WO2018123487A1 - Positive electrode active material for potassium-ion cell, positive electrode for potassium-ion cell, and potassium-ion cell - Google Patents

Positive electrode active material for potassium-ion cell, positive electrode for potassium-ion cell, and potassium-ion cell Download PDF

Info

Publication number
WO2018123487A1
WO2018123487A1 PCT/JP2017/043860 JP2017043860W WO2018123487A1 WO 2018123487 A1 WO2018123487 A1 WO 2018123487A1 JP 2017043860 W JP2017043860 W JP 2017043860W WO 2018123487 A1 WO2018123487 A1 WO 2018123487A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
potassium
potassium ion
active material
ion battery
Prior art date
Application number
PCT/JP2017/043860
Other languages
French (fr)
Japanese (ja)
Inventor
慎一 駒場
久保田 圭
▲暁▼非 別
Original Assignee
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京理科大学 filed Critical 学校法人東京理科大学
Publication of WO2018123487A1 publication Critical patent/WO2018123487A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • C01C3/12Simple or complex iron cyanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a potassium ion battery, a positive electrode for a potassium ion battery, and a potassium ion battery.
  • non-aqueous electrolyte secondary batteries that use a non-aqueous electrolyte as a secondary battery with a high energy density, for example, charge and discharge by moving lithium ions between the positive electrode and the negative electrode are widely used. Yes.
  • a lithium transition metal composite oxide having a layered structure such as lithium nickelate (LiNiO 2 ) or lithium cobaltate (LiCoO 2 ) is generally used as a positive electrode, and lithium is occluded as a negative electrode.
  • carbon materials that can be released, lithium metal, lithium alloys, and the like are used (see, for example, JP-A-2003-151549).
  • a positive electrode of a non-aqueous electrolyte secondary battery those described in JP-T-2015-515081 are known.
  • Lithium ion secondary batteries that can achieve high energy density at a high voltage have been mainly used so far as secondary batteries that can be charged and discharged, but lithium has a relatively limited amount of resources. And expensive. In addition, resources are unevenly distributed in South America, and Japan relies entirely on imports from overseas. Therefore, in order to reduce the cost of the battery and provide a stable supply, a sodium ion secondary battery replacing the lithium ion secondary battery is currently being developed. However, since the atomic weight is larger than that of lithium, the standard electrode potential is about 0.33 V higher than that of lithium, and the cell voltage is lowered, there is a problem that it is difficult to increase the capacity.
  • the electrode active material which comprises a potassium ion secondary battery especially a positive electrode active material must become a supply source of potassium ion, it needs to be a potassium compound which contains potassium as a structural element.
  • a positive electrode active material for a potassium ion secondary battery for example, a material composed of crystal K 0.3 MnO 2 having a layered rock salt structure (Christoph Vaalma, et al., Journal of The Electrochemical Society, 163 (7), A1295-A1299 (2016)) and Prussian blue material crystals (see Ali Eftekhari, Journal of Power Souces, 126, 221-228 (2004)) are known.
  • Problems to be solved by the present invention include a positive electrode active material for a potassium ion battery from which a potassium ion battery having a high energy density is obtained, and a positive electrode for a potassium ion battery containing the positive electrode active material for a potassium ion battery, or the potassium It is providing the potassium ion battery provided with the positive electrode for ion batteries.
  • a positive electrode active material for a potassium ion battery comprising a compound represented by the following formula (1).
  • m represents a number from 0.5 to 2
  • x represents a number from 0.5 to 1.5
  • y represents a number from 0.5 to 1.5
  • z represents 0 or a positive number.
  • a positive electrode for a potassium ion battery comprising the positive electrode active material for a potassium ion battery according to ⁇ 1>.
  • a potassium ion battery comprising the positive electrode for a potassium ion battery according to ⁇ 2>.
  • a positive electrode active material for a potassium ion battery from which a potassium ion battery having a high energy density is obtained, and a positive electrode for a potassium ion battery comprising the positive electrode active material for a potassium ion battery, or the positive electrode for a potassium ion battery can be provided.
  • the positive electrode active material for a potassium ion battery includes a compound represented by the following formula (1).
  • m represents a number from 0.5 to 2
  • x represents a number from 0.5 to 1.5
  • y represents a number from 0.5 to 1.5
  • the positive electrode active material for potassium ion batteries which concerns on this embodiment is used suitably as a positive electrode active material for potassium ion secondary batteries.
  • lithium has a relatively limited amount of resources and is expensive. Also, resources are unevenly distributed in South America. For example, in Japan, the entire amount depends on imports from overseas.
  • potassium is abundant in seawater and the earth's crust, so it becomes a stable resource and can be reduced in cost. Specifically, global lithium production in 2012 is 34,970 t in terms of pure content, and potassium production is 27,146 t in terms of pure content.
  • lithium ion batteries lithium forms an alloy with many metals such as aluminum, so it was necessary to use expensive copper for the negative electrode substrate. Alternatively, inexpensive aluminum can be used for the negative electrode substrate, which is a great cost reduction advantage.
  • the electrode active material which comprises a potassium ion secondary battery especially a positive electrode active material must become a supply source of potassium ion, it needs to be a potassium compound which contains potassium as a structural element.
  • a positive electrode active material for potassium ion batteries are known, but no positive electrode active material for potassium ion batteries has been found that can provide a sufficient output for practical use.
  • the positive electrode active material for a potassium ion battery has an energy density by using a compound represented by the above formula (1), that is, a hexacyano metal acid potassium salt having Fe and Mn as a central metal.
  • a high potassium ion battery is obtained.
  • the positive electrode active material for potassium ion batteries which concerns on this embodiment uses the compound represented by said Formula (1), and in addition to the above, charging / discharging capacity is high, it is high output, and charging / discharging is repeated.
  • a potassium ion battery in which the charge / discharge capacity is hardly deteriorated can be obtained.
  • Fe and Mn are presumed to be divalent or trivalent, and the potassium ion in the compound represented by the formula (1) is increased when the valence is increased. Estimated to be released.
  • the compound represented by the formula (1) is added to the total mass of the positive electrode active material for a potassium ion battery from the viewpoint of output and charge / discharge capacity in the potassium ion battery.
  • the positive electrode active material for a potassium ion battery according to this embodiment may include a compound in which potassium of the compound represented by the formula (1) is replaced with lithium or sodium as an impurity.
  • M in the formula (1) is preferably 1.0 or more and 2.0 or less, more preferably 1.2 or more and 2.0 or less, from the viewpoint of energy density in the potassium ion battery. It is particularly preferably 5 or more and 2.0 or less. Further, from the viewpoint of synthesis, it is preferably 1.2 or more and 2.0 or less, and particularly preferably 1.5 or more and 2.0 or less.
  • X in the formula (1) is preferably 0.7 or more and 1.3 or less, more preferably 0.8 or more and 1.2 or less, from the viewpoint of energy density in the potassium ion battery. It is especially preferable that it is 85 or more and 1.15 or less.
  • Y in the formula (1) is preferably 0.7 or more and 1.3 or less, more preferably 0.8 or more and 1.2 or less, from the viewpoint of energy density in the potassium ion battery. It is especially preferable that it is 85 or more and 1.15 or less.
  • x / y in the formula (1) is preferably 0.5 or more and 1.5 or less, more preferably 0.7 or more and 1.3 or less, from the viewpoint of energy density in the potassium ion battery.
  • the compound represented by the formula (1) preferably has at least one structure selected from the group consisting of a hexacyanoiron structure and a hexacyanomanganese structure.
  • Z in the formula (1) represents the amount of water of hydration, preferably crystallization water, and is not particularly limited as long as it is 0 or a positive number, but is 0 from the viewpoint of energy density and charge / discharge capacity in a potassium ion battery. It is preferably 10 or less, more preferably 0 or more and 5 or less, still more preferably 0 or more and 2 or less, and particularly preferably 0 or more and 1 or less.
  • K 2 FeMn ( CN) 6 ⁇ zH 2 O K 2 Fe 0.5 Mn 1.5 (CN) 6 ⁇ zH 2 O, K 2 Fe 1 .5 Mn 0.5 (CN) 6 ⁇ zH 2 O, K 0.5 FeMn (CN) 6 ⁇ zH 2 O, K 1.0 FeMn (CN) 6 ⁇ zH 2 O, K 1.5 FeMn (CN ) 6 ⁇ zH 2 O, K 1.88 Fe 1.00 Mn 1.08 (CN) 6 ⁇ 0.62H 2 O , and the like.
  • z represents 0 or a positive number, and is preferably 0 or more and 2 or less.
  • the shape of the positive electrode active material for a potassium ion battery according to the present embodiment is not particularly limited, and may be any desired shape, but is a particulate positive electrode active material from the viewpoint of dispersibility during positive electrode formation. It is preferable.
  • the shape of the positive electrode active material for a potassium ion battery according to this embodiment is particulate, the arithmetic average particle size of the positive electrode active material for a potassium ion battery according to this embodiment is from the viewpoint of dispersibility and positive electrode durability.
  • the thickness is preferably 10 nm to 200 ⁇ m, more preferably 50 nm to 100 ⁇ m, still more preferably 75 nm to 75 ⁇ m, and particularly preferably 100 nm to 50 ⁇ m.
  • the method for measuring the arithmetic average particle diameter in the present embodiment is preferably, for example, using HORIBA Laser Scattering Particle Size Distribution Analyzer LA-950 manufactured by Horiba, Ltd., with dispersion medium: water, and laser wavelengths used: 650 nm and 405 nm. Can be measured.
  • the positive electrode active material inside a positive electrode can be measured using a solvent etc. or physically separating.
  • a liquid phase method is mentioned. Specifically, for example, it can be produced by reacting K 4 Fe (CN) 6 (potassium ferrocyanide), MnCl 2 , and KCl in a predetermined amount in an aqueous solution.
  • the positive electrode for potassium ion batteries according to the present embodiment includes the positive electrode active material for potassium ion batteries according to the present embodiment.
  • the positive electrode for a potassium ion battery according to this embodiment may contain a compound other than the positive electrode active material for a potassium ion battery according to this embodiment.
  • the well-known additive used for preparation of the positive electrode of a battery can be used. Specifically, a conductive assistant, a binder, a current collector, and the like can be given.
  • the positive electrode for a potassium ion battery according to the present embodiment preferably includes the positive electrode active material for a potassium ion battery, a conductive additive, and a binder according to the present embodiment from the viewpoint of durability and moldability. .
  • the positive electrode for potassium ion batteries which concerns on this embodiment is 10 masses of compounds represented by said Formula (1) with respect to the total mass of the positive electrode for potassium ion batteries from a viewpoint of the output in a potassium ion battery, and charging / discharging capacity.
  • % Preferably 20% by mass or more, more preferably 50% by mass or more, and particularly preferably 70% by mass or more.
  • the positive electrode active material for a potassium ion battery according to this embodiment may be formed into a desired shape and used as it is as the positive electrode, but the positive electrode rate characteristics (output)
  • the positive electrode for potassium ion batteries which concerns on this embodiment further contains a conductive support agent.
  • Preferred examples of the conductive aid used in the present embodiment include carbons such as carbon blacks, graphites, carbon nanotubes (CNT), and vapor grown carbon fibers (VGCF). Examples of carbon blacks include acetylene black, oil furnace, and ketjen black.
  • conductive support agent chosen from the group which consists of acetylene black and Ketjen black from an electroconductive viewpoint, and it is more preferable that they are acetylene black or Ketjen black.
  • a conductive support agent may be used individually by 1 type, or may use 2 or more types together.
  • the mixing ratio of the positive electrode active material and the conductive auxiliary agent is not particularly limited, but the content of the conductive auxiliary agent in the positive electrode is 1% by mass to 80% by mass with respect to the total mass of the positive electrode active material contained in the positive electrode. It is preferably 2% by mass to 60% by mass, more preferably 5% by mass to 50% by mass, and particularly preferably 5% by mass to 25% by mass. Within the above range, a higher output positive electrode is obtained, and the durability of the positive electrode is excellent.
  • the positive electrode active material can be mixed with the conductive auxiliary agent in an inert gas atmosphere to increase the electric conductivity of the positive electrode.
  • an inert gas nitrogen gas, argon gas, or the like can be used, and argon gas can be preferably used.
  • pulverization and dispersion treatment such as a dry ball mill or a bead mill to which a small amount of a dispersion medium such as water is added may be performed. By performing the pulverization / dispersion treatment, the adhesion and dispersibility between the conductive additive and the positive electrode active material can be increased, and the electrode density can be increased.
  • the positive electrode for potassium ion batteries which concerns on this embodiment further contains a binder from a viewpoint of a moldability.
  • the binder is not particularly limited, and known binders can be used, and examples thereof include polymer compounds such as fluororesins, polyolefin resins, rubber-like polymers, polyamide resins, polyimide resins (polyamideimide, etc.). And cellulose ether are preferred.
  • binders include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene fluororubber (VDF-HFP fluororubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluororubber ( VDF-HFP-TFE fluorine rubber), polyethylene, aromatic polyamide, cellulose, styrene-butadiene rubber, isoprene rubber, butadiene rubber, ethylene-propylene rubber, styrene-butadiene-styrene block copolymer, its hydrogenated product, styrene -Ethylene-butadiene-styrene copolymer, styrene-isoprene-styrene block copolymer, hydrogenated product thereof, syndiotactic-1,2-polybutadiene, ethylene-vinyl acetate cop
  • the specific gravity of the compound used as the binder is preferably greater than 1.2 g / cm 3 .
  • the weight average molecular weight of the binder is preferably 1,000 or more, more preferably 5,000 or more, and 10,000 or more. More preferably. There is no particular upper limit, but it is preferably 2 million or less.
  • a binder may be used individually by 1 type, or may use 2 or more types together.
  • the mixing ratio of the positive electrode active material and the binder is not particularly limited, but the content of the binder in the positive electrode is 0.5% by mass to 30% by mass with respect to the total mass of the positive electrode active material contained in the positive electrode. %, More preferably 1% by mass to 20% by mass, and still more preferably 2% by mass to 15% by mass. It is excellent in a moldability and durability as it is the said range.
  • the method for producing the positive electrode including the positive electrode active material, the conductive auxiliary agent, and the binder is not particularly limited.
  • the positive electrode active material, the conductive auxiliary agent, and the binder are mixed and subjected to pressure molding.
  • the method of preparing the slurry mentioned later and forming a positive electrode may be sufficient.
  • the positive electrode for a potassium ion battery according to this embodiment may further include a current collector.
  • the current collector include a foil, a mesh, an expanded grid (expanded metal), a punched metal, and the like using a conductive material such as nickel, aluminum, and stainless steel (SUS).
  • the mesh opening, wire diameter, number of meshes, etc. are not particularly limited, and conventionally known ones can be used.
  • the shape of the current collector is not particularly limited, and may be selected according to a desired shape of the positive electrode. For example, foil shape, plate shape, etc. are mentioned.
  • the method for forming the positive electrode on the current collector is not particularly limited, but a positive electrode active material slurry is prepared by mixing a positive electrode active material, a conductive additive, a binder, an organic solvent or water, and a current collector.
  • Examples of the method of coating are shown in FIG.
  • Examples of the organic solvent include amines such as N, N-dimethylaminopropylamine and diethyltriamine; ethers such as ethylene oxide and tetrahydrofuran; ketones such as methyl ethyl ketone; esters such as methyl acetate; dimethylacetamide and N-methyl- Examples include aprotic polar solvents such as 2-pyrrolidone.
  • the prepared slurry is applied, for example, on a current collector, dried, pressed, and fixed to produce a positive electrode.
  • Examples of the method of coating the slurry on the current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • the potassium ion battery according to the present embodiment includes the positive electrode for a potassium ion battery according to the present embodiment. Moreover, the potassium ion battery which concerns on this embodiment can be used suitably as a potassium ion secondary battery.
  • the potassium ion battery according to the present embodiment preferably includes the positive electrode for potassium ion battery, the negative electrode, and the electrolyte according to the present embodiment.
  • the negative electrode used in the present embodiment only needs to contain a negative electrode active material.
  • a negative electrode active material, a current collector and a negative electrode active material layer formed on the surface of the current collector are used.
  • the negative electrode active material layer includes a negative electrode active material and a binder.
  • the electrical power collector mentioned above in the positive electrode can be used suitably.
  • size of a negative electrode According to the shape and magnitude
  • the negative electrode active material examples include carbon materials such as natural graphite, artificial graphite, coke, hard carbon, carbon black, pyrolytic carbon, carbon fiber, and fired organic polymer compound.
  • the shape of the carbon material may be, for example, a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or a particulate aggregate.
  • the carbon material may play a role as a conductive additive.
  • graphite or hard carbon is preferable, and graphite is more preferable.
  • potassium metal can also be used suitably as a negative electrode active material.
  • the negative electrode the negative electrode described in International Publication No. 2016/059907 can also be suitably used.
  • the graphite in the present embodiment refers to a graphite-based carbon material.
  • the graphite-based carbon material include natural graphite, artificial graphite, and expanded graphite.
  • natural graphite for example, scaly graphite, massive graphite and the like can be used.
  • artificial graphite for example, massive graphite, vapor-grown graphite, flaky graphite, fibrous graphite and the like can be used.
  • flaky graphite and lump graphite are preferable for reasons such as high packing density. Two or more types of graphite may be used in combination.
  • the average particle diameter of graphite is preferably 30 ⁇ m, more preferably 15 ⁇ m, further preferably 10 ⁇ m, more preferably 0.5 ⁇ m, more preferably 1 ⁇ m, and even more preferably 2 ⁇ m as the upper limit.
  • the average particle diameter of graphite is a value measured by an electron microscope observation method.
  • the hard carbon in the present embodiment is a carbon material that does not graphitize even when heat-treated at a high temperature of 2,000 ° C. or higher, and is also called non-graphitizable carbon.
  • hard carbon carbon fiber obtained by carbonizing an infusible yarn, which is an intermediate product in the production process of carbon fiber, at about 1,000 ° C to 1,400 ° C, and an organic compound after air oxidation at about 150 ° C to 300 ° C Examples thereof include carbon materials carbonized at about 1,000 ° C. to 1,400 ° C.
  • the method for producing hard carbon is not particularly limited, and hard carbon produced by a conventionally known method can be used. There are no particular restrictions on the average particle size, true density, and (002) plane spacing of the hard carbon, and it can be carried out by selecting preferred ones as appropriate.
  • a negative electrode active material may be used individually by 1 type, or may use 2 or more types together.
  • the content of the negative electrode active material in the negative electrode active material layer is not particularly limited, but is preferably 80 to 95% by mass.
  • both an electrolytic solution and a solid electrolyte can be used.
  • the electrolyte solution is not particularly limited as long as it has a potassium salt as a main electrolyte.
  • the potassium salt include KClO 4 , KPF 6 , KNO 3 , KOH, KCl, K 2 SO 4 , and K 2 S in the case of an aqueous electrolyte. These potassium salts can be used alone or in combination of two or more.
  • an electrolyte for example, KPF 6 , KBF 4 , CF 3 SO 3 K, KAsF 6 , KB (C 6 H 5 ) 4 , CH 3 SO 3 K, KN (SO 2 CF 3 ) 2 , KN (SO 2 C 2 F 5 ) 2 , KC (SO 2 CF 3 ) 3 , KN (SO 3 CF 3 ) 2, etc.
  • an electrolysis containing propylene carbonate PC
  • dissolved in the solvent etc. can be used as electrolyte solution.
  • KPF 6 is preferable.
  • propylene carbonate ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, isopropyl methyl carbonate, vinylene carbonate, fluoroethylene carbonate, 4-trifluoromethyl-1,3-dioxolane-2- ON, carbonates such as 1,2-di (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyldifluoro Ethers such as methyl ether, tetrahydrofuran and 2-methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and ⁇ -butyrolactone; Nitriles such as acetonitrile and butyronitrile Amides such as N, N-dimethylformamide and N, N-di
  • the solvent of the electrolytic solution may be used singly or as a mixture of two or more, but it is preferable to use a mixture of two or more.
  • at least one solvent selected from the group consisting of propylene carbonate, ethylene carbonate and diethyl carbonate is preferable, and at least two mixed solvents selected from the group consisting of propylene carbonate, ethylene carbonate and diethyl carbonate are more preferable.
  • the concentration of the potassium salt in the electrolytic solution is not particularly limited, but is preferably 0.1 mol / L or more and 2 mol / L or less, and more preferably 0.5 mol / L or more and 1.5 mol / L or less. preferable.
  • a known solid electrolyte can be used.
  • an organic solid electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used.
  • maintained the nonaqueous electrolyte solution to the high molecular compound can also be used.
  • the potassium ion battery according to this embodiment preferably further includes a separator.
  • a separator plays the role which isolates a positive electrode and a negative electrode physically, and prevents an internal short circuit.
  • the separator is made of a porous material, and the voids are impregnated with an electrolyte, and have ion permeability (particularly at least potassium ion permeability) in order to ensure a battery reaction.
  • a nonwoven fabric other than a resin porous film can be used as the separator.
  • the separator may be formed of only a porous membrane layer or a non-woven fabric layer, or may be formed of a laminate of a plurality of layers having different compositions and forms. Examples of the laminate include a laminate having a plurality of resin porous layers having different compositions, and a laminate having a porous membrane layer and a nonwoven fabric layer.
  • the material of the separator can be selected in consideration of the operating temperature of the battery, the composition of the electrolyte, and the like.
  • the resin contained in the fibers forming the porous film and the nonwoven fabric include polyolefin resins such as polyethylene, polypropylene, and ethylene-propylene copolymer; polyphenylene sulfide resins such as polyphenylene sulfide and polyphenylene sulfide ketone; and aromatic polyamide resins (aramid).
  • polyamide resins such as resins
  • polyimide resins One of these resins may be used alone, or two or more thereof may be used in combination.
  • the fibers forming the nonwoven fabric may be inorganic fibers such as glass fibers.
  • the separator is preferably a separator containing at least one material selected from the group consisting of glass, polyolefin resin, polyamide resin, and polyphenylene sulfide resin. Among these, a glass filter is more preferable as the separator.
  • the separator may include an inorganic filler. Examples of the inorganic filler include ceramics (silica, alumina, zeolite, titania, etc.), talc, mica, wollastonite and the like.
  • the inorganic filler is preferably particulate or fibrous.
  • the content of the inorganic filler in the separator is preferably 10% by mass to 90% by mass, and more preferably 20% by mass to 80% by mass.
  • the shape and size of the separator are not particularly limited, and may be appropriately selected according to a desired battery shape and the like.
  • the potassium ion battery according to the present embodiment various known materials used in conventional lithium ion batteries and sodium ion batteries are used for elements such as battery cases, spacers, gaskets, leaf springs, and other structural materials. There are no particular restrictions. What is necessary is just to assemble the potassium ion battery which concerns on this embodiment according to a well-known method using the said battery element.
  • the shape of the battery is not particularly limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately employed.
  • FIG. 1 is a schematic diagram illustrating an example of a potassium ion battery 10 according to the present embodiment.
  • a potassium ion battery 10 shown in FIG. 1 is a coin-type battery, and in order from the negative electrode side, a battery case 12 on the negative electrode side, a gasket 14, a negative electrode 16, a separator 18, and a positive electrode (positive electrode) for a potassium ion battery according to this embodiment. 20, the spacer 22, the leaf spring 24, and the battery case 26 on the positive electrode side are stacked, and the battery case 12 and the battery case 26 are fitted together.
  • the separator 18 is impregnated with an electrolytic solution (not shown).
  • solution B was slowly added dropwise at a rate of 40 mL / hour or less while stirring at a speed of 500 rpm (rotation per minute). As soon as it was dropped, a precipitate was formed. After completion of the dropwise addition, the liquid temperature was kept at 60 ° C., and stirring was performed for 4 hours at a speed of 500 rpm while bubbling nitrogen gas. Thereafter, the reaction solution was centrifuged (MX-301 manufactured by Tommy Seiko Co., Ltd., 8,000 rpm to 10,000 rpm) to obtain a mixture of an alkali metal salt of hexacyano acid metal and ACl.
  • the resulting mixture was washed with 1 L of deionized water, and centrifuged (8,000 rpm to 10,000 rpm) several times to obtain a metal potassium hexacyanoate containing a small amount of water.
  • the obtained alkali metal salt of hexacyano acid metal containing a small amount of water was dried at 80 ° C. for 12 hours using a constant temperature dryer to obtain an alkali metal salt of hexacyano acid metal.
  • the alkali metal salt of each hexacyano acid metal obtained above was measured by elemental analysis and X-ray diffraction structure analysis, respectively, and the chemical structure was specified.
  • Each of the obtained alkali metal salts of hexacyano acid metal was used to prepare positive electrodes.
  • the shape of the positive electrode not including the aluminum foil was a cylindrical shape having a diameter of 10 mm and a thickness of 0.03 mm to 0.04 mm.
  • the mass of the positive electrode not containing the aluminum foil was 3 mg to 5 mg.
  • the amount of the electrolyte used was an amount sufficient to fill the separator with the electrolyte (0.15 mL to 0.3 mL).
  • the electrolytic solution was prepared using KPF 6 manufactured by Tokyo Chemical Industry Co., Ltd., ethylene carbonate manufactured by Kishida Chemical Co., and diethyl carbonate manufactured by Kishida Chemical Co., Ltd.
  • the charge / discharge conditions were measured at room temperature (25 ° C.) with the charge / discharge current density set to the constant current mode. Using the obtained positive electrode, the current density was set to 30 mA / g, and the charge voltage was constant current charged to 4.5V. After charging, constant current discharge was repeated until the charge voltage was 4.5V and the end-of-discharge voltage was 2.0V.
  • the charge / discharge conditions were measured at room temperature (25 ° C.) with the charge / discharge current density set to the constant current mode. Using the obtained positive electrode, the current density was set to 30 mA / g, and constant current charging was performed up to a charging voltage of 4.0V. After charging, constant current discharging was repeated until the charging voltage was 4.0 V and the final discharge voltage was 2.0 V.
  • the charge / discharge conditions were measured at room temperature (25 ° C.) with the charge / discharge current density set to the constant current mode. Using the obtained positive electrode, the current density was set to 30 mA / g, and constant current charging was performed up to a charging voltage of 4.8V. After charging, constant current discharge was repeated until the charge voltage was 4.8 V and the end-of-discharge voltage was 2.0 V.
  • the energy density in Table 1 was calculated from the average working potential x discharge capacity.
  • FIGS. 2 to 4 show charge / discharge profiles up to the third cycle in the case of using an alkali metal salt of each hexacyano metal acid.
  • FIG. 5 shows a charge / discharge profile at the second cycle when an alkali metal salt of each hexacyano metal acid is used.
  • the vertical axis of the charge / discharge profiles in FIGS. 2 to 5 represents the potential (Voltage, unit: V (V vs. A / V) based on the standard unipolar potential of the alkali metal of the alkali metal salt of each hexacyano metal acid used. A + )), and the horizontal axis represents capacity (capacity, unit: mAh / g). Further, FIG.
  • FIG. 6 is a diagram showing a change in discharge capacity over the course of the cycle.
  • the vertical axis of FIG. 6 represents the discharge capacity (Discharge Capacity, unit: mAh / g), and the horizontal axis represents the cycle number (Cycle Number).
  • a potassium ion battery having a high energy density was obtained by using the positive electrode active material for a potassium ion battery according to this embodiment.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the amount of the electrolyte used was an amount sufficient to fill the separator with the electrolyte (0.15 mL to 0.3 mL).
  • the electrolytic solution was prepared using KPF 6 manufactured by Tokyo Chemical Industry Co., Ltd., ethylene carbonate manufactured by Kishida Chemical Co., and diethyl carbonate manufactured by Kishida Chemical Co., Ltd.
  • the charge / discharge conditions were measured at room temperature (25 ° C.) with the charge / discharge current density set to the constant current mode. Using the obtained positive electrode, the current density was set to 30 mA / g, and the charge voltage was constant current charged to 4.5V. After charging, constant current discharge was repeated until the charge voltage was 4.5V and the end-of-discharge voltage was 2.0V.
  • the coulombic efficiency in Table 2 is calculated from the initial charge capacity / initial discharge capacity ⁇ 100, the energy density is calculated from the average operating potential ⁇ discharge capacity, and the average potential is a value obtained by integrating the measured voltage by the discharge capacity / It was calculated from the discharge capacity.
  • FIG. 7 to 11 show charge / discharge profiles in the first cycle when potassium salts of hexacyano metal acids are used.
  • FIG. 12 shows a diagram in which charge / discharge profiles of one cycle in the case where potassium salts of hexacyano metal acids are used are combined into one figure. 7 to 12, the vertical axis represents the potential (Voltage, unit: V (V vs. K / K + )) based on the standard unipolar potential of potassium, and the horizontal axis represents the capacity ( Capacity, unit: mAh / g). Further, FIG.
  • FIG. 13 is a diagram showing a change in discharge capacity over the course of a cycle when K—Mn [Fe (CN) 6 ] or K—Fe [Fe (CN) 6 ] is used.
  • the vertical axis in FIG. 13 represents the discharge capacity (Discharge Capacity, unit: mAh / g), and the horizontal axis represents the cycle number (Cycle Number).
  • a potassium ion battery having a high energy density was obtained by using the positive electrode active material for a potassium ion battery according to this embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The positive electrode active material for a potassium-ion cell according to the present embodiment contains a compound represented by formula (1). In formula (1), m represents a number from 0.5 to 2, x represents a number from 0.5 to 1.5, y represents a number from 0.5 to 1.5, and z represents zero or a positive number. Also provided is a positive electrode for a potassium-ion cell containing the positive electrode active material for a potassium-ion cell according to the present embodiment, or a potassium-ion cell provided with the positive electrode for a potassium-ion cell. Formula (1): KmFexMny(CN)6•zH2O

Description

カリウムイオン電池用正極活物質、カリウムイオン電池用正極、及び、カリウムイオン電池Positive electrode active material for potassium ion battery, positive electrode for potassium ion battery, and potassium ion battery
 本発明は、カリウムイオン電池用正極活物質、カリウムイオン電池用正極、及び、カリウムイオン電池に関する。 The present invention relates to a positive electrode active material for a potassium ion battery, a positive electrode for a potassium ion battery, and a potassium ion battery.
 現在、高エネルギー密度の二次電池として、非水電解質を使用し、例えばリチウムイオンを正極と負極との間で移動させて充放電を行うようにした非水電解質二次電池が多く利用されている。 Currently, non-aqueous electrolyte secondary batteries that use a non-aqueous electrolyte as a secondary battery with a high energy density, for example, charge and discharge by moving lithium ions between the positive electrode and the negative electrode are widely used. Yes.
 このような非水電解質二次電池において、一般に正極としてニッケル酸リチウム(LiNiO)、コバルト酸リチウム(LiCoO)等の層状構造を有するリチウム遷移金属複合酸化物が用いられ、負極としてリチウムの吸蔵及び放出が可能な炭素材料、リチウム金属、リチウム合金等が用いられている(例えば、特開2003-151549号公報参照)。
 また、非水電解質二次電池の正極として、特表2015-515081号公報に記載されたものが知られている。
In such a non-aqueous electrolyte secondary battery, a lithium transition metal composite oxide having a layered structure such as lithium nickelate (LiNiO 2 ) or lithium cobaltate (LiCoO 2 ) is generally used as a positive electrode, and lithium is occluded as a negative electrode. Further, carbon materials that can be released, lithium metal, lithium alloys, and the like are used (see, for example, JP-A-2003-151549).
In addition, as a positive electrode of a non-aqueous electrolyte secondary battery, those described in JP-T-2015-515081 are known.
 充放電可能な電池である二次電池としては、高電圧で高エネルギー密度を達成できるリチウムイオン二次電池がこれまでのところ主として使用されているが、リチウムは、資源量が比較的限定されており、高価である。また、資源が南米に偏在しており、日本では全量を海外からの輸入に依存している。そこで、電池の低コスト化及び安定的な供給のために、リチウムイオン二次電池に代わるナトリウムイオン二次電池についても現在開発が進められている。しかし、原子量がリチウムよりも大きく、標準電極電位がリチウムよりも0.33V程高く、セル電圧も低くなることから、高容量化しにくいという問題がある。 Lithium ion secondary batteries that can achieve high energy density at a high voltage have been mainly used so far as secondary batteries that can be charged and discharged, but lithium has a relatively limited amount of resources. And expensive. In addition, resources are unevenly distributed in South America, and Japan relies entirely on imports from overseas. Therefore, in order to reduce the cost of the battery and provide a stable supply, a sodium ion secondary battery replacing the lithium ion secondary battery is currently being developed. However, since the atomic weight is larger than that of lithium, the standard electrode potential is about 0.33 V higher than that of lithium, and the cell voltage is lowered, there is a problem that it is difficult to increase the capacity.
 最近では、リチウムイオン及びナトリウムイオンの代わりにカリウムイオンを利用した非水電解質二次電池の研究が始められている。
 カリウムイオン二次電池を構成する電極活物質、特に正極活物質は、カリウムイオンの供給源とならなくてはならないため、構成元素としてカリウムを含むカリウム化合物である必要がある。現在のところ、カリウムイオン二次電池用の正極活物質としては、例えば、層状岩塩型構造を有する結晶K0.3MnOからなるもの(Christoph Vaalma, et al., Journal of The Electrochemical Society, 163(7), A1295-A1299 (2016)参照)やプルシアンブルー系材料結晶からなるもの(Ali Eftekhari, Journal of Power Souces, 126, 221-228 (2004)参照)等が知られている。
Recently, research on non-aqueous electrolyte secondary batteries using potassium ions instead of lithium ions and sodium ions has been started.
Since the electrode active material which comprises a potassium ion secondary battery, especially a positive electrode active material must become a supply source of potassium ion, it needs to be a potassium compound which contains potassium as a structural element. At present, as a positive electrode active material for a potassium ion secondary battery, for example, a material composed of crystal K 0.3 MnO 2 having a layered rock salt structure (Christoph Vaalma, et al., Journal of The Electrochemical Society, 163 (7), A1295-A1299 (2016)) and Prussian blue material crystals (see Ali Eftekhari, Journal of Power Souces, 126, 221-228 (2004)) are known.
 本発明が解決しようとする課題は、エネルギー密度が高いカリウムイオン電池が得られるカリウムイオン電池用正極活物質、及び、前記カリウムイオン電池用正極活物質を含むカリウムイオン電池用正極、又は、前記カリウムイオン電池用正極を備えたカリウムイオン電池を提供することである。 Problems to be solved by the present invention include a positive electrode active material for a potassium ion battery from which a potassium ion battery having a high energy density is obtained, and a positive electrode for a potassium ion battery containing the positive electrode active material for a potassium ion battery, or the potassium It is providing the potassium ion battery provided with the positive electrode for ion batteries.
 上記課題は、以下の<1>、<2>又は<3>に記載の手段により解決された。
<1> 下記式(1)で表される化合物を含むカリウムイオン電池用正極活物質。
   KFeMn(CN)・zHO   (1)
 式(1)中、mは0.5以上2以下の数を表し、xは0.5以上1.5以下の数を表し、yは0.5以上1.5以下の数を表し、zは0又は正数を表す。
<2> <1>に記載のカリウムイオン電池用正極活物質を含むカリウムイオン電池用正極。
<3> <2>に記載のカリウムイオン電池用正極を備えたカリウムイオン電池。
The above problems have been solved by the means described in <1>, <2> or <3> below.
<1> A positive electrode active material for a potassium ion battery, comprising a compound represented by the following formula (1).
K m Fe x Mn y (CN ) 6 · zH 2 O (1)
In formula (1), m represents a number from 0.5 to 2, x represents a number from 0.5 to 1.5, y represents a number from 0.5 to 1.5, z Represents 0 or a positive number.
<2> A positive electrode for a potassium ion battery comprising the positive electrode active material for a potassium ion battery according to <1>.
<3> A potassium ion battery comprising the positive electrode for a potassium ion battery according to <2>.
 本発明によれば、エネルギー密度が高いカリウムイオン電池が得られるカリウムイオン電池用正極活物質、及び、前記カリウムイオン電池用正極活物質を含むカリウムイオン電池用正極、又は、前記カリウムイオン電池用正極を備えたカリウムイオン電池を提供することができる。 According to the present invention, a positive electrode active material for a potassium ion battery from which a potassium ion battery having a high energy density is obtained, and a positive electrode for a potassium ion battery comprising the positive electrode active material for a potassium ion battery, or the positive electrode for a potassium ion battery Can be provided.
本実施形態に係るカリウムイオン電池10の一例を示す模式図である。It is a mimetic diagram showing an example of potassium ion battery 10 concerning this embodiment. K-Mn[Fe(CN)]を用いた場合における3サイクル目までの充放電プロファイルである。It is a charge / discharge profile up to the third cycle when K—Mn [Fe (CN) 6 ] is used. Na-Mn[Fe(CN)]を用いた場合における3サイクル目までの充放電プロファイルである。It is a charge / discharge profile up to the third cycle when Na—Mn [Fe (CN) 6 ] is used. Li-Mn[Fe(CN)]を用いた場合における3サイクル目までの充放電プロファイルである。It is a charge / discharge profile up to the third cycle when Li—Mn [Fe (CN) 6 ] is used. K-Mn[Fe(CN)]、Na-Mn[Fe(CN)]又はLi-Mn[Fe(CN)]を用いた場合における2サイクル目の充放電プロファイルである。This is the charge / discharge profile at the second cycle when K—Mn [Fe (CN) 6 ], Na—Mn [Fe (CN) 6 ] or Li—Mn [Fe (CN) 6 ] is used. K-Mn[Fe(CN)]、Na-Mn[Fe(CN)]又はLi-Mn[Fe(CN)]を用いた場合のサイクル経過における放電容量の変化を表す図である。It is a figure showing the change of the discharge capacity in the cycle progress when using K-Mn [Fe (CN) 6 ], Na-Mn [Fe (CN) 6 ] or Li-Mn [Fe (CN) 6 ]. K-Mn[Fe(CN)]を用いた場合における1サイクル目の充放電プロファイルである。It is a charge / discharge profile at the first cycle when K—Mn [Fe (CN) 6 ] is used. K-Fe[Fe(CN)]を用いた場合における1サイクル目の充放電プロファイルである。It is a charge / discharge profile at the first cycle when K—Fe [Fe (CN) 6 ] is used. K-Co[Fe(CN)]を用いた場合における1サイクル目の充放電プロファイルである。It is a charge / discharge profile at the first cycle when K—Co [Fe (CN) 6 ] is used. K-Ni[Fe(CN)]を用いた場合における1サイクル目の充放電プロファイルである。It is a charge / discharge profile at the first cycle when K—Ni [Fe (CN) 6 ] is used. K-Cu[Fe(CN)]を用いた場合における1サイクル目の充放電プロファイルである。It is a charge / discharge profile at the first cycle when K-Cu [Fe (CN) 6 ] is used. K-M[Fe(CN)](M=Mn、Fe、Co、Ni又はCu)を用いた場合における1サイクルの充放電プロファイルを1つの図にまとめた図である。FIG. 5 is a diagram summarizing one cycle of charge / discharge profiles in a case where KM [Fe (CN) 6 ] (M = Mn, Fe, Co, Ni, or Cu) is used. K-Mn[Fe(CN)]又はK-Fe[Fe(CN)]を用いた場合のサイクル経過における放電容量の変化を表す図である。It is a figure showing the change of the discharge capacity in cycle progress at the time of using K-Mn [Fe (CN) 6 ] or K-Fe [Fe (CN) 6 ].
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本願明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本実施形態において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 また、本実施形態において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
Hereinafter, the contents of the present invention will be described in detail. The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
In the present embodiment, “mass%” and “wt%” are synonymous, and “part by mass” and “part by weight” are synonymous.
Moreover, in this embodiment, the combination of 2 or more preferable aspects is a more preferable aspect.
(カリウムイオン電池用正極活物質)
 本実施形態に係るカリウムイオン電池用正極活物質は、下記式(1)で表される化合物を含む。
   KFeMn(CN)・zHO   (1)
 式(1)中、mは0.5以上2以下の数を表し、xは0.5以上1.5以下の数を表し、yは0.5以上1.5以下の数を表し、zは0又は正数を表す。
 また、本実施形態に係るカリウムイオン電池用正極活物質は、カリウムイオン二次電池用正極活物質として好適に用いられる。
(Positive electrode active material for potassium ion battery)
The positive electrode active material for a potassium ion battery according to this embodiment includes a compound represented by the following formula (1).
K m Fe x Mn y (CN ) 6 · zH 2 O (1)
In formula (1), m represents a number from 0.5 to 2, x represents a number from 0.5 to 1.5, y represents a number from 0.5 to 1.5, z Represents 0 or a positive number.
Moreover, the positive electrode active material for potassium ion batteries which concerns on this embodiment is used suitably as a positive electrode active material for potassium ion secondary batteries.
 前述したように、リチウムは、資源量が比較的限定されており、高価である。また、資源が南米に偏在しており、例えば、日本では全量を海外からの輸入に依存している。
 一方、カリウムは、海水にも地殻にも豊富に含まれるため、安定した資源となり、低コスト化を図ることもできる。
 具体的には、2012年における全世界のリチウム生産量は、純分換算で34,970tであり、カリウム生産量は、純分換算で27,146tである。
 また、リチウムイオン電池の場合にはリチウムがアルミニウム等、多くの金属と合金を作るため、負極の基板に高価な銅を使わざるを得なかったが、カリウムはアルミニウムと合金を作らず、銅の代わりに安価なアルミニウムを負極基板に使えることも大きなコスト低減の利点となる。
 カリウムイオン二次電池を構成する電極活物質、特に正極活物質は、カリウムイオンの供給源とならなくてはならないため、構成元素としてカリウムを含むカリウム化合物である必要がある。
 現在のところ、前述したChristoph Vaalma, et al., Journal of The Electrochemical Society, 163(7), A1295-A1299 (2016)又はAli Eftekhari, Journal of Power Souces, 126, 221-228 (2004)に記載されたカリウムイオン電池用正極活物質等が知られているが、カリウムイオン電池用正極活物質として、実用化に至るだけの十分な出力が得られるものは見つかっていない。
As described above, lithium has a relatively limited amount of resources and is expensive. Also, resources are unevenly distributed in South America. For example, in Japan, the entire amount depends on imports from overseas.
On the other hand, potassium is abundant in seawater and the earth's crust, so it becomes a stable resource and can be reduced in cost.
Specifically, global lithium production in 2012 is 34,970 t in terms of pure content, and potassium production is 27,146 t in terms of pure content.
In addition, in the case of lithium ion batteries, lithium forms an alloy with many metals such as aluminum, so it was necessary to use expensive copper for the negative electrode substrate. Alternatively, inexpensive aluminum can be used for the negative electrode substrate, which is a great cost reduction advantage.
Since the electrode active material which comprises a potassium ion secondary battery, especially a positive electrode active material must become a supply source of potassium ion, it needs to be a potassium compound which contains potassium as a structural element.
Currently described in Christoph Vaalma, et al., Journal of The Electrochemical Society, 163 (7), A1295-A1299 (2016) or Ali Eftekhari, Journal of Power Souces, 126, 221-228 (2004). In addition, positive electrode active materials for potassium ion batteries are known, but no positive electrode active material for potassium ion batteries has been found that can provide a sufficient output for practical use.
 本実施形態においては、カリウムイオン電池用正極活物質は、前記式(1)で表される化合物、すなわち、中心金属として、Fe及びMnを有するヘキサシアノ金属酸カリウム塩を用いることにより、エネルギー密度が高いカリウムイオン電池が得られる。
 また、本実施形態に係るカリウムイオン電池用正極活物質は、前記式(1)で表される化合物を用いることにより、前記に加え、充放電容量が高く、高出力であり、充放電を繰り返しても充放電容量が劣化しにくいカリウムイオン電池が得られる。
 前記式(1)で表される化合物は、Fe及びMnが二価又は三価であると推定され、また、価数が上昇する際に前記式(1)で表される化合物におけるカリウムイオンが放出されると推定される。
In this embodiment, the positive electrode active material for a potassium ion battery has an energy density by using a compound represented by the above formula (1), that is, a hexacyano metal acid potassium salt having Fe and Mn as a central metal. A high potassium ion battery is obtained.
Moreover, the positive electrode active material for potassium ion batteries which concerns on this embodiment uses the compound represented by said Formula (1), and in addition to the above, charging / discharging capacity is high, it is high output, and charging / discharging is repeated. However, a potassium ion battery in which the charge / discharge capacity is hardly deteriorated can be obtained.
In the compound represented by the formula (1), Fe and Mn are presumed to be divalent or trivalent, and the potassium ion in the compound represented by the formula (1) is increased when the valence is increased. Estimated to be released.
 本実施形態に係るカリウムイオン電池用正極活物質は、カリウムイオン電池における出力及び充放電容量の観点から、前記式(1)で表される化合物を、カリウムイオン電池用正極活物質の全質量に対し、50質量%以上含むことが好ましく、前記式(1)で表される化合物を80質量%以上含むことがより好ましく、前記式(1)で表される化合物を90質量%以上含むことが更に好ましく、前記式(1)で表される化合物からなることが特に好ましい。
 また、本実施形態に係るカリウムイオン電池用正極活物質は、不純物として、前記式(1)で表される化合物のカリウムがリチウム又はナトリウムに置換された化合物を含んでいてもよい。
In the positive electrode active material for a potassium ion battery according to the present embodiment, the compound represented by the formula (1) is added to the total mass of the positive electrode active material for a potassium ion battery from the viewpoint of output and charge / discharge capacity in the potassium ion battery. On the other hand, it is preferable to contain 50% by mass or more, more preferably 80% by mass or more of the compound represented by the formula (1), and 90% by mass or more of the compound represented by the formula (1). More preferably, it consists of a compound represented by the formula (1).
In addition, the positive electrode active material for a potassium ion battery according to this embodiment may include a compound in which potassium of the compound represented by the formula (1) is replaced with lithium or sodium as an impurity.
 前記式(1)におけるmは、カリウムイオン電池におけるエネルギー密度の観点から、1.0以上2.0以下であることが好ましく、1.2以上2.0以下であることがより好ましく、1.5以上2.0以下であることが特に好ましい。また、合成上の観点からは、1.2以上2.0以下であることが好ましく、1.5以上2.0以下であることが特に好ましい。 M in the formula (1) is preferably 1.0 or more and 2.0 or less, more preferably 1.2 or more and 2.0 or less, from the viewpoint of energy density in the potassium ion battery. It is particularly preferably 5 or more and 2.0 or less. Further, from the viewpoint of synthesis, it is preferably 1.2 or more and 2.0 or less, and particularly preferably 1.5 or more and 2.0 or less.
 前記式(1)におけるxは、カリウムイオン電池におけるエネルギー密度の観点から、0.7以上1.3以下であることが好ましく、0.8以上1.2以下であることがより好ましく、0.85以上1.15以下であることが特に好ましい。
 前記式(1)におけるyは、カリウムイオン電池におけるエネルギー密度の観点から、0.7以上1.3以下であることが好ましく、0.8以上1.2以下であることがより好ましく、0.85以上1.15以下であることが特に好ましい。
 また、前記式(1)におけるx/yは、カリウムイオン電池におけるエネルギー密度の観点から、0.5以上1.5以下であることが好ましく、0.7以上1.3以下であることがより好ましく、0.8以上1.2以下であることが更に好ましく、0.85以上1.15以下であることが特に好ましい。
 また、前記式(1)で表される化合物は、ヘキサシアノ鉄構造及びヘキサシアノマンガン構造よりなる群から選ばれた少なくとも1種の構造を有していることが好ましい。
 前記式(1)におけるzは、水和水、好ましくは結晶水の量を表し、0又は正数であれば特に制限はないが、カリウムイオン電池におけるエネルギー密度及び充放電容量の観点から、0以上10以下であることが好ましく、0以上5以下であることがより好ましく、0以上2以下であることが更に好ましく、0以上1以下であることが特に好ましい。
X in the formula (1) is preferably 0.7 or more and 1.3 or less, more preferably 0.8 or more and 1.2 or less, from the viewpoint of energy density in the potassium ion battery. It is especially preferable that it is 85 or more and 1.15 or less.
Y in the formula (1) is preferably 0.7 or more and 1.3 or less, more preferably 0.8 or more and 1.2 or less, from the viewpoint of energy density in the potassium ion battery. It is especially preferable that it is 85 or more and 1.15 or less.
Further, x / y in the formula (1) is preferably 0.5 or more and 1.5 or less, more preferably 0.7 or more and 1.3 or less, from the viewpoint of energy density in the potassium ion battery. Preferably, it is 0.8 or more and 1.2 or less, more preferably 0.85 or more and 1.15 or less.
The compound represented by the formula (1) preferably has at least one structure selected from the group consisting of a hexacyanoiron structure and a hexacyanomanganese structure.
Z in the formula (1) represents the amount of water of hydration, preferably crystallization water, and is not particularly limited as long as it is 0 or a positive number, but is 0 from the viewpoint of energy density and charge / discharge capacity in a potassium ion battery. It is preferably 10 or less, more preferably 0 or more and 5 or less, still more preferably 0 or more and 2 or less, and particularly preferably 0 or more and 1 or less.
 式(1)で表される化合物として具体的には、KFeMn(CN)・zHO、KFe0.5Mn1.5(CN)・zHO、KFe1.5Mn0.5(CN)・zHO、K0.5FeMn(CN)・zHO、K1.0FeMn(CN)・zHO、K1.5FeMn(CN)・zHO、K1.88Fe1.00Mn1.08(CN)・0.62HO等が挙げられる。なお、前記具体例において、zは0又は正数を表し、0以上2以下であることが好ましい。 Specific examples of the compound represented by the formula (1), K 2 FeMn ( CN) 6 · zH 2 O, K 2 Fe 0.5 Mn 1.5 (CN) 6 · zH 2 O, K 2 Fe 1 .5 Mn 0.5 (CN) 6 · zH 2 O, K 0.5 FeMn (CN) 6 · zH 2 O, K 1.0 FeMn (CN) 6 · zH 2 O, K 1.5 FeMn (CN ) 6 · zH 2 O, K 1.88 Fe 1.00 Mn 1.08 (CN) 6 · 0.62H 2 O , and the like. In the specific examples, z represents 0 or a positive number, and is preferably 0 or more and 2 or less.
 また、本実施形態に係るカリウムイオン電池用正極活物質の形状は、特に制限はなく、所望の形状であればよいが、正極形成時の分散性の観点から、粒子状の正極活物質であることが好ましい。
 本実施形態に係るカリウムイオン電池用正極活物質の形状が粒子状である場合、本実施形態に係るカリウムイオン電池用正極活物質の算術平均粒径は、分散性及び正極の耐久性の観点から、10nm~200μmであることが好ましく、50nm~100μmであることがより好ましく、75nm~75μmであることが更に好ましく、100nm~50μmであることが特に好ましい。
 本実施形態における算術平均粒径の測定方法は、例えば、(株)堀場製作所製HORIBA Laser Scattering Particle Size Distribution Analyzer LA-950を使用し、分散媒:水、使用レーザー波長:650nm及び405nmで好適に測定することができる。
 また、後述する正極においては、正極内部の正極活物質を溶剤等を使用して、又は、物理的に分離し、測定することができる。
In addition, the shape of the positive electrode active material for a potassium ion battery according to the present embodiment is not particularly limited, and may be any desired shape, but is a particulate positive electrode active material from the viewpoint of dispersibility during positive electrode formation. It is preferable.
When the shape of the positive electrode active material for a potassium ion battery according to this embodiment is particulate, the arithmetic average particle size of the positive electrode active material for a potassium ion battery according to this embodiment is from the viewpoint of dispersibility and positive electrode durability. The thickness is preferably 10 nm to 200 μm, more preferably 50 nm to 100 μm, still more preferably 75 nm to 75 μm, and particularly preferably 100 nm to 50 μm.
The method for measuring the arithmetic average particle diameter in the present embodiment is preferably, for example, using HORIBA Laser Scattering Particle Size Distribution Analyzer LA-950 manufactured by Horiba, Ltd., with dispersion medium: water, and laser wavelengths used: 650 nm and 405 nm. Can be measured.
Moreover, in the positive electrode mentioned later, the positive electrode active material inside a positive electrode can be measured using a solvent etc. or physically separating.
 前記式(1)で表される化合物の製造方法は、特に制限はなく、例えば、液相法が挙げられる。
 具体的には、例えば、KFe(CN)(フェロシアン化カリウム)、MnCl、及び、KClを所定量、水溶液中にて反応させることにより製造することができる。
There is no restriction | limiting in particular in the manufacturing method of the compound represented by said Formula (1), For example, a liquid phase method is mentioned.
Specifically, for example, it can be produced by reacting K 4 Fe (CN) 6 (potassium ferrocyanide), MnCl 2 , and KCl in a predetermined amount in an aqueous solution.
(カリウムイオン電池用正極)
 本実施形態に係るカリウムイオン電池用正極は、本実施形態に係るカリウムイオン電池用正極活物質を含む。
 本実施形態に係るカリウムイオン電池用正極は、本実施形態に係るカリウムイオン電池用正極活物質以外の他の化合物を含んでいてもよい。
 他の化合物としては、特に制限はなく、電池の正極の作製に用いられる公知の添加剤を用いることができる。具体的には、導電助剤、結着剤、集電体等が挙げられる。
 また、本実施形態に係るカリウムイオン電池用正極は、耐久性及び成形性の観点から、本実施形態に係るカリウムイオン電池用正極活物質、導電助剤、及び、結着剤を含むことが好ましい。
 本実施形態に係るカリウムイオン電池用正極の形状及び大きさは、特に制限はなく、使用する電池の形状及び大きさに合わせ、所望の形状及び大きさとすることができる。
 本実施形態に係るカリウムイオン電池用正極は、カリウムイオン電池における出力及び充放電容量の観点から、前記式(1)で表される化合物を、カリウムイオン電池用正極の全質量に対し、10質量%以上含むことが好ましく、20質量%以上含むことがより好ましく、50質量%以上含むことが更に好ましく、70質量%以上含むことが特に好ましい。
(Positive electrode for potassium ion battery)
The positive electrode for potassium ion batteries according to the present embodiment includes the positive electrode active material for potassium ion batteries according to the present embodiment.
The positive electrode for a potassium ion battery according to this embodiment may contain a compound other than the positive electrode active material for a potassium ion battery according to this embodiment.
There is no restriction | limiting in particular as another compound, The well-known additive used for preparation of the positive electrode of a battery can be used. Specifically, a conductive assistant, a binder, a current collector, and the like can be given.
In addition, the positive electrode for a potassium ion battery according to the present embodiment preferably includes the positive electrode active material for a potassium ion battery, a conductive additive, and a binder according to the present embodiment from the viewpoint of durability and moldability. .
There is no restriction | limiting in particular in the shape and magnitude | size of the positive electrode for potassium ion batteries which concerns on this embodiment, According to the shape and magnitude | size of the battery to be used, it can be set as a desired shape and magnitude | size.
The positive electrode for potassium ion batteries which concerns on this embodiment is 10 masses of compounds represented by said Formula (1) with respect to the total mass of the positive electrode for potassium ion batteries from a viewpoint of the output in a potassium ion battery, and charging / discharging capacity. %, Preferably 20% by mass or more, more preferably 50% by mass or more, and particularly preferably 70% by mass or more.
<導電助剤>
 本実施形態に係るカリウムイオン電池用正極においては、本実施形態に係るカリウムイオン電池用正極活物質を、所望の形状に成形し、正極としてそのまま用いてもよいが、正極のレート特性(出力)を向上させるために、本実施形態に係るカリウムイオン電池用正極は、導電助剤を更に含むことが好ましい。
 本実施形態に用いられる導電助剤としては、カーボンブラック類、黒鉛類、カーボンナノチューブ(CNT)、気相成長炭素繊維(VGCF)等の炭素が好ましく挙げられる。
 カーボンブラック類としては、アセチレンブラック、オイルファーネス、ケッチェンブラック等が挙げられる。中でも、導電性の観点から、アセチレンブラック及びケッチェンブラックよりなる群から選ばれた少なくとも1種の導電助剤であることが好ましく、アセチレンブラック又はケッチェンブラックであることがより好ましい。
 導電助剤は、1種単独で使用しても、2種以上を併用してもよい。
 正極活物質と導電助剤との混合比は、特に制限はないが、正極における導電助剤の含有量は、正極に含まれる正極活物質の全質量に対し、1質量%~80質量%であることが好ましく、2質量%~60質量%であることがより好ましく、5質量%~50質量%であることが更に好ましく、5質量%~25質量%であることが特に好ましい。上記範囲であると、より高出力の正極が得られ、また、正極の耐久性に優れる。
<Conductive aid>
In the positive electrode for a potassium ion battery according to this embodiment, the positive electrode active material for a potassium ion battery according to this embodiment may be formed into a desired shape and used as it is as the positive electrode, but the positive electrode rate characteristics (output) In order to improve this, it is preferable that the positive electrode for potassium ion batteries which concerns on this embodiment further contains a conductive support agent.
Preferred examples of the conductive aid used in the present embodiment include carbons such as carbon blacks, graphites, carbon nanotubes (CNT), and vapor grown carbon fibers (VGCF).
Examples of carbon blacks include acetylene black, oil furnace, and ketjen black. Especially, it is preferable that it is at least 1 sort (s) of conductive support agent chosen from the group which consists of acetylene black and Ketjen black from an electroconductive viewpoint, and it is more preferable that they are acetylene black or Ketjen black.
A conductive support agent may be used individually by 1 type, or may use 2 or more types together.
The mixing ratio of the positive electrode active material and the conductive auxiliary agent is not particularly limited, but the content of the conductive auxiliary agent in the positive electrode is 1% by mass to 80% by mass with respect to the total mass of the positive electrode active material contained in the positive electrode. It is preferably 2% by mass to 60% by mass, more preferably 5% by mass to 50% by mass, and particularly preferably 5% by mass to 25% by mass. Within the above range, a higher output positive electrode is obtained, and the durability of the positive electrode is excellent.
 導電助剤と正極活物質との混合方法としては、正極活物質を、不活性ガス雰囲気下で導電助剤と共に混合することにより、正極の電気伝導度を高めることができる。不活性ガスとしては、窒素ガスやアルゴンガス等を用いることができ、アルゴンガスを好適に用いることができる。
 また、導電助剤と正極活物質とを混合する際に、乾式ボールミルや、少量の水等の分散媒を加えたビーズミル等の粉砕分散処理をしてもよい。粉砕分散処理をすることにより導電助剤と正極活物質との密着性及び分散性を高め、電極密度を上げることができる。
As a method of mixing the conductive auxiliary agent and the positive electrode active material, the positive electrode active material can be mixed with the conductive auxiliary agent in an inert gas atmosphere to increase the electric conductivity of the positive electrode. As the inert gas, nitrogen gas, argon gas, or the like can be used, and argon gas can be preferably used.
Further, when the conductive additive and the positive electrode active material are mixed, pulverization and dispersion treatment such as a dry ball mill or a bead mill to which a small amount of a dispersion medium such as water is added may be performed. By performing the pulverization / dispersion treatment, the adhesion and dispersibility between the conductive additive and the positive electrode active material can be increased, and the electrode density can be increased.
<結着剤>
 本実施形態に係るカリウムイオン電池用正極は、成形性の観点から、結着剤を更に含むことが好ましい。
 結着剤としては、特に制限はなく、公知の結着剤を用いることができ、高分子化合物が挙げられ、フッ素樹脂、ポリオレフィン樹脂、ゴム状重合体、ポリアミド樹脂、ポリイミド樹脂(ポリアミドイミドなど)、及び、セルロースエーテル等が好ましく挙げられる。
 結着剤として具体的には、ポリフッ化ビニリデン(PVDF)、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ポリエチレン、芳香族ポリアミド、セルロース、スチレン-ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン-プロピレンゴム、スチレン-ブタジエン-スチレンブロック共重合体、その水素添加物、スチレン-エチレン-ブタジエン-スチレン共重合体、スチレン-イソプレン-スチレンブロック共重合体、その水素添加物、シンジオタクチック-1,2-ポリブタジエン、エチレン-酢酸ビニル共重合体、プロピレン-α-オレフィン(炭素数2~12)共重合体、デンプン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルヒドロキシエチルセルロース、ニトロセルロース、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリロニトリル等が挙げられる。
<Binder>
It is preferable that the positive electrode for potassium ion batteries which concerns on this embodiment further contains a binder from a viewpoint of a moldability.
The binder is not particularly limited, and known binders can be used, and examples thereof include polymer compounds such as fluororesins, polyolefin resins, rubber-like polymers, polyamide resins, polyimide resins (polyamideimide, etc.). And cellulose ether are preferred.
Specific examples of binders include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene fluororubber (VDF-HFP fluororubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluororubber ( VDF-HFP-TFE fluorine rubber), polyethylene, aromatic polyamide, cellulose, styrene-butadiene rubber, isoprene rubber, butadiene rubber, ethylene-propylene rubber, styrene-butadiene-styrene block copolymer, its hydrogenated product, styrene -Ethylene-butadiene-styrene copolymer, styrene-isoprene-styrene block copolymer, hydrogenated product thereof, syndiotactic-1,2-polybutadiene, ethylene-vinyl acetate copolymer, propylene- -Olefin (2 to 12 carbon atoms) copolymer, starch, methylcellulose, carboxymethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, carboxymethylhydroxyethylcellulose, nitrocellulose, polyacrylic acid, sodium polyacrylate, polyacrylonitrile, etc. Is mentioned.
 電極密度を高くするという観点から、結着剤として用いられる化合物の比重は、1.2g/cmより大きいことが好ましい。
 また、電極密度を高くし、かつ接着力を高める点から、結着剤の重量平均分子量は、1,000以上であることが好ましく、5,000以上であることがより好ましく、10,000以上であることが更に好ましい。上限は特にないが、200万以下であることが好ましい。
From the viewpoint of increasing the electrode density, the specific gravity of the compound used as the binder is preferably greater than 1.2 g / cm 3 .
Further, from the viewpoint of increasing the electrode density and increasing the adhesive force, the weight average molecular weight of the binder is preferably 1,000 or more, more preferably 5,000 or more, and 10,000 or more. More preferably. There is no particular upper limit, but it is preferably 2 million or less.
 結着剤は、1種単独で使用しても、2種以上を併用してもよい。
 正極活物質と結着剤との混合比は、特に制限はないが、正極における結着剤の含有量は、正極に含まれる正極活物質の全質量に対し、0.5質量%~30質量%であることが好ましく、1質量%~20質量%であることがより好ましく、2質量%~15質量%であることが更に好ましい。上記範囲であると、成形性及び耐久性に優れる。
A binder may be used individually by 1 type, or may use 2 or more types together.
The mixing ratio of the positive electrode active material and the binder is not particularly limited, but the content of the binder in the positive electrode is 0.5% by mass to 30% by mass with respect to the total mass of the positive electrode active material contained in the positive electrode. %, More preferably 1% by mass to 20% by mass, and still more preferably 2% by mass to 15% by mass. It is excellent in a moldability and durability as it is the said range.
 正極活物質と導電助剤と結着剤とを含む正極の製造方法としては、特に制限はなく、例えば、正極活物質と導電助剤と結着剤とを混合して加圧成形を行ってもよいし、また、後述するスラリーを調製して正極を形成する方法であってもよい。 The method for producing the positive electrode including the positive electrode active material, the conductive auxiliary agent, and the binder is not particularly limited. For example, the positive electrode active material, the conductive auxiliary agent, and the binder are mixed and subjected to pressure molding. Moreover, the method of preparing the slurry mentioned later and forming a positive electrode may be sufficient.
<集電体>
 本実施形態に係るカリウムイオン電池用正極は、集電体を更に含んでいてもよい。
 集電体としては、ニッケル、アルミニウム、ステンレス(SUS)等の導電性の材料を用いた箔、メッシュ、エキスパンドグリッド(エキスパンドメタル)、パンチドメタル等が挙げられる。メッシュの目開き、線径、メッシュ数等は特に限定されず、従来公知のものを使用できる。
 集電体の形状は、特に制限はなく、所望の正極の形状に合わせて選択すればよい。例えば、箔状、板状等が挙げられる。
<Current collector>
The positive electrode for a potassium ion battery according to this embodiment may further include a current collector.
Examples of the current collector include a foil, a mesh, an expanded grid (expanded metal), a punched metal, and the like using a conductive material such as nickel, aluminum, and stainless steel (SUS). The mesh opening, wire diameter, number of meshes, etc. are not particularly limited, and conventionally known ones can be used.
The shape of the current collector is not particularly limited, and may be selected according to a desired shape of the positive electrode. For example, foil shape, plate shape, etc. are mentioned.
 集電体に正極を形成する方法としては、特に制限はないが、正極活物質と導電助剤と結着剤と有機溶媒又は水とを混合させて正極活物質スラリーを調製し、集電体に塗工する方法が例示できる。有機溶剤としては、N,N-ジメチルアミノプロピリアミン、ジエチルトリアミン等のアミン系;エチレンオキシド、テトラヒドロフラン等のエーテル系;メチルエチルケトン等のケトン系;酢酸メチル等のエステル系、ジメチルアセトアミド、N-メチル-2-ピロリドン等の非プロトン性極性溶媒等が挙げられる。
 調製したスラリーを例えば、集電体上に塗工し、乾燥後プレスする等して固着することにより正極が製造される。こスラリーを集電体上に塗工する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法、静電スプレー法等を挙げることができる。
The method for forming the positive electrode on the current collector is not particularly limited, but a positive electrode active material slurry is prepared by mixing a positive electrode active material, a conductive additive, a binder, an organic solvent or water, and a current collector. Examples of the method of coating are shown in FIG. Examples of the organic solvent include amines such as N, N-dimethylaminopropylamine and diethyltriamine; ethers such as ethylene oxide and tetrahydrofuran; ketones such as methyl ethyl ketone; esters such as methyl acetate; dimethylacetamide and N-methyl- Examples include aprotic polar solvents such as 2-pyrrolidone.
The prepared slurry is applied, for example, on a current collector, dried, pressed, and fixed to produce a positive electrode. Examples of the method of coating the slurry on the current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
(カリウムイオン電池)
 本実施形態に係るカリウムイオン電池は、本実施形態に係るカリウムイオン電池用正極を備える。
 また、本実施形態に係るカリウムイオン電池は、カリウムイオン二次電池として好適に用いることができる。
 本実施形態に係るカリウムイオン電池は、本実施形態に係るカリウムイオン電池用正極、負極、及び、電解質を備えることが好ましい。
(Potassium ion battery)
The potassium ion battery according to the present embodiment includes the positive electrode for a potassium ion battery according to the present embodiment.
Moreover, the potassium ion battery which concerns on this embodiment can be used suitably as a potassium ion secondary battery.
The potassium ion battery according to the present embodiment preferably includes the positive electrode for potassium ion battery, the negative electrode, and the electrolyte according to the present embodiment.
<負極>
 本実施形態に用いられる負極は、負極活物質を含むものであればよく、例えば、負極活物質からなるものや、集電体とその集電体の表面に形成された負極活物質層とを有し、負極活物質層が負極活物質及び結着剤を含むものが挙げられる。
 前記集電体としては、特に制限はなく、正極において前述した集電体を好適に用いることができる。
 負極の形状及び大きさは、特に制限はなく、使用する電池の形状及び大きさに合わせ、所望の形状及び大きさとすることができる。
<Negative electrode>
The negative electrode used in the present embodiment only needs to contain a negative electrode active material. For example, a negative electrode active material, a current collector and a negative electrode active material layer formed on the surface of the current collector are used. And the negative electrode active material layer includes a negative electrode active material and a binder.
There is no restriction | limiting in particular as said electrical power collector, The electrical power collector mentioned above in the positive electrode can be used suitably.
There is no restriction | limiting in particular in the shape and magnitude | size of a negative electrode, According to the shape and magnitude | size of the battery to be used, it can be set as a desired shape and magnitude | size.
 負極活物質としては、天然黒鉛、人造黒鉛、コークス類、ハードカーボン、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体等の炭素材料が挙げられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は、粒子状の凝集体等のいずれでもよい。ここで炭素材料は、導電助剤としての役割を果たす場合もある。
 中でも、黒鉛、又は、ハードカーボンが好ましく、黒鉛がより好ましい。
 また、負極活物質としては、カリウム金属も好適に用いることができる。
 更に、負極としては、国際公開第2016/059907号に記載の負極も好適に用いることができる。
Examples of the negative electrode active material include carbon materials such as natural graphite, artificial graphite, coke, hard carbon, carbon black, pyrolytic carbon, carbon fiber, and fired organic polymer compound. The shape of the carbon material may be, for example, a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or a particulate aggregate. Here, the carbon material may play a role as a conductive additive.
Among these, graphite or hard carbon is preferable, and graphite is more preferable.
Moreover, potassium metal can also be used suitably as a negative electrode active material.
Furthermore, as the negative electrode, the negative electrode described in International Publication No. 2016/059907 can also be suitably used.
 本実施形態における黒鉛とは、黒鉛系炭素材料のことをいう。
 黒鉛系炭素材料としては、例えば、天然黒鉛、人造黒鉛、膨張黒鉛等が挙げられる。天然黒鉛としては、例えば鱗片状黒鉛、塊状黒鉛等が使用可能である。人造黒鉛としては、例えば、塊状黒鉛、気相成長黒鉛、鱗片状黒鉛、繊維状黒鉛等が使用可能である。これらの中でも、充填密度が高い等の理由で、鱗片状黒鉛、塊状黒鉛が好ましい。また、2種以上の黒鉛が併用されてもよい。
 黒鉛の平均粒子径は、上限値として30μmが好ましく、15μmがより好ましく、10μmが更に好ましく、下限値として0.5μmが好ましく、1μmがより好ましく、2μmが更に好ましい。黒鉛の平均粒子径は、電子顕微鏡観察の方法により測定する値である。
 黒鉛としては、また、面間隔d(002)が3.354Å~3.370Å(オングストローム、1Å=0.1nm)であり、結晶子サイズLcが150Å以上であるもの等が挙げられる。
 また、本実施形態におけるハードカーボンは、2,000℃以上の高温で熱処理しても黒鉛化しない炭素材料であり、難黒鉛化炭素とも呼ばれる。ハードカーボンとしては、炭素繊維の製造過程の中間生成物である不融化糸を1,000℃~1,400℃程度で炭化した炭素繊維、有機化合物を150℃~300℃程度で空気酸化した後、1,000℃~1,400℃程度で炭素化した炭素材料等が例示できる。ハードカーボンの製造方法は、特に限定されず、従来公知の方法により製造されたハードカーボンを使用することができる。
 ハードカーボンの平均粒径、真密度、(002)面の面間隔等は特に限定されず、適宜好ましいものを選択して実施することができる。
The graphite in the present embodiment refers to a graphite-based carbon material.
Examples of the graphite-based carbon material include natural graphite, artificial graphite, and expanded graphite. As natural graphite, for example, scaly graphite, massive graphite and the like can be used. As the artificial graphite, for example, massive graphite, vapor-grown graphite, flaky graphite, fibrous graphite and the like can be used. Among these, flaky graphite and lump graphite are preferable for reasons such as high packing density. Two or more types of graphite may be used in combination.
The average particle diameter of graphite is preferably 30 μm, more preferably 15 μm, further preferably 10 μm, more preferably 0.5 μm, more preferably 1 μm, and even more preferably 2 μm as the upper limit. The average particle diameter of graphite is a value measured by an electron microscope observation method.
Examples of graphite include those having an interplanar spacing d (002) of 3.354 to 3.370 Å (angstrom, 1 Å = 0.1 nm) and a crystallite size Lc of 150 Å or more.
The hard carbon in the present embodiment is a carbon material that does not graphitize even when heat-treated at a high temperature of 2,000 ° C. or higher, and is also called non-graphitizable carbon. As hard carbon, carbon fiber obtained by carbonizing an infusible yarn, which is an intermediate product in the production process of carbon fiber, at about 1,000 ° C to 1,400 ° C, and an organic compound after air oxidation at about 150 ° C to 300 ° C Examples thereof include carbon materials carbonized at about 1,000 ° C. to 1,400 ° C. The method for producing hard carbon is not particularly limited, and hard carbon produced by a conventionally known method can be used.
There are no particular restrictions on the average particle size, true density, and (002) plane spacing of the hard carbon, and it can be carried out by selecting preferred ones as appropriate.
 負極活物質は、1種単独で使用しても、2種以上を併用してもよい。
 負極活物質層中の負極活物質の含有量は特に限定されないが、80~95質量%であることが好ましい。
A negative electrode active material may be used individually by 1 type, or may use 2 or more types together.
The content of the negative electrode active material in the negative electrode active material layer is not particularly limited, but is preferably 80 to 95% by mass.
<電解質>
 本実施形態に用いられる電解質としては、電解液、及び、固体電解質のいずれも使用することができる。
 電解液は、カリウム塩を主電解質とするものであれば特に限定されない。
 カリウム塩としては、水系電解液の場合には、例えば、KClO、KPF、KNO、KOH、KCl、KSO、及び、KS等が挙げられる。これらのカリウム塩は、1種単独で用いることもできるが、2種以上を組み合わせて使用することもできる。
 また、非水系電解液の場合には、例えば、電解質(例えば、KPF、KBF、CFSOK、KAsF、KB(C、CHSOK、KN(SOCF、KN(SO、KC(SOCF、KN(SOCF等)を、溶媒、例えば、プロピレンカーボネート(PC)を含む電解液として使用することができるが、この他にも、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶媒に溶解させたものや、エチレンカーボネート(EC)とジメチルカーボネート(DMC)との混合溶媒に溶解させたもの等を電解液として使用することができる。
 これらの中でも、カリウム塩としては、KPFが好ましい。
<Electrolyte>
As the electrolyte used in the present embodiment, both an electrolytic solution and a solid electrolyte can be used.
The electrolyte solution is not particularly limited as long as it has a potassium salt as a main electrolyte.
Examples of the potassium salt include KClO 4 , KPF 6 , KNO 3 , KOH, KCl, K 2 SO 4 , and K 2 S in the case of an aqueous electrolyte. These potassium salts can be used alone or in combination of two or more.
In the case of a non-aqueous electrolyte, for example, an electrolyte (for example, KPF 6 , KBF 4 , CF 3 SO 3 K, KAsF 6 , KB (C 6 H 5 ) 4 , CH 3 SO 3 K, KN (SO 2 CF 3 ) 2 , KN (SO 2 C 2 F 5 ) 2 , KC (SO 2 CF 3 ) 3 , KN (SO 3 CF 3 ) 2, etc.) and an electrolysis containing propylene carbonate (PC) It can be used as a liquid, but besides this, it can be dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC), or a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC). What was melt | dissolved in the solvent etc. can be used as electrolyte solution.
Among these, as the potassium salt, KPF 6 is preferable.
 また、電解液の溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、イソプロピルメチルカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、1,2-ジ(メトキシカルボニルオキシ)エタン等のカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ギ酸メチル、酢酸メチル、γ-ブチロラクトン等のエステル類;アセトニトリル、ブチロニトリル等のニトリル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;3-メチル-2-オキサゾリドン等のカーバメート類;スルホラン、ジメチルスルホキシド、1,3-プロパンサルトン等の含硫黄化合物;又は前記溶媒に更に水素原子の置換基としてフルオロ基を導入したものを用いることができる。
 電解液の溶媒は、1種単独で用いても、2種以上を混合して用いてもよいが、2種以上を混合して用いることが好ましい。
 これらの中でも、プロピレンカーボネート、エチレンカーボネート及びジエチルカーボネートよりなる群から選ばれた少なくとも1種の溶媒が好ましく、プロピレンカーボネート、エチレンカーボネート及びジエチルカーボネートよりなる群から選ばれた少なくとも2種の混合溶媒がより好ましい。
 また、電解液中のカリウム塩の濃度は、特に限定されないが、0.1mol/L以上2mol/L以下であることが好ましく、0.5mol/L以上1.5mol/L以下であることがより好ましい。
In addition, as a solvent for the electrolytic solution, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, isopropyl methyl carbonate, vinylene carbonate, fluoroethylene carbonate, 4-trifluoromethyl-1,3-dioxolane-2- ON, carbonates such as 1,2-di (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyldifluoro Ethers such as methyl ether, tetrahydrofuran and 2-methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and γ-butyrolactone; Nitriles such as acetonitrile and butyronitrile Amides such as N, N-dimethylformamide and N, N-dimethylacetamide; carbamates such as 3-methyl-2-oxazolidone; sulfur-containing compounds such as sulfolane, dimethyl sulfoxide and 1,3-propane sultone; Or what introduce | transduced the fluoro group into the said solvent further as a substituent of a hydrogen atom can be used.
The solvent of the electrolytic solution may be used singly or as a mixture of two or more, but it is preferable to use a mixture of two or more.
Among these, at least one solvent selected from the group consisting of propylene carbonate, ethylene carbonate and diethyl carbonate is preferable, and at least two mixed solvents selected from the group consisting of propylene carbonate, ethylene carbonate and diethyl carbonate are more preferable. preferable.
Further, the concentration of the potassium salt in the electrolytic solution is not particularly limited, but is preferably 0.1 mol / L or more and 2 mol / L or less, and more preferably 0.5 mol / L or more and 1.5 mol / L or less. preferable.
 固体電解質としては、公知の固体電解質を用いることができる。例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖又はポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物等の有機系固体電解質を用いることができる。また、高分子化合物に非水電解質溶液を保持させた、いわゆるゲルタイプのものも用いることもできる。 As the solid electrolyte, a known solid electrolyte can be used. For example, an organic solid electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used. Moreover, what is called a gel type which hold | maintained the nonaqueous electrolyte solution to the high molecular compound can also be used.
<セパレータ>
 本実施形態に係るカリウムイオン電池は、セパレータを更に備えることが好ましい。
 セパレータは、正極と負極とを物理的に隔絶して、内部短絡を防止する役割を果たす。
セパレータは、多孔質材料からなり、その空隙には電解質が含浸され、電池反応を確保するために、イオン透過性(特に、少なくともカリウムイオン透過性)を有する。
 セパレータとしては、例えば、樹脂製の多孔膜の他、不織布などが使用できる。セパレータは、多孔膜の層又は不織布の層だけで形成してもよく、組成や形態の異なる複数の層の積層体で形成してもよい。積層体としては、組成の異なる複数の樹脂多孔層を有する積層体、多孔膜の層と不織布の層とを有する積層体などが例示できる。
<Separator>
The potassium ion battery according to this embodiment preferably further includes a separator.
A separator plays the role which isolates a positive electrode and a negative electrode physically, and prevents an internal short circuit.
The separator is made of a porous material, and the voids are impregnated with an electrolyte, and have ion permeability (particularly at least potassium ion permeability) in order to ensure a battery reaction.
As the separator, for example, a nonwoven fabric other than a resin porous film can be used. The separator may be formed of only a porous membrane layer or a non-woven fabric layer, or may be formed of a laminate of a plurality of layers having different compositions and forms. Examples of the laminate include a laminate having a plurality of resin porous layers having different compositions, and a laminate having a porous membrane layer and a nonwoven fabric layer.
 セパレータの材質は、電池の使用温度、電解質の組成などを考慮して選択できる。
 多孔膜及び不織布を形成する繊維に含まれる樹脂としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体などのポリオレフィン樹脂;ポリフェニレンサルファイド、ポリフェニレンサルファイドケトンなどのポリフェニレンサルファイド樹脂;芳香族ポリアミド樹脂(アラミド樹脂など)などのポリアミド樹脂;ポリイミド樹脂などが例示できる。これらの樹脂は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、不織布を形成する繊維は、ガラス繊維などの無機繊維であってもよい。
 セパレータは、ガラス、ポリオレフィン樹脂、ポリアミド樹脂およびポリフェニレンサルファイド樹脂よりなる群から選択される少なくとも一種の材質を含むセパレータであることが好ましい。中でも、セパレータとしては、ガラスフィルターがより好ましく挙げられる。
 また、セパレータは、無機フィラーを含んでもよい。
 無機フィラーとしては、セラミックス(シリカ、アルミナ、ゼオライト、チタニアなど)、タルク、マイカ、ウォラストナイトなどが例示できる。無機フィラーは、粒子状又は繊維状が好ましい。
 セパレータ中の無機フィラーの含有量は、10質量%~90質量%であることが好ましく、20質量%~80質量%であることがより好ましい。
 セパレータの形状や大きさは、特に限定されず、所望の電池の形状等に合わせて適宜選択すればよい。
The material of the separator can be selected in consideration of the operating temperature of the battery, the composition of the electrolyte, and the like.
Examples of the resin contained in the fibers forming the porous film and the nonwoven fabric include polyolefin resins such as polyethylene, polypropylene, and ethylene-propylene copolymer; polyphenylene sulfide resins such as polyphenylene sulfide and polyphenylene sulfide ketone; and aromatic polyamide resins (aramid). Examples thereof include polyamide resins such as resins) and polyimide resins. One of these resins may be used alone, or two or more thereof may be used in combination. The fibers forming the nonwoven fabric may be inorganic fibers such as glass fibers.
The separator is preferably a separator containing at least one material selected from the group consisting of glass, polyolefin resin, polyamide resin, and polyphenylene sulfide resin. Among these, a glass filter is more preferable as the separator.
Further, the separator may include an inorganic filler.
Examples of the inorganic filler include ceramics (silica, alumina, zeolite, titania, etc.), talc, mica, wollastonite and the like. The inorganic filler is preferably particulate or fibrous.
The content of the inorganic filler in the separator is preferably 10% by mass to 90% by mass, and more preferably 20% by mass to 80% by mass.
The shape and size of the separator are not particularly limited, and may be appropriately selected according to a desired battery shape and the like.
 本実施形態に係るカリウムイオン電池は、電池ケース、スペーサー、ガスケット、及び、板ばね他、構造材料等の要素についても従来リチウムイオン電池並びにナトリウムイオン電池で使用される公知の各種材料を使用することができ、特に制限はない。
 本実施形態に係るカリウムイオン電池は、前記電池要素を用いて公知の方法に従って組み立てればよい。この場合、電池形状についても特に制限されることはなく、例えば円筒状、角型、コイン型等種々の形状、サイズを適宜採用することができる。
In the potassium ion battery according to the present embodiment, various known materials used in conventional lithium ion batteries and sodium ion batteries are used for elements such as battery cases, spacers, gaskets, leaf springs, and other structural materials. There are no particular restrictions.
What is necessary is just to assemble the potassium ion battery which concerns on this embodiment according to a well-known method using the said battery element. In this case, the shape of the battery is not particularly limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately employed.
 本実施形態に係るカリウムイオン電池の一例としては、図1に示すカリウムイオン電池が挙げられるが、これに限定されないことは言うまでもない。
 図1は、本実施形態に係るカリウムイオン電池10の一例を示す模式図である。
 図1に示すカリウムイオン電池10は、コイン型電池であり、負極側から順に、負極側の電池ケース12、ガスケット14、負極16、セパレータ18、本実施形態に係るカリウムイオン電池用正極(正極)20、スペーサー22、板ばね24、及び、正極側の電池ケース26を重ね、電池ケース12及び電池ケース26を嵌め合わせて形成される。
 セパレータ18には、電解液(不図示)が含浸されている。
An example of the potassium ion battery according to the present embodiment is the potassium ion battery shown in FIG. 1, but it goes without saying that the potassium ion battery is not limited to this.
FIG. 1 is a schematic diagram illustrating an example of a potassium ion battery 10 according to the present embodiment.
A potassium ion battery 10 shown in FIG. 1 is a coin-type battery, and in order from the negative electrode side, a battery case 12 on the negative electrode side, a gasket 14, a negative electrode 16, a separator 18, and a positive electrode (positive electrode) for a potassium ion battery according to this embodiment. 20, the spacer 22, the leaf spring 24, and the battery case 26 on the positive electrode side are stacked, and the battery case 12 and the battery case 26 are fitted together.
The separator 18 is impregnated with an electrolytic solution (not shown).
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。したがって、本発明の範囲は以下に示す具体例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.
<各ヘキサシアノ酸金属のアルカリ金属塩の合成>
 使用した化合物の詳細を以下に示す。
 KFe(CN):関東化学(株)製
 MCl(M=Mn、Fe、Co、Ni又はCu):関東化学(株)製
 ACl(A=K、Na又はLi):和光純薬工業(株)製
<Synthesis of alkali metal salt of each hexacyano acid metal>
Details of the compounds used are shown below.
K 4 Fe (CN) 6 : manufactured by Kanto Chemical Co., Ltd. MCl 2 (M = Mn, Fe, Co, Ni or Cu): manufactured by Kanto Chemical Co., Inc. ACl (A = K, Na or Li): Wako Pure Chemical Industries Made by Kogyo Co., Ltd.
 室温(25℃、以下同様)において、脱イオン水120mLにACl45gを混合して、ACl水溶液を得た。
 次に、室温において、脱イオン水10mLにKFe(CN)(2mmol)を混合して、更に、ACl水溶液40mLを混合して、溶液Aを得た。
 また、室温において、脱イオン水10mLにMCl(4mmol)を混合して、更に、ACl水溶液80mLを混合して、溶液Bを得た。
 反応容器に入れた溶液Aを60℃の湯浴につけ、窒素ガスをバブリングし、かつ500rpm(rotation per minute)の速度で撹拌しながら、溶液Bを40mL/時間以下の速度でゆっくり滴下した。滴下するとすぐに沈殿物が生じた。
 滴下終了後、液温を60℃に保ち、窒素ガスをバブリングしながら、500rpmの速度で4時間撹拌した。
 その後、反応液に対し、遠心分離((株)トミー精工製MX-301、8,000rpm~10,000rpm)を行い、ヘキサシアノ酸金属のアルカリ金属塩とAClとの混合物を得た。
 得られた混合物を1Lの脱イオン水で洗浄し、遠心分離(8,000rpm~10,000rpm)を複数回行い、少量の水分を含むヘキサシアノ酸金属カリウム塩を得た。
 得られた少量の水分を含むヘキサシアノ酸金属のアルカリ金属塩を、定温乾燥器を用い、80℃で12時間乾燥し、ヘキサシアノ酸金属のアルカリ金属塩を得た。
At room temperature (25 ° C., the same applies hereinafter), 45 g of ACl was mixed with 120 mL of deionized water to obtain an ACl aqueous solution.
Next, at room temperature, K 4 Fe (CN) 6 (2 mmol) was mixed with 10 mL of deionized water, and 40 mL of an ACl aqueous solution was further mixed to obtain a solution A.
Further, at room temperature, MCl 2 (4 mmol) was mixed with 10 mL of deionized water, and further 80 mL of an ACl aqueous solution was mixed to obtain a solution B.
Solution A placed in a reaction vessel was placed in a 60 ° C. hot water bath, nitrogen gas was bubbled, and solution B was slowly added dropwise at a rate of 40 mL / hour or less while stirring at a speed of 500 rpm (rotation per minute). As soon as it was dropped, a precipitate was formed.
After completion of the dropwise addition, the liquid temperature was kept at 60 ° C., and stirring was performed for 4 hours at a speed of 500 rpm while bubbling nitrogen gas.
Thereafter, the reaction solution was centrifuged (MX-301 manufactured by Tommy Seiko Co., Ltd., 8,000 rpm to 10,000 rpm) to obtain a mixture of an alkali metal salt of hexacyano acid metal and ACl.
The resulting mixture was washed with 1 L of deionized water, and centrifuged (8,000 rpm to 10,000 rpm) several times to obtain a metal potassium hexacyanoate containing a small amount of water.
The obtained alkali metal salt of hexacyano acid metal containing a small amount of water was dried at 80 ° C. for 12 hours using a constant temperature dryer to obtain an alkali metal salt of hexacyano acid metal.
 得られた各ヘキサシアノ酸金属のアルカリ金属塩の組成を、略称とともに以下に示す。
 K-Mn[Fe(CN)](M=Mn、A=K):K1.75Mn[Fe(CN)0.93・0.58HO(=K1.88Fe1.00Mn1.08(CN)・0.62HO)
 Na-Mn[Fe(CN)](M=Mn、A=Na):Na1.5~2.0Mn[Fe(CN)]・0.1~2.0H
 Li-Mn[Fe(CN)](M=Mn、A=Li):Li1.5~2.0Mn[Fe(CN)]・0.1~2.0H
 K-Fe[Fe(CN)](M=Fe、A=K):K1.5~2.0Fe[Fe(CN)]・0.1~2.0H
 K-Co[Fe(CN)](M=Co、A=K):K1.5~2.0Co[Fe(CN)]・0.1~2.0H
 K-Ni[Fe(CN)](M=Ni、A=K):K1.5~2.0Ni[Fe(CN)]・0.1~2.0H
 K-Cu[Fe(CN)](M=Cu、A=K):K1.5~2.0Cu[Fe(CN)]・0.1~2.0H
The composition of the obtained alkali metal salt of each hexacyano acid metal is shown below together with abbreviations.
K—Mn [Fe (CN) 6 ] (M = Mn, A = K): K 1.75 Mn [Fe (CN) 6 ] 0.93 · 0.58H 2 O (= K 1.88 Fe 1. 00 Mn 1.08 (CN) 6 · 0.62H 2 O)
Na—Mn [Fe (CN) 6 ] (M = Mn, A = Na): Na 1.5 to 2.0 Mn [Fe (CN) 6 ] · 0.1 to 2.0H 2 O
Li—Mn [Fe (CN) 6 ] (M = Mn, A = Li): Li 1.5 to 2.0 Mn [Fe (CN) 6 ] · 0.1 to 2.0H 2 O
K—Fe [Fe (CN) 6 ] (M = Fe, A = K): K 1.5 to 2.0 Fe [Fe (CN) 6 ] · 0.1 to 2.0H 2 O
K—Co [Fe (CN) 6 ] (M = Co, A = K): K 1.5 to 2.0 Co [Fe (CN) 6 ] · 0.1 to 2.0H 2 O
K—Ni [Fe (CN) 6 ] (M = Ni, A = K): K 1.5 to 2.0 Ni [Fe (CN) 6 ] · 0.1 to 2.0H 2 O
K—Cu [Fe (CN) 6 ] (M = Cu, A = K): K 1.5 to 2.0 Cu [Fe (CN) 6 ] · 0.1 to 2.0H 2 O
 なお、前記で得られた各ヘキサシアノ酸金属のアルカリ金属塩はそれぞれ、元素分析、及び、X線回折構造解析を測定し、化学構造を特定した。 In addition, the alkali metal salt of each hexacyano acid metal obtained above was measured by elemental analysis and X-ray diffraction structure analysis, respectively, and the chemical structure was specified.
<カリウムイオン電池用正極の作製>
 得られた各ヘキサシアノ酸金属のアルカリ金属塩をそれぞれ使用し、正極をそれぞれ作製した。
 得られたヘキサシアノ酸金属のアルカリ金属塩と、ケッチェンブラック(KB、ライオン・スペシャリティ・ケミカルズ(株)製)と、PTFE(ポリテトラフルオロエチレン、ダイキン工業(株)製)とを7:2:1の質量比で混合後、アルミニウム箔(宝泉(株)製、厚さ0.017mm)上に塗布したもの作製し、正極とした。アルミニウム箔を含まない正極の形状は、直径10mm、厚さ0.03mm~0.04mmの円筒形状とした。また、アルミニウム箔を含まない正極の質量は、3mg~5mgであった。
<Preparation of positive electrode for potassium ion battery>
Each of the obtained alkali metal salts of hexacyano acid metal was used to prepare positive electrodes.
The obtained alkali metal salt of hexacyano acid metal, ketjen black (KB, manufactured by Lion Specialty Chemicals) and PTFE (polytetrafluoroethylene, manufactured by Daikin Industries, Ltd.) 7: 2: After mixing at a mass ratio of 1, a coating was made on an aluminum foil (manufactured by Hosen Co., Ltd., thickness: 0.017 mm) to form a positive electrode. The shape of the positive electrode not including the aluminum foil was a cylindrical shape having a diameter of 10 mm and a thickness of 0.03 mm to 0.04 mm. The mass of the positive electrode not containing the aluminum foil was 3 mg to 5 mg.
<K塩、Na塩又はLi塩を使用した正極を用いた充放電測定>
-K塩(K-Mn[Fe(CN)])を使用した正極を用いた充放電測定-
 充放電測定は、電解液に0.8M KPF/エチレンカーボネート(EC)-ジエチルカーボネート(DEC)(質量比EC:DEC=1:1)混合溶液、負極にカリウム金属(アルドリッチ社製)、セパレータ(ガラスフィルター、宝泉(株)製)、SUS製電池ケース及びポリプロピレン製ガスケット(宝泉(株)製CR2032)、スペーサー(材質:SUS、直径16mm×高さ0.5mm、宝泉(株)製)、及び、板ばね(材質:SUS、内径10mm、高さ2.0mm、厚さ0.25mm、宝泉(株)製ワッシャー)を用いて作製したコインセルにて行った。
 電解液の使用量は、セパレータが電解液で十分満たされる量(0.15mL~0.3mL)を使用した。
 なお、電解液は、東京化成工業(株)製KPF、キシダ化学(株)製エチレンカーボネート、及び、キシダ化学(株)製ジエチルカーボネートを用いて調製した。
<Charge / discharge measurement using positive electrode using K salt, Na salt or Li salt>
-Measurement of charge / discharge using positive electrode using K salt (K-Mn [Fe (CN) 6 ])-
Charging / discharging measurement is performed by using 0.8M KPF 6 / ethylene carbonate (EC) -diethyl carbonate (DEC) (mass ratio EC: DEC = 1: 1) mixed solution as an electrolyte, potassium metal (manufactured by Aldrich) as a negative electrode, separator (Glass filter, manufactured by Hosen Co., Ltd.), SUS battery case and polypropylene gasket (CR2032 manufactured by Hosen Co., Ltd.), spacer (material: SUS, diameter 16 mm x height 0.5 mm, Hosen Co., Ltd.) Made) and a leaf spring (material: SUS, inner diameter 10 mm, height 2.0 mm, thickness 0.25 mm, Hosen Co., Ltd. washer).
The amount of the electrolyte used was an amount sufficient to fill the separator with the electrolyte (0.15 mL to 0.3 mL).
The electrolytic solution was prepared using KPF 6 manufactured by Tokyo Chemical Industry Co., Ltd., ethylene carbonate manufactured by Kishida Chemical Co., and diethyl carbonate manufactured by Kishida Chemical Co., Ltd.
 充放電条件は、充放電電流密度を定電流モードに設定し、室温(25℃)にて測定を行った。得られた正極を用い、電流密度を30mA/gに設定し、充電電圧を4.5Vまで定電流充電を行った。充電後、充電電圧を4.5V、放電終止電圧が2.0Vになるまで定電流放電を繰り返し行った。 The charge / discharge conditions were measured at room temperature (25 ° C.) with the charge / discharge current density set to the constant current mode. Using the obtained positive electrode, the current density was set to 30 mA / g, and the charge voltage was constant current charged to 4.5V. After charging, constant current discharge was repeated until the charge voltage was 4.5V and the end-of-discharge voltage was 2.0V.
-Na塩(Na-Mn[Fe(CN)])を使用した正極を用いた充放電測定-
 充放電測定は、電解液に1.0M NaPF/エチレンカーボネート(EC)-ジエチルカーボネート(DEC)(質量比EC:DEC=1:1)混合溶液(キシダ化学(株)製)、負極にナトリウム金属(関東化学(株)製)、セパレータ(ガラスフィルター、宝泉(株)製)、SUS製電池ケース及びポリプロピレン製ガスケット(宝泉(株)製CR2032)、スペーサー(材質:SUS、直径16mm×高さ0.5mm、宝泉(株)製)、及び、板ばね(材質:SUS、内径10mm、高さ2.0mm、厚さ0.25mm、宝泉(株)製ワッシャー)を用いて作製したコインセルにて行った。
 電解液の使用量は、セパレータが電解液で十分満たされる量(0.15mL~0.3mL)を使用した。
-Measurement of charge / discharge using positive electrode using Na salt (Na-Mn [Fe (CN) 6 ])-
Charging / discharging measurement was carried out using 1.0M NaPF 6 / ethylene carbonate (EC) -diethyl carbonate (DEC) (mass ratio EC: DEC = 1: 1) mixed solution (made by Kishida Chemical Co., Ltd.) as the electrolyte and sodium as the negative electrode. Metal (manufactured by Kanto Chemical Co., Inc.), separator (glass filter, manufactured by Hosen Co., Ltd.), SUS battery case and polypropylene gasket (CR2032 manufactured by Hosen Co., Ltd.), spacer (material: SUS, diameter 16 mm × 0.5 mm in height, manufactured by Hosen Co., Ltd.) and a leaf spring (material: SUS, inner diameter 10 mm, height 2.0 mm, thickness 0.25 mm, manufactured by Hosen Co., Ltd.) I went in the coin cell.
The amount of the electrolyte used was an amount sufficient to fill the separator with the electrolyte (0.15 mL to 0.3 mL).
 充放電条件は、充放電電流密度を定電流モードに設定し、室温(25℃)にて測定を行った。得られた正極を用い、電流密度を30mA/gに設定し、充電電圧を4.0Vまで定電流充電を行った。充電後、充電電圧を4.0V、放電終止電圧が2.0Vになるまで定電流放電を繰り返し行った。 The charge / discharge conditions were measured at room temperature (25 ° C.) with the charge / discharge current density set to the constant current mode. Using the obtained positive electrode, the current density was set to 30 mA / g, and constant current charging was performed up to a charging voltage of 4.0V. After charging, constant current discharging was repeated until the charging voltage was 4.0 V and the final discharge voltage was 2.0 V.
-Li塩(Li-Mn[Fe(CN)])を使用した正極を用いた充放電測定-
 充放電測定は、電解液に1.0M LiPF/エチレンカーボネート(EC)-ジエチルカーボネート(DEC)(質量比EC:DEC=1:1)混合溶液(キシダ化学(株)製)、負極にリチウム金属(本荘ケミカル(株)製)、セパレータ(ガラスフィルター、宝泉(株)製)、SUS製電池ケース及びポリプロピレン製ガスケット(宝泉(株)製CR2032)、スペーサー(材質:SUS、直径16mm×高さ0.5mm、宝泉(株)製)、及び、板ばね(材質:SUS、内径10mm、高さ2.0mm、厚さ0.25mm、宝泉(株)製ワッシャー)を用いて作製したコインセルにて行った。
 電解液の使用量は、セパレータが電解液で十分満たされる量(0.15mL~0.3mL)を使用した。
-Measurement of charge / discharge using positive electrode using Li salt (Li-Mn [Fe (CN) 6 ])-
Charging / discharging measurement was performed by using 1.0M LiPF 6 / ethylene carbonate (EC) -diethyl carbonate (DEC) (mass ratio EC: DEC = 1: 1) mixed solution (manufactured by Kishida Chemical Co., Ltd.) as the electrolyte and lithium as the negative electrode. Metal (manufactured by Honjo Chemical Co., Ltd.), separator (glass filter, manufactured by Hosen Co., Ltd.), SUS battery case and polypropylene gasket (CR2032 manufactured by Hosen Co., Ltd.), spacer (material: SUS, diameter 16 mm × 0.5 mm in height, manufactured by Hosen Co., Ltd.) and a leaf spring (material: SUS, inner diameter 10 mm, height 2.0 mm, thickness 0.25 mm, manufactured by Hosen Co., Ltd.) I went in the coin cell.
The amount of the electrolyte used was an amount sufficient to fill the separator with the electrolyte (0.15 mL to 0.3 mL).
 充放電条件は、充放電電流密度を定電流モードに設定し、室温(25℃)にて測定を行った。得られた正極を用い、電流密度を30mA/gに設定し、充電電圧を4.8Vまで定電流充電を行った。充電後、充電電圧を4.8V、放電終止電圧が2.0Vになるまで定電流放電を繰り返し行った。 The charge / discharge conditions were measured at room temperature (25 ° C.) with the charge / discharge current density set to the constant current mode. Using the obtained positive electrode, the current density was set to 30 mA / g, and constant current charging was performed up to a charging voltage of 4.8V. After charging, constant current discharge was repeated until the charge voltage was 4.8 V and the end-of-discharge voltage was 2.0 V.
 K塩、Na塩又はLi塩を使用した正極を用いた前記充放電測定において、1回の充放電を1サイクルとし、測定した結果を以下の表1及び図2~図6に示す。 In the above charge / discharge measurement using the positive electrode using K salt, Na salt or Li salt, one charge / discharge is defined as one cycle, and the measurement results are shown in the following Table 1 and FIGS.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1におけるエネルギー密度は、平均作動電位×放電容量より算出した。 The energy density in Table 1 was calculated from the average working potential x discharge capacity.
 図2~図4に、各ヘキサシアノ金属酸のアルカリ金属塩を用いた場合における3サイクル目までの充放電プロファイルを示す。
 また、図5には、各ヘキサシアノ金属酸のアルカリ金属塩を用いた場合における2サイクル目の充放電プロファイルを示す。
 なお、図2~図5の充放電プロファイルの縦軸は使用した各ヘキサシアノ金属酸のアルカリ金属塩のアルカリ金属の標準単極電位を基準とした電位(Voltage、単位:V(V vs. A/A))を表し、横軸は容量(Capacity、単位:mAh/g)を表す。
 更に、図6には、サイクル経過における放電容量の変化を表す図を示す。図6の縦軸は、放電容量(Discharge Capacity、単位:mAh/g)を表し、横軸はサイクル数(Cycle Number)を表す。
FIGS. 2 to 4 show charge / discharge profiles up to the third cycle in the case of using an alkali metal salt of each hexacyano metal acid.
FIG. 5 shows a charge / discharge profile at the second cycle when an alkali metal salt of each hexacyano metal acid is used.
The vertical axis of the charge / discharge profiles in FIGS. 2 to 5 represents the potential (Voltage, unit: V (V vs. A / V) based on the standard unipolar potential of the alkali metal of the alkali metal salt of each hexacyano metal acid used. A + )), and the horizontal axis represents capacity (capacity, unit: mAh / g).
Further, FIG. 6 is a diagram showing a change in discharge capacity over the course of the cycle. The vertical axis of FIG. 6 represents the discharge capacity (Discharge Capacity, unit: mAh / g), and the horizontal axis represents the cycle number (Cycle Number).
 前記に示すように、本実施形態に係るカリウムイオン電池用正極活物質を用いることにより、エネルギー密度が高いカリウムイオン電池が得られた。 As described above, a potassium ion battery having a high energy density was obtained by using the positive electrode active material for a potassium ion battery according to this embodiment.
<各ヘキサシアノ金属酸のカリウム塩を使用した正極を用いた充放電測定>
 各ヘキサシアノ金属酸のカリウム塩を使用した正極を用いた充放電測定は、電解液に0.8M KPF/エチレンカーボネート(EC)-ジエチルカーボネート(DEC)(質量比EC:DEC=1:1)混合溶液、負極にカリウム金属(アルドリッチ社製)、セパレータ(ガラスフィルター、宝泉(株)製)、SUS製電池ケース及びポリプロピレン製ガスケット(宝泉(株)製CR2032)、スペーサー(材質:SUS、直径16mm×高さ0.5mm、宝泉(株)製)、及び、板ばね(材質:SUS、内径10mm、高さ2.0mm、厚さ0.25mm、宝泉(株)製ワッシャー)を用いて作製したコインセルにて行った。
 電解液の使用量は、セパレータが電解液で十分満たされる量(0.15mL~0.3mL)を使用した。
 なお、電解液は、東京化成工業(株)製KPF、キシダ化学(株)製エチレンカーボネート、及び、キシダ化学(株)製ジエチルカーボネートを用いて調製した。
<Charge / discharge measurement using positive electrode using potassium salt of each hexacyano metal acid>
Charge / discharge measurement using a positive electrode using a potassium salt of each hexacyano metal acid was carried out by using 0.8 M KPF 6 / ethylene carbonate (EC) -diethyl carbonate (DEC) (mass ratio EC: DEC = 1: 1) in the electrolyte solution. Mixed solution, negative electrode potassium metal (Aldrich), separator (glass filter, manufactured by Hosen Co., Ltd.), SUS battery case and polypropylene gasket (Hosen Co., Ltd. CR2032), spacer (material: SUS, Diameter 16 mm x height 0.5 mm, manufactured by Hosen Co., Ltd.) and leaf spring (material: SUS, inner diameter 10 mm, height 2.0 mm, thickness 0.25 mm, washer manufactured by Hosen Co., Ltd.) It was performed in the coin cell produced by using.
The amount of the electrolyte used was an amount sufficient to fill the separator with the electrolyte (0.15 mL to 0.3 mL).
The electrolytic solution was prepared using KPF 6 manufactured by Tokyo Chemical Industry Co., Ltd., ethylene carbonate manufactured by Kishida Chemical Co., and diethyl carbonate manufactured by Kishida Chemical Co., Ltd.
 充放電条件は、充放電電流密度を定電流モードに設定し、室温(25℃)にて測定を行った。得られた正極を用い、電流密度を30mA/gに設定し、充電電圧を4.5Vまで定電流充電を行った。充電後、充電電圧を4.5V、放電終止電圧が2.0Vになるまで定電流放電を繰り返し行った。 The charge / discharge conditions were measured at room temperature (25 ° C.) with the charge / discharge current density set to the constant current mode. Using the obtained positive electrode, the current density was set to 30 mA / g, and the charge voltage was constant current charged to 4.5V. After charging, constant current discharge was repeated until the charge voltage was 4.5V and the end-of-discharge voltage was 2.0V.
 各ヘキサシアノ金属酸のカリウム塩を使用した正極を用いた前記充放電測定において、1回の充放電を1サイクルとし、測定した結果を以下の表2及び図7~図12に示す。 In the above charge / discharge measurement using the positive electrode using the potassium salt of each hexacyano metal acid, one charge / discharge is defined as one cycle, and the measurement results are shown in the following Table 2 and FIGS.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、表2におけるクーロン効率は、初回充電容量÷初回放電容量×100より算出し、エネルギー密度は、平均作動電位×放電容量より算出し、平均電位は、測定電圧を放電容量で積分した値÷放電容量より算出した。 The coulombic efficiency in Table 2 is calculated from the initial charge capacity / initial discharge capacity × 100, the energy density is calculated from the average operating potential × discharge capacity, and the average potential is a value obtained by integrating the measured voltage by the discharge capacity / It was calculated from the discharge capacity.
 図7~図11に、各ヘキサシアノ金属酸のカリウム塩を用いた場合における1サイクル目の充放電プロファイルを示す。
 また、図12に、各ヘキサシアノ金属酸のカリウム塩を用いた場合における1サイクルの充放電プロファイルを1つの図にまとめた図を示す。
 なお、図7~図12の充放電プロファイルの縦軸はカリウムの標準単極電位を基準とした電位(Voltage、単位:V(V vs. K/K))を表し、横軸は容量(Capacity、単位:mAh/g)を表す。
 更に、図13には、K-Mn[Fe(CN)]又はK-Fe[Fe(CN)]を用いた場合のサイクル経過における放電容量の変化を表す図を示す。図13の縦軸は、放電容量(Discharge Capacity、単位:mAh/g)を表し、横軸はサイクル数(Cycle Number)を表す。
7 to 11 show charge / discharge profiles in the first cycle when potassium salts of hexacyano metal acids are used.
Further, FIG. 12 shows a diagram in which charge / discharge profiles of one cycle in the case where potassium salts of hexacyano metal acids are used are combined into one figure.
7 to 12, the vertical axis represents the potential (Voltage, unit: V (V vs. K / K + )) based on the standard unipolar potential of potassium, and the horizontal axis represents the capacity ( Capacity, unit: mAh / g).
Further, FIG. 13 is a diagram showing a change in discharge capacity over the course of a cycle when K—Mn [Fe (CN) 6 ] or K—Fe [Fe (CN) 6 ] is used. The vertical axis in FIG. 13 represents the discharge capacity (Discharge Capacity, unit: mAh / g), and the horizontal axis represents the cycle number (Cycle Number).
 前記に示すように、本実施形態に係るカリウムイオン電池用正極活物質を用いることにより、エネルギー密度が高いカリウムイオン電池が得られた。 As described above, a potassium ion battery having a high energy density was obtained by using the positive electrode active material for a potassium ion battery according to this embodiment.
 2016年12月26日に出願された日本国特許出願第2016-251910号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び、技術規格は、個々の文献、特許出願、及び、技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2016-251910 filed on Dec. 26, 2016 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described in this specification are the same as if each document, patent application, and technical standard were specifically and individually stated to be incorporated by reference. Which is incorporated herein by reference.
 10:カリウムイオン電池、12:電池ケース(負極側)、14:ガスケット、16:負極、18:セパレータ、20:正極、22:スペーサー、24:板ばね、26:電池ケース(正極側) 10: potassium ion battery, 12: battery case (negative electrode side), 14: gasket, 16: negative electrode, 18: separator, 20: positive electrode, 22: spacer, 24: leaf spring, 26: battery case (positive electrode side)

Claims (3)

  1.  下記式(1)で表される化合物を含む
     カリウムイオン電池用正極活物質。
       KFeMn(CN)・zHO   (1)
     式(1)中、mは0.5以上2以下の数を表し、xは0.5以上1.5以下の数を表し、yは0.5以上1.5以下の数を表し、zは0又は正数を表す。
    The positive electrode active material for potassium ion batteries containing the compound represented by following formula (1).
    K m Fe x Mn y (CN ) 6 · zH 2 O (1)
    In formula (1), m represents a number from 0.5 to 2, x represents a number from 0.5 to 1.5, y represents a number from 0.5 to 1.5, z Represents 0 or a positive number.
  2.  請求項1に記載のカリウムイオン電池用正極活物質を含むカリウムイオン電池用正極。 A positive electrode for a potassium ion battery comprising the positive electrode active material for a potassium ion battery according to claim 1.
  3.  請求項2に記載のカリウムイオン電池用正極を備えたカリウムイオン電池。 A potassium ion battery comprising the positive electrode for a potassium ion battery according to claim 2.
PCT/JP2017/043860 2016-12-26 2017-12-06 Positive electrode active material for potassium-ion cell, positive electrode for potassium-ion cell, and potassium-ion cell WO2018123487A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-251910 2016-12-26
JP2016251910A JP2018106911A (en) 2016-12-26 2016-12-26 Positive electrode active material for potassium ion battery, positive electrode for potassium ion battery, and potassium ion battery

Publications (1)

Publication Number Publication Date
WO2018123487A1 true WO2018123487A1 (en) 2018-07-05

Family

ID=62710524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043860 WO2018123487A1 (en) 2016-12-26 2017-12-06 Positive electrode active material for potassium-ion cell, positive electrode for potassium-ion cell, and potassium-ion cell

Country Status (2)

Country Link
JP (1) JP2018106911A (en)
WO (1) WO2018123487A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111497A1 (en) * 2019-12-02 2021-06-10 日本電信電話株式会社 Potassium secondary cell and method for manufacturing same
CN113161603A (en) * 2021-04-07 2021-07-23 北京航空航天大学 Novel potassium ion battery and preparation method thereof
WO2022270561A1 (en) * 2021-06-23 2022-12-29 セントラル硝子株式会社 Non-aqueous electrolyte solution, non-aqueous sodium-ion battery, non-aqueous potassium-ion battery, method for manufacturing non-aqueous sodium-ion battery, and method for manufacturing non-aqueous potassium-ion battery
US20230299286A1 (en) * 2022-03-15 2023-09-21 Natron Energy, Inc. Tmccc electrode

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7337379B2 (en) * 2018-11-26 2023-09-04 学校法人東京理科大学 Cathode material for potassium ion secondary battery and method for producing the same
US20220158254A1 (en) 2019-03-19 2022-05-19 The University Of Tokyo Aqueous electrolyte solution for energy storage devices and energy storage device comprising this aqueous electrolyte solution
CN112645354B (en) * 2020-12-21 2022-07-15 电子科技大学 Surface-modified sodium-manganese-iron-based Prussian blue material and preparation method and application thereof
EP4106055B1 (en) * 2021-04-29 2024-07-24 Contemporary Amperex Technology Co., Limited Prussian blue analogue having core-shell structure, preparation method therefor and sodium-ion secondary battery containing prussian blue analogue

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246303A (en) * 2010-05-26 2011-12-08 National Institute Of Advanced Industrial Science & Technology Lithium ion secondary battery electrode material using prussian blue analog
JP2012046399A (en) * 2010-08-30 2012-03-08 National Institute Of Advanced Industrial Science & Technology Electrode material for lithium ion secondary battery using non-defective prussian blue analogue
WO2014118854A1 (en) * 2013-01-29 2014-08-07 Sharp Kabushiki Kaisha Transition metal hexacyanoferrate battery cathode, transition metal hexacyanoferrate cathode battery, method for synthesizing a transition metal hexacyanoferrate battery material, method for fabricating a transition metal hexacyanoferrate battery cathode electrode, and method for using a transition metal hexacyanoferrate battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246303A (en) * 2010-05-26 2011-12-08 National Institute Of Advanced Industrial Science & Technology Lithium ion secondary battery electrode material using prussian blue analog
JP2012046399A (en) * 2010-08-30 2012-03-08 National Institute Of Advanced Industrial Science & Technology Electrode material for lithium ion secondary battery using non-defective prussian blue analogue
WO2014118854A1 (en) * 2013-01-29 2014-08-07 Sharp Kabushiki Kaisha Transition metal hexacyanoferrate battery cathode, transition metal hexacyanoferrate cathode battery, method for synthesizing a transition metal hexacyanoferrate battery material, method for fabricating a transition metal hexacyanoferrate battery cathode electrode, and method for using a transition metal hexacyanoferrate battery

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MIZUNO YOSHIFUMI ET AL.: "Fe-substitutional Effect on Electrode Property of Defectless Prussian Blue Analogues", ABSTRACTS OF THE 52ND BATTERY SYMPOSIUM IN JAPAN, vol. 52, 2011, pages 140 *
SHIGA TOHRU ET AL.: "Insertion of Calcium Ion into Prussian Blue Analogue in Nonaqueous Solutions and Its Application to a Rechargeable Battery with Dual Carriers", THE JOURNAL OF PHYSICAL CHEMISTRY, vol. 119, 2015, pages 27946 - 27953, XP055533566, DOI: doi:10.1021/acs.jpcc.5b10245 *
TOJO TOMOHIRO ET AL.: "Reversible Calcium Ion Batteries Using a Dehydrated Prussian Blue Analogue Cathode", ELECTROCHIMICA ACTA, vol. 207, 28 April 2016 (2016-04-28), pages 22 - 27, XP029566335, DOI: doi:10.1016/j.electacta.2016.04.159 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111497A1 (en) * 2019-12-02 2021-06-10 日本電信電話株式会社 Potassium secondary cell and method for manufacturing same
CN113161603A (en) * 2021-04-07 2021-07-23 北京航空航天大学 Novel potassium ion battery and preparation method thereof
WO2022270561A1 (en) * 2021-06-23 2022-12-29 セントラル硝子株式会社 Non-aqueous electrolyte solution, non-aqueous sodium-ion battery, non-aqueous potassium-ion battery, method for manufacturing non-aqueous sodium-ion battery, and method for manufacturing non-aqueous potassium-ion battery
US20230299286A1 (en) * 2022-03-15 2023-09-21 Natron Energy, Inc. Tmccc electrode

Also Published As

Publication number Publication date
JP2018106911A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
WO2018123487A1 (en) Positive electrode active material for potassium-ion cell, positive electrode for potassium-ion cell, and potassium-ion cell
CN107750405B (en) Method for producing positive electrode composite material for Na-ion battery
US8748036B2 (en) Non-aqueous secondary battery
Peng et al. The electrochemical performance of super P carbon black in reversible Li/Na ion uptake
JP5716093B2 (en) Positive electrode active material for lithium ion capacitor and method for producing the same
JP7007537B2 (en) Positive electrode active material for potassium ion batteries, positive electrode for potassium ion batteries, and potassium ion batteries
JP6966760B2 (en) Electrolyte for potassium ion battery, potassium ion battery, electrolytic solution for potassium ion capacitor, and potassium ion capacitor
JP5765705B2 (en) Composite metal oxide, positive electrode active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery
KR20140103376A (en) Nagative active material for sodium ion battery, method of preparing elecrode using thereof and sodium ion battery comprising same
JP7281100B2 (en) Electrolyte for potassium ion battery, potassium ion battery, electrolyte for potassium ion capacitor, and potassium ion capacitor
Zheng et al. Onion-like carbon microspheres as long-life anodes materials for Na-ion batteries
US20160028086A1 (en) Anode for Sodium-ion and Potassium-ion Batteries
JP2003077534A (en) Nonaqueous secondary battery
US20150044557A1 (en) Negative electrode active material for sodium-ion battery, and sodium-ion battery
JP2013062190A (en) Positive electrode material and storage battery manufactured using the same
JP2004335345A (en) Positive electrode activator for lithium secondary battery and manufacturing method of the same, and positive electrode for litium secondary battery using the activator, and lithium secondary battery
WO2021177382A1 (en) Positive electrode material and battery
WO2021059725A1 (en) Secondary battery
CN110391404B (en) Positive electrode active material for magnesium secondary battery and magnesium secondary battery using same
JP5726603B2 (en) Nonaqueous electrolyte secondary battery
JP2023127325A (en) Potassium ion cell positive electrode active material, potassium ion cell positive electrode, and potassium ion cell
WO2021059726A1 (en) Secondary battery
WO2021059727A1 (en) Secondary battery
WO2023074592A1 (en) Potassium-ion battery electrolytic solution additive, potassium-ion battery electrolytic solution, potassium-ion battery, potassium-ion capacitor electrolytic solution additive, potassium-ion capacitor electrolytic solution, potassium-ion capacitor, and negative electrode
JP5001977B2 (en) Graphite particles, lithium ion secondary battery and negative electrode material thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887056

Country of ref document: EP

Kind code of ref document: A1