JP6852747B2 - A method for producing a positive electrode composition for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a positive electrode composition for a non-aqueous electrolyte secondary battery. - Google Patents

A method for producing a positive electrode composition for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a positive electrode composition for a non-aqueous electrolyte secondary battery. Download PDF

Info

Publication number
JP6852747B2
JP6852747B2 JP2019072999A JP2019072999A JP6852747B2 JP 6852747 B2 JP6852747 B2 JP 6852747B2 JP 2019072999 A JP2019072999 A JP 2019072999A JP 2019072999 A JP2019072999 A JP 2019072999A JP 6852747 B2 JP6852747 B2 JP 6852747B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
composite oxide
electrode composition
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019072999A
Other languages
Japanese (ja)
Other versions
JP2019114560A (en
Inventor
篤志 武岡
篤志 武岡
祐 西田
祐 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Publication of JP2019114560A publication Critical patent/JP2019114560A/en
Application granted granted Critical
Publication of JP6852747B2 publication Critical patent/JP6852747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池等の非水電解液二次電池用正極組成物に関する。特に電池の出力特性が向上し、サイクル特性や正極スラリーの粘度安定性も向上する正極組成物に関する。 The present invention relates to a positive electrode composition for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. In particular, the present invention relates to a positive electrode composition in which the output characteristics of a battery are improved, and the cycle characteristics and the viscosity stability of a positive electrode slurry are also improved.

近年、VTR、携帯電話、ノートパソコン等の携帯機器の普及及び小型化が進み、その電源用にリチウムイオン二次電池等の非水電解液二次電池が用いられるようになってきている。更に、最近の環境問題への対応から、電気自動車等の動力用電池としても注目されている。 In recent years, mobile devices such as VTRs, mobile phones, and notebook computers have become widespread and miniaturized, and non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have come to be used as their power sources. Furthermore, it is also attracting attention as a power battery for electric vehicles and the like in response to recent environmental problems.

リチウム二次電池用正極活物質としてはLiCoO(コバルト酸リチウム)が4V級の二次電池を構成できるものとして一般的に広く採用されている。しかし、LiCoOの原料であるコバルトは希少資源であり且つ偏在しているため、コストがかかるし原料供給について不安が生じる。 As a positive electrode active material for a lithium secondary battery, LiCoO 2 (lithium cobalt oxide) is generally widely used as a material capable of forming a 4V class secondary battery. However, since cobalt, which is a raw material of LiCoO 2 , is a rare resource and is unevenly distributed, it is costly and causes anxiety about the supply of raw materials.

こうした事情に応じLiCoOのCoをNiやMn等の元素で置換したニッケルコバルトマンガン酸リチウム等層状構造のリチウム遷移金属複合酸化物が開発されている。一般に層状構造のリチウム遷移金属複合酸化物において、ニッケルの比率が大きいものは結晶構造が不安定になり、正極用作製時に正極スラリーにリチウム化合物が析出しやすくなる傾向にある。また、コバルトの比率が小さくなると、出力特性が低下する傾向にある。 In response to these circumstances, a lithium transition metal composite oxide having a layered structure such as lithium nickel cobalt manganate in which Co of LiCoO 2 is replaced with an element such as Ni or Mn has been developed. Generally, among layered lithium transition metal composite oxides, those having a large proportion of nickel tend to have an unstable crystal structure, and a lithium compound tends to be easily precipitated in a positive electrode slurry during production for a positive electrode. Further, when the ratio of cobalt becomes small, the output characteristics tend to decrease.

一方、種々の目的に応じて、ホウ酸等のホウ素化合物とリチウム遷移金属複合酸化物とを混合させる、あるいはリチウム遷移金属複合酸化物表面にホウ素化合物を存在させる技術も存在する。 On the other hand, there is also a technique of mixing a boron compound such as boric acid with a lithium transition metal composite oxide or allowing the boron compound to be present on the surface of the lithium transition metal composite oxide, depending on various purposes.

特許文献1には、マンガン酸リチウムを用いた正極において、酸化ホウ素、オルトホウ酸、メタホウ酸、四ホウ酸等電解液に溶解可能なホウ素化合物を含ませることでスピネル構造のマンガン酸リチウムとハロゲン化水素酸との反応を抑制し、サイクル特性を改善させる技術が開示されている。 Patent Document 1 describes that a positive electrode using lithium manganate contains a boron compound soluble in an electrolytic solution such as boron oxide, orthoboric acid, metaboric acid, and tetraboric acid to form a spinel structure with lithium manganate and a hydrogen halide. A technique for suppressing the reaction with hydroacid and improving the cycle characteristics is disclosed.

特許文献2には、リチウム遷移金属複合酸化物の表面に、ホウ素等コーティング元素の、ヒドロキシド、オキシヒドロキシド等を含むイオン伝導度に優れた表面処理層を形成して放電電位を高め、寿命特性を向上する技術が開示されている。具体的に開示されているコーティング手法は、溶媒に溶解したコーティング元素をリチウム遷移金属複合酸化物の表面に析出させ、溶媒を除去してなるものである。 In Patent Document 2, a surface treatment layer having excellent ionic conductivity containing a coating element such as boron, hydroxide, oxyhydroxydo, etc. is formed on the surface of a lithium transition metal composite oxide to increase the discharge potential and have a lifetime. Techniques for improving properties are disclosed. The specifically disclosed coating method is obtained by precipitating a coating element dissolved in a solvent on the surface of a lithium transition metal composite oxide and removing the solvent.

特許文献3には、リチウム遷移金属複合酸化物等を用いた電極中に、無機酸としてホウ酸等を含有させ、電極ペーストのゲル化を防止する技術が開示されている。具体的に開示されているリチウム遷移金属複合酸化物はニッケル酸リチウムのみである。 Patent Document 3 discloses a technique for preventing gelation of an electrode paste by containing boric acid or the like as an inorganic acid in an electrode using a lithium transition metal composite oxide or the like. The only lithium transition metal composite oxide specifically disclosed is lithium nickelate.

特許文献4には、ニッケルまたはコバルトを必須としたリチウム遷移金属複合酸化物粒子の表面に、ホウ酸アンモニウム、ホウ酸リチウム等のホウ酸化合物等を被着させ、酸化性雰囲気下で加熱処理することで、二次電池の高容量化と、二次電池の充放電効率向上を図る技術が開示されている。具体的に開示されているリチウム遷移金属複合酸化物は、ニッケルの一部をコバルト及びアルミニウムで置換したニッケル酸リチウムである。 In Patent Document 4, a boric acid compound such as ammonium borate or lithium borate is adhered to the surface of lithium transition metal composite oxide particles in which nickel or cobalt is essential, and heat-treated in an oxidizing atmosphere. As a result, a technique for increasing the capacity of the secondary battery and improving the charge / discharge efficiency of the secondary battery is disclosed. The specifically disclosed lithium transition metal composite oxide is lithium nickelate in which a part of nickel is replaced with cobalt and aluminum.

特開2001−257003号公報Japanese Unexamined Patent Publication No. 2001-257003 特開2002−124262号公報JP-A-2002-124262 特開平10−079244号公報Japanese Unexamined Patent Publication No. 10-079244 特開2009−146739号公報JP-A-2009-146739

遷移金属にニッケル、コバルト及びマンガンを用いたニッケルコバルトマンガン酸リチウムは、そのコストと各種電池特性とのバランスが比較的良好であるが、特定の組成範囲ではサイクル特性及び/又は出力特性が近年の要求には応えきれなくなってきた。 Lithium nickel-cobalt manganate, which uses nickel, cobalt, and manganese as transition metals, has a relatively good balance between its cost and various battery characteristics, but cycle characteristics and / or output characteristics have recently been improved in a specific composition range. I can no longer meet the demand.

本発明はこれらの事情に鑑みてなされたものである。本発明の目的は、ニッケルコバルトマンガン酸リチウム系のリチウム遷移金属複合酸化物を用いてなおサイクル特性及び出力特性が向上した非水電解液二次電池用正極材料を提供することにある。 The present invention has been made in view of these circumstances. An object of the present invention is to provide a positive electrode material for a non-aqueous electrolyte secondary battery in which cycle characteristics and output characteristics are still improved by using a lithium transition metal composite oxide based on nickel-cobalt-manganate lithium.

上記目的を達成するために本発明者らは鋭意検討を重ね、本発明を完成するに至った。本発明者らは、特定組成のリチウム遷移金属複合酸化物と、特定状態のホウ素化合物を用いて正極組成物とすることで、出力特性及びサイクル特性が向上することを見出した。また、このような正極組成物を用いた正極スラリーは、スラリー粘度の経時変化が少ないことも見出した。 In order to achieve the above object, the present inventors have made extensive studies and have completed the present invention. The present inventors have found that the output characteristics and the cycle characteristics are improved by preparing a positive electrode composition using a lithium transition metal composite oxide having a specific composition and a boron compound in a specific state. It was also found that the positive electrode slurry using such a positive electrode composition has little change in slurry viscosity with time.

本発明の非水電解液二次電池用正極組成物は、一般式LiNi1−x−yCoMn(1.00≦a≦1.50、0<x≦0.50、0<y≦0.50、0.00≦z≦0.02、0.40≦x+y≦0.70、MはZr、Ti、Mg、Ta、Nb及びMoからなる群より選択される少なくとも一種)で表されるリチウム遷移金属複合酸化物と、少なくとも酸素を含むホウ素化合物とを含むことを特徴とする。 The positive electrode composition for a non-aqueous electrolyte secondary battery of the present invention has the general formula Li a Ni 1-xy Co x Mn y M z O 2 (1.00 ≦ a ≦ 1.50, 0 <x ≦ 0). .50, 0 <y≤0.50, 0.00≤z≤0.02, 0.40≤x + y≤0.70, M is selected from the group consisting of Zr, Ti, Mg, Ta, Nb and Mo. It is characterized by containing a lithium transition metal composite oxide represented by (at least one kind) and a boron compound containing at least oxygen.

本発明の非水電解液二次電池用正極組成物の製造方法は、一般式LiNi1−x−yCoMn(1.00≦a≦1.50、0<x≦0.50、0<y≦0.50、0.00≦z≦0.02、0.40≦x+y≦0.70、MはZr、Ti、Mg、Ta、Nb及びMoからなる群より選択される少なくとも一種)で表されるリチウム遷移金属複合酸化物を合成する合成工程と、前記合成工程で得られるリチウム遷移金属複合酸化物と、前記ホウ素化合物の原料化合物とを混合し、原料混合物を得る混合工程と、前記混合工程で得られる前記原料混合物を焼成する焼成工程とを含むことを特徴とする。 The method for producing the positive electrode composition for a non-aqueous electrolyte secondary battery of the present invention is described in the general formula Li a Ni 1-xy Co x Mn y M z O 2 (1.00 ≦ a ≦ 1.50, 0 <. x ≦ 0.50, 0 <y ≦ 0.50, 0.00 ≦ z ≦ 0.02, 0.40 ≦ x + y ≦ 0.70, M is a group consisting of Zr, Ti, Mg, Ta, Nb and Mo. The synthetic step of synthesizing the lithium transition metal composite oxide represented by (at least one selected from the above), the lithium transition metal composite oxide obtained in the synthetic step, and the raw material compound of the boron compound are mixed and used as a raw material. It is characterized by including a mixing step of obtaining a mixture and a firing step of firing the raw material mixture obtained in the mixing step.

本発明の正極組成物は上記の特徴を備えているため、ニッケルコバルトマンガン酸リチウムの特長を損なうことなくサイクル特性及び出力特性を向上ことができる。さらに正極スラリーにした際のスラリー粘度上昇を抑制することができる。 Since the positive electrode composition of the present invention has the above-mentioned characteristics, the cycle characteristics and the output characteristics can be improved without impairing the characteristics of lithium nickel-cobalt manganate. Further, it is possible to suppress an increase in slurry viscosity when the positive electrode slurry is used.

本発明の正極組成物の製造方法は上記の特徴を備えているため、サイクル特性及び出力特性が向上し、且つ生産性の良い正極組成物を得ることができる。 Since the method for producing a positive electrode composition of the present invention has the above-mentioned characteristics, it is possible to obtain a positive electrode composition having improved cycle characteristics and output characteristics and good productivity.

図1は本発明の正極組成物及び比較用の正極組成物を用いた正極スラリーの粘度変化を示すものである。FIG. 1 shows a change in viscosity of a positive electrode slurry using the positive electrode composition of the present invention and a positive electrode composition for comparison.

以下、本発明の正極組成物について、実施の形態及び実施例を用いて詳細に説明する。但し、本発明はこれら実施の形態及び実施例に限定されるものではない。 Hereinafter, the positive electrode composition of the present invention will be described in detail with reference to embodiments and examples. However, the present invention is not limited to these embodiments and examples.

[リチウム遷移金属複合酸化物]
リチウム遷移金属複合酸化物は、遷移金属にニッケル、コバルト及びマンガン(これらを合わせて主成分とする)を含有するニッケルコバルトマンガン酸リチウム系とする。必要に応じてジルコニウム、タンタル、ニオブ、モリブデン等をさらに含有させても良い。例えばジルコニウムは保存特性の改善、チタンやマグネシウムはサイクル特性のさらなる改善に好適である。これら追加元素は2mol%程度までならニッケルコバルトマンガン酸リチウムの特性を損なうことなく各種目的を達成可能である。
[Lithium transition metal composite oxide]
The lithium transition metal composite oxide is a lithium-based nickel-cobalt manganate containing nickel, cobalt and manganese (combined as main components) in the transition metal. If necessary, zirconium, tantalum, niobium, molybdenum and the like may be further contained. For example, zirconium is suitable for improving storage properties, and titanium and magnesium are suitable for further improving cycle properties. If these additional elements are up to about 2 mol%, various purposes can be achieved without impairing the characteristics of lithium nickel cobalt manganate.

主成分におけるニッケルの比率は、多すぎると結晶構造の安定性に難があり、さらに正極スラリーの粘度上昇を招きやすい。一方少なすぎると充放電容量低下を招く。これらのバランスを考慮し、40mol%以上60mol%以下とする。一方、コバルト及びマンガンの比率は、ニッケルの比率を満たしたうえで夫々50mol%以下とする。多すぎるコバルトはコスト上昇と出力特性の低下を、多すぎるマンガンは出力特性と充放電容量の低下を招く。コバルト及びマンガンの比率は夫々5mol%以上35mol%以下であれば、各種特性のバランスが良く、より好ましい。 If the ratio of nickel in the main component is too large, the stability of the crystal structure is difficult, and the viscosity of the positive electrode slurry is likely to increase. On the other hand, if the amount is too small, the charge / discharge capacity will decrease. Considering these balances, it is set to 40 mol% or more and 60 mol% or less. On the other hand, the ratio of cobalt and manganese shall be 50 mol% or less, respectively, after satisfying the ratio of nickel. Too much cobalt leads to increased costs and reduced output characteristics, and too much manganese causes reduced output characteristics and charge / discharge capacity. When the ratio of cobalt and manganese is 5 mol% or more and 35 mol% or less, respectively, the balance of various properties is good, which is more preferable.

リチウム遷移金属複合酸化物中のリチウム量は、多ければ出力特性が向上する傾向にあるが、多すぎるものは合成しにくい。また、合成出来たとしても焼結が進み、その後の取り扱いが困難になる傾向にある。これらを踏まえるとリチウム量はニッケルサイトの元素に対し100mol%以上150mol%以下とする。特性のバランス、合成のし易さ等を考慮すると、105mol%125mol%以下が好ましい。 If the amount of lithium in the lithium transition metal composite oxide is large, the output characteristics tend to be improved, but if the amount is too large, it is difficult to synthesize. Further, even if it can be synthesized, sintering proceeds, and subsequent handling tends to be difficult. Based on these, the amount of lithium is set to 100 mol% or more and 150 mol% or less with respect to the element of nickel site. Considering the balance of characteristics, ease of synthesis, etc., 105 mol% 125 mol% or less is preferable.

これらを踏まえると、リチウム遷移金属複合酸化物の組成は一般式LiNi1−x−yCoMn(1.00≦a≦1.50、0<x≦0.50、0<y≦0.50、0.00≦z≦0.02、0.40≦x+y≦0.70、MはZr、Ti、Mg、Ta、Nb及びMoからなる群より選択される少なくとも一種)で表される。但し、これだけでは出力特性及びサイクル特性の少なくとも一方が不十分である。さらに、正極スラリーの粘度上昇も起こるので、後述のホウ素化合物と合わせて正極組成物にする。 Based on these, the composition of the lithium transition metal composite oxide is the general formula Li a Ni 1-xy Co x Mn y M z O 2 (1.00 ≦ a ≦ 1.50, 0 <x ≦ 0.50). , 0 <y ≦ 0.50, 0.00 ≦ z ≦ 0.02, 0.40 ≦ x + y ≦ 0.70, M is at least selected from the group consisting of Zr, Ti, Mg, Ta, Nb and Mo. It is represented by (a kind). However, this alone is insufficient for at least one of the output characteristics and the cycle characteristics. Further, since the viscosity of the positive electrode slurry also increases, it is combined with a boron compound described later to form a positive electrode composition.

[ホウ素化合物]
本発明中の正極組成物において、ホウ素化合物は酸素を含んでいる。詳細は不明であるが、ホウ素化合物の少なくとも一部はリチウム等と複合酸化物を形成していると推測される。また、ホウ素化合物の少なくとも一部はリチウム遷移金属複合酸化物粒子の表面に被覆等の形態で存在していると考えられる。被覆等の形態は、リチウムの正極スラリーのバインダーへの溶出を防止する効果が高いので好ましい。
[Boron compound]
In the positive electrode composition in the present invention, the boron compound contains oxygen. Although the details are unknown, it is presumed that at least a part of the boron compound forms a composite oxide with lithium or the like. Further, it is considered that at least a part of the boron compound is present on the surface of the lithium transition metal composite oxide particles in the form of coating or the like. A form such as coating is preferable because it has a high effect of preventing the elution of lithium positive electrode slurry into the binder.

上述のホウ素化合物は、リチウム遷移金属複合酸化物と、ホウ素化合物の原料化合物とを十分に混合し、焼成した結果得られるものである。原料化合物の少なくとも一部は、最終的にリチウム遷移金属複合酸化物中のリチウム等の一部元素と反応し、複合酸化物を形成していると考えられる。こうして得られる複合酸化物の形態は、リチウム遷移金属複合酸化物とホウ素化合物の原料化合物とを物理的に混合した結果だけで得られる形態とは異なる。この差は、例えばXPS(X線光電子分光分析)のスペクトル等で確認することができる。 The above-mentioned boron compound is obtained as a result of sufficiently mixing the lithium transition metal composite oxide and the raw material compound of the boron compound and firing them. It is considered that at least a part of the raw material compound finally reacts with some elements such as lithium in the lithium transition metal composite oxide to form a composite oxide. The form of the composite oxide thus obtained is different from the form obtained only as a result of physically mixing the lithium transition metal composite oxide and the raw material compound of the boron compound. This difference can be confirmed, for example, in the spectrum of XPS (X-ray photoelectron spectroscopy).

正極組成物におけるホウ素化合物の含有量は、リチウム遷移金属複合酸化物に対してホウ素として2.0mol%以下であることが好ましい。多すぎると正極組成物全体の充放電容量低下につながる。また、少なすぎれば上述のリチウムの溶出防止効果が薄い。好ましい範囲は0.5mol%以上1.5mol%以下である。 The content of the boron compound in the positive electrode composition is preferably 2.0 mol% or less as boron with respect to the lithium transition metal composite oxide. If it is too large, the charge / discharge capacity of the entire positive electrode composition will decrease. Further, if the amount is too small, the above-mentioned effect of preventing the elution of lithium is weak. The preferred range is 0.5 mol% or more and 1.5 mol% or less.

上述のホウ素化合物の原料化合物は、酸化ホウ素、ホウ素のオキソ酸及びホウ素のオキソ酸塩からなる群より選択される少なくとも一種であると、最終的なホウ素化合物が本発明の目的に適した形態になるので好ましい。ホウ素のオキソ酸(塩)には、オルトホウ酸(塩)、メタホウ酸(塩)、二ホウ酸(塩)、三ホウ酸(塩)等のポリホウ酸(塩)等がある。オキソ酸塩を原料化合物とする場合、リチウム塩又はアンモニウム塩が好ましい。具体的な例として、四ホウ酸リチウム(Li)、五ホウ酸アンモニウム(NH)等が挙げられる。なおこれら原料化合物は水和水を有していてもよい。原料化合物は、ホウ素のオキソ酸であるとその取り扱い易さ、及び最終的なホウ素化合物の形態の点で好ましい。特にオルトホウ酸(所謂普通のホウ酸)が好ましい。 When the raw material compound of the above-mentioned boron compound is at least one selected from the group consisting of boron oxide, oxo acid of boron and oxo acid salt of boron, the final boron compound is in a form suitable for the object of the present invention. It is preferable because it becomes. The oxo acid (salt) of boron includes polyboric acid (salt) such as orthoborate (salt), metaboric acid (salt), diboric acid (salt), and triboric acid (salt). When the oxo acid salt is used as a raw material compound, a lithium salt or an ammonium salt is preferable. Specific examples include lithium borate (Li 2 B 4 O 7 ), ammonium pentaborate (NH 4 B 5 O 8 ) and the like. In addition, these raw material compounds may have hydration water. The raw material compound is preferably an oxo acid of boron in terms of ease of handling and the final form of the boron compound. In particular, orthoboric acid (so-called ordinary boric acid) is preferable.

[正極組成物の製造]
次に正極組成物の製造方法について説明する。正極組成物の製造方法は、リチウム遷移金属複合酸化物を合成する合成工程、リチウム遷移金属複合酸化物とホウ素化合物の原料化合物とを混合し、原料混合物を得る混合工程、及び原料混合物を焼成する焼成工程を含む。
[Manufacturing of positive electrode composition]
Next, a method for producing the positive electrode composition will be described. The positive electrode composition is produced by a synthesis step of synthesizing a lithium transition metal composite oxide, a mixing step of mixing a lithium transition metal composite oxide with a raw material compound of a boron compound to obtain a raw material mixture, and firing the raw material mixture. Includes firing step.

[合成工程]
リチウム遷移金属複合酸化物は、公知の手法を適宜用いて合成する。高温で酸化物に分解する原料化合物を目的組成に合わせて混合する、溶媒に可溶な原料化合物を溶媒に溶解し、温度調整、pH調整、錯化剤投入等で前駆体の沈殿を生じさせる、等適宜混合原料を調整し、得られる混合原料を700℃〜1100℃程度で焼成すればよい。
[Synthesis process]
The lithium transition metal composite oxide is synthesized by appropriately using a known method. The raw material compound that decomposes into oxides at high temperature is mixed according to the target composition. The raw material compound that is soluble in the solvent is dissolved in the solvent, and the precursor is precipitated by temperature adjustment, pH adjustment, addition of a complexing agent, etc. , Etc. The mixed raw material may be appropriately adjusted, and the obtained mixed raw material may be fired at about 700 ° C. to 1100 ° C.

[混合工程]
前記合成工程で得られるリチウム遷移金属複合酸化物と、ホウ素化合物の原料化合物とを十分混合する。既存の撹拌機等を用いて両者の偏りがない程度に混合できれば十分であるが、メカノケミカルな効果によってホウ素化合物がリチウム遷移金属複合酸化物粒子の表面に被覆等の形態で存在していればより好ましい。この混合工程で、ホウ素化合物の原料の少なくとも一部はリチウム等と複合酸化物を形成していると推測される。原料化合物は前述のように酸化ホウ素、ホウ素のオキソ酸及びホウ素のオキソ酸塩からなる群より選択される少なくとも一種が好ましく用いられる。ホウ素のオキソ酸塩を用いる場合はリチウム塩又はアンモニウム塩が好ましい。前述のように、原料化合物としてより好ましいのはホウ素のオキソ酸で、特にオルトホウ酸が好ましい。このようにして本発明の正極組成物を得ることが出来る。
[Mixing process]
The lithium transition metal composite oxide obtained in the synthesis step and the raw material compound of the boron compound are sufficiently mixed. It is sufficient if the two can be mixed using an existing stirrer or the like to the extent that there is no bias between the two, but if the boron compound is present on the surface of the lithium transition metal composite oxide particles due to the mechanochemical effect, etc. More preferred. It is presumed that at least a part of the raw material of the boron compound forms a composite oxide with lithium or the like in this mixing step. As described above, at least one selected from the group consisting of boron oxide, boron oxo acid and boron oxo acid salt is preferably used as the starting compound. When an oxo acid salt of boron is used, a lithium salt or an ammonium salt is preferable. As described above, boron oxoacid is more preferable as the raw material compound, and orthoboric acid is particularly preferable. In this way, the positive electrode composition of the present invention can be obtained.

[焼成工程]
前記混合工程で得られる正極組成物を原料混合物とし、さらに焼成する。こうして、得られる正極組成物中のホウ素化合物の多くがリチウム遷移金属複合酸化物粒子の表面を被覆した形態で存在する。焼成工程を経て得られ、リチウム遷移金属複合酸化物粒子の表面を被覆したホウ素化合物は、リチウム遷移金属複合酸化物を構成する元素と化学的、あるいは物理的な結合を形成し、強固に一体化していると考えられる。その結果、リチウム遷移金属複合酸化物からリチウムの溶出が抑制され、正極スラリーの粘度上昇を抑制すると考えられる。また、同時に正極組成物全体のリチウムイオン導電性を高め、出力特性向上に寄与する。
[Baking process]
The positive electrode composition obtained in the mixing step is used as a raw material mixture and further fired. Most of the boron compounds in the obtained positive electrode composition are present in the form of coating the surface of the lithium transition metal composite oxide particles. The boron compound obtained through the firing step and coating the surface of the lithium transition metal composite oxide particles forms a chemical or physical bond with the elements constituting the lithium transition metal composite oxide and is firmly integrated. It is thought that it is. As a result, it is considered that the elution of lithium from the lithium transition metal composite oxide is suppressed and the increase in viscosity of the positive electrode slurry is suppressed. At the same time, it enhances the lithium ion conductivity of the entire positive electrode composition and contributes to the improvement of output characteristics.

焼成温度は、高すぎるとリチウム遷移金属複合酸化物とホウ素化合物(あるいはその原料化合物)との反応が進みすぎ、リチウム遷移金属複合酸化物が本来の特性を発現出来なくなるので注意する。低すぎれば焼成工程による効果が見込めない。好ましい範囲は450℃以下、より好ましい範囲は200℃以上400℃以下である。 Note that if the firing temperature is too high, the reaction between the lithium transition metal composite oxide and the boron compound (or its raw material compound) proceeds too much, and the lithium transition metal composite oxide cannot exhibit its original characteristics. If it is too low, the effect of the firing process cannot be expected. The preferred range is 450 ° C. or lower, and the more preferable range is 200 ° C. or higher and 400 ° C. or lower.

反応槽に撹拌状態の純水を調整し、硫酸ニッケル、硫酸コバルト、及び硫酸マンガンの各水溶液を、Ni:Co:Mn=4:3:3となる流量比で滴下した。滴下終了後、液温を50℃にし、水酸化ナトリウム水溶液を一定量滴下してニッケルコバルトマンガン複合水酸化物の沈殿を得た。得られた沈殿を水洗、濾過、分離し、炭酸リチウム、及び酸化ジルコニウム(IV)と、Li:(Ni+Co+Mn):Zr=1.07:1:0.005となるように混合し、混合原料を得た。得られた混合原料を大気雰囲気下885℃で15時間焼成し、焼結体を得た。得られた焼結体を粉砕し、乾式篩にかけ、組成式Li1.07Ni0.4Co0.3Mn0.3Zr0.005で表されるリチウム遷移金属複合酸化物を得た。 Pure water in a stirred state was adjusted in the reaction vessel, and aqueous solutions of nickel sulfate, cobalt sulfate, and manganese sulfate were added dropwise at a flow rate ratio of Ni: Co: Mn = 4: 3: 3. After completion of the dropping, the liquid temperature was adjusted to 50 ° C., and a certain amount of an aqueous sodium hydroxide solution was dropped to obtain a precipitate of nickel-cobalt-manganese composite hydroxide. The obtained precipitate was washed with water, filtered, and separated, and mixed with lithium carbonate and zirconium oxide (IV) so that Li: (Ni + Co + Mn): Zr = 1.07: 1: 0.005, and the mixed raw material was mixed. Obtained. The obtained mixed raw material was fired at 885 ° C. for 15 hours in an air atmosphere to obtain a sintered body. The obtained sintered body was pulverized and subjected to a dry sieve to obtain a lithium transition metal composite oxide represented by the composition formula Li 1.07 Ni 0.4 Co 0.3 Mn 0.3 Zr 0.005 O 2. It was.

得られたリチウム遷移金属複合酸化物に対し、ホウ素化合物の原料として0.5mol%のホウ酸を高速せん断型ミキサーで混合し、原料混合物を得た。得られた原料混合物を大気中にて250℃、10時間焼成することで目的の正極組成物を得た。 0.5 mol% boric acid as a raw material for the boron compound was mixed with the obtained lithium transition metal composite oxide with a high-speed shear type mixer to obtain a raw material mixture. The obtained raw material mixture was calcined in the air at 250 ° C. for 10 hours to obtain the desired positive electrode composition.

混合するホウ酸がリチウム複合酸化物に対し1.0mol%であること以外実施例1と同様にして目的の正極組成物を得た。 The desired positive electrode composition was obtained in the same manner as in Example 1 except that the boric acid to be mixed was 1.0 mol% with respect to the lithium composite oxide.

Ni:Co:Mn=5:2:3であること以外実施例1と同様にしてニッケルコバルトマンガン複合水酸化物の沈殿を得た。得られた沈殿を水洗、濾過、分離し、Li:(Ni+Co+Mn):Zr=1.14:1:0.005であること以外実施例1と同様にし、組成式Li1.14Ni0.5Co0.2Mn0.3Zr0.005で表されるリチウム遷移金属複合酸化物を得た。 A nickel-cobalt-manganese composite hydroxide precipitate was obtained in the same manner as in Example 1 except that Ni: Co: Mn = 5: 2: 3. The obtained precipitate was washed with water, filtered, and separated in the same manner as in Example 1 except that Li: (Ni + Co + Mn): Zr = 1.14: 1: 0.005, and the composition formula Li 1.14 Ni 0.5. A lithium transition metal composite oxide represented by Co 0.2 Mn 0.3 Zr 0.005 O 2 was obtained.

得られるリチウム遷移金属複合酸化物に対し、ホウ素化合物の原料として0.3mol%のホウ酸を高速せん断型ミキサーで混合し、原料混合物を得る。得られる原料混合物を大気中にて250℃、10時間焼成することで目的の正極組成物を得た。 0.3 mol% boric acid as a raw material for the boron compound is mixed with the obtained lithium transition metal composite oxide with a high-speed shear type mixer to obtain a raw material mixture. The obtained raw material mixture was calcined in the air at 250 ° C. for 10 hours to obtain the desired positive electrode composition.

混合するホウ酸がリチウム複合酸化物に対し0.5mol%であること以外実施例3と同様にして目的の正極組成物を得た。 The desired positive electrode composition was obtained in the same manner as in Example 3 except that the boric acid to be mixed was 0.5 mol% with respect to the lithium composite oxide.

混合するホウ酸がリチウム複合酸化物に対し1.3mol%であること以外実施例3と同様にして目的の正極組成物を得た。 The desired positive electrode composition was obtained in the same manner as in Example 3 except that the boric acid to be mixed was 1.3 mol% with respect to the lithium composite oxide.

原料混合物を大気中にて350℃、10時間焼成する以外実施例3と同様にして目的の正極組成物を得た。 The desired positive electrode composition was obtained in the same manner as in Example 3 except that the raw material mixture was calcined in the air at 350 ° C. for 10 hours.

原料混合物を大気中にて500℃、10時間焼成する以外実施例3と同様にして目的の正極組成物を得た。 The desired positive electrode composition was obtained in the same manner as in Example 3 except that the raw material mixture was calcined in the air at 500 ° C. for 10 hours.

ホウ素化合物の原料として0.5mol%のメタホウ酸リチウムを用いる以外実施例3と同様にして目的の正極組成物を得た。 The desired positive electrode composition was obtained in the same manner as in Example 3 except that 0.5 mol% lithium metaborate was used as a raw material for the boron compound.

[比較例1]
実施例1におけるリチウム遷移金属複合酸化物を比較例用に用いた。
[Comparative Example 1]
The lithium transition metal composite oxide of Example 1 was used for comparative examples.

[比較例2]
実施例3におけるリチウム遷移金属複合酸化物を比較例用に用いた。
[Comparative Example 2]
The lithium transition metal composite oxide of Example 3 was used for comparative examples.

[出力特性の評価]
実施例1〜8及び比較例1、2について、DC−IR(直流内部抵抗)を以下のようにして測定した。
[Evaluation of output characteristics]
For Examples 1 to 8 and Comparative Examples 1 and 2, DC-IR (DC internal resistance) was measured as follows.

[1.正極の作製]
正極組成物85重量部、アセチレンブラック10重量部、及びPVDF(ポリフッ化ビニリデン)5.0重量部を、NMP(ノルマルメチル−2−ピロリドン)に分散させて正極スラリーを調整した。得られた正極スラリーをアルミニウム箔に塗布し、乾燥後ロールプレス機で圧縮成形し、所定サイズに裁断して正極を得た。
[1. Preparation of cathode]
85 parts by weight of the positive electrode composition, 10 parts by weight of acetylene black, and 5.0 parts by weight of PVDF (polyvinylidene fluoride) were dispersed in NMP (normal methyl-2-pyrrolidone) to prepare a positive electrode slurry. The obtained positive electrode slurry was applied to an aluminum foil, dried, compression-molded with a roll press, and cut into a predetermined size to obtain a positive electrode.

[2.負極の作製]
人造黒鉛97.5重量部、CMC(カルボキシメチルセルロース)1.5重量部、及びSBR(スチレンブタジエンゴム)1.0重量部を水に分散させて負極スラリーを調整した。得られた負極スラリーを銅箔に塗布し、乾燥後ロールプレス機で圧縮成形し、所定サイズに裁断して負極を得た。
[2. Fabrication of negative electrode]
A negative electrode slurry was prepared by dispersing 97.5 parts by weight of artificial graphite, 1.5 parts by weight of CMC (carboxymethyl cellulose), and 1.0 part by weight of SBR (styrene butadiene rubber) in water. The obtained negative electrode slurry was applied to a copper foil, dried, compression-molded with a roll press, and cut into a predetermined size to obtain a negative electrode.

[3.非水電解液の作製]
EC(エチレンカーボネイト)とMEC(メチルエチルカーボネイト)を体積比率3:7で混合し、溶媒とした。得られた混合溶媒に六フッ化リン酸リチウム(LiPF)をその濃度が、1mol/lになるように溶解させて、非水電解液を得た。
[3. Preparation of non-aqueous electrolyte solution]
EC (ethylene carbonate) and MEC (methyl ethyl carbonate) were mixed at a volume ratio of 3: 7 to prepare a solvent. Lithium hexafluorophosphate (LiPF 6 ) was dissolved in the obtained mixed solvent so that its concentration was 1 mol / l to obtain a non-aqueous electrolytic solution.

[4.評価用電池の組み立て]
上記正極と負極の集電体に、それぞれリード電極を取り付けたのち120℃で真空乾燥を行った。次いで、正極と負極との間に多孔性ポリエチレンからなるセパレータを配し、袋状のラミネートパックにそれらを収納した。収納後60℃で真空乾燥して各部材に吸着した水分を除去した。真空乾燥後、ラミネートパック内に、先述の非水電解液を注入、封止し、評価用のラミネートタイプの非水電解液二次電池を得た。
[4. Assembly of evaluation battery]
After attaching lead electrodes to the current collectors of the positive electrode and the negative electrode, vacuum drying was performed at 120 ° C. Next, a separator made of porous polyethylene was arranged between the positive electrode and the negative electrode, and they were stored in a bag-shaped laminate pack. After storage, it was vacuum dried at 60 ° C. to remove the moisture adsorbed on each member. After vacuum drying, the above-mentioned non-aqueous electrolyte solution was injected and sealed in the laminate pack to obtain a laminate-type non-aqueous electrolyte secondary battery for evaluation.

[5.DC−IRの測定]
得られた電池に微弱電流を流してエージングを行い、正極及び負極に電解質を十分なじませた。その後、高電流での放電と、微弱電流での充電を繰り返した。10回目の充電における充電容量を電池の全充電容量とし、10回目の放電後、全充電容量の4割まで充電した。充電後、電池を−25℃に設定した恒温槽内に入れ、6時間置いた後、0.02A、0.04A、0.06Aで放電し、電圧を測定した。横軸に電流、縦軸に電圧をとって交点をプロットし、交点を結んだ直線の傾きをDC−IRとした。DC−IRが低いことは、出力特性が良いことを意味する。
[5. DC-IR measurement]
A weak current was passed through the obtained battery for aging, and the positive electrode and the negative electrode were sufficiently blended with the electrolyte. After that, discharging with a high current and charging with a weak current were repeated. The charge capacity in the 10th charge was defined as the total charge capacity of the battery, and after the 10th discharge, the battery was charged to 40% of the total charge capacity. After charging, the battery was placed in a constant temperature bath set at −25 ° C., left for 6 hours, discharged at 0.02A, 0.04A, and 0.06A, and the voltage was measured. The intersections were plotted with current on the horizontal axis and voltage on the vertical axis, and the slope of the straight line connecting the intersections was defined as DC-IR. A low DC-IR means that the output characteristics are good.

[正極スラリーの粘度測定]
実施例1、2及び比較例1について、正極スラリーの粘度を以下のようにして測定した。
[Viscosity measurement of positive electrode slurry]
For Examples 1 and 2 and Comparative Example 1, the viscosity of the positive electrode slurry was measured as follows.

[1.初期粘度測定]
正極組成物30g、PVDF1.57g、NMP12.48gを150mlのポリエチレン容器に入れ、常温(約25℃)下で5分間混練した。混練後、得られたスラリーを速やかにE型粘度計にて測定した。ブレードタイプはコーンプレートタイプを使用し、ローターの回転速度は5rpmで行った。こうして初期粘度の測定値を得た。
[1. Initial viscosity measurement]
30 g of the positive electrode composition, 1.57 g of PVDF, and 12.48 g of NMP were placed in a 150 ml polyethylene container and kneaded at room temperature (about 25 ° C.) for 5 minutes. After kneading, the obtained slurry was immediately measured with an E-type viscometer. A cone plate type was used as the blade type, and the rotation speed of the rotor was 5 rpm. In this way, the measured value of the initial viscosity was obtained.

[2.粘度変化の評価]
次に、ポリエチレン容器内のスラリーを60℃恒温槽内に静置放置し、24時間後及び48時間後に粘度測定を行った。なお、測定前に、常温下で2分間混練した。
[2. Evaluation of viscosity change]
Next, the slurry in the polyethylene container was left to stand in a constant temperature bath at 60 ° C., and the viscosity was measured after 24 hours and 48 hours. Before the measurement, the mixture was kneaded at room temperature for 2 minutes.

[サイクル特性評価]
実施例1〜8及び比較例1、2について、サイクル特性を以下のようにして測定した。
[Cycle characterization]
The cycle characteristics of Examples 1 to 8 and Comparative Examples 1 and 2 were measured as follows.

出力特性評価用と同様の評価用二次電池に微弱電流でエージングを行い、正極及び負極に電解質を十分なじませた。エージング後、電池を20℃に設定した恒温槽内に入れ、充電電位4.2V、充電電流1.0C(1C≡1時間で放電が終了する電流)での充電と、放電電位2.75V、放電電流1.0Cでの放電を1サイクルとし、充放電を繰り返した。nサイクル目の放電容量を1サイクル目の放電容量で除した値を、nサイクル目の放電容量維持率とした。放電容量維持率が高いことは、サイクル特性が良いことを意味する。 The secondary battery for evaluation similar to that for evaluation of output characteristics was aged with a weak current, and the positive electrode and the negative electrode were sufficiently blended with the electrolyte. After aging, the battery is placed in a constant temperature bath set at 20 ° C., and charged with a charging potential of 4.2 V and a charging current of 1.0 C (current that discharges in 1 C≡1 hour), and a discharge potential of 2.75 V. Discharge at a discharge current of 1.0 C was set as one cycle, and charging and discharging were repeated. The value obtained by dividing the discharge capacity of the nth cycle by the discharge capacity of the first cycle was defined as the discharge capacity retention rate of the nth cycle. A high discharge capacity retention rate means that the cycle characteristics are good.

実施例1〜8及び比較例1、2のリチウム遷移金属複合酸化物(構成A)、ホウ素化合物の原料化合物(構成B)及び正極組成物中のホウ素含有量(B含有量)を表1に、電池特性を表2に示す。また、実施例1、2及び比較例1の正極組成物を用いた正極スラリーの粘度変化を図1に示す。 Table 1 shows the boron content (B content) in the lithium transition metal composite oxide (Structure A) of Examples 1 to 8 and Comparative Examples 1 and 2, the raw material compound of the boron compound (Structure B), and the positive electrode composition. , Battery characteristics are shown in Table 2. Further, FIG. 1 shows a change in viscosity of the positive electrode slurry using the positive electrode compositions of Examples 1 and 2 and Comparative Example 1.

Figure 0006852747
Figure 0006852747

Figure 0006852747
Figure 0006852747

表1、表2より、ホウ素化合物の原料化合物としてホウ酸を用い、焼成工程を経た実施例1、2あるいは実施例3〜8は、ホウ素化合物のない比較例1あるいは2に比べて出力特性及びサイクル特性が共に向上していることが分かる。また、図1より、ホウ素化合物の原料化合物としてホウ酸を用い、焼成工程を経た実施例1、2は正極スラリーの粘度変化がほとんどないのに対し、ホウ素化合物のない比較例1は急速に正極スラリーの粘度が上昇し、24時間後には測定限界(40000mPa・s)に達していることが分かる。 From Tables 1 and 2, when boric acid was used as the raw material compound of the boron compound and the firing steps were performed, Examples 1 and 2 or Examples 3 to 8 had output characteristics and output characteristics as compared with Comparative Example 1 or 2 without the boron compound. It can be seen that both cycle characteristics are improved. Further, from FIG. 1, in Examples 1 and 2 in which boric acid was used as the raw material compound of the boron compound and the firing step was performed, there was almost no change in the viscosity of the positive electrode slurry, whereas in Comparative Example 1 without the boron compound, the positive electrode was rapidly formed. It can be seen that the viscosity of the slurry increases and reaches the measurement limit (40,000 mPa · s) after 24 hours.

本発明の正極組成物を用いると、非水電解液二次電池においてニッケルコバルトマンガン酸リチウムの特長と高い出力特性及びサイクル特性とを両立させることができる。さらに正極スラリーの粘度上昇が抑制されるので、電池作製時の操作性及び歩留まりが向上する。これらのことより、本発明の正極組成物を用いた非水電解液二次電池は、携帯電話、ノート型パソコン、デジタルカメラ等のモバイル機器だけでなく、電気自動車等の大型機器の動力用にも好適に利用可能である。 By using the positive electrode composition of the present invention, it is possible to achieve both the features of lithium nickel cobalt manganate, high output characteristics and cycle characteristics in a non-aqueous electrolyte secondary battery. Further, since the increase in the viscosity of the positive electrode slurry is suppressed, the operability and the yield at the time of manufacturing the battery are improved. Based on these facts, the non-aqueous electrolyte secondary battery using the positive electrode composition of the present invention is used not only for mobile devices such as mobile phones, notebook computers and digital cameras, but also for powering large devices such as electric vehicles. Is also preferably available.

Claims (9)

一般式
LiNi1−x−yCoMn(1.00≦a≦1.50、0<x≦0.50、0<y≦0.50、0.00≦z≦0.02、0.40≦x+y≦0.60、MはZr、Ti、Mg、Ta、Nb及びMoからなる群より選択される少なくとも一種)で表されるリチウム遷移金属複合酸化物と、
少なくとも酸素を含むホウ素化合物とを含み、
前記リチウム遷移金属複合酸化物と固体状のオルトホウ酸との混合物の焼成体である、非水電解液二次電池用正極組成物。
General formula Li a Ni 1-x-y Co x Mn y M z O 2 (1.00 ≦ a ≦ 1.50, 0 <x ≦ 0.50, 0 <y ≦ 0.50, 0.00 ≦ z ≦ 0.02,0.40 ≦ x + y ≦ 0.60 , M is Zr, Ti, Mg, and the lithium transition metal composite oxide represented by at least one) of Ta, is selected from the group consisting of Nb and Mo,
Contains at least oxygen-containing boron compounds
A positive electrode composition for a non-aqueous electrolyte secondary battery, which is a calcined product of a mixture of the lithium transition metal composite oxide and solid orthoboric acid.
前記ホウ素化合物の含有量が、前記リチウム遷移金属複合酸化物に対してホウ素として2.0mol%以下である、請求項1に記載の非水電解液二次電池用正極組成物。 The positive electrode composition for a non-aqueous electrolyte secondary battery according to claim 1, wherein the content of the boron compound is 2.0 mol% or less as boron with respect to the lithium transition metal composite oxide. 前記焼成体は、焼成温度が450℃以下で得られる、請求項1又は2に記載の非水電解液二次電池用正極組成物。 The positive electrode composition for a non-aqueous electrolytic solution secondary battery according to claim 1 or 2, wherein the fired body is obtained at a firing temperature of 450 ° C. or lower. 前記一般式において、0.05≦x≦0.35、0.05≦y≦0.35である、請求項1から3のいずれか一項に記載の非水電解液二次電池用正極組成物 The positive electrode composition for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein in the above general formula, 0.05 ≦ x ≦ 0.35 and 0.05 ≦ y ≦ 0.35. Stuff 請求項1から4のいずれか一項に記載の正極組成物を正極に用いた非水電解液二次電池。 A non-aqueous electrolytic solution secondary battery using the positive electrode composition according to any one of claims 1 to 4 as a positive electrode. 一般式
LiNi1−x−yCoMn(1.00≦a≦1.50、0<x≦0.50、0<y≦0.50、0.00≦z≦0.02、0.40≦x+y≦0.60、MはZr、Ti、Mg、Ta、Nb及びMoからなる群より選択される少なくとも一種)で表されるリチウム遷移金属複合酸化物と、
少なくとも酸素を含むホウ素化合物とを含む、非水電解液二次電池用正極組成物の製造方法であって、
前記リチウム遷移金属複合酸化物を合成する合成工程と、
前記合成工程で得られるリチウム遷移金属複合酸化物と、前記ホウ素化合物の原料化合物である固体状のオルトホウ酸とを混合し、原料混合物を得る混合工程と、
前記混合工程で得られる前記原料混合物を焼成する焼成工程と、
を含む、非水電解液二次電池用正極組成物の製造方法。
General formula Li a Ni 1-x-y Co x Mn y M z O 2 (1.00 ≦ a ≦ 1.50, 0 <x ≦ 0.50, 0 <y ≦ 0.50, 0.00 ≦ z ≦ 0.02,0.40 ≦ x + y ≦ 0.60 , M is Zr, Ti, Mg, and the lithium transition metal composite oxide represented by at least one) of Ta, is selected from the group consisting of Nb and Mo,
A method for producing a positive electrode composition for a non-aqueous electrolyte secondary battery, which comprises at least an oxygen-containing boron compound.
The synthetic step of synthesizing the lithium transition metal composite oxide and
A mixing step of mixing the lithium transition metal composite oxide obtained in the synthesis step with solid orthoboric acid, which is a raw material compound of the boron compound, to obtain a raw material mixture.
A firing step of firing the raw material mixture obtained in the mixing step, and a firing step.
A method for producing a positive electrode composition for a non-aqueous electrolyte secondary battery, which comprises.
前記焼成工程における焼成温度が450℃以下である、請求項6に記載の製造方法。 The production method according to claim 6, wherein the firing temperature in the firing step is 450 ° C. or lower. 前記混合工程における前記原料化合物の混合量が、前記リチウム遷移金属複合酸化物に対してホウ素として2.0mol%以下である、請求項6または7に記載の製造方法。 The production method according to claim 6 or 7, wherein the mixing amount of the raw material compound in the mixing step is 2.0 mol% or less as boron with respect to the lithium transition metal composite oxide. 前記一般式において、0.05≦x≦0.35、0.05≦y≦0.35である、請求項6から8のいずれか一項に記載の製造方法。 The production method according to any one of claims 6 to 8, wherein the general formula is 0.05 ≦ x ≦ 0.35 and 0.05 ≦ y ≦ 0.35.
JP2019072999A 2013-10-17 2019-04-05 A method for producing a positive electrode composition for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a positive electrode composition for a non-aqueous electrolyte secondary battery. Active JP6852747B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013216289 2013-10-17
JP2013216289 2013-10-17

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014154385A Division JP6575048B2 (en) 2013-10-17 2014-07-30 The positive electrode composition for nonaqueous electrolyte secondary batteries, the nonaqueous electrolyte secondary battery, and the manufacturing method of the positive electrode composition for nonaqueous electrolyte secondary batteries.

Publications (2)

Publication Number Publication Date
JP2019114560A JP2019114560A (en) 2019-07-11
JP6852747B2 true JP6852747B2 (en) 2021-03-31

Family

ID=67223739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019072999A Active JP6852747B2 (en) 2013-10-17 2019-04-05 A method for producing a positive electrode composition for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a positive electrode composition for a non-aqueous electrolyte secondary battery.

Country Status (1)

Country Link
JP (1) JP6852747B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6659893B1 (en) * 2019-04-12 2020-03-04 住友化学株式会社 Lithium metal composite oxide powder and positive electrode active material for lithium secondary batteries

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040382A (en) * 2008-08-06 2010-02-18 Sony Corp Method of manufacturing positive electrode active material, and positive electrode active material
KR101264364B1 (en) * 2009-12-03 2013-05-14 주식회사 엘앤에프신소재 Cathode active material for lithium secondary battery and lithium secondary battery using the same
JP2011171113A (en) * 2010-02-18 2011-09-01 Sanyo Electric Co Ltd Positive active material for lithium secondary battery, manufacturing method therefor, and the lithium secondary battery using the same
JP5382061B2 (en) * 2010-06-22 2014-01-08 日亜化学工業株式会社 Positive electrode composition for non-aqueous electrolyte secondary battery and positive electrode slurry using the positive electrode composition
JP5601157B2 (en) * 2010-11-01 2014-10-08 トヨタ自動車株式会社 Positive electrode active material, positive electrode active material layer, all-solid battery, and method for producing positive electrode active material
JP5704409B2 (en) * 2012-01-25 2015-04-22 トヨタ自動車株式会社 Sealed lithium secondary battery

Also Published As

Publication number Publication date
JP2019114560A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
JP6286855B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery
JP6575048B2 (en) The positive electrode composition for nonaqueous electrolyte secondary batteries, the nonaqueous electrolyte secondary battery, and the manufacturing method of the positive electrode composition for nonaqueous electrolyte secondary batteries.
JP5382061B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and positive electrode slurry using the positive electrode composition
US10205158B2 (en) LMFP cathode materials with improved electrochemical performance
JP6554780B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing the same
US10516159B2 (en) Positive electrode active material for nonaqueous secondary battery
JP5842596B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing positive electrode slurry for non-aqueous electrolyte secondary battery
JP6685640B2 (en) Non-aqueous electrolyte Positive electrode active material for secondary battery
WO2006106700A1 (en) ACTIVE MATERIAL FOR LITHIUM ION BATTERY COMPOSED OF Al-CONTAINING LITHIUM TITANATE AND LITHIUM ION BATTERY
JP2019216069A (en) Cathode active material for nonaqueous electrolyte secondary battery and manufacturing method of the same
JP6852747B2 (en) A method for producing a positive electrode composition for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a positive electrode composition for a non-aqueous electrolyte secondary battery.
JP2019114454A (en) Method of manufacturing positive electrode material for non-aqueous secondary battery
JP5678826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2018195419A (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JP6233101B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP6156078B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6597167B2 (en) Positive electrode composition for non-aqueous secondary battery
WO2004049474A1 (en) POSITIVE ELECTRODE MATERIAL FOR Li ION SECONDARY BATTERY

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R150 Certificate of patent or registration of utility model

Ref document number: 6852747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250