JP2011246303A - Lithium ion secondary battery electrode material using prussian blue analog - Google Patents

Lithium ion secondary battery electrode material using prussian blue analog Download PDF

Info

Publication number
JP2011246303A
JP2011246303A JP2010119968A JP2010119968A JP2011246303A JP 2011246303 A JP2011246303 A JP 2011246303A JP 2010119968 A JP2010119968 A JP 2010119968A JP 2010119968 A JP2010119968 A JP 2010119968A JP 2011246303 A JP2011246303 A JP 2011246303A
Authority
JP
Japan
Prior art keywords
prussian blue
lithium ion
ion secondary
secondary battery
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010119968A
Other languages
Japanese (ja)
Other versions
JP5605616B2 (en
Inventor
Masafumi Okubo
将史 大久保
Itaru Honma
格 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010119968A priority Critical patent/JP5605616B2/en
Publication of JP2011246303A publication Critical patent/JP2011246303A/en
Application granted granted Critical
Publication of JP5605616B2 publication Critical patent/JP5605616B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compounds Of Iron (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a small charge and discharge capacity and a low cycle characteristic in a lithium ion secondary battery which makes a prussian blue analog (PBA) a positive electrode material.SOLUTION: The novel prussian blue analog (PBA) as a positive electrode material for a lithium ion secondary battery is expressed by a composition formula: K(MnCu)[Fe(CN)]*nHO, wherein in x, y, n, x=0 to 1, 0<y<1, and n=5 to 6. The prussian blue analog is used as a positive electrode active material, and thereby the lithium ion secondary battery which is inexpensive comparatively, in which a charge and discharge capacity is high, a cycle characteristic is improved remarkably, and which can bear high-speed charge and discharge can be obtained.

Description

本発明は、リチウムイオン2次電池用の電極材料に関するものである。   The present invention relates to an electrode material for a lithium ion secondary battery.

リチウムイオン2次電池用電極には、現在LiCoO2等の希少な金属を用いた正極材料が使用されており、コスト面から、リチウムイオン2次電池の高効率自動車への搭載を難しくしている。また、近年開発されているコスト面で有利なLiMn2O4は充放電容量が低く、LiFePO4も電子伝導性が低いことが問題視されている。プルシアンブルー類似体をリチウムイオン2次電池用電極材料として利用する研究も行われてきたが(非特許文献1,2)、充放電容量が乏しいこと、サイクル特性が著しく低いことが問題であった。 Currently, cathode materials using rare metals such as LiCoO 2 are used for electrodes for lithium ion secondary batteries, making it difficult to mount lithium ion secondary batteries in high-efficiency vehicles from a cost standpoint. . In addition, LiMn 2 O 4 , which has been recently developed in terms of cost, has a low charge / discharge capacity, and LiFePO 4 has a low electronic conductivity. Research has also been conducted on the use of Prussian blue analogues as electrode materials for lithium ion secondary batteries (Non-Patent Documents 1 and 2), but there are problems with poor charge / discharge capacity and extremely low cycle characteristics. .

N.Imanishi et al., J.Power Sources,1999,79,215.N. Imanishi et al., J. Power Sources, 1999, 79, 215. N.Imanishi, et al., J.Power Sources,1999,81,530.N. Imanishi, et al., J. Power Sources, 1999, 81, 530.

本発明は、プルシアンブルー類似体(PBA)における少ない充放電容量、及び、低いサイクル特性を改善することを課題とする。   An object of the present invention is to improve the low charge / discharge capacity and low cycle characteristics in Prussian blue analog (PBA).

プルシアンブルー類似体を構成する金属元素に、2電子酸化還元を可能とするCu(II)を使用することで充放電容量の増大を促すことが可能であるが、そのサイクル特性は極めて悪いことが報告されている。
本発明者は、Cu(II)を含有するプルシアンブルー類似体に対し、極めて強いホスト構造を形成するMn(II)イオンをドープすることにより、充放電サイクル特性が著しく向上することを見出し、本発明を完成した。
It is possible to promote the increase in charge / discharge capacity by using Cu (II) that enables two-electron redox as the metal element that constitutes the Prussian blue analog, but the cycle characteristics are extremely poor. It has been reported.
The present inventor has found that the charge / discharge cycle characteristics are remarkably improved by doping the Prussian blue analog containing Cu (II) with Mn (II) ions forming an extremely strong host structure. Completed the invention.

すなわち、本発明は、リチウムイオン2次電池用正極材料として、組成式K1-x(MnyCu1-y)1+0.5x[Fe(CN)6]・nH2O(組成式中、x、y、nは、x=0〜1、0<y<1、n=5〜6である。)で表わされる、新規なプルシアンブルー類似体(PBA)を提供するものである。xは、好ましくは、0.8〜0.9であり、yは、好ましくは、0.1〜0.6、特に好ましくは、0.3〜0.5である。 That is, the present invention is, as a cathode material for a lithium ion secondary battery, a composition formula K 1-x (Mn y Cu 1-y) in 1 + 0.5x [Fe (CN) 6] · nH 2 O ( compositional formula, x, y, and n are x = 0 to 1, 0 <y <1, and n = 5 to 6.) A novel Prussian blue analog (PBA) is provided. x is preferably from 0.8 to 0.9, and y is preferably from 0.1 to 0.6, particularly preferably from 0.3 to 0.5.

Cu(II)を含有するプルシアンブルー類似体K1-x(Cu)1+0.5x[Fe(CN)6]・nH2Oは、リチウムイオン2次電池の正極として用いた際、Cuの酸化還元に伴う充放電容量の増大が生じ、当初は、プルシアンブルーK3[Fe(CN)6]・nH2Oと比べて極めて高い充放電容量を示すが、そのサイクル特性は極めて乏しい(図3)。 Prussian blue analogue K 1-x (Cu) 1 + 0.5x [Fe (CN) 6 ] · nH 2 O containing Cu (II) is oxidized by Cu when used as the positive electrode of a lithium ion secondary battery. The charge / discharge capacity increases due to the reduction, and initially shows extremely high charge / discharge capacity compared to Prussian blue K 3 [Fe (CN) 6 ] · nH 2 O, but its cycle characteristics are extremely poor (FIG. 3). ).

そこで、本発明者は、PBAホスト構造を安定化するMnをK1-x(Cu)1+0.5x[Fe(CN)6]・nH2Oに対しドープした試料K1-x(MnyCu1-y)1+0.5x[Fe(CN)6]・nH2Oを新たに合成し、これについて、電極特性を測定したところ、酸化還元可能なCuの減少に伴う充放電容量の低下が一部確認された(図3、図4)ものの、サイクル特性が著しく向上することを見出した(図3)。サイクル特性の向上は、Mnドープ量が多くなるにつれて顕著となることから、この効果はMnドープによるホスト構造の堅牢化に伴う現象であることが認められた。 Therefore, the present inventor has a Mn of stabilizing the PBA host structure K 1-x (Cu) 1 + 0.5x [Fe (CN) 6] · nH 2 O samples were doped to K 1-x (Mn y Cu 1-y ) 1 + 0.5x [Fe (CN) 6 ] · nH 2 O was newly synthesized, and the electrode characteristics were measured. As a result, the charge / discharge capacity decreased with the decrease in redox capable Cu. However, it was found that the cycle characteristics were remarkably improved (FIG. 3). Since the improvement of the cycle characteristics becomes more significant as the amount of Mn doping increases, it was confirmed that this effect is a phenomenon accompanying the strengthening of the host structure by Mn doping.

一方、高速充放電特性については、Mnドープ量が多くなるにつれて性能が改善することが確かめられた(図5)。このことは、Fe-CN-Mnにおける電荷非局在化に伴う電子伝導性の向上による分極の抑制に起因することが分かった。   On the other hand, with regard to the high-speed charge / discharge characteristics, it was confirmed that the performance improved as the Mn doping amount increased (FIG. 5). This was found to be due to the suppression of polarization due to the enhancement of electron conductivity accompanying charge delocalization in Fe-CN-Mn.

本願は、本発明者により得られた上記知見に基づき、以下の発明を提供するものである。
〈1〉 組成式K1-x(MnyCu1-y)1+0.5x[Fe(CN)6]・nH2Oで表わされる、プルシアンブルー類似体。(但し、上記組成式中、x、y、nは、x=0〜1、0<y<1、n=5〜6である。)
〈2〉 〈1〉のプルシアンブルー類似体からなる正極活物質。
〈3〉 〈1〉のプルシアンブルー類似体を正極活物質として含有する電池用正極。
〈4〉 正極として、〈3〉の正極を用いることを特徴とする、リチウムイオン2次電池。
This application provides the following invention based on the said knowledge acquired by this inventor.
<1> the composition formula K 1-x (Mn y Cu 1-y) is expressed by 1 + 0.5x [Fe (CN) 6] · nH 2 O, Prussian blue analogues. (However, in the above composition formula, x, y, and n are x = 0 to 1, 0 <y <1, and n = 5 to 6.)
<2> A positive electrode active material comprising the Prussian blue analog of <1>.
<3> A battery positive electrode containing the Prussian blue analog of <1> as a positive electrode active material.
<4> A lithium ion secondary battery using the positive electrode of <3> as the positive electrode.

本発明のプルシアンブルー類似体を正極活物質として用いることにより、比較的低価格で、充放電容量が高く、サイクル特性が著しく改善され、かつ、高速充放電に耐え得るリチウムイオン2次電池が提供される。   Use of the Prussian blue analog of the present invention as a positive electrode active material provides a lithium ion secondary battery that is relatively inexpensive, has high charge / discharge capacity, significantly improves cycle characteristics, and can withstand high-speed charge / discharge. Is done.

本発明のK-(CuMn)-Fe系PBAと従来技術のPBAのX線回折パターン。The X-ray-diffraction pattern of K- (CuMn) -Fe type | system | group PBA of this invention and PBA of a prior art. 本発明のK-(CuMn)-Fe系PBA(K0.14Cu1.43[Fe(CN)6]・5H2O)のTEM観察写真。TEM observation photograph of the present invention K- (CuMn) -Fe system PBA (K 0.14 Cu 1.43 [Fe (CN) 6] · 5H 2 O). 本発明のK-(CuMn)-Fe系PBAと従来技術のK-Cu-Fe系PBAの充放電サイクル特性の比較図Comparison of charge / discharge cycle characteristics of K- (CuMn) -Fe PBA of the present invention and K-Cu-Fe PBA of the prior art 本発明のK-(CuMn)-Fe系PBAと従来技術のK-Cu-Fe系PBAのLi挿入量の比較図Comparison of Li insertion amount between K- (CuMn) -Fe PBA of the present invention and K-Cu-Fe PBA of the prior art 本発明のK-(CuMn)-Fe系PBAの高速充放電特性を示す図Diagram showing fast charge / discharge characteristics of K- (CuMn) -Fe PBA of the present invention

以下に、本発明について、実施例を用いてさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1.プルシアンブルー類似体K1-x(MnyCu1-y)1+0.5x[Fe(CN)6]・nH2Oの調製
K1-x(MnyCu1-y)1+0.5x[Fe(CN)6]・nH2Oの合成法
合計で3mmolとなるように調整した各組成比の塩化マンガン4水和物と硫酸銅を水10mlに加えて撹拌し、溶解させる。その水溶液を撹拌しながら、3mmolのK3[Fe(CN)6]を溶かした10ml水溶液を極めて徐々に加える。そのまま室温で1時間撹拌し、生じた沈殿を遠心分離器により10000rpm/10分で沈殿させる。得られた沈殿物を、室温で24時間真空乾燥し、目的物であるK1-x(MnyCu1-y)1+0.5x[Fe(CN)6]・nH2Oの粉末を得る。
全ての粒子について、同様の合成法により得た。
合成したサンプルは、以下のとおりである。
K0.14Cu1.43[Fe(CN)6]・5H2O
K0.12(Mn0.18Cu0.82)1.44[Fe(CN)6]・5H2O
K0.14(Mn0.37Cu0.63)1.43[Fe(CN)6]・5H2O
K0.16(Mn0.48Cu0.52)1。42[Fe(CN)6]・6H2O
K0.14Mn1.43[Fe(CN)6]・6H2O
合成した各サンプル粉末のX線回折パターンをみると、全サンプルにおいて、回折ピークにスプリットが生じておらず、全サンプルで固溶体が形成されたことが分かる(図1)。また、TEM観察により、40nmのナノ粒子が合成されたことが分かる(図2)。
Example 1. Preparation of Prussian blue analogue K 1-x (Mn y Cu 1-y ) 1 + 0.5x [Fe (CN) 6 ] · nH 2 O
Synthesis method of K 1-x (Mn y Cu 1-y ) 1 + 0.5x [Fe (CN) 6 ] · nH 2 O and manganese chloride tetrahydrate with each composition ratio adjusted to a total of 3 mmol Add copper sulfate to 10 ml of water and stir to dissolve. While stirring the aqueous solution, a 10 ml aqueous solution containing 3 mmol of K3 [Fe (CN) 6] is added very gradually. The mixture is stirred at room temperature for 1 hour, and the resulting precipitate is precipitated at 10,000 rpm / 10 minutes using a centrifuge. The resulting precipitate was vacuum dried for 24 hours at room temperature to obtain a powder of K 1-x (Mn y Cu 1-y) 1 + 0.5x [Fe (CN) 6] · nH 2 O the desired product .
All particles were obtained by the same synthesis method.
The synthesized samples are as follows.
K 0.14 Cu 1.43 [Fe (CN) 6 ] ・ 5H 2 O
K 0.12 (Mn 0.18 Cu 0.82 ) 1.44 [Fe (CN) 6 ] ・ 5H 2 O
K 0.14 (Mn 0.37 Cu 0.63 ) 1.43 [Fe (CN) 6 ] ・ 5H 2 O
K 0.16 (Mn 0.48 Cu 0.52 ) 1.42 [Fe (CN) 6 ] ・ 6H 2 O
K 0.14 Mn 1.43 [Fe (CN) 6 ] ・ 6H 2 O
Looking at the X-ray diffraction patterns of the synthesized sample powders, it can be seen that no splitting occurred in the diffraction peaks in all the samples, and solid solutions were formed in all the samples (FIG. 1). Also, TEM observation shows that 40 nm nanoparticles were synthesized (FIG. 2).

実施例2.プルシアンブルー類似体(PBA)の電極特性の測定
電極特性の測定方法
K1-x(MnyCu1-y)1+0.5x[Fe(CN)6]・nH2Oのリチウムイオン2次電池用の電極特性を評価するに当たっては、K1-x(MnyCu1-y)1+0.5x[Fe(CN)6]・nH2O粉末をまず、電子伝導性助剤であるアセチレンブラック20wt%、結着剤であるテフロン5wt%と乳鉢で混合し、ペースト化した。次に、3極式ガラスセルで、集電体としてステンレスメッシュ、参照電極・対電極としてLi金属を使用してリチウムイオン2次電池をグローブボックス内で組み立てた。
組み立てたリチウムイオン2次電池を使用し、Mnドープ量y=0の従来例及びy=0.37の本発明のサンプル電極を用い、30mA/gの電流密度で、カットオフ電位を2−4.3V vs.Liに設定して、298Kで充放電を繰り返し、サイクル特性を測定した(図3)。続いて、同様のカットオフ電位、同様の電流密度において、各サンプル電極におけるLi挿入量の測定を行った(図4)。また、y=0.37及びy=0.48のサンプル電極を用い、同様のカットオフ電位において30mA/gから1A/gの間で電流密度を変化させることで、高速出力特性の評価を行った(図5)。
図3に示されるように、従来のMnドープされていないy=0のサンプルにおいては、当初、120mAh/gの極めて高い充放電容量を示すものの、50回の充放電サイクルにより容量が殆ど失われるのに対し、本発明では、当初の充放電容量は若干劣るものの、50回充放電サイクル後の残存容量は70%以上の極めて高い数値を示した。
また、図4から、Mnドープ量の増加に伴い、正極活物質であるPBAへの放電時のLi挿入量は、若干減少する傾向があることが分かる。これは、当初の充放電容量の若干の低下に対応するものである。
一方、図5から、Mnドープ量の増加により、高速充放電時のPBAへのLiの入出量が増加し、出力特性が向上する。これは、Mnドープ量の増加により、電子伝導性が向上し、分極を抑制することによるものと考えられる。
Example 2 Measurement of electrode characteristics of Prussian blue analogue (PBA) Measurement method of electrode characteristics
In evaluating the electrode characteristics of K 1-x (Mn y Cu 1-y ) 1 + 0.5x [Fe (CN) 6 ] · nH 2 O for lithium ion secondary batteries, K 1-x (Mn y Cu 1-y ) 1 + 0.5x [Fe (CN) 6 ] · nH 2 O powder is first mixed with mortar with 20% by weight of acetylene black, which is an electronic conductivity assistant, and 5% by weight of Teflon, which is a binder. Pasted. Next, a lithium ion secondary battery was assembled in a glove box using a stainless steel mesh as a current collector and Li metal as a reference / counter electrode in a three-electrode glass cell.
Using an assembled lithium ion secondary battery, using a conventional example with an Mn doping amount y = 0 and a sample electrode of the present invention with y = 0.37, a cutoff potential of 2 to 4.3 V vs. 30 mA / g current density Set to .Li, charge and discharge were repeated at 298 K, and cycle characteristics were measured (FIG. 3). Subsequently, the amount of Li insertion in each sample electrode was measured at the same cut-off potential and the same current density (FIG. 4). Moreover, using the sample electrodes with y = 0.37 and y = 0.48, the high-speed output characteristics were evaluated by changing the current density between 30 mA / g and 1 A / g at the same cut-off potential (FIG. 5). ).
As shown in FIG. 3, the conventional Mn-undoped y = 0 sample initially shows a very high charge / discharge capacity of 120 mAh / g, but almost no capacity is lost by 50 charge / discharge cycles. On the other hand, in the present invention, although the initial charge / discharge capacity was slightly inferior, the remaining capacity after 50 charge / discharge cycles showed an extremely high value of 70% or more.
Moreover, FIG. 4 shows that the Li insertion amount at the time of discharge to PBA, which is the positive electrode active material, tends to slightly decrease as the Mn doping amount increases. This corresponds to a slight decrease in the initial charge / discharge capacity.
On the other hand, as shown in FIG. 5, the increase in the amount of Mn doping increases the amount of Li entering / exiting the PBA during high-speed charge / discharge, thereby improving the output characteristics. This is considered to be due to an increase in the amount of Mn doping that improves the electron conductivity and suppresses polarization.

Claims (4)

組成式K1-x(MnyCu1-y)1+0.5x[Fe(CN)6]・nH2Oで表わされる、プルシアンブルー類似体。
(但し、上記組成式中、x、y、nは、x=0〜1、0<y<1、n=5〜6である。)
Composition formula K 1-x (Mn y Cu 1-y) is expressed by 1 + 0.5x [Fe (CN) 6] · nH 2 O, Prussian blue analogues.
(However, in the above composition formula, x, y, and n are x = 0 to 1, 0 <y <1, and n = 5 to 6.)
請求項1に記載のプルシアンブルー類似体からなる正極活物質。   A positive electrode active material comprising the Prussian blue analog according to claim 1. 請求項1に記載のプルシアンブルー類似体を正極活物質として含有する電池用正極。   A positive electrode for a battery comprising the Prussian blue analog according to claim 1 as a positive electrode active material. 正極として、請求項3に記載の正極を用いることを特徴とする、リチウムイオン2次電池。   A lithium ion secondary battery using the positive electrode according to claim 3 as a positive electrode.
JP2010119968A 2010-05-26 2010-05-26 Lithium ion secondary battery electrode material using Prussian blue analogue Expired - Fee Related JP5605616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010119968A JP5605616B2 (en) 2010-05-26 2010-05-26 Lithium ion secondary battery electrode material using Prussian blue analogue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010119968A JP5605616B2 (en) 2010-05-26 2010-05-26 Lithium ion secondary battery electrode material using Prussian blue analogue

Publications (2)

Publication Number Publication Date
JP2011246303A true JP2011246303A (en) 2011-12-08
JP5605616B2 JP5605616B2 (en) 2014-10-15

Family

ID=45412058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010119968A Expired - Fee Related JP5605616B2 (en) 2010-05-26 2010-05-26 Lithium ion secondary battery electrode material using Prussian blue analogue

Country Status (1)

Country Link
JP (1) JP5605616B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046399A (en) * 2010-08-30 2012-03-08 National Institute Of Advanced Industrial Science & Technology Electrode material for lithium ion secondary battery using non-defective prussian blue analogue
CN103193276A (en) * 2013-04-28 2013-07-10 北京化工大学 Method for synthesizing iron-containing hydrotalcite-like compound by utilizing prussian blue as raw material
JP2014075284A (en) * 2012-10-04 2014-04-24 Nippon Telegr & Teleph Corp <Ntt> Sodium secondary battery
WO2014178170A1 (en) * 2013-04-29 2014-11-06 Sharp Kabushiki Kaisha Protected transition metal hexacyanoferrate battery electrode
WO2014178171A1 (en) * 2013-04-29 2014-11-06 Sharp Kabushiki Kaisha Hexacyanoferrate battery electrode modified with ferrocyanides or ferricyanides
WO2014178194A1 (en) * 2013-04-29 2014-11-06 Sharp Kabushiki Kaisha Metal-doped transition metal hexacyanoferrate (tmhcf) battery electrode
US8968925B2 (en) 2012-03-28 2015-03-03 Sharp Laboratories Of America, Inc. Metal-doped transition metal hexacyanoferrate (TMHCF) battery electrode
US9099719B2 (en) 2012-03-28 2015-08-04 Sharp Laboratories Of America, Inc. Hexacyanoferrate battery electrode modified with ferrocyanides or ferricyanides
WO2015133139A1 (en) * 2014-03-06 2015-09-11 Sharp Kabushiki Kaisha Battery anode with preloaded metals
US9246164B2 (en) 2012-03-28 2016-01-26 Sharp Laboratories Of America, Inc. Protected transition metal hexacyanoferrate battery electrode
US9537131B2 (en) 2012-03-28 2017-01-03 Sharp Laboratories Of America, Inc. Battery anode with preloaded metals
US9847527B2 (en) 2012-03-28 2017-12-19 Sharp Laboratories Of America, Inc. Non-metal anode alkali and alkaline-earth ion batteries with hexacyanometallate cathode
CN108133832A (en) * 2017-12-05 2018-06-08 西北工业大学 A kind of nano hollow structure is Prussian blue and its preparation method of homologue
WO2018123487A1 (en) * 2016-12-26 2018-07-05 学校法人東京理科大学 Positive electrode active material for potassium-ion cell, positive electrode for potassium-ion cell, and potassium-ion cell
WO2020111404A1 (en) * 2018-11-27 2020-06-04 한양대학교 산학협력단 Method for manufacturing lithium-transition metal oxide using prussian blue analogue, lithium-transition metal oxide, and lithium secondary battery
US10897042B2 (en) 2014-07-24 2021-01-19 Samsung Sdi Co., Ltd. Composite positive electrode active material for lithium secondary battery and lithium secondary battery comprising electrode including the composite positive electrode active material
CN115676852A (en) * 2022-11-14 2023-02-03 中国地质大学(武汉) Manganese-iron-based Prussian blue potassium ion battery positive electrode material and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2564756A (en) * 1946-02-21 1951-08-21 Interchem Corp Inorganic maroon
JPS58121559A (en) * 1982-01-14 1983-07-19 Seiko Instr & Electronics Ltd Battery
JPS603862A (en) * 1983-06-22 1985-01-10 Seiko Instr & Electronics Ltd Secondary battery
JPS6084140A (en) * 1983-08-23 1985-05-13 ユニオン・カ−バイド・コ−ポレ−シヨン Adsorbing method
JPS61223725A (en) * 1985-03-28 1986-10-04 Alps Electric Co Ltd Electrochromic display element
JPH1021898A (en) * 1996-07-04 1998-01-23 Nippon Glass Fiber Co Ltd Lithium battery
JP2001048527A (en) * 1999-08-04 2001-02-20 Toyota Motor Corp Hexacyanoferrate complex and lithium secondary battery using the same as anodic active substance
WO2008081923A1 (en) * 2006-12-28 2008-07-10 National Institute Of Advanced Industrial Science And Technology Process for producing nanoparticle of prussian blue type metal complex, prussian blue type metal complex nanoparticle obtained by the same, dispersion of the nanoparticles, method of regulating coloration of the nanoparticles, and electrode and transmitted-light regulator both employing the nanoparticles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2564756A (en) * 1946-02-21 1951-08-21 Interchem Corp Inorganic maroon
JPS58121559A (en) * 1982-01-14 1983-07-19 Seiko Instr & Electronics Ltd Battery
JPS603862A (en) * 1983-06-22 1985-01-10 Seiko Instr & Electronics Ltd Secondary battery
JPS6084140A (en) * 1983-08-23 1985-05-13 ユニオン・カ−バイド・コ−ポレ−シヨン Adsorbing method
JPS61223725A (en) * 1985-03-28 1986-10-04 Alps Electric Co Ltd Electrochromic display element
JPH1021898A (en) * 1996-07-04 1998-01-23 Nippon Glass Fiber Co Ltd Lithium battery
JP2001048527A (en) * 1999-08-04 2001-02-20 Toyota Motor Corp Hexacyanoferrate complex and lithium secondary battery using the same as anodic active substance
WO2008081923A1 (en) * 2006-12-28 2008-07-10 National Institute Of Advanced Industrial Science And Technology Process for producing nanoparticle of prussian blue type metal complex, prussian blue type metal complex nanoparticle obtained by the same, dispersion of the nanoparticles, method of regulating coloration of the nanoparticles, and electrode and transmitted-light regulator both employing the nanoparticles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014027171; 水野善文 et al: 電気化学会大会講演要旨集 77th, 2010, p.40 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046399A (en) * 2010-08-30 2012-03-08 National Institute Of Advanced Industrial Science & Technology Electrode material for lithium ion secondary battery using non-defective prussian blue analogue
US9847527B2 (en) 2012-03-28 2017-12-19 Sharp Laboratories Of America, Inc. Non-metal anode alkali and alkaline-earth ion batteries with hexacyanometallate cathode
JP2017507472A (en) * 2012-03-28 2017-03-16 シャープ株式会社 Battery negative electrode with pre-filled metal
US9595706B2 (en) 2012-03-28 2017-03-14 Sharp Laboratories Of America, Inc. Protected transition metal hexacyanoferrate battery electrode synthesis method
US8968925B2 (en) 2012-03-28 2015-03-03 Sharp Laboratories Of America, Inc. Metal-doped transition metal hexacyanoferrate (TMHCF) battery electrode
US9099719B2 (en) 2012-03-28 2015-08-04 Sharp Laboratories Of America, Inc. Hexacyanoferrate battery electrode modified with ferrocyanides or ferricyanides
US9537131B2 (en) 2012-03-28 2017-01-03 Sharp Laboratories Of America, Inc. Battery anode with preloaded metals
US9246164B2 (en) 2012-03-28 2016-01-26 Sharp Laboratories Of America, Inc. Protected transition metal hexacyanoferrate battery electrode
JP2014075284A (en) * 2012-10-04 2014-04-24 Nippon Telegr & Teleph Corp <Ntt> Sodium secondary battery
CN103193276A (en) * 2013-04-28 2013-07-10 北京化工大学 Method for synthesizing iron-containing hydrotalcite-like compound by utilizing prussian blue as raw material
CN105190964A (en) * 2013-04-29 2015-12-23 夏普株式会社 Metal-doped transition metal hexacyanoferrate (TMHCF) battery electrode
CN105164833A (en) * 2013-04-29 2015-12-16 夏普株式会社 Hexacyanoferrate battery electrode modified with ferrocyanides or ferricyanides
WO2014178194A1 (en) * 2013-04-29 2014-11-06 Sharp Kabushiki Kaisha Metal-doped transition metal hexacyanoferrate (tmhcf) battery electrode
WO2014178171A1 (en) * 2013-04-29 2014-11-06 Sharp Kabushiki Kaisha Hexacyanoferrate battery electrode modified with ferrocyanides or ferricyanides
CN105164833B (en) * 2013-04-29 2017-12-01 夏普株式会社 The hexacyanoferrate battery electrode being modified using ferrocyanide or the iron cyanide
WO2014178170A1 (en) * 2013-04-29 2014-11-06 Sharp Kabushiki Kaisha Protected transition metal hexacyanoferrate battery electrode
WO2015133139A1 (en) * 2014-03-06 2015-09-11 Sharp Kabushiki Kaisha Battery anode with preloaded metals
US10897042B2 (en) 2014-07-24 2021-01-19 Samsung Sdi Co., Ltd. Composite positive electrode active material for lithium secondary battery and lithium secondary battery comprising electrode including the composite positive electrode active material
WO2018123487A1 (en) * 2016-12-26 2018-07-05 学校法人東京理科大学 Positive electrode active material for potassium-ion cell, positive electrode for potassium-ion cell, and potassium-ion cell
CN108133832A (en) * 2017-12-05 2018-06-08 西北工业大学 A kind of nano hollow structure is Prussian blue and its preparation method of homologue
WO2020111404A1 (en) * 2018-11-27 2020-06-04 한양대학교 산학협력단 Method for manufacturing lithium-transition metal oxide using prussian blue analogue, lithium-transition metal oxide, and lithium secondary battery
CN115676852A (en) * 2022-11-14 2023-02-03 中国地质大学(武汉) Manganese-iron-based Prussian blue potassium ion battery positive electrode material and preparation method and application thereof

Also Published As

Publication number Publication date
JP5605616B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5605616B2 (en) Lithium ion secondary battery electrode material using Prussian blue analogue
JP6286855B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery
JP5999675B2 (en) Electrode material for lithium ion secondary battery using defect-free Prussian blue analogue
JP5440959B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
KR100369445B1 (en) Coating materials and method of lithium manganese oxide for positive electr odes in the Lithium secondary batteries
JP4968944B2 (en) Composite carbonate and method for producing the same
JP6575048B2 (en) The positive electrode composition for nonaqueous electrolyte secondary batteries, the nonaqueous electrolyte secondary battery, and the manufacturing method of the positive electrode composition for nonaqueous electrolyte secondary batteries.
JP2018514908A (en) Cathode active material for sodium ion batteries
JP5281765B2 (en) Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
WO2012035648A1 (en) Active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2004139947A (en) Positive electrode active material for lithium secondary battery, and its manufacturing method
CN111689528A (en) Ternary material precursor and preparation method and application thereof
JP2013206679A (en) Nonaqueous electrolyte secondary battery cathode active material and manufacturing method thereof and secondary battery
JP2009054576A (en) Manufacturing method of lithium-iron-phosphorus compound oxide carbon complex and manufacturing method of coprecipitate containing lithium, iron, and phosphorus
Xu et al. Electrochemical evaluation of LiZnxMn2− xO4 (x≤ 0.10) cathode material synthesized by solution combustion method
JP4823540B2 (en) Manufacturing method of electrode material, electrode material, electrode, and lithium battery
JP2010086657A (en) Nonaqueous electrolyte secondary battery
JP5051770B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5678826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2011103260A (en) Positive electrode active material for nonaqueous secondary battery
CN107240697B (en) Electrode for lithium ion secondary battery material and its manufacturing method
JP6852747B2 (en) A method for producing a positive electrode composition for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a positive electrode composition for a non-aqueous electrolyte secondary battery.
JP4969051B2 (en) Method for producing lithium cobaltate positive electrode active material
JP2008243414A (en) Composite material, its manufacturing method, secondary battery electrode material, secondary battery electrode, and secondary battery
JP2005067924A (en) Method for manufacturing polyanion type lithium iron multiple oxide and battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140813

R150 Certificate of patent or registration of utility model

Ref document number: 5605616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees