metal complex having an oxidation-reduction potential of 3.8 V to 4.8 V with respect to lithium.
Specific examples include polypyridine complexes. It suffices that the polypyridine complex be dissolved in the non-aqueous electrolyte at a concentration sufficient to transport a constant overcharge current. The specific concentration is 1 × 10 −3 mol / liter or more, and 1 ×
It is preferably from 10 -2 mol / liter to 1 mol / liter.

【0012】ポリピリジン錯体は、文献(Cordin
ation ChemistryReviews,8
4,85−277(1988))等に示されているよう
な一連のポリピリジン配位子と金属イオンとの錯体化合
物を指す。本発明で用いるポリピリジン錯体の具体的な
構造例としては、下記の化5または化6に示す配位子L
1 乃至L3 が金属Mに配位子してなり一般式M(L1
(L2 )(L3 )Xn (ただし、XはPF6 、ClO4
等のアニオン性分子であり、nは整数である。)で表さ
れるポリピリジン錯体が挙げられる。
Polypyridine complexes have been described in the literature (Cordin).
ation Chemistry Reviews, 8
4,85-277 (1988)) and the like, which refer to a complex compound of a series of polypyridine ligands and a metal ion. Specific examples of the structure of the polypyridine complex used in the present invention include a ligand L shown in Chemical formula 5 or Chemical formula 6 below.
1 to L 3 are ligands to the metal M and have the general formula M (L 1 )
(L 2 ) (L 3 ) X n (where X is PF 6 , ClO 4
Is an anionic molecule such as n, and n is an integer. ) And the polypyridine complex represented by these.

【0013】[0013]

【化5】 [Chemical 5]

【0014】[0014]

【化6】 [Chemical 6]

【0015】このとき、置換基の選択は、錯体の中心金
属及び電池の作用電圧範囲に基づいて、主として置換基
の電子吸引性あるいは電子供与性を考慮することにより
行なわれる。酸化還元電位は、中心金属と配位子の基本
構造によって大まかに決定されるが、実際の電池系にお
ける電解液により数百mV程度の上下があるため、より
微妙な反応電位の調整が必要となる。金属錯体におい
て、多くの場合に電子吸引性の置換基は酸化還元電位を
上げ、電子供与性の置換基は酸化還元電位を下げること
が知られており、且つ複数の置換基の効果にしばしば加
成性が成り立つ。また、多くのポリピリジン配位子の合
成法が知られており、好ましい置換基を有する配位子化
合物は比較的に容易に得られる。
At this time, the substituent is selected mainly by considering the electron withdrawing property or electron donating property of the substituent based on the central metal of the complex and the working voltage range of the battery. The oxidation-reduction potential is roughly determined by the basic structure of the central metal and the ligand, but it depends on the electrolytic solution in the actual battery system, and it may be higher or lower by several hundred mV. Therefore, it is necessary to adjust the reaction potential more delicately. Become. In metal complexes, electron-withdrawing substituents are known to increase the redox potential and electron-donating substituents are known to lower the redox potential in many cases, and they often add to the effect of multiple substituents. Genuity is established. Also, many methods for synthesizing polypyridine ligands are known, and a ligand compound having a preferred substituent can be obtained relatively easily.

【0016】そこで、置換基の選択によって、適当な酸
化還元電位の化合物を得ることができる。例えば、負極
をリチウムをドープ・脱ドープ可能な炭素材料とし、正
極をリチウム複合酸化物であるLiCoO2 としたカー
ボン−LiCoO2 型のリチウムイオン二次電池におい
て、特に好ましい酸化還元試薬(ポリピリジン錯体)
は、例えば下記の化7に示す構造の配位子がFeに配位
してなるFe(5−Cl−1,10−フェナントロリ
ン)3 n (但し、Xは、PF6 、ClO4 等のアニオ
ン性分子を表す。)や、下記の化8に示す構造の配位子
がRuに配位してなるRu(1,10−フェナントロリ
ン)3 n (但し、Xは、PF6 、ClO4等のアニオ
ン性分子を表す。)等である。
Therefore, a compound having an appropriate redox potential can be obtained by selecting a substituent. For example, a redox reagent (polypyridine complex) which is particularly preferable in a carbon-LiCoO 2 type lithium ion secondary battery in which the negative electrode is a carbon material capable of being doped / dedoped with lithium and the positive electrode is LiCoO 2 which is a lithium composite oxide.
Is, for example, Fe (5-Cl-1,10-phenanthroline) 3 X n (where X is PF 6 , ClO 4 or the like) in which a ligand having a structure shown in the following chemical formula 7 is coordinated to Fe. It represents an anionic molecule.) or, Ru the ligand having the structure shown in the formula 8 below is coordinated to Ru (1,10-phenanthroline) 3 X n (where, X is, PF 6, ClO 4 Represents an anionic molecule such as).

【0017】[0017]

【化7】 [Chemical 7]

【0018】[0018]

【化8】 [Chemical 8]

【0019】上述のポリピリジン錯体の中心金属として
は、鉄、ルテニウム等が、比較的単純な構造の配位子で
適当な高さの酸化還元電位を示すので好ましいといえる
が、これに限定されるものではない。このような化合物
の酸化還元電位は、対リチウムで4V以上に達し、ま
た、レドックスシャトルに要求される他の性質にも優れ
ていることが、本発明者らの検討により明らかとなっ
た。即ち、前述のポリピリジン錯体は、電解液への溶解
度が良好であり、酸化種並びに還元種が共に化学的に安
定であって、しかも、電池系内での副反応で電池性能を
低下させることがない。
As the central metal of the above-mentioned polypyridine complex, iron, ruthenium, etc. are preferable because they are ligands having a relatively simple structure and exhibit an appropriate level of redox potential, but are not limited thereto. Not a thing. The present inventors have revealed that the redox potential of such a compound reaches 4 V or more with respect to lithium and is excellent in other properties required for the redox shuttle. That is, the above-mentioned polypyridine complex has good solubility in an electrolytic solution, both oxidizing species and reducing species are chemically stable, and moreover, it may deteriorate the battery performance due to side reactions in the battery system. Absent.

【0020】一方、上述の金属錯体と同様の効果を示す
金属イオンとしては、ランタニド金属イオンが挙げられ
る。したがって、非水電解液中に、これらランタニド金
属の塩(ただし、非水電解液に溶解するものを選択する
必要がある。)を添加してもよい。
On the other hand, as a metal ion having the same effect as that of the above-mentioned metal complex, a lanthanide metal ion can be mentioned. Therefore, salts of these lanthanide metals (however, those which are soluble in the non-aqueous electrolyte must be selected) may be added to the non-aqueous electrolyte.

【0021】なかでも、セリウムイオンが好適であり、
具体的な化合物として、Ce(NH 4)2(NO3)5 なる化
学式で表される硝酸二アンモニウムセリウム(III) や、
Ce(NO3)3 なる化学式で表される硝酸セリウム(II
I) 等を非水電解液に添加すれば、レドックスシャトル
として効果的に作用する。上記セリウムイオンの酸化還
元電位は、やはり対リチウムで4V以上に達し、またレ
ドックスシャトルに要求される他の性質にも優れている
ことが確認されている。
Of these, cerium ions are preferred,
As a specific compound, Ce (NH Four)2(NO3)FiveBecome
Diammonium cerium (III) nitrate represented by the formula,
Ce (NO3)3Cerium nitrate (II
If I) etc. are added to the non-aqueous electrolyte, the redox shuttle
Acts effectively as. Oxidation of cerium ion
The original potential still reached 4 V or more with respect to lithium, and
Excellent in other properties required of the Docks Shuttle
It has been confirmed.

【0022】[0022]

【作用】遷移金属は、d軌道あるいはf軌道の状態によ
り複数の安定な酸化還元状態を有するため、活性なd電
子軌道を安定させ、かつ酸化還元電位を適当に調整する
配位子との錯体とすることにより、レドックスシャトル
として好適なものとなる。そのような配位子としては、
電子供与性と立体化学的な観点及び安定性から、ポリピ
リジン配位子が適当である。
The transition metal has a plurality of stable redox states depending on the d-orbital state or the f-orbital state. Therefore, a complex with a ligand that stabilizes the active d-electron orbital and appropriately adjusts the redox potential. By this, it becomes suitable as a redox shuttle. As such a ligand,
From the viewpoint of electron donating property, stereochemistry and stability, polypyridine ligand is suitable.

【0023】特に、dブロック遷移金属において一般的
に、量子化学的な要請から、d軌道における特定の電子
配置が安定となるが、この場合のd軌道は原子ないしイ
オンの最外殻に存在するため、この安定性はd軌道の周
囲との相互作用に著しく影響される。従って、高い酸化
還元電位を有する化合物ないしは電気化学的に安定な化
合物を得るには、安定なd軌道の電子配置を達成し且
つ、d殻を包み込み不活性化させる配位子が有利であ
る。複数の非結合電子対によって立体的に配位し、かつ
d軌道と強い配位結合を形成できるポリピリジン配位子
は、この点で優れている。
In particular, in a d-block transition metal, a specific electron configuration in the d orbital is generally stable due to quantum chemical requirements. In this case, the d orbital exists in the outermost shell of an atom or an ion. Therefore, this stability is significantly affected by the interaction with the surroundings of the d orbit. Therefore, in order to obtain a compound having a high redox potential or an electrochemically stable compound, a ligand that achieves a stable d-orbital electron configuration and encloses and inactivates the d-shell is advantageous. A polypyridine ligand that is sterically coordinated by a plurality of non-bonded electron pairs and can form a strong coordinate bond with a d orbital is excellent in this respect.

【0024】また、レドックスシャトルにおいては、4
〜5V程度で酸化された錯体は準安定状態をとる必要が
ある。ところが、この酸化において錯体の電子状態は大
きく変わることが多く、しばしば錯体の置換不活性性が
損なわれる。この点、多座配位子であるポリピリジン配
位子は他の物質によって置換されにくい。また芳香族化
合物であることから、電子分布の異なる別の安定状態を
とることができ、酸化による錯体の電子状態の変化に対
応して、配位結合を保つことができる。
In the redox shuttle, 4
The complex oxidized at about 5 V needs to be in a metastable state. However, the electronic state of the complex often changes greatly in this oxidation, and the substitution inactivity of the complex is often impaired. In this regard, the polypyridine ligand, which is a polydentate ligand, is unlikely to be replaced by another substance. Further, since it is an aromatic compound, it can have another stable state with a different electron distribution, and can maintain a coordination bond in response to a change in the electronic state of the complex due to oxidation.

【0025】一方、4fブロック遷移金属であるランタ
ノイド元素は、内遷移元素であるために安定性に優れ、
またf軌道の状態により複数の安定な酸化還元状態を有
するため、適当な溶媒和状態のイオンか、または酸化還
元電位を適当に調整する配位子との錯体とすることによ
り、レドックスシャトルとして好適なものとなる。
On the other hand, the lanthanoid element, which is a 4f block transition metal, is excellent in stability because it is an internal transition element.
Further, since it has a plurality of stable redox states depending on the state of f orbital, it is suitable as a redox shuttle by forming an ion in an appropriate solvation state or a complex with a ligand that appropriately adjusts the redox potential. It will be

【0026】すなわち、3価のランタノイドイオンはい
ずれも最外殻が希ガス配置をとり、外部との相互作用に
寄与するf軌道が大部分内殻に存在するために、電気化
学的に安定で、酸化還元電位が高い。また、一部のf軌
道の挙動が準安定状態を成立させ、反応電位が十分に高
く、しかも十分に安定な酸化種を生ずる。
That is, in all of the trivalent lanthanoid ions, the outermost shell has a rare gas configuration, and most of the f orbitals contributing to the interaction with the outside are in the inner shell, so that they are electrochemically stable. , High redox potential. In addition, a part of the behavior of f orbital establishes a metastable state, and a reaction potential is sufficiently high and a sufficiently stable oxidizing species is generated.

【0027】これらランタノイドイオンにおいて、希ガ
ス配置による安定性以外に、特定の電子数の4f殻の安
定性が指摘されている。4価のセリウムは、4f0 殻の
電子配置によって特に明確な安定性を示す。したがっ
て、セリウムは裸のイオンに近い状態、あるいは弱く配
位された状態で、対リチウムで4〜5Vと高い酸化還元
電位を有し、酸化種、還元種共に安定である。
It has been pointed out that in these lanthanoid ions, in addition to the stability due to the rare gas arrangement, the stability of the 4f shell with a specific electron number is pointed out. Tetravalent cerium exhibits particularly clear stability due to the electronic configuration of the 4f 0 shell. Therefore, cerium has a high redox potential of 4 to 5 V with respect to lithium in a state close to bare ions or in a state of being weakly coordinated, and both oxidizing species and reducing species are stable.

【0028】この他、4f0 殻ほど明確ではないが、4
7 殻、4f14殻の安定性を指摘されている。f軌道状
態の配位子によるコントロールにおいては、dブロック
遷移金属ほどの多様性はないが、イオン自体の電気化学
的安定性がdブロック遷移金属より優れているため、特
殊な多坐配位子を用いなくとも、レドックスシャトルと
しての双安定性が達成される。
Other than this, although not as clear as the 4f 0 shell, 4
The stability of f 7 shell and 4f 14 shell is pointed out. The control of the f orbital state by the ligand is not as diverse as the d block transition metal, but because the electrochemical stability of the ion itself is superior to that of the d block transition metal, it is a special polydentate ligand. Bistability as a redox shuttle is achieved without using.

【0029】[0029]

【実施例】以下、本発明を具体的な実験結果に基づいて
詳細に説明する。なお、以下の実験においては、標準容
量1000mAhの筒型カーボン−LiCoO2 型二次
電池または金属リチウムを負極としたコイン型電池を用
い、標準的な充放電サイクリング装置及びサイクリック
ボルタンメトリー測定装置を用いて評価した。
EXAMPLES The present invention will be described in detail below based on specific experimental results. In the following experiments, a cylindrical carbon-LiCoO 2 type secondary battery with a standard capacity of 1000 mAh or a coin type battery with a negative electrode of metallic lithium was used, and a standard charge / discharge cycling device and a cyclic voltammetry measuring device were used. Evaluated.

【0030】実施例1 筒型カーボン−LiCoO2 型二次電池の製造におい
て、約5gの電解液(1.0モルLiPF6 炭酸プロピ
レン−炭酸ジエチル1:1溶液)に対し0.1モル/リ
ットルの濃度で[Fe(5−Cl−1,10−フェナン
トロリン)3 ](PF6 2 を溶解させ、電池に注入し
封口した。
Example 1 In the production of a tubular carbon-LiCoO 2 type secondary battery, 0.1 mol / liter was added to about 5 g of an electrolytic solution (1.0 mol LiPF 6 propylene carbonate-diethyl carbonate 1: 1 solution). [Fe (5-Cl-1,10-phenanthroline) 3 ] (PF 6 ) 2 was dissolved at a concentration of, and the solution was injected into the battery and sealed.

【0031】前記[Fe(5−Cl−1,10−フェナ
ントロリン)3 ](PF6 2 の構造式は化9に示す通
りである。
The structural formula of [Fe (5-Cl-1,10-phenanthroline) 3 ] (PF 6 ) 2 is as shown in Chemical formula 9.

【0032】[0032]

【化9】 [Chemical 9]

【0033】この電池の充放電サイクル試験を0.75
mA/cm2 の定電流で、4.1〜2.5Vの間で室温
にて行なった。初期容量は、正極の理論容量の約80%
であり、100サイクル後の容量は、正極の理論容量の
約70%であった。
A charge / discharge cycle test of this battery was conducted to 0.75.
It was carried out at room temperature between 4.1 and 2.5 V with a constant current of mA / cm 2 . The initial capacity is about 80% of the theoretical capacity of the positive electrode.
The capacity after 100 cycles was about 70% of the theoretical capacity of the positive electrode.

【0034】次に、同様に製作した電池の充放電を3サ
イクル行った後、上限電圧を4.8Vに設定し、0.2
mA/cm2 の定電流で過充電した。図1から明らかな
ように、電池電圧4.3〜4.4Vの間で電池電圧は一
定に保持された。電圧の保持された間の過充電電気量は
[Fe(5−Cl−1,10−フェナントロリン)3
(PF6 2 の一電子酸化に対応する量の100倍を越
えていた。
Next, after charging and discharging a battery manufactured in the same manner for 3 cycles, the upper limit voltage was set to 4.8 V and 0.2
It was overcharged at a constant current of mA / cm 2 . As is clear from FIG. 1, the battery voltage was kept constant between the battery voltages of 4.3 to 4.4V. The amount of electricity for overcharge while the voltage is held is [Fe (5-Cl-1,10-phenanthroline) 3 ].
The amount exceeded 100 times the amount corresponding to one-electron oxidation of (PF 6 ) 2 .

【0035】実施例2 遷移金属錯体を、20ミリモル/リットルになるよう
に、1.0モルLiPF 6 炭酸プロピレン−炭酸ジメチ
ル(体積比1:1)混合溶媒非水電解液に溶解し、サイ
クリックボルタンメトリーによる酸化還元電位の測定を
行なった。Ru,Feの錯体及び誘導体について測定を
行なった結果は、下記の通りである。
[0035]Example 2 20 mM / l of transition metal complex
1.0 mol LiPF 6Propylene carbonate-dimethy carbonate
Solution (volume ratio 1: 1) in a mixed solvent non-aqueous electrolyte,
Measurement of redox potential by click voltammetry
I did. Measurement of Ru and Fe complexes and derivatives
The results obtained are as follows.

【0036】 試薬 E1/2 /V(対リチウム) [Fe(1,10-フェナントロリン)3](PF6)2 3.94 [Fe(5-Cl-1,10- フェナントロリン)3](PF6)2 4.02 [Fe(5-NO2-1,10-フェナントロリン)3](PF6)2 4.12 [Fe(2,2'-ビピリジル)3](PF6)2 3.87 [Ru(1,10-フェナントロリン)3](PF6)2 4.16 なお、試薬及び試薬〜の構造式は下記の通りであ
る。
Reagent E 1/2 / V (vs. lithium) [Fe (1,10-phenanthroline) 3 ] (PF 6 ) 2 3.94 [Fe (5-Cl-1,10-phenanthroline) 3 ] (PF 6 ) 2 4.02 [Fe (5-NO 2 -1,10-phenanthroline) 3 ] (PF 6 ) 2 4.12 [Fe (2,2′-bipyridyl) 3 ] (PF 6 ) 2 3.87 [Ru (1,10-phenanthroline) 3 ] (PF 6 ) 2 4.16 The chemical formulas of the reagents and reagents are as follows.

【0037】[0037]

【化10】 [Chemical 10]

【0038】[0038]

【化11】 [Chemical 11]

【0039】[0039]

【化12】 [Chemical 12]

【0040】[0040]

【化13】 [Chemical 13]

【0041】実施例4 [Fe(5−Cl−1,10−フェナントロリン)3
(PF6 2 を、20ミリモル/リットルになるよう
に、1.0モル/リットルLiPF6 炭酸プロピレン−
炭酸ジメチル(体積比1:1)混合溶媒非水電解液に溶
解し、金属リチウムを負極、LiCoO2 を正極とした
コイン型リチウム電池を作製した。極板の直径は15.
5mmとした。充電は、約150μAで、セル電圧が
4.5Vになるまで行なった。比較として、試薬を投入
していないセルについても同様の実験を行なった。
Example 4 [Fe (5-Cl-1,10-phenanthroline) 3 ]
(PF 6 ) 2 so as to be 20 mmol / liter, 1.0 mol / liter LiPF 6 propylene carbonate-
A coin-type lithium battery was prepared by dissolving in dimethyl carbonate (volume ratio 1: 1) mixed solvent non-aqueous electrolytic solution and using metallic lithium as a negative electrode and LiCoO 2 as a positive electrode. The diameter of the electrode plate is 15.
It was set to 5 mm. Charging was performed at about 150 μA until the cell voltage reached 4.5V. As a comparison, the same experiment was performed for cells to which no reagent was added.

【0042】試薬を投入したセルは、試薬を投入してい
ないセルと比較して、充電電気量に対する電圧上昇の変
化率が小さくなり、充電時にLi+ の脱ドープ以外に消
費された電気量は、[Fe(5−Cl−1,10−フェ
ナントロリン)3 ](PF62 が1電子酸化されるの
に要する電気量の約280倍であった。
The cell charged with the reagent has a smaller rate of change in voltage increase with respect to the amount of electricity charged, as compared with the cell not charged with the reagent, and the amount of electricity consumed other than Li + dedoping during charging is was about 280 times the quantity of electricity required for [Fe (5-Cl-1,10- phenanthroline) 3] (PF 6) 2 is one-electron oxidation.

【0043】実施例5 筒型カーボン−LiCoO2 型二次電池の製造におい
て、約5gの電解液(1.0モル/リットルLiPF6
炭酸プロピレン−炭酸ジエチル1:1溶液)に対し0.
1モル/リットルの濃度でCe(NH4)2(NO3)5 を溶
解させ、電池に注入し封口した。
Example 5 In the manufacture of a tubular carbon-LiCoO 2 type secondary battery, about 5 g of electrolytic solution (1.0 mol / liter LiPF 6
Propylene carbonate-diethyl carbonate 1: 1 solution).
Ce (NH 4 ) 2 (NO 3 ) 5 was dissolved at a concentration of 1 mol / liter, poured into the battery and sealed.

【0044】この電池の充放電サイクル試験を0.75
mA/cm2 の定電流で、4.1〜2.5Vの間で室温
にて行なった。初期容量は、正極の理論容量の約80%
であり、100サイクル後の容量は、正極の理論容量の
約70%であった。
A charge / discharge cycle test of this battery was conducted at 0.75.
It was carried out at room temperature between 4.1 and 2.5 V with a constant current of mA / cm 2 . The initial capacity is about 80% of the theoretical capacity of the positive electrode.
The capacity after 100 cycles was about 70% of the theoretical capacity of the positive electrode.

【0045】次に、同様に製作した電池の充放電を3サ
イクル行った後、上限電圧を4.8Vに設定し、0.2
mA/cm2 の定電流で過充電した。図2から明らかな
ように、電池電圧4.3〜4.4Vの間で電池電圧は一
定に保持された。電圧の保持された間の過充電電気量は
セリウムイオンの一電子酸化に対応する量の3倍を越え
ていた。
Next, after charging and discharging a battery manufactured in the same manner for 3 cycles, the upper limit voltage was set to 4.8 V and 0.2
It was overcharged at a constant current of mA / cm 2 . As is clear from FIG. 2, the battery voltage was kept constant between the battery voltages 4.3 and 4.4V. The amount of overcharge electricity while the voltage was held exceeded three times the amount corresponding to one-electron oxidation of cerium ions.

【0046】実施例6 筒型カーボン−LiCoO2 型二次電池の製造におい
て、約5gの電解液(1.0モル/リットルLiPF6
炭酸プロピレン−炭酸ジエチル1:1溶液)に対し0.
1モル/リットルの濃度でCe(NO3)3 を溶解させ、
電池に注入し封口した。
Example 6 In the manufacture of a tubular carbon-LiCoO 2 type secondary battery, about 5 g of electrolytic solution (1.0 mol / liter LiPF 6
Propylene carbonate-diethyl carbonate 1: 1 solution).
Ce (NO 3 ) 3 was dissolved at a concentration of 1 mol / liter,
It was injected into the battery and sealed.

【0047】次に、同様に製作した電池の充放電を10
サイクル行った後、上限電圧を4.8Vに設定し、0.
2mA/cm2 の定電流で過充電した。電池電圧4.5
〜4.6Vの間で電池電圧は一定に保持された。電圧の
保持された間の過充電電気量はセリウムイオンの一電子
酸化に対応する量の3倍を越えていた。
Next, charge and discharge of a battery manufactured in the same manner is carried out for 10 minutes.
After cycling, set the upper limit voltage to 4.8V,
It was overcharged at a constant current of 2 mA / cm 2 . Battery voltage 4.5
The battery voltage was held constant between ˜4.6V. The amount of overcharge electricity while the voltage was held exceeded three times the amount corresponding to one-electron oxidation of cerium ions.

【0048】比較例1 前記筒型電池を電解液に何ら添加物を加えることなく電
池に注入封口したもの対して、実施例1と同様に過充電
した。即ち、電池の充放電を3サイクル行なった後、上
限電圧を4.8Vに設定し、0.2mA/cm2 の定電
流で電池を過充電したところ、電圧は速やかに上昇し、
約1.5Ahの過充電で4.8Vに達した。
Comparative Example 1 The cylindrical battery was overcharged in the same manner as in Example 1 except that the battery was injected and sealed without adding any additive to the electrolytic solution. That is, when the battery was charged / discharged for 3 cycles, the upper limit voltage was set to 4.8 V, and the battery was overcharged with a constant current of 0.2 mA / cm 2 , the voltage rapidly increased,
It reached 4.8 V with an overcharge of about 1.5 Ah.

【0049】比較例2 前記筒型電池の製造において、約5gの電解液に対し
0.1モルの濃度でジメチルアミノメチルフェロセンを
溶解させ、電池に注入封口した。この電池の充電を試み
たが、初充電時の標準的充電電流では電池電圧を4V以
上にすることができず、充電不可能であった。
Comparative Example 2 In the production of the cylindrical battery, dimethylaminomethylferrocene was dissolved in a concentration of 0.1 mol with respect to about 5 g of the electrolytic solution, and the battery was injected and sealed. An attempt was made to charge this battery, but it was impossible to charge it because the battery voltage could not be increased to 4 V or higher with the standard charging current during the initial charging.

【0050】[0050]

【発明の効果】以上の説明からも明らかなように、本発
明によれば、エネルギー密度の高い4V以上の電圧のリ
チウム二次電池(非水電解液二次電池)の過充電保護を
低コストで、しかもエネルギー密度を低下させる保護装
置なしに提供することができる。従って、軽量にして高
容量かつ長寿命の二次電池を安価に供給することがで
き、しかも電池の安全性や信頼性にすぐれていることか
ら、広く、二次電池を必要とするポータブル機器、自動
車用バッテリ、電気自動車、ロードレベリングなどの用
途に使用することができ、その効果は非常に大きいもの
である。
As is apparent from the above description, according to the present invention, overcharge protection of a lithium secondary battery (non-aqueous electrolyte secondary battery) having a high energy density of 4 V or more at a low cost can be achieved. In addition, it can be provided without a protective device that lowers the energy density. Therefore, a lightweight, high-capacity, long-life secondary battery can be supplied at a low cost, and since the battery is excellent in safety and reliability, it is widely used in portable devices requiring a secondary battery, It can be used in applications such as automobile batteries, electric vehicles, and road leveling, and its effect is very large.

【図面の簡単な説明】[Brief description of drawings]

【図1】ポリピリジン錯体を添加したリチウム二次電池
における充電電気量に対する電圧変化を示す特性図であ
る。
FIG. 1 is a characteristic diagram showing a voltage change with respect to a charge electricity quantity in a lithium secondary battery to which a polypyridine complex is added.

【図2】セリウムイオンを添加したリチウム二次電池に
おける充電電気量に対する電圧変化を示す特性図であ
る。
FIG. 2 is a characteristic diagram showing a voltage change with respect to a charge electricity amount in a lithium secondary battery to which cerium ions are added.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】負極にリチウムを主体とする金属材料また
はリチウムをドープ・脱ドープ可能な炭素材料を用い、
正極にリチウムと遷移金属の複合酸化物を用いてなる非
水電解液二次電池において、 非水電解液がリチウムに対して3.8V〜4.8Vの酸
化還元電位を示す金属イオンまたは金属錯体を含有する
ことを特徴とする非水電解液二次電池。
1. A negative electrode is made of a metallic material mainly containing lithium or a carbon material capable of being doped and dedoped with lithium,
In a non-aqueous electrolyte secondary battery using a composite oxide of lithium and a transition metal for the positive electrode, the non-aqueous electrolyte is a metal ion or metal complex that exhibits a redox potential of 3.8 V to 4.8 V with respect to lithium. A non-aqueous electrolyte secondary battery comprising:
【請求項2】金属錯体が遷移金属または希土類元素の錯
体であることを特徴とする請求項1記載の非水電解液二
次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the metal complex is a complex of a transition metal or a rare earth element.
【請求項3】金属錯体が、下記の化1または化2で示さ
れる配位子L1 ,L2,L3 が金属M(ただし、Mは遷
移金属または希土類元素)に配位してなり一般式M(L
1 )(L2 )(L3 )Xn (ただし、式中のXはアニオ
ン性分子であり、nは整数である。)で表されるポリピ
リジン錯体であることを特徴とする請求項2記載の非水
電解液二次電池。 【化1】 【化2】
3. A metal complex in which ligands L 1 , L 2 and L 3 represented by the following chemical formula 1 or chemical formula 2 are coordinated to a metal M (where M is a transition metal or a rare earth element). General formula M (L
3. A polypyridine complex represented by 1 ) (L 2 ) (L 3 ) X n (wherein, X is an anionic molecule and n is an integer). Non-aqueous electrolyte secondary battery. [Chemical 1] [Chemical 2]
【請求項4】金属錯体が下記の化3で示される配位子L
がFeに配位してなり一般式Fe(L)3 n (ただ
し、式中のXはアニオン性分子であり、nは整数であ
る。)で表されるポリピリジン錯体であることを特徴と
する請求項1記載の非水電解液二次電池。 【化3】
4. A ligand L having a metal complex represented by the following chemical formula 3.
Is a polypyridine complex represented by the general formula Fe (L) 3 X n (wherein X is an anionic molecule and n is an integer). The non-aqueous electrolyte secondary battery according to claim 1. [Chemical 3]
【請求項5】金属錯体が下記の化4で示される配位子L
がRuに配位してなり一般式Ru(L)3 n (ただ
し、式中のXはアニオン性分子であり、nは整数であ
る。)で表されるポリピリジン錯体であることを特徴と
する請求項1記載の非水電解液二次電池。 【化4】
5. A ligand L represented by the following chemical formula 4 wherein the metal complex is
Is a polypyridine complex represented by the general formula Ru (L) 3 X n (wherein X is an anionic molecule and n is an integer). The non-aqueous electrolyte secondary battery according to claim 1. [Chemical 4]
【請求項6】金属イオンが希土類イオンであることを特
徴とする請求項1記載の非水電解液二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 1, wherein the metal ions are rare earth ions.
【請求項7】金属イオンがセリウムイオンであることを
特徴とする請求項6記載の非水電解液二次電池。
7. The non-aqueous electrolyte secondary battery according to claim 6, wherein the metal ions are cerium ions.
【請求項8】Ce(NH4)2(NO3)5 またはCe(NO
3)3 を添加することによりセリウムイオンを含有せしめ
てなる請求項7記載の非水電解液二次電池。
8. Ce (NH 4 ) 2 (NO 3 ) 5 or Ce (NO
The non-aqueous electrolyte secondary battery according to claim 7, wherein the cerium ion is contained by adding 3 ) 3 .
JP12949393A 1993-05-31 1993-05-31 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3259436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12949393A JP3259436B2 (en) 1993-05-31 1993-05-31 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12949393A JP3259436B2 (en) 1993-05-31 1993-05-31 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH06338347A true JPH06338347A (en) 1994-12-06
JP3259436B2 JP3259436B2 (en) 2002-02-25

Family

ID=15010847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12949393A Expired - Fee Related JP3259436B2 (en) 1993-05-31 1993-05-31 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3259436B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740359A1 (en) * 1995-04-28 1996-10-30 Sony Corporation Non-aqueous electrolyte secondary cell having shuttle agent
EP0746050A1 (en) * 1995-05-26 1996-12-04 Sony Corporation Non-aqueous electrolyte secondary battery
JP2003217662A (en) * 2001-11-15 2003-07-31 Nec Corp Method of manufacturing electrolyte for secondary battery, method of manufacturing secondary battery, and secondary battery
US6818352B2 (en) 1999-03-07 2004-11-16 Teijin Limited Lithium secondary cell, separator, cell pack, and charging method
US6881438B2 (en) 2000-03-07 2005-04-19 Teijin Limited Process for production of composite porous film
JP2005302727A (en) * 2004-04-09 2005-10-27 Air Products & Chemicals Inc Electrochemical cell overcharging protection
US7074523B2 (en) 2001-05-15 2006-07-11 Hitachi, Ltd. Lithium secondary battery
US7094497B2 (en) 2000-03-07 2006-08-22 Teijin Limited Separator for lithium ion secondary battery
JP2006278898A (en) * 2005-03-30 2006-10-12 Tdk Corp Electrochemical capacitor
JP2006313719A (en) * 2005-04-04 2006-11-16 Sony Corp Battery
US7201994B2 (en) 2000-12-28 2007-04-10 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
US7648801B2 (en) 2004-04-01 2010-01-19 3M Innovative Properties Company Redox shuttle for overdischarge protection in rechargeable lithium-ion batteries
US7745055B2 (en) 2003-10-31 2010-06-29 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US7745054B2 (en) 2003-04-03 2010-06-29 Samsung Sdi Co., Ltd. Non-aqueous electrolyte and lithium secondary battery comprising same
US7811710B2 (en) 2004-04-01 2010-10-12 3M Innovative Properties Company Redox shuttle for rechargeable lithium-ion cell
US7824809B2 (en) 2000-10-12 2010-11-02 Panasonic Corporation Electrolyte for non-aqueous cell and non-aqueous secondary cell
US8101302B2 (en) 2008-02-12 2012-01-24 3M Innovative Properties Company Redox shuttles for high voltage cathodes
JP2012109045A (en) * 2010-11-15 2012-06-07 Toyota Motor Corp Battery system, vehicle with battery system, and method for heating secondary battery
JP2013016488A (en) * 2011-07-01 2013-01-24 Lg Chem Ltd Nonaqueous electrolyte and lithium secondary battery using the same
US8609287B2 (en) 2010-05-25 2013-12-17 Uchicago Argonne, Llc Polyether-functionalized redox shuttle additives for lithium ion batteries
US8877390B2 (en) 2010-05-25 2014-11-04 Uchicago Argonne, Llc Redox shuttles for lithium ion batteries
US8968940B2 (en) 2010-05-25 2015-03-03 Uchicago Argonne, Llc Redox shuttles for high voltage cathodes
US9005822B2 (en) 2013-03-06 2015-04-14 Uchicago Argonne, Llc Functional electrolyte for lithium-ion batteries
US9455472B2 (en) 2011-06-07 2016-09-27 3M Innovative Properties Company Lithium-ion electrochemical cells including fluorocarbon electrolyte additives
US9601806B2 (en) 2011-08-31 2017-03-21 Uchicago Argonne, Llc Redox shuttle additives for lithium-ion batteries
CN113823840A (en) * 2021-10-29 2021-12-21 中南大学 Electrolyte for lithium metal cathode
CN115939521A (en) * 2023-02-22 2023-04-07 安徽盟维新能源科技有限公司 Electrolyte for lithium metal battery containing rare earth borate and lithium metal battery

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763119A (en) * 1995-04-28 1998-06-09 Sony Corporation Non-aqueous electrolyte secondary cell having shuttle agent
EP0740359A1 (en) * 1995-04-28 1996-10-30 Sony Corporation Non-aqueous electrolyte secondary cell having shuttle agent
EP0746050A1 (en) * 1995-05-26 1996-12-04 Sony Corporation Non-aqueous electrolyte secondary battery
US6818352B2 (en) 1999-03-07 2004-11-16 Teijin Limited Lithium secondary cell, separator, cell pack, and charging method
US6881438B2 (en) 2000-03-07 2005-04-19 Teijin Limited Process for production of composite porous film
US7094497B2 (en) 2000-03-07 2006-08-22 Teijin Limited Separator for lithium ion secondary battery
US7867657B2 (en) 2000-10-12 2011-01-11 Panasonic Corporation Electrolyte for non-aqueous cell and non-aqueous secondary cell
US7824809B2 (en) 2000-10-12 2010-11-02 Panasonic Corporation Electrolyte for non-aqueous cell and non-aqueous secondary cell
US7201994B2 (en) 2000-12-28 2007-04-10 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
US7074523B2 (en) 2001-05-15 2006-07-11 Hitachi, Ltd. Lithium secondary battery
JP2003217662A (en) * 2001-11-15 2003-07-31 Nec Corp Method of manufacturing electrolyte for secondary battery, method of manufacturing secondary battery, and secondary battery
US7745054B2 (en) 2003-04-03 2010-06-29 Samsung Sdi Co., Ltd. Non-aqueous electrolyte and lithium secondary battery comprising same
US7968234B2 (en) 2003-04-03 2011-06-28 Samsung Sdi Co., Ltd. Non-aqueous electrolyte and lithium secondary battery comprising same
US7745055B2 (en) 2003-10-31 2010-06-29 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US8530098B2 (en) 2003-10-31 2013-09-10 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US7648801B2 (en) 2004-04-01 2010-01-19 3M Innovative Properties Company Redox shuttle for overdischarge protection in rechargeable lithium-ion batteries
US7811710B2 (en) 2004-04-01 2010-10-12 3M Innovative Properties Company Redox shuttle for rechargeable lithium-ion cell
EP1587158A3 (en) * 2004-04-09 2010-01-06 Air Products And Chemicals, Inc. Overcharge protection for electrochemical cells
US7785740B2 (en) 2004-04-09 2010-08-31 Air Products And Chemicals, Inc. Overcharge protection for electrochemical cells
JP2005302727A (en) * 2004-04-09 2005-10-27 Air Products & Chemicals Inc Electrochemical cell overcharging protection
JP2006278898A (en) * 2005-03-30 2006-10-12 Tdk Corp Electrochemical capacitor
JP2006313719A (en) * 2005-04-04 2006-11-16 Sony Corp Battery
KR101315555B1 (en) * 2005-04-04 2013-10-08 소니 주식회사 Battery
US8101302B2 (en) 2008-02-12 2012-01-24 3M Innovative Properties Company Redox shuttles for high voltage cathodes
US8609287B2 (en) 2010-05-25 2013-12-17 Uchicago Argonne, Llc Polyether-functionalized redox shuttle additives for lithium ion batteries
US8877390B2 (en) 2010-05-25 2014-11-04 Uchicago Argonne, Llc Redox shuttles for lithium ion batteries
US8968940B2 (en) 2010-05-25 2015-03-03 Uchicago Argonne, Llc Redox shuttles for high voltage cathodes
US9293789B2 (en) 2010-05-25 2016-03-22 Uchicago Argonne, Llc Redox shuttles for lithium ion batteries
JP2012109045A (en) * 2010-11-15 2012-06-07 Toyota Motor Corp Battery system, vehicle with battery system, and method for heating secondary battery
US9455472B2 (en) 2011-06-07 2016-09-27 3M Innovative Properties Company Lithium-ion electrochemical cells including fluorocarbon electrolyte additives
JP2013016488A (en) * 2011-07-01 2013-01-24 Lg Chem Ltd Nonaqueous electrolyte and lithium secondary battery using the same
US9728805B2 (en) 2011-07-01 2017-08-08 Lg Chem, Ltd. Nonaqueous electrolyte and lithium secondary battery using the same
JP2015122322A (en) * 2011-07-01 2015-07-02 エルジー・ケム・リミテッド Nonaqueous electrolyte and lithium secondary battery comprising the same
US9601806B2 (en) 2011-08-31 2017-03-21 Uchicago Argonne, Llc Redox shuttle additives for lithium-ion batteries
US9005822B2 (en) 2013-03-06 2015-04-14 Uchicago Argonne, Llc Functional electrolyte for lithium-ion batteries
CN113823840A (en) * 2021-10-29 2021-12-21 中南大学 Electrolyte for lithium metal cathode
CN115939521A (en) * 2023-02-22 2023-04-07 安徽盟维新能源科技有限公司 Electrolyte for lithium metal battery containing rare earth borate and lithium metal battery

Also Published As

Publication number Publication date
JP3259436B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
JP3259436B2 (en) Non-aqueous electrolyte secondary battery
JP3809657B2 (en) Non-aqueous electrolyte secondary battery
JP3493873B2 (en) Non-aqueous electrolyte secondary battery
US10886560B2 (en) All-solid-state lithium secondary battery containing LLZO solid electrolyte and method for preparing same
US9972867B2 (en) Cosolvent electrolytes for electrochemical devices
CN100530811C (en) Overcharge protection for electrochemical cells
CN104662729B (en) Lithium ion battery with high-energy density, excellent cycling ability and low internal driving
US20140220392A1 (en) Prussian Blue Analogue Anodes for Aqueous Electrolyte Batteries
US10862168B2 (en) Electrolyte additives for electrochemical devices
JP3687513B2 (en) battery
CN102473957A (en) Lithium ion batteries with long cycling performance
US8968925B2 (en) Metal-doped transition metal hexacyanoferrate (TMHCF) battery electrode
JP2008541401A (en) N-oxide redox shuttle for rechargeable lithium-ion cells
CN100561793C (en) The lithium secondary battery of the non-aqueous electrolyte of oxo-anions and this electrolyte of use
WO2014178194A1 (en) Metal-doped transition metal hexacyanoferrate (tmhcf) battery electrode
US11177476B2 (en) Complexed iodine-based electrolyte and redox flow battery comprising the same
JPH06338349A (en) Rechargeable lithium battery
JPH1021898A (en) Lithium battery
JP4284779B2 (en) Non-aqueous electrolyte battery
JP2005149982A (en) Electrolyte and battery using it
JP2001176511A (en) Lithium secondary battery and positive electrode active material for lithium secondary battery
US20230238593A1 (en) Secondary battery, secondary battery control system, and battery pack
JPH0226345B2 (en)
JPS63239780A (en) Lithium ion conductive electrolyte
JPH06290808A (en) Non-aqueous electrolyte and non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees