JP2011246303A - Lithium ion secondary battery electrode material using prussian blue analog - Google Patents
Lithium ion secondary battery electrode material using prussian blue analog Download PDFInfo
- Publication number
- JP2011246303A JP2011246303A JP2010119968A JP2010119968A JP2011246303A JP 2011246303 A JP2011246303 A JP 2011246303A JP 2010119968 A JP2010119968 A JP 2010119968A JP 2010119968 A JP2010119968 A JP 2010119968A JP 2011246303 A JP2011246303 A JP 2011246303A
- Authority
- JP
- Japan
- Prior art keywords
- prussian blue
- lithium ion
- ion secondary
- secondary battery
- charge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Compounds Of Iron (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウムイオン2次電池用の電極材料に関するものである。 The present invention relates to an electrode material for a lithium ion secondary battery.
リチウムイオン2次電池用電極には、現在LiCoO2等の希少な金属を用いた正極材料が使用されており、コスト面から、リチウムイオン2次電池の高効率自動車への搭載を難しくしている。また、近年開発されているコスト面で有利なLiMn2O4は充放電容量が低く、LiFePO4も電子伝導性が低いことが問題視されている。プルシアンブルー類似体をリチウムイオン2次電池用電極材料として利用する研究も行われてきたが(非特許文献1,2)、充放電容量が乏しいこと、サイクル特性が著しく低いことが問題であった。 Currently, cathode materials using rare metals such as LiCoO 2 are used for electrodes for lithium ion secondary batteries, making it difficult to mount lithium ion secondary batteries in high-efficiency vehicles from a cost standpoint. . In addition, LiMn 2 O 4 , which has been recently developed in terms of cost, has a low charge / discharge capacity, and LiFePO 4 has a low electronic conductivity. Research has also been conducted on the use of Prussian blue analogues as electrode materials for lithium ion secondary batteries (Non-Patent Documents 1 and 2), but there are problems with poor charge / discharge capacity and extremely low cycle characteristics. .
本発明は、プルシアンブルー類似体(PBA)における少ない充放電容量、及び、低いサイクル特性を改善することを課題とする。 An object of the present invention is to improve the low charge / discharge capacity and low cycle characteristics in Prussian blue analog (PBA).
プルシアンブルー類似体を構成する金属元素に、2電子酸化還元を可能とするCu(II)を使用することで充放電容量の増大を促すことが可能であるが、そのサイクル特性は極めて悪いことが報告されている。
本発明者は、Cu(II)を含有するプルシアンブルー類似体に対し、極めて強いホスト構造を形成するMn(II)イオンをドープすることにより、充放電サイクル特性が著しく向上することを見出し、本発明を完成した。
It is possible to promote the increase in charge / discharge capacity by using Cu (II) that enables two-electron redox as the metal element that constitutes the Prussian blue analog, but the cycle characteristics are extremely poor. It has been reported.
The present inventor has found that the charge / discharge cycle characteristics are remarkably improved by doping the Prussian blue analog containing Cu (II) with Mn (II) ions forming an extremely strong host structure. Completed the invention.
すなわち、本発明は、リチウムイオン2次電池用正極材料として、組成式K1-x(MnyCu1-y)1+0.5x[Fe(CN)6]・nH2O(組成式中、x、y、nは、x=0〜1、0<y<1、n=5〜6である。)で表わされる、新規なプルシアンブルー類似体(PBA)を提供するものである。xは、好ましくは、0.8〜0.9であり、yは、好ましくは、0.1〜0.6、特に好ましくは、0.3〜0.5である。 That is, the present invention is, as a cathode material for a lithium ion secondary battery, a composition formula K 1-x (Mn y Cu 1-y) in 1 + 0.5x [Fe (CN) 6] · nH 2 O ( compositional formula, x, y, and n are x = 0 to 1, 0 <y <1, and n = 5 to 6.) A novel Prussian blue analog (PBA) is provided. x is preferably from 0.8 to 0.9, and y is preferably from 0.1 to 0.6, particularly preferably from 0.3 to 0.5.
Cu(II)を含有するプルシアンブルー類似体K1-x(Cu)1+0.5x[Fe(CN)6]・nH2Oは、リチウムイオン2次電池の正極として用いた際、Cuの酸化還元に伴う充放電容量の増大が生じ、当初は、プルシアンブルーK3[Fe(CN)6]・nH2Oと比べて極めて高い充放電容量を示すが、そのサイクル特性は極めて乏しい(図3)。 Prussian blue analogue K 1-x (Cu) 1 + 0.5x [Fe (CN) 6 ] · nH 2 O containing Cu (II) is oxidized by Cu when used as the positive electrode of a lithium ion secondary battery. The charge / discharge capacity increases due to the reduction, and initially shows extremely high charge / discharge capacity compared to Prussian blue K 3 [Fe (CN) 6 ] · nH 2 O, but its cycle characteristics are extremely poor (FIG. 3). ).
そこで、本発明者は、PBAホスト構造を安定化するMnをK1-x(Cu)1+0.5x[Fe(CN)6]・nH2Oに対しドープした試料K1-x(MnyCu1-y)1+0.5x[Fe(CN)6]・nH2Oを新たに合成し、これについて、電極特性を測定したところ、酸化還元可能なCuの減少に伴う充放電容量の低下が一部確認された(図3、図4)ものの、サイクル特性が著しく向上することを見出した(図3)。サイクル特性の向上は、Mnドープ量が多くなるにつれて顕著となることから、この効果はMnドープによるホスト構造の堅牢化に伴う現象であることが認められた。 Therefore, the present inventor has a Mn of stabilizing the PBA host structure K 1-x (Cu) 1 + 0.5x [Fe (CN) 6] · nH 2 O samples were doped to K 1-x (Mn y Cu 1-y ) 1 + 0.5x [Fe (CN) 6 ] · nH 2 O was newly synthesized, and the electrode characteristics were measured. As a result, the charge / discharge capacity decreased with the decrease in redox capable Cu. However, it was found that the cycle characteristics were remarkably improved (FIG. 3). Since the improvement of the cycle characteristics becomes more significant as the amount of Mn doping increases, it was confirmed that this effect is a phenomenon accompanying the strengthening of the host structure by Mn doping.
一方、高速充放電特性については、Mnドープ量が多くなるにつれて性能が改善することが確かめられた(図5)。このことは、Fe-CN-Mnにおける電荷非局在化に伴う電子伝導性の向上による分極の抑制に起因することが分かった。 On the other hand, with regard to the high-speed charge / discharge characteristics, it was confirmed that the performance improved as the Mn doping amount increased (FIG. 5). This was found to be due to the suppression of polarization due to the enhancement of electron conductivity accompanying charge delocalization in Fe-CN-Mn.
本願は、本発明者により得られた上記知見に基づき、以下の発明を提供するものである。
〈1〉 組成式K1-x(MnyCu1-y)1+0.5x[Fe(CN)6]・nH2Oで表わされる、プルシアンブルー類似体。(但し、上記組成式中、x、y、nは、x=0〜1、0<y<1、n=5〜6である。)
〈2〉 〈1〉のプルシアンブルー類似体からなる正極活物質。
〈3〉 〈1〉のプルシアンブルー類似体を正極活物質として含有する電池用正極。
〈4〉 正極として、〈3〉の正極を用いることを特徴とする、リチウムイオン2次電池。
This application provides the following invention based on the said knowledge acquired by this inventor.
<1> the composition formula K 1-x (Mn y Cu 1-y) is expressed by 1 + 0.5x [Fe (CN) 6] · nH 2 O, Prussian blue analogues. (However, in the above composition formula, x, y, and n are x = 0 to 1, 0 <y <1, and n = 5 to 6.)
<2> A positive electrode active material comprising the Prussian blue analog of <1>.
<3> A battery positive electrode containing the Prussian blue analog of <1> as a positive electrode active material.
<4> A lithium ion secondary battery using the positive electrode of <3> as the positive electrode.
本発明のプルシアンブルー類似体を正極活物質として用いることにより、比較的低価格で、充放電容量が高く、サイクル特性が著しく改善され、かつ、高速充放電に耐え得るリチウムイオン2次電池が提供される。 Use of the Prussian blue analog of the present invention as a positive electrode active material provides a lithium ion secondary battery that is relatively inexpensive, has high charge / discharge capacity, significantly improves cycle characteristics, and can withstand high-speed charge / discharge. Is done.
以下に、本発明について、実施例を用いてさらに詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
実施例1.プルシアンブルー類似体K1-x(MnyCu1-y)1+0.5x[Fe(CN)6]・nH2Oの調製
K1-x(MnyCu1-y)1+0.5x[Fe(CN)6]・nH2Oの合成法
合計で3mmolとなるように調整した各組成比の塩化マンガン4水和物と硫酸銅を水10mlに加えて撹拌し、溶解させる。その水溶液を撹拌しながら、3mmolのK3[Fe(CN)6]を溶かした10ml水溶液を極めて徐々に加える。そのまま室温で1時間撹拌し、生じた沈殿を遠心分離器により10000rpm/10分で沈殿させる。得られた沈殿物を、室温で24時間真空乾燥し、目的物であるK1-x(MnyCu1-y)1+0.5x[Fe(CN)6]・nH2Oの粉末を得る。
全ての粒子について、同様の合成法により得た。
合成したサンプルは、以下のとおりである。
K0.14Cu1.43[Fe(CN)6]・5H2O
K0.12(Mn0.18Cu0.82)1.44[Fe(CN)6]・5H2O
K0.14(Mn0.37Cu0.63)1.43[Fe(CN)6]・5H2O
K0.16(Mn0.48Cu0.52)1。42[Fe(CN)6]・6H2O
K0.14Mn1.43[Fe(CN)6]・6H2O
合成した各サンプル粉末のX線回折パターンをみると、全サンプルにおいて、回折ピークにスプリットが生じておらず、全サンプルで固溶体が形成されたことが分かる(図1)。また、TEM観察により、40nmのナノ粒子が合成されたことが分かる(図2)。
Example 1. Preparation of Prussian blue analogue K 1-x (Mn y Cu 1-y ) 1 + 0.5x [Fe (CN) 6 ] · nH 2 O
Synthesis method of K 1-x (Mn y Cu 1-y ) 1 + 0.5x [Fe (CN) 6 ] · nH 2 O and manganese chloride tetrahydrate with each composition ratio adjusted to a total of 3 mmol Add copper sulfate to 10 ml of water and stir to dissolve. While stirring the aqueous solution, a 10 ml aqueous solution containing 3 mmol of K3 [Fe (CN) 6] is added very gradually. The mixture is stirred at room temperature for 1 hour, and the resulting precipitate is precipitated at 10,000 rpm / 10 minutes using a centrifuge. The resulting precipitate was vacuum dried for 24 hours at room temperature to obtain a powder of K 1-x (Mn y Cu 1-y) 1 + 0.5x [Fe (CN) 6] · nH 2 O the desired product .
All particles were obtained by the same synthesis method.
The synthesized samples are as follows.
K 0.14 Cu 1.43 [Fe (CN) 6 ] ・ 5H 2 O
K 0.12 (Mn 0.18 Cu 0.82 ) 1.44 [Fe (CN) 6 ] ・ 5H 2 O
K 0.14 (Mn 0.37 Cu 0.63 ) 1.43 [Fe (CN) 6 ] ・ 5H 2 O
K 0.16 (Mn 0.48 Cu 0.52 ) 1.42 [Fe (CN) 6 ] ・ 6H 2 O
K 0.14 Mn 1.43 [Fe (CN) 6 ] ・ 6H 2 O
Looking at the X-ray diffraction patterns of the synthesized sample powders, it can be seen that no splitting occurred in the diffraction peaks in all the samples, and solid solutions were formed in all the samples (FIG. 1). Also, TEM observation shows that 40 nm nanoparticles were synthesized (FIG. 2).
実施例2.プルシアンブルー類似体(PBA)の電極特性の測定
電極特性の測定方法
K1-x(MnyCu1-y)1+0.5x[Fe(CN)6]・nH2Oのリチウムイオン2次電池用の電極特性を評価するに当たっては、K1-x(MnyCu1-y)1+0.5x[Fe(CN)6]・nH2O粉末をまず、電子伝導性助剤であるアセチレンブラック20wt%、結着剤であるテフロン5wt%と乳鉢で混合し、ペースト化した。次に、3極式ガラスセルで、集電体としてステンレスメッシュ、参照電極・対電極としてLi金属を使用してリチウムイオン2次電池をグローブボックス内で組み立てた。
組み立てたリチウムイオン2次電池を使用し、Mnドープ量y=0の従来例及びy=0.37の本発明のサンプル電極を用い、30mA/gの電流密度で、カットオフ電位を2−4.3V vs.Liに設定して、298Kで充放電を繰り返し、サイクル特性を測定した(図3)。続いて、同様のカットオフ電位、同様の電流密度において、各サンプル電極におけるLi挿入量の測定を行った(図4)。また、y=0.37及びy=0.48のサンプル電極を用い、同様のカットオフ電位において30mA/gから1A/gの間で電流密度を変化させることで、高速出力特性の評価を行った(図5)。
図3に示されるように、従来のMnドープされていないy=0のサンプルにおいては、当初、120mAh/gの極めて高い充放電容量を示すものの、50回の充放電サイクルにより容量が殆ど失われるのに対し、本発明では、当初の充放電容量は若干劣るものの、50回充放電サイクル後の残存容量は70%以上の極めて高い数値を示した。
また、図4から、Mnドープ量の増加に伴い、正極活物質であるPBAへの放電時のLi挿入量は、若干減少する傾向があることが分かる。これは、当初の充放電容量の若干の低下に対応するものである。
一方、図5から、Mnドープ量の増加により、高速充放電時のPBAへのLiの入出量が増加し、出力特性が向上する。これは、Mnドープ量の増加により、電子伝導性が向上し、分極を抑制することによるものと考えられる。
Example 2 Measurement of electrode characteristics of Prussian blue analogue (PBA) Measurement method of electrode characteristics
In evaluating the electrode characteristics of K 1-x (Mn y Cu 1-y ) 1 + 0.5x [Fe (CN) 6 ] · nH 2 O for lithium ion secondary batteries, K 1-x (Mn y Cu 1-y ) 1 + 0.5x [Fe (CN) 6 ] · nH 2 O powder is first mixed with mortar with 20% by weight of acetylene black, which is an electronic conductivity assistant, and 5% by weight of Teflon, which is a binder. Pasted. Next, a lithium ion secondary battery was assembled in a glove box using a stainless steel mesh as a current collector and Li metal as a reference / counter electrode in a three-electrode glass cell.
Using an assembled lithium ion secondary battery, using a conventional example with an Mn doping amount y = 0 and a sample electrode of the present invention with y = 0.37, a cutoff potential of 2 to 4.3 V vs. 30 mA / g current density Set to .Li, charge and discharge were repeated at 298 K, and cycle characteristics were measured (FIG. 3). Subsequently, the amount of Li insertion in each sample electrode was measured at the same cut-off potential and the same current density (FIG. 4). Moreover, using the sample electrodes with y = 0.37 and y = 0.48, the high-speed output characteristics were evaluated by changing the current density between 30 mA / g and 1 A / g at the same cut-off potential (FIG. 5). ).
As shown in FIG. 3, the conventional Mn-undoped y = 0 sample initially shows a very high charge / discharge capacity of 120 mAh / g, but almost no capacity is lost by 50 charge / discharge cycles. On the other hand, in the present invention, although the initial charge / discharge capacity was slightly inferior, the remaining capacity after 50 charge / discharge cycles showed an extremely high value of 70% or more.
Moreover, FIG. 4 shows that the Li insertion amount at the time of discharge to PBA, which is the positive electrode active material, tends to slightly decrease as the Mn doping amount increases. This corresponds to a slight decrease in the initial charge / discharge capacity.
On the other hand, as shown in FIG. 5, the increase in the amount of Mn doping increases the amount of Li entering / exiting the PBA during high-speed charge / discharge, thereby improving the output characteristics. This is considered to be due to an increase in the amount of Mn doping that improves the electron conductivity and suppresses polarization.
Claims (4)
(但し、上記組成式中、x、y、nは、x=0〜1、0<y<1、n=5〜6である。) Composition formula K 1-x (Mn y Cu 1-y) is expressed by 1 + 0.5x [Fe (CN) 6] · nH 2 O, Prussian blue analogues.
(However, in the above composition formula, x, y, and n are x = 0 to 1, 0 <y <1, and n = 5 to 6.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010119968A JP5605616B2 (en) | 2010-05-26 | 2010-05-26 | Lithium ion secondary battery electrode material using Prussian blue analogue |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010119968A JP5605616B2 (en) | 2010-05-26 | 2010-05-26 | Lithium ion secondary battery electrode material using Prussian blue analogue |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011246303A true JP2011246303A (en) | 2011-12-08 |
JP5605616B2 JP5605616B2 (en) | 2014-10-15 |
Family
ID=45412058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010119968A Expired - Fee Related JP5605616B2 (en) | 2010-05-26 | 2010-05-26 | Lithium ion secondary battery electrode material using Prussian blue analogue |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5605616B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012046399A (en) * | 2010-08-30 | 2012-03-08 | National Institute Of Advanced Industrial Science & Technology | Electrode material for lithium ion secondary battery using non-defective prussian blue analogue |
CN103193276A (en) * | 2013-04-28 | 2013-07-10 | 北京化工大学 | Method for synthesizing iron-containing hydrotalcite-like compound by utilizing prussian blue as raw material |
JP2014075284A (en) * | 2012-10-04 | 2014-04-24 | Nippon Telegr & Teleph Corp <Ntt> | Sodium secondary battery |
WO2014178170A1 (en) * | 2013-04-29 | 2014-11-06 | Sharp Kabushiki Kaisha | Protected transition metal hexacyanoferrate battery electrode |
WO2014178171A1 (en) * | 2013-04-29 | 2014-11-06 | Sharp Kabushiki Kaisha | Hexacyanoferrate battery electrode modified with ferrocyanides or ferricyanides |
WO2014178194A1 (en) * | 2013-04-29 | 2014-11-06 | Sharp Kabushiki Kaisha | Metal-doped transition metal hexacyanoferrate (tmhcf) battery electrode |
US8968925B2 (en) | 2012-03-28 | 2015-03-03 | Sharp Laboratories Of America, Inc. | Metal-doped transition metal hexacyanoferrate (TMHCF) battery electrode |
US9099719B2 (en) | 2012-03-28 | 2015-08-04 | Sharp Laboratories Of America, Inc. | Hexacyanoferrate battery electrode modified with ferrocyanides or ferricyanides |
WO2015133139A1 (en) * | 2014-03-06 | 2015-09-11 | Sharp Kabushiki Kaisha | Battery anode with preloaded metals |
US9246164B2 (en) | 2012-03-28 | 2016-01-26 | Sharp Laboratories Of America, Inc. | Protected transition metal hexacyanoferrate battery electrode |
US9537131B2 (en) | 2012-03-28 | 2017-01-03 | Sharp Laboratories Of America, Inc. | Battery anode with preloaded metals |
US9847527B2 (en) | 2012-03-28 | 2017-12-19 | Sharp Laboratories Of America, Inc. | Non-metal anode alkali and alkaline-earth ion batteries with hexacyanometallate cathode |
CN108133832A (en) * | 2017-12-05 | 2018-06-08 | 西北工业大学 | A kind of nano hollow structure is Prussian blue and its preparation method of homologue |
WO2018123487A1 (en) * | 2016-12-26 | 2018-07-05 | 学校法人東京理科大学 | Positive electrode active material for potassium-ion cell, positive electrode for potassium-ion cell, and potassium-ion cell |
WO2020111404A1 (en) * | 2018-11-27 | 2020-06-04 | 한양대학교 산학협력단 | Method for manufacturing lithium-transition metal oxide using prussian blue analogue, lithium-transition metal oxide, and lithium secondary battery |
US10897042B2 (en) | 2014-07-24 | 2021-01-19 | Samsung Sdi Co., Ltd. | Composite positive electrode active material for lithium secondary battery and lithium secondary battery comprising electrode including the composite positive electrode active material |
CN115676852A (en) * | 2022-11-14 | 2023-02-03 | 中国地质大学(武汉) | Manganese-iron-based Prussian blue potassium ion battery positive electrode material and preparation method and application thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2564756A (en) * | 1946-02-21 | 1951-08-21 | Interchem Corp | Inorganic maroon |
JPS58121559A (en) * | 1982-01-14 | 1983-07-19 | Seiko Instr & Electronics Ltd | Battery |
JPS603862A (en) * | 1983-06-22 | 1985-01-10 | Seiko Instr & Electronics Ltd | Secondary battery |
JPS6084140A (en) * | 1983-08-23 | 1985-05-13 | ユニオン・カ−バイド・コ−ポレ−シヨン | Adsorbing method |
JPS61223725A (en) * | 1985-03-28 | 1986-10-04 | Alps Electric Co Ltd | Electrochromic display element |
JPH1021898A (en) * | 1996-07-04 | 1998-01-23 | Nippon Glass Fiber Co Ltd | Lithium battery |
JP2001048527A (en) * | 1999-08-04 | 2001-02-20 | Toyota Motor Corp | Hexacyanoferrate complex and lithium secondary battery using the same as anodic active substance |
WO2008081923A1 (en) * | 2006-12-28 | 2008-07-10 | National Institute Of Advanced Industrial Science And Technology | Process for producing nanoparticle of prussian blue type metal complex, prussian blue type metal complex nanoparticle obtained by the same, dispersion of the nanoparticles, method of regulating coloration of the nanoparticles, and electrode and transmitted-light regulator both employing the nanoparticles |
-
2010
- 2010-05-26 JP JP2010119968A patent/JP5605616B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2564756A (en) * | 1946-02-21 | 1951-08-21 | Interchem Corp | Inorganic maroon |
JPS58121559A (en) * | 1982-01-14 | 1983-07-19 | Seiko Instr & Electronics Ltd | Battery |
JPS603862A (en) * | 1983-06-22 | 1985-01-10 | Seiko Instr & Electronics Ltd | Secondary battery |
JPS6084140A (en) * | 1983-08-23 | 1985-05-13 | ユニオン・カ−バイド・コ−ポレ−シヨン | Adsorbing method |
JPS61223725A (en) * | 1985-03-28 | 1986-10-04 | Alps Electric Co Ltd | Electrochromic display element |
JPH1021898A (en) * | 1996-07-04 | 1998-01-23 | Nippon Glass Fiber Co Ltd | Lithium battery |
JP2001048527A (en) * | 1999-08-04 | 2001-02-20 | Toyota Motor Corp | Hexacyanoferrate complex and lithium secondary battery using the same as anodic active substance |
WO2008081923A1 (en) * | 2006-12-28 | 2008-07-10 | National Institute Of Advanced Industrial Science And Technology | Process for producing nanoparticle of prussian blue type metal complex, prussian blue type metal complex nanoparticle obtained by the same, dispersion of the nanoparticles, method of regulating coloration of the nanoparticles, and electrode and transmitted-light regulator both employing the nanoparticles |
Non-Patent Citations (1)
Title |
---|
JPN6014027171; 水野善文 et al: 電気化学会大会講演要旨集 77th, 2010, p.40 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012046399A (en) * | 2010-08-30 | 2012-03-08 | National Institute Of Advanced Industrial Science & Technology | Electrode material for lithium ion secondary battery using non-defective prussian blue analogue |
US9847527B2 (en) | 2012-03-28 | 2017-12-19 | Sharp Laboratories Of America, Inc. | Non-metal anode alkali and alkaline-earth ion batteries with hexacyanometallate cathode |
JP2017507472A (en) * | 2012-03-28 | 2017-03-16 | シャープ株式会社 | Battery negative electrode with pre-filled metal |
US9595706B2 (en) | 2012-03-28 | 2017-03-14 | Sharp Laboratories Of America, Inc. | Protected transition metal hexacyanoferrate battery electrode synthesis method |
US8968925B2 (en) | 2012-03-28 | 2015-03-03 | Sharp Laboratories Of America, Inc. | Metal-doped transition metal hexacyanoferrate (TMHCF) battery electrode |
US9099719B2 (en) | 2012-03-28 | 2015-08-04 | Sharp Laboratories Of America, Inc. | Hexacyanoferrate battery electrode modified with ferrocyanides or ferricyanides |
US9537131B2 (en) | 2012-03-28 | 2017-01-03 | Sharp Laboratories Of America, Inc. | Battery anode with preloaded metals |
US9246164B2 (en) | 2012-03-28 | 2016-01-26 | Sharp Laboratories Of America, Inc. | Protected transition metal hexacyanoferrate battery electrode |
JP2014075284A (en) * | 2012-10-04 | 2014-04-24 | Nippon Telegr & Teleph Corp <Ntt> | Sodium secondary battery |
CN103193276A (en) * | 2013-04-28 | 2013-07-10 | 北京化工大学 | Method for synthesizing iron-containing hydrotalcite-like compound by utilizing prussian blue as raw material |
CN105190964A (en) * | 2013-04-29 | 2015-12-23 | 夏普株式会社 | Metal-doped transition metal hexacyanoferrate (TMHCF) battery electrode |
CN105164833A (en) * | 2013-04-29 | 2015-12-16 | 夏普株式会社 | Hexacyanoferrate battery electrode modified with ferrocyanides or ferricyanides |
WO2014178194A1 (en) * | 2013-04-29 | 2014-11-06 | Sharp Kabushiki Kaisha | Metal-doped transition metal hexacyanoferrate (tmhcf) battery electrode |
WO2014178171A1 (en) * | 2013-04-29 | 2014-11-06 | Sharp Kabushiki Kaisha | Hexacyanoferrate battery electrode modified with ferrocyanides or ferricyanides |
CN105164833B (en) * | 2013-04-29 | 2017-12-01 | 夏普株式会社 | The hexacyanoferrate battery electrode being modified using ferrocyanide or the iron cyanide |
WO2014178170A1 (en) * | 2013-04-29 | 2014-11-06 | Sharp Kabushiki Kaisha | Protected transition metal hexacyanoferrate battery electrode |
WO2015133139A1 (en) * | 2014-03-06 | 2015-09-11 | Sharp Kabushiki Kaisha | Battery anode with preloaded metals |
US10897042B2 (en) | 2014-07-24 | 2021-01-19 | Samsung Sdi Co., Ltd. | Composite positive electrode active material for lithium secondary battery and lithium secondary battery comprising electrode including the composite positive electrode active material |
WO2018123487A1 (en) * | 2016-12-26 | 2018-07-05 | 学校法人東京理科大学 | Positive electrode active material for potassium-ion cell, positive electrode for potassium-ion cell, and potassium-ion cell |
CN108133832A (en) * | 2017-12-05 | 2018-06-08 | 西北工业大学 | A kind of nano hollow structure is Prussian blue and its preparation method of homologue |
WO2020111404A1 (en) * | 2018-11-27 | 2020-06-04 | 한양대학교 산학협력단 | Method for manufacturing lithium-transition metal oxide using prussian blue analogue, lithium-transition metal oxide, and lithium secondary battery |
CN115676852A (en) * | 2022-11-14 | 2023-02-03 | 中国地质大学(武汉) | Manganese-iron-based Prussian blue potassium ion battery positive electrode material and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5605616B2 (en) | 2014-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5605616B2 (en) | Lithium ion secondary battery electrode material using Prussian blue analogue | |
JP6286855B2 (en) | Positive electrode composition for non-aqueous electrolyte secondary battery | |
JP5999675B2 (en) | Electrode material for lithium ion secondary battery using defect-free Prussian blue analogue | |
JP5440959B2 (en) | Positive electrode active material for lithium secondary battery and lithium secondary battery | |
KR100369445B1 (en) | Coating materials and method of lithium manganese oxide for positive electr odes in the Lithium secondary batteries | |
JP4968944B2 (en) | Composite carbonate and method for producing the same | |
JP6575048B2 (en) | The positive electrode composition for nonaqueous electrolyte secondary batteries, the nonaqueous electrolyte secondary battery, and the manufacturing method of the positive electrode composition for nonaqueous electrolyte secondary batteries. | |
JP2018514908A (en) | Cathode active material for sodium ion batteries | |
JP5281765B2 (en) | Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus | |
WO2012035648A1 (en) | Active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
JP2004139947A (en) | Positive electrode active material for lithium secondary battery, and its manufacturing method | |
CN111689528A (en) | Ternary material precursor and preparation method and application thereof | |
JP2013206679A (en) | Nonaqueous electrolyte secondary battery cathode active material and manufacturing method thereof and secondary battery | |
JP2009054576A (en) | Manufacturing method of lithium-iron-phosphorus compound oxide carbon complex and manufacturing method of coprecipitate containing lithium, iron, and phosphorus | |
Xu et al. | Electrochemical evaluation of LiZnxMn2− xO4 (x≤ 0.10) cathode material synthesized by solution combustion method | |
JP4823540B2 (en) | Manufacturing method of electrode material, electrode material, electrode, and lithium battery | |
JP2010086657A (en) | Nonaqueous electrolyte secondary battery | |
JP5051770B2 (en) | Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same | |
JP5678826B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery | |
JP2011103260A (en) | Positive electrode active material for nonaqueous secondary battery | |
CN107240697B (en) | Electrode for lithium ion secondary battery material and its manufacturing method | |
JP6852747B2 (en) | A method for producing a positive electrode composition for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a positive electrode composition for a non-aqueous electrolyte secondary battery. | |
JP4969051B2 (en) | Method for producing lithium cobaltate positive electrode active material | |
JP2008243414A (en) | Composite material, its manufacturing method, secondary battery electrode material, secondary battery electrode, and secondary battery | |
JP2005067924A (en) | Method for manufacturing polyanion type lithium iron multiple oxide and battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140701 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140812 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140813 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5605616 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |