JP6597167B2 - Positive electrode composition for non-aqueous secondary battery - Google Patents

Positive electrode composition for non-aqueous secondary battery Download PDF

Info

Publication number
JP6597167B2
JP6597167B2 JP2015206902A JP2015206902A JP6597167B2 JP 6597167 B2 JP6597167 B2 JP 6597167B2 JP 2015206902 A JP2015206902 A JP 2015206902A JP 2015206902 A JP2015206902 A JP 2015206902A JP 6597167 B2 JP6597167 B2 JP 6597167B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
titanium boride
aqueous secondary
electrode composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015206902A
Other languages
Japanese (ja)
Other versions
JP2017079156A (en
Inventor
啓介 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2015206902A priority Critical patent/JP6597167B2/en
Publication of JP2017079156A publication Critical patent/JP2017079156A/en
Application granted granted Critical
Publication of JP6597167B2 publication Critical patent/JP6597167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明はリチウムイオン二次電池等の非水系二次電池の正極に用いられる組成物に関する。   The present invention relates to a composition used for a positive electrode of a non-aqueous secondary battery such as a lithium ion secondary battery.

リチウムイオン二次電池等の非水系二次電池は、携帯電話、ノートパソコン等の小型機器用電源として普及している。非水系二次電池は、平均動作電圧を高くすることが可能なので、電気自動車等の大型機器の動力用電源としても検討されている。   Non-aqueous secondary batteries such as lithium ion secondary batteries are widely used as power sources for small devices such as mobile phones and notebook computers. Since non-aqueous secondary batteries can increase the average operating voltage, they are also being studied as power sources for large equipment such as electric vehicles.

非水系二次電池の正極にはリチウムコバルト複合酸化物のようなリチウム遷移金属複合酸化物が活物質として用いられるのが一般的である。遷移金属にニッケルを用いたリチウム遷移金属複合酸化物(リチウムニッケル系複合酸化物)は、リチウムコバルト複合酸化物以上に単位質量当たりの容量が大きいため、大型機器の動力用電源用の非水系二次電池の正極活物質として期待されている。   Generally, a lithium transition metal composite oxide such as a lithium cobalt composite oxide is used as an active material for a positive electrode of a non-aqueous secondary battery. Lithium transition metal composite oxide (lithium nickel composite oxide) using nickel as the transition metal has a larger capacity per unit mass than lithium cobalt composite oxide. It is expected as a positive electrode active material for secondary batteries.

さらに、ホウ化チタンと正極活物質とを混合して正極組成物とする例も存在する。   Further, there is an example in which titanium boride and a positive electrode active material are mixed to form a positive electrode composition.

特許文献1には、組成式Li1.1Ni0.3Co0.4Mn0.3で表されるリチウム遷移金属複合酸化物粒子からなる正極活物質と、平均粒径が2μmのTiB粒子とを、モル比で99:1となるよう混合した例が記載されている。 Patent Document 1 discloses a positive electrode active material composed of lithium transition metal composite oxide particles represented by a composition formula Li 1.1 Ni 0.3 Co 0.4 Mn 0.3 O 2 and an average particle diameter of 2 μm. and TiB 2 particles, 99 in a molar ratio: example were mixed 1 become as has been described.

特許文献2には、リチウムニッケル複合酸化物からなる正極活物質の表面に、5重量%のTiB粒子を融合させた例が記載されている。融合は、TiB粒子に機械的エネルギーを与えることによってなされたとされている。TiB粒子の平均粒径、粒度等は不明である。 Patent Document 2 describes an example in which 5% by weight of TiB 2 particles are fused on the surface of a positive electrode active material made of a lithium nickel composite oxide. The fusion is said to have been done by applying mechanical energy to the TiB 2 particles. The average particle size and particle size of the TiB 2 particles are unknown.

特開2012−048838号公報JP 2012-048838 A 特開平8−222219号公報JP-A-8-222219

電気自動車のような大型機器の動力用電源として非水系二次電池を用いる場合、非水系二次電池のエネルギー密度を高めるためにより高い充電電圧で用いることが多い。しかしながら、充電電圧を4.3V以上の高電圧にして非水系二次電池を用いると、サイクル特性等が顕著に悪化し得ることが分かった。特にリチウムニッケル系複合酸化物を正極活物質に用いた非水系二次電池においてその傾向が強いことが分かった。   When a non-aqueous secondary battery is used as a power source for large equipment such as an electric vehicle, it is often used at a higher charging voltage in order to increase the energy density of the non-aqueous secondary battery. However, it has been found that when the non-aqueous secondary battery is used with the charging voltage set to a high voltage of 4.3 V or higher, the cycle characteristics and the like can be significantly deteriorated. In particular, it was found that the tendency was strong in the non-aqueous secondary battery using the lithium nickel composite oxide as the positive electrode active material.

本発明の目的は、リチウムニッケル系複合酸化物を用いた非水系二次電池において、高電圧における、充放電特性、高温保存特性およびサイクル特性に優れた非水系二次電池を実現可能な正極組成物を提供することである。   An object of the present invention is a positive electrode composition capable of realizing a non-aqueous secondary battery excellent in charge / discharge characteristics, high-temperature storage characteristics and cycle characteristics at a high voltage in a non-aqueous secondary battery using a lithium nickel-based composite oxide. Is to provide things.

本発明の実施形態に係る非水系二次電池用正極組成物は、組成式LiNi1−x−y−zCoMn (1.00≦a≦1.50、0.00≦x≦0.50、0.00≦y≦0.50、0.00≦z≦0.15、0.000≦w≦0.020、x+y+z≦0.70、MはAlおよびMgからなる群より選択される少なくとも一種の元素、MはTi、Zr、W、Ta、NbおよびMoからなる群より選択される少なくとも一種の元素)で表されるリチウム遷移金属複合酸化物粒子を含む正極活物質と、ホウ化チタン粒子とを含み、前記ホウ化チタン粒子の中心粒径は1.8μm以下であり、前記ホウ化チタンの含有率が、前記リチウム遷移金属複合酸化物粒子に対してチタンとして0.5mol%以下であることを特徴とする。 For nonaqueous secondary battery positive electrode composition according to the embodiment of the present invention, the composition formula Li a Ni 1-x-y -z Co x Mn y M 1 z M 2 w O 2 (1.00 ≦ a ≦ 1 .50, 0.00 ≦ x ≦ 0.50, 0.00 ≦ y ≦ 0.50, 0.00 ≦ z ≦ 0.15, 0.000 ≦ w ≦ 0.020, x + y + z ≦ 0.70, M at least one element 1 is selected from the group consisting of Al and Mg, lithium transition metal M 2 is that Ti, Zr, W, Ta, represented by at least one element) selected from the group consisting of Nb and Mo A positive electrode active material including composite oxide particles; and titanium boride particles, wherein the titanium boride particles have a center particle size of 1.8 μm or less, and the titanium boride content is the lithium transition metal composite 0.5 mol% or less as titanium with respect to oxide particles And wherein the Rukoto.

本発明の実施形態に係る非水系二次電池用正極組成物を用いると、高電圧における充放電特性、高温保存特性およびサイクル特性に優れた非水系二次電池を実現することが可能になる。   When the positive electrode composition for a non-aqueous secondary battery according to an embodiment of the present invention is used, a non-aqueous secondary battery excellent in charge / discharge characteristics at high voltage, high-temperature storage characteristics, and cycle characteristics can be realized.

図1は、非水系二次電池用正極組成物中のホウ化チタンの含有率と、非水系二次電池の充放電特性との関係を示す。FIG. 1 shows the relationship between the content of titanium boride in the positive electrode composition for a non-aqueous secondary battery and the charge / discharge characteristics of the non-aqueous secondary battery. 図2は、非水系二次電池用正極組成物中のホウ化チタン粒子の中心粒径と、非水系二次電池の充放電特性との関係を示す。FIG. 2 shows the relationship between the center particle diameter of the titanium boride particles in the positive electrode composition for a non-aqueous secondary battery and the charge / discharge characteristics of the non-aqueous secondary battery. 図3は、非水系二次電池用正極組成物中のホウ化チタンの含有率と、非水系二次電池の高温保存特性との関係を示す。FIG. 3 shows the relationship between the content of titanium boride in the positive electrode composition for a non-aqueous secondary battery and the high-temperature storage characteristics of the non-aqueous secondary battery. 図4は、非水系二次電池用正極組成物中のホウ化チタンの含有率と、非水系二次電池の別の高温保存特性との関係を示す。FIG. 4 shows the relationship between the content of titanium boride in the positive electrode composition for a non-aqueous secondary battery and another high-temperature storage characteristic of the non-aqueous secondary battery.

本実施形態に係る非水系二次電池用正極組成物は、正極活物質とホウ化チタン粒子とを含む。以下これらを中心に説明する。   The positive electrode composition for a non-aqueous secondary battery according to this embodiment includes a positive electrode active material and titanium boride particles. These will be mainly described below.

<正極活物質>
正極活物質は、遷移金属にニッケルを含有した層状構造のリチウム遷移金属複合酸化物粒子を主成分に用いる。正極活物質は、主成分として用いられるリチウム遷移金属複合酸化物粒子からなることが好ましいが、リチウムイオンを脱離および吸着可能な他のリチウム遷移金属複合酸化物粒子が含まれていてもよい。
<Positive electrode active material>
As the positive electrode active material, lithium transition metal composite oxide particles having a layered structure containing nickel as a transition metal are used as a main component. The positive electrode active material is preferably composed of lithium transition metal composite oxide particles used as a main component, but may contain other lithium transition metal composite oxide particles capable of desorbing and adsorbing lithium ions.

主成分として用いられるリチウム遷移金属複合酸化物粒子は、組成式LiNi1−x−y−zCoMn (1.00≦a≦1.50、0.00≦x≦0.50、0.00≦y≦0.50、0.00≦z≦0.15、0.000≦w≦0.020、x+y+z≦0.70、MはAlおよびMgからなる群より選択される少なくとも一種の元素、MはTi、Zr、W、Ta、NbおよびMoからなる群より選択される少なくとも一種の元素)で表される。 The lithium transition metal composite oxide particles used as the main component have a composition formula of Li a Ni 1-xyz Co x Mny y M 1 z M 2 w O 2 (1.00 ≦ a ≦ 1.50, 0 0.00 ≦ x ≦ 0.50, 0.00 ≦ y ≦ 0.50, 0.00 ≦ z ≦ 0.15, 0.000 ≦ w ≦ 0.020, x + y + z ≦ 0.70, M 1 represents Al and At least one element selected from the group consisting of Mg, M 2 is represented by at least one element selected from the group consisting of Ti, Zr, W, Ta, Nb and Mo).

リチウム遷移金属複合酸化物粒子(以下主成分とも呼ぶ)において、リチウムの量が多いと出力特性が向上する傾向にあるが、合成がしにくくなる。このことを踏まえ、主成分の組成式におけるa値の範囲は1.00≦a≦1.50とする。好ましいa値の範囲は1.05≦a≦1.25である。   In a lithium transition metal composite oxide particle (hereinafter also referred to as a main component), if the amount of lithium is large, output characteristics tend to be improved, but synthesis is difficult. Based on this, the range of the a value in the composition formula of the main component is 1.00 ≦ a ≦ 1.50. A preferable range of the a value is 1.05 ≦ a ≦ 1.25.

主成分は遷移金属としてニッケルを含む。ニッケルによってリチウムコバルト複合酸化物以上の充放電容量を実現する。   The main component contains nickel as a transition metal. Nickel realizes charge / discharge capacity higher than that of lithium cobalt composite oxide.

主成分におけるニッケルの一部はコバルトによって置換されていてもよい。コバルトによるニッケルの置換量は、本発明が解決しようとする課題以外の目的に応じて適宜決めて良い。但し、コバルトが多くなると製造コストが増大する。このことを踏まえ、主成分の組成式におけるx値の範囲は0.00≦x≦0.50とする。各種特性とコストとのバランスを考慮すると、好ましいx値の範囲は0.05≦x≦0.35である。   A part of nickel in the main component may be substituted with cobalt. The amount of nickel substituted by cobalt may be appropriately determined according to purposes other than the problems to be solved by the present invention. However, the production cost increases when the amount of cobalt increases. Based on this, the range of the x value in the composition formula of the main component is set to 0.00 ≦ x ≦ 0.50. Considering the balance between various characteristics and cost, the preferable range of the x value is 0.05 ≦ x ≦ 0.35.

主成分におけるニッケルの一部はマンガンによって置換されていてもよい。マンガンによるニッケルの置換量は、本発明が解決しようとする課題以外の目的に応じて適宜決めて良い。但し、マンガンが多くなると放電容量が低下する。このことを踏まえ、主成分の組成式におけるy値の範囲は0.00≦y≦0.50とする。各種特性のバランスを考慮すると、好ましいy値の範囲は0.10≦y≦0.40である。   A part of nickel in the main component may be substituted with manganese. The amount of substitution of nickel by manganese may be appropriately determined according to purposes other than the problem to be solved by the present invention. However, the discharge capacity decreases as the amount of manganese increases. Based on this, the range of the y value in the composition formula of the main component is set to 0.00 ≦ y ≦ 0.50. In consideration of the balance of various characteristics, a preferable y value range is 0.10 ≦ y ≦ 0.40.

主成分におけるニッケルの一部はアルミニウムおよびマグネシウムからなる群より選択される少なくとも一種の元素Mによって置換されていてもよい。元素Mによるニッケルの置換量は、本発明が解決しようとする課題以外の目的に応じて適宜決めて良い。但し、元素Mは典型元素であり電気化学反応に寄与しないので、元素Mによるニッケルの置換量はあまり多くできない。このことを踏まえ、主成分の組成式におけるz値の範囲は0.00≦z≦0.30とする。各種特性のバランスを考慮すると、好ましいz値の範囲は0.00≦z≦0.15である。 A part of nickel in the main component may be substituted with at least one element M 1 selected from the group consisting of aluminum and magnesium. Substitution of nickel by elemental M 1 may appropriately determined depending on the purpose other than an object of the present invention is to solve. However, since the element M 1 is a typical element and does not contribute to the electrochemical reaction, the substitution amount of nickel by the element M 1 cannot be increased so much. Based on this, the range of the z value in the composition formula of the main component is set to 0.00 ≦ z ≦ 0.30. In consideration of the balance of various characteristics, a preferable z value range is 0.00 ≦ z ≦ 0.15.

主成分にはさらにチタン、ジルコニウム、タングステン、タンタル、ニオブおよびモリブデンからなる群より選択される少なくとも一種の元素Mを含有させることができる。元素Mによるニッケルの置換量は、本発明が解決しようとする課題以外の目的に応じて適宜決めて良い。但し、元素Mは主成分の結晶構造を大きく歪ませ得るのでその含有量はあまり多くできない。このことを踏まえ、主成分の組成式におけるw値の範囲は0.000≦w≦0.050とする。各種特性のバランスを考慮すると、好ましいw値の範囲は0.000≦w≦0.020である。 May further contain titanium, zirconium, tungsten, tantalum, an element M 2 of the at least one selected from the group consisting of niobium and molybdenum as a main component. The amount of substitution of nickel by the element M 2 may be appropriately determined according to purposes other than the problem to be solved by the present invention. However, the element M 2 cannot greatly increase its content because it can greatly distort the crystal structure of the main component. Based on this, the range of the w value in the composition formula of the main component is 0.000 ≦ w ≦ 0.050. In consideration of the balance of various characteristics, a preferable range of w value is 0.000 ≦ w ≦ 0.020.

主成分がリチウムニッケル系複合酸化物としての利点を有するように、主成分におけるニッケルの総置換量は一定範囲内に収まらせる。主成分の組成式においてx+y+z≦0.70であれば、主成分がリチウムニッケル系複合酸化物としての利点を有す。各種特性のバランスを考慮すると、0.20≦x+y+z≦0.60であることが好ましい。   The total substitution amount of nickel in the main component is kept within a certain range so that the main component has an advantage as the lithium nickel composite oxide. If x + y + z ≦ 0.70 in the composition formula of the main component, the main component has an advantage as a lithium nickel composite oxide. Considering the balance of various characteristics, it is preferable that 0.20 ≦ x + y + z ≦ 0.60.

<ホウ化チタン粒子>
充電電圧4.3V以上の高電圧条件で使用した際の電池特性を優れたものにするため、特定の条件を満たすホウ化チタン粒子を正極組成物に含める。
<Titanium boride particles>
In order to make the battery characteristics excellent when used under a high voltage condition of a charging voltage of 4.3 V or higher, titanium boride particles satisfying specific conditions are included in the positive electrode composition.

図1は中心粒径が0.1μmであるホウ化チタン粒子を含む正極組成物を用いた非水電解液二次電池における、ホウ化チタンの含有率と充放電特性との関係を示すグラフである。ここでホウ化チタンの含有率は、主成分に対するチタンとしての含有率で定義する。ここで充放電特性は、充電電圧4.5V、放電電圧2.75Vにおける充電容量Qに対する放電容量Qの比Q/Qで表される充放電効率Pcdで評価した。図1から分かるように、ホウ化チタンの含有率が0.5mol%を超えた辺りから充放電特性が悪化しだす傾向にある。この傾向はホウ化チタン粒子の中心粒径に関わらず同様である。そのため、正極組成物に含有されるホウ化チタンの含有率は0.5mol%以下とする。 FIG. 1 is a graph showing the relationship between the content of titanium boride and charge / discharge characteristics in a non-aqueous electrolyte secondary battery using a positive electrode composition containing titanium boride particles having a center particle size of 0.1 μm. is there. Here, the content of titanium boride is defined by the content of titanium as a main component. Here, the charge / discharge characteristics were evaluated by the charge / discharge efficiency P cd represented by the ratio Q c / Q d of the discharge capacity Q c to the charge capacity Q d at a charge voltage of 4.5 V and a discharge voltage of 2.75 V. As can be seen from FIG. 1, the charge / discharge characteristics tend to deteriorate when the content of titanium boride exceeds 0.5 mol%. This tendency is the same regardless of the center particle diameter of the titanium boride particles. Therefore, the content rate of titanium boride contained in the positive electrode composition is 0.5 mol% or less.

図2はホウ化チタンの含有率が0.5mol%である正極組成物を用いた非水電解液二次電池における、ホウ化チタン粒子の中心粒径と充放電特性との関係を示すグラフである。図2から分かるように、ホウ化チタン粒子の中心粒径が1.8μmを超えた辺りから充放電特性が悪化しだす傾向にある。この傾向はホウ化チタンの含有率に関わらず同様である。そのため、正極組成物に含まれるホウ化チタン粒子の中心粒径は1.8μm以下とする。好ましいホウ化チタン粒子の中心粒径は1.6μm以下である。中心粒径が1.6μm以下の範囲では充放電特性は安定して良好である。ホウ化チタン粒子の中心粒径が小さい分には特に制限がないが、0.1μm以上の範囲だと取扱いが容易であり好ましい。   FIG. 2 is a graph showing the relationship between the center particle diameter of titanium boride particles and charge / discharge characteristics in a non-aqueous electrolyte secondary battery using a positive electrode composition having a titanium boride content of 0.5 mol%. is there. As can be seen from FIG. 2, the charge / discharge characteristics tend to deteriorate when the center particle diameter of the titanium boride particles exceeds 1.8 μm. This tendency is the same regardless of the content of titanium boride. Therefore, the center particle diameter of the titanium boride particles contained in the positive electrode composition is 1.8 μm or less. The center diameter of the preferred titanium boride particles is 1.6 μm or less. When the center particle size is 1.6 μm or less, the charge / discharge characteristics are stable and good. There is no particular limitation on the amount of the titanium boride particles having a small center particle diameter.

図3は中心粒径が0.1μmであるホウ化チタン粒子を含む正極組成物を用いた非水電解液二次電池における、ホウ化チタンの含有率と高温保存特性との関係を示すグラフである。ここで高温保存特性は、充電電圧4.4Vでトリクル充電し続けた前後における放電容量の維持率、すなわち容量維持率Pで評価した。図3から分かるように、ホウ化チタンの含有率が0.3mol%以上であると、容量維持率Pが90%を上回り好ましい。 FIG. 3 is a graph showing the relationship between the content of titanium boride and high-temperature storage characteristics in a non-aqueous electrolyte secondary battery using a positive electrode composition containing titanium boride particles having a center particle size of 0.1 μm. is there. Here, the high-temperature storage characteristics were evaluated by the discharge capacity maintenance ratio before and after trickle charging at a charging voltage of 4.4 V, that is, the capacity maintenance ratio Pk . As can be seen from FIG. 3, when the content of titanium boride is 0.3 mol% or more, the capacity retention rate P k is preferably more than 90%.

図4は中心粒径が0.1μmであるホウ化チタン粒子を含む正極組成物を用いた非水電解液二次電池における、ホウ化チタンの含有率と別の高温保存特性との関係を示すグラフである。ここで高温保存特性は、充電電圧4.4Vでのトリクル充電、放電電圧2.75Vでの放電および4.4Vでの充電を行った前後における充電容量の維持率、すなわち復帰率Pで評価した。図4から分かるように、ホウ化チタン、ホウ化チタンの含有量が0.3mol%を以上であると、復帰率Pが90%を上回り好ましい。 FIG. 4 shows the relationship between the content of titanium boride and another high temperature storage characteristic in a non-aqueous electrolyte secondary battery using a positive electrode composition containing titanium boride particles having a center particle diameter of 0.1 μm. It is a graph. Here, the high-temperature storage characteristics are evaluated by a charge capacity maintenance rate before and after performing trickle charging at a charging voltage of 4.4V, discharging at a discharging voltage of 2.75V, and charging at 4.4V, that is, a recovery rate Pr . did. As can be seen from FIG. 4, titanium boride, the content of titanium boride is at least a 0.3 mol%, the return rate P r is preferably greater than 90%.

<正極組成物の製造方法>
本実施形態に係る非水系二次電池用正極組成物は、正極活物質およびホウ化チタン粒子を、これらが化学変化を起こさない程度に強い力で撹拌、混合すれば得られる。前述の条件を満たしていればその製造方法は特に限定されない。正極活物質とホウ化チタン粒子とを公知の羽根式撹拌装置で混合する方法が代表的な製造方法の例である。
<Method for producing positive electrode composition>
The positive electrode composition for a non-aqueous secondary battery according to this embodiment can be obtained by stirring and mixing the positive electrode active material and titanium boride particles with such a strong force that they do not cause a chemical change. The manufacturing method is not particularly limited as long as the above-described conditions are satisfied. A method of mixing the positive electrode active material and titanium boride particles with a known blade type stirring device is an example of a typical production method.

実施例を以下に説明する。なお、リチウム遷移金属複合酸化物粒子およびホウ化チタン粒子の中心粒径は、レーザー散乱法によって得られる体積分布の、積算値が50%となる値を用いる。   Examples will be described below. As the center particle diameter of the lithium transition metal composite oxide particles and the titanium boride particles, a value at which the integrated value of the volume distribution obtained by the laser scattering method is 50% is used.

[実施例1]
共沈法により、(Ni0.5Co0.2Mn0.3)(OH)(x=2〜3)で表される複合水酸化物を得た。得られた複合水酸化物と、炭酸リチウムとを、Li:(Ni+Co+Mn)=1.08:1となるように混合し、原料混合物を得た。得られた原料混合物を大気雰囲気下、850℃で2.5時間焼成し、引き続き960℃で8時間焼成し、焼結体を得た。得られた焼結体を粉砕し、乾式篩を通し、組成式Li1.08Ni0.5Co0.2Mn0.3で表され、中心粒径が17μmであるリチウム遷移金属複合酸化物粒子を含む、正極活物質を得た。
[Example 1]
A composite hydroxide represented by (Ni 0.5 Co 0.2 Mn 0.3 ) (OH) x (x = 2 to 3) was obtained by a coprecipitation method. The obtained composite hydroxide and lithium carbonate were mixed so that Li: (Ni + Co + Mn) = 1.08: 1 to obtain a raw material mixture. The obtained raw material mixture was baked at 850 ° C. for 2.5 hours in an air atmosphere, and subsequently baked at 960 ° C. for 8 hours to obtain a sintered body. The obtained sintered body is pulverized, passed through a dry sieve, a lithium transition metal composite having a composition formula of Li 1.08 Ni 0.5 Co 0.2 Mn 0.3 O 2 and a center particle size of 17 μm. A positive electrode active material containing oxide particles was obtained.

得られた正極活物質と、中心粒径が0.1μmであるホウ化チタン粒子とを、ホウ化チタンがリチウム遷移金属複合酸化物に対してチタンとして0.5mol%となるよう高速せん断ミキサーで混合し、目的の非水系二次電池用正極組成物を得た。   The obtained positive electrode active material and titanium boride particles having a center particle diameter of 0.1 μm were mixed with a high-speed shear mixer so that the titanium boride was 0.5 mol% as titanium with respect to the lithium transition metal composite oxide. By mixing, a target positive electrode composition for a non-aqueous secondary battery was obtained.

[実施例2]
ホウ化チタン粒子の中心粒径が0.9μmであること以外実施例1と同様に行い、目的の非水系二次電池用正極組成物を得た。
[Example 2]
The same procedure as in Example 1 was performed except that the center particle size of the titanium boride particles was 0.9 μm, and the target positive electrode composition for non-aqueous secondary batteries was obtained.

[実施例3]
ホウ化チタン粒子の中心粒径が1.4μmであること以外実施例1と同様に行い、目的の非水系二次電池用正極組成物を得た。
[Example 3]
This was carried out in the same manner as in Example 1 except that the center particle size of the titanium boride particles was 1.4 μm, thereby obtaining the target positive electrode composition for non-aqueous secondary batteries.

[実施例4]
ホウ化チタン粒子の中心粒径が1.6μmであること以外実施例1と同様に行い、目的の非水系二次電池用正極組成物を得た。
[Example 4]
The same procedure as in Example 1 was conducted except that the center particle size of the titanium boride particles was 1.6 μm to obtain the target positive electrode composition for non-aqueous secondary batteries.

[比較例1]
実施例1における正極活物質を目的の非水系二次電池用正極組成物とした。
[Comparative Example 1]
The positive electrode active material in Example 1 was used as the target positive electrode composition for a non-aqueous secondary battery.

[比較例2]
ホウ化チタン粒子の中心粒径が2.0μmであること以外実施例1と同様に行い、目的の非水系二次電池用正極組成物を得た。
[Comparative Example 2]
This was carried out in the same manner as in Example 1 except that the center particle size of the titanium boride particles was 2.0 μm, thereby obtaining the intended positive electrode composition for a non-aqueous secondary battery.

[比較例3]
ホウ化チタン粒子の中心粒径が2.4μmであること以外実施例1と同様に行い、目的の非水系二次電池用正極組成物を得た。
[Comparative Example 3]
The same procedure as in Example 1 was conducted except that the center particle size of the titanium boride particles was 2.4 μm to obtain the target positive electrode composition for non-aqueous secondary batteries.

[比較例4]
ホウ化チタン粒子の中心粒径が2.9μmであること以外実施例1と同様に行い、目的の非水系二次電池用正極組成物を得た。
[Comparative Example 4]
The same procedure as in Example 1 was performed except that the center particle size of the titanium boride particles was 2.9 μm, and the target positive electrode composition for non-aqueous secondary batteries was obtained.

[比較例5]
ホウ化チタンがリチウム遷移金属複合酸化物に対してチタンとして1.0mol%となるようにしたこと以外実施例1と同様に行い、目的の非水系二次電池用正極組成物を得た。
[Comparative Example 5]
The same procedure as in Example 1 was carried out except that the titanium boride was adjusted to 1.0 mol% as titanium with respect to the lithium transition metal composite oxide, to obtain the intended positive electrode composition for a non-aqueous secondary battery.

[比較例6]
ホウ化チタンがリチウム遷移金属複合酸化物に対してチタンとして1.5mol%となるようにしたこと以外実施例1と同様に行い、目的の非水系二次電池用正極組成物を得た。
[Comparative Example 6]
This was carried out in the same manner as in Example 1 except that the titanium boride was 1.5 mol% as titanium with respect to the lithium transition metal composite oxide, to obtain the intended positive electrode composition for non-aqueous secondary batteries.

<評価用電池の作製>
実施例1〜4および比較例1〜6の正極組成物をそれぞれ用い、以下の要領で評価用の非水電解液二次電池を得た。
<Production of evaluation battery>
Using the positive electrode compositions of Examples 1 to 4 and Comparative Examples 1 to 6, respectively, nonaqueous electrolyte secondary batteries for evaluation were obtained in the following manner.

[正極の作製]
正極組成物85質量部、アセチレンブラック10質量部、ポリフッ化ビニリデン5質量部をN−メチルピロリドンに分散させて正極スラリーを得た。得られた正極スラリーをアルミニウム箔からなる集電体に塗布し、乾燥後ロールプレス機で圧縮成形し、所定サイズに裁断して正極を得た。
[Production of positive electrode]
A positive electrode slurry was obtained by dispersing 85 parts by mass of the positive electrode composition, 10 parts by mass of acetylene black, and 5 parts by mass of polyvinylidene fluoride in N-methylpyrrolidone. The obtained positive electrode slurry was applied to a current collector made of aluminum foil, dried, compression-molded with a roll press, and cut into a predetermined size to obtain a positive electrode.

[負極の作製]
人造黒鉛97.5質量部、カルボキシメチルセルロース1.5質量部、スチレンブタジエンゴム1.0質量部を水に分散させて負極スラリーを得た。得られた負極スラリーを銅箔からなる集電体に塗布し、乾燥後ロールプレス機で圧縮成形し、所定サイズに裁断して負極を得た。
[Production of negative electrode]
97.5 parts by mass of artificial graphite, 1.5 parts by mass of carboxymethyl cellulose, and 1.0 part by mass of styrene butadiene rubber were dispersed in water to obtain a negative electrode slurry. The obtained negative electrode slurry was applied to a current collector made of copper foil, dried, compression-molded with a roll press, and cut into a predetermined size to obtain a negative electrode.

[非水電解液の作製]
エチルカーボネートとメチルエチルカーボネートを体積比3:7で混合し、混合溶媒を得た。得られた混合溶媒に、ヘキサフルオロリン酸リチウムを、その濃度が1.0mol%となるように溶解させ、非水電解液を得た。
[Preparation of non-aqueous electrolyte]
Ethyl carbonate and methyl ethyl carbonate were mixed at a volume ratio of 3: 7 to obtain a mixed solvent. Lithium hexafluorophosphate was dissolved in the obtained mixed solvent so that the concentration thereof was 1.0 mol% to obtain a nonaqueous electrolytic solution.

[セパレータの準備]
多孔性ポリエチレンからなるセパレータを準備した。
[Preparation of separator]
A separator made of porous polyethylene was prepared.

[非水電解液二次電池の組み立て]
上記正極と負極の集電体に、それぞれリード電極を取り付けたのち120℃で真空乾燥を行った。次いで、正極と負極との間に上記セパレータを配し、袋状のラミネートパックにそれらを収納した。収納後60℃で真空乾燥して各部材に吸着した水分を除去した。真空乾燥後、ラミネートパック内に、上記非水電解液を注入、封止し、評価用電池としてのラミネートタイプの非水電解液二次電池を得た。得られた評価用電池を用い、以下の電池特性の評価を行った。
[Assembly of non-aqueous electrolyte secondary battery]
After the lead electrodes were attached to the positive and negative electrode current collectors, vacuum drying was performed at 120 ° C. Next, the separator was disposed between the positive electrode and the negative electrode, and they were stored in a bag-shaped laminate pack. After storage, the moisture adsorbed on each member was removed by vacuum drying at 60 ° C. After vacuum drying, the non-aqueous electrolyte was poured into a laminate pack and sealed to obtain a laminate-type non-aqueous electrolyte secondary battery as an evaluation battery. Using the obtained evaluation battery, the following battery characteristics were evaluated.

<充放電特性の評価>
充電電圧4.5V、充電電流0.5C(1Cは満充電状態から1時間で放電を終了させられる電流値)で定電流定電圧充電を行い、充電容量Qを測定した。次に、放電電圧2.75V,放電電流0.5Cで定電流放電を行い、放電容量Qを測定した。得られたQおよびQから、充放電効率Pcd(=Q/Q)を算出した。
<Evaluation of charge / discharge characteristics>
Constant current and constant voltage charging was performed at a charging voltage of 4.5 V and a charging current of 0.5 C (1 C is a current value at which discharging can be completed in one hour from a fully charged state), and a charging capacity Qc was measured. Next, constant current discharge was performed at a discharge voltage of 2.75 V and a discharge current of 0.5 C, and the discharge capacity Qd was measured. From the obtained Q c and Q d , the charge / discharge efficiency P cd (= Q d / Q c ) was calculated.

<高温保存特性の評価>
充電電圧4.4Vで定電圧充電を行った後、放電電圧2.75Vで定電圧放電を行い、放電容量Q(0)を測定した。次に、充電電圧4.4Vで定電圧充電を行い、充電容量Q(1)を測定した。充電後、評価用電池を60℃の恒温槽に設置し、充電電圧4.4Vのトリクル充電を72時間行った。トリクル充電後、放電電圧2.75Vで定電圧放電を行い、放電容量Q(1)を測定した。放電後、充電電圧4.4Vで定電圧充電を行い、充電容量Q(2)を測定した。得られたQ(0)およびQ(1)から、容量維持率P(=Q(1)/Q(0))を算出した。また、得られたQ(1)およびQ(2)から復帰率P(=Q(2)/Q(1))を算出した。
<Evaluation of high-temperature storage characteristics>
After performing constant voltage charging at a charging voltage of 4.4 V, constant voltage discharging was performed at a discharging voltage of 2.75 V, and the discharge capacity Q d (0) was measured. Next, constant voltage charging was performed at a charging voltage of 4.4 V, and the charging capacity Q c (1) was measured. After charging, the evaluation battery was placed in a constant temperature bath at 60 ° C., and trickle charging at a charging voltage of 4.4 V was performed for 72 hours. After trickle charge, constant voltage discharge was performed at a discharge voltage of 2.75 V, and the discharge capacity Q d (1) was measured. After discharging, constant voltage charging was performed at a charging voltage of 4.4 V, and the charging capacity Q c (2) was measured. From the obtained Q d (0) and Q d (1), the capacity retention rate P k (= Q d (1) / Q d (0)) was calculated. Further, the recovery rate P r (= Q c (2) / Q c (1)) was calculated from the obtained Q c (1) and Q c (2).

<サイクル特性の評価>
評価用電池を45℃の恒温槽に設置し、充電電圧4.4Vで定電圧充電を行った。充電後、放電電圧2.75Vで定電圧放電を行い、1サイクル目の放電容量Qdcyc(1)を測定した。以下充電と放電を繰り返し、最後に100サイクル目の放電容量Qcyc(100)を測定した。得られたQcyc(1)およびQcyc(100)から100サイクル後の容量維持率Pcyc(=Qcyc(100)/Qcyc(1))を算出した。
<Evaluation of cycle characteristics>
The evaluation battery was placed in a 45 ° C. thermostatic chamber, and constant voltage charging was performed at a charging voltage of 4.4V. After charging, constant voltage discharge was performed at a discharge voltage of 2.75 V, and the discharge capacity Q dcyc (1) at the first cycle was measured. Thereafter, charging and discharging were repeated, and finally, the discharge capacity Q cyc (100) at the 100th cycle was measured. From the obtained Q cyc (1) and Q cyc (100), the capacity retention ratio P cyc after 100 cycles (= Q cyc (100) / Q cyc (1)) was calculated.

実施例1〜4および比較例1〜6の正極組成物の構成を表1に、各正極組成物を用いた評価用電池の各種電池特性を表2に記す。   The configurations of the positive electrode compositions of Examples 1 to 4 and Comparative Examples 1 to 6 are shown in Table 1, and various battery characteristics of evaluation batteries using the respective positive electrode compositions are shown in Table 2.

Figure 0006597167
Figure 0006597167

Figure 0006597167
Figure 0006597167

表1および表2の結果から以下のことが分かる。   The following can be understood from the results of Tables 1 and 2.

ホウ化チタン粒子を含有しない比較例1の正極組成物を用いた評価用電池に対し、ホウ化チタン粒子を含有する実施例1〜4および比較例2〜6の正極組成物を用いた評価用電池は、サイクル特性が極めて向上している。また、高温保存特性も向上している。   For evaluation batteries using the positive electrode composition of Comparative Example 1 not containing titanium boride particles, for evaluation using the positive electrode compositions of Examples 1 to 4 and Comparative Examples 2 to 6 containing titanium boride particles The battery has extremely improved cycle characteristics. Moreover, the high temperature storage characteristics are also improved.

ホウ化チタン粒子の中心粒径が大きすぎる比較例2〜4の正極組成物を用いた評価用電池は、適正な中心粒径のホウ化チタン粒子を有する実施例1〜4の正極組成物を用いた評価用電池に比べ、充放電特性が悪化している。   The battery for evaluation using the positive electrode compositions of Comparative Examples 2 to 4 in which the center particle diameter of the titanium boride particles is too large is the positive electrode composition of Examples 1 to 4 having the titanium boride particles having an appropriate center particle diameter. Compared with the evaluation battery used, the charge / discharge characteristics are deteriorated.

ホウ化チタン粒子の含有率が多すぎる比較例4および5の正極組成物を用いた評価用電池は、ホウ化チタン粒子の含有率が適正な実施例1〜4の正極組成物を用いた評価用電池に比べ、充放電特性が悪化している。特に、比較例5の正極組成物を用いた評価用電池は、サイクル特性も悪化している。   Evaluation batteries using the positive electrode compositions of Comparative Examples 4 and 5 in which the content of titanium boride particles was too high were evaluated using the positive electrode compositions of Examples 1 to 4 in which the content of titanium boride particles was appropriate. Charging / discharging characteristics are deteriorated compared to the battery for use. In particular, the evaluation battery using the positive electrode composition of Comparative Example 5 has deteriorated cycle characteristics.

このため、高電圧における充放電特性、高温保存特性およびサイクル特性の全てを十分にするには、適切な中心粒径のホウ化チタン粒子を適切な比率で正極組成物中に存在させる必要がある。   For this reason, in order to fully satisfy all of the charge / discharge characteristics, the high-temperature storage characteristics, and the cycle characteristics at a high voltage, it is necessary that titanium boride particles having an appropriate center particle diameter are present in an appropriate ratio in the positive electrode composition. .

本発明の実施形態に係る非水系二次電池用正極組成物を用いると、高電圧における充放電特性、高温保存特性およびサイクル特性に優れた非水系二次電池を得ることが可能になる。そのため、得られる非水系二次電池は、電気自動車等の高出力、高エネルギー密度が求められる大型機器の電源として好適に利用可能である。   When the positive electrode composition for a non-aqueous secondary battery according to an embodiment of the present invention is used, a non-aqueous secondary battery excellent in charge / discharge characteristics at high voltage, high-temperature storage characteristics, and cycle characteristics can be obtained. Therefore, the obtained non-aqueous secondary battery can be suitably used as a power source for large equipment such as an electric vehicle that requires high output and high energy density.

Claims (4)

組成式LiNi1-x-y-zCoMn (1.00≦a≦1.50、0.00≦x≦0.50、0.00≦y≦0.50、0.00≦z≦0.15、0.000≦w≦0.020、x+y+z≦0.70、MはAlおよびMgからなる群より選択される少なくとも一種の元素、MはTi、Zr、W、Ta、NbおよびMoからなる群より選択される少なくとも一種の元素)で表されるリチウム遷移金属複合酸化物粒子を含む正極活物質と、ホウ化チタン粒子とを含み、
前記ホウ化チタン粒子の中心粒径は1.8μm以下であり、
前記ホウ化チタンの含有率が、前記リチウム遷移金属複合酸化物粒子に対してチタンとして0.3mоl%以上0.5mol%以下である、
非水系二次電池用正極組成物。
The composition formula Li a Ni 1-x-y -z Co x Mn y M 1 z M 2 w O 2 (1.00 ≦ a ≦ 1.50,0.00 ≦ x ≦ 0.50,0.00 ≦ y ≦ 0.50, 0.00 ≦ z ≦ 0.15, 0.000 ≦ w ≦ 0.020, x + y + z ≦ 0.70, M 1 is at least one element selected from the group consisting of Al and Mg, M 2 includes a positive electrode active material including lithium transition metal composite oxide particles represented by at least one element selected from the group consisting of Ti, Zr, W, Ta, Nb, and Mo, and titanium boride particles. ,
The center particle size of the titanium boride particles is 1.8 μm or less,
The titanium boride content is 0.3 mol% or more and 0.5 mol% or less as titanium with respect to the lithium transition metal composite oxide particles.
A positive electrode composition for a non-aqueous secondary battery.
前記リチウム遷移金属複合酸化物を表す組成式において、0.05≦x≦0.35である、請求項1記載の非水系二次電池用正極組成物。 The positive electrode composition for a non-aqueous secondary battery according to claim 1, wherein 0.05 ≦ x ≦ 0.35 in the composition formula representing the lithium transition metal composite oxide. 前記リチウム遷移金属複合酸化物を表す組成式において、0.20≦x+y+z≦0.60である、請求項1または2に記載の非水系二次電池用正極組成物。 In the composition formula representing the lithium transition metal composite oxide, 0.20 ≦ x a + y + z ≦ 0.60, according to claim 1 or 2 for nonaqueous secondary battery positive electrode composition according to. 前記リチウム遷移金属複合酸化物を表す組成式において、1.05≦a≦1.25である、請求項1乃至のいずれか一項に記載の非水系二次電池用正極組成物。 In the composition formula representing the lithium transition metal composite oxide, 1.05 ≦ a ≦ 1.25, non-aqueous secondary battery positive electrode composition according to any one of claims 1 to 3.
JP2015206902A 2015-10-21 2015-10-21 Positive electrode composition for non-aqueous secondary battery Active JP6597167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015206902A JP6597167B2 (en) 2015-10-21 2015-10-21 Positive electrode composition for non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015206902A JP6597167B2 (en) 2015-10-21 2015-10-21 Positive electrode composition for non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2017079156A JP2017079156A (en) 2017-04-27
JP6597167B2 true JP6597167B2 (en) 2019-10-30

Family

ID=58667114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015206902A Active JP6597167B2 (en) 2015-10-21 2015-10-21 Positive electrode composition for non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP6597167B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6264410B2 (en) * 2015-10-21 2018-01-24 日亜化学工業株式会社 Non-aqueous secondary battery positive electrode composition and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1711971B1 (en) * 2004-02-07 2017-04-19 LG Chem, Ltd. Electrode additives coated with electro conductive material and lithium secondary comprising the same
JP2012048838A (en) * 2010-08-24 2012-03-08 Sanyo Electric Co Ltd Active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method of active material for nonaqueous electrolyte secondary battery
JP6432123B2 (en) * 2013-10-07 2018-12-05 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same

Also Published As

Publication number Publication date
JP2017079156A (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6286855B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery
JP6575048B2 (en) The positive electrode composition for nonaqueous electrolyte secondary batteries, the nonaqueous electrolyte secondary battery, and the manufacturing method of the positive electrode composition for nonaqueous electrolyte secondary batteries.
JP6554780B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing the same
JP4951638B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP5842596B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing positive electrode slurry for non-aqueous electrolyte secondary battery
JP6685640B2 (en) Non-aqueous electrolyte Positive electrode active material for secondary battery
JP2016006762A (en) Positive electrode active material for nonaqueous secondary battery
JP5392585B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP2017139168A (en) Positive electrode for nonaqueous electrolyte secondary battery
JP6187655B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP7164803B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP6117630B2 (en) Negative electrode material for sodium secondary battery and sodium secondary battery using the same
US11264612B2 (en) Positive electrode composition for non-aqueous secondary battery comprising titanium boride particles
JP2010282858A (en) Lithium ion battery
JP6597167B2 (en) Positive electrode composition for non-aqueous secondary battery
JP6760224B2 (en) Negative electrode active material for all-solid-state batteries
US20160308193A1 (en) Nonaqueous electrolyte secondary battery
JP6852747B2 (en) A method for producing a positive electrode composition for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a positive electrode composition for a non-aqueous electrolyte secondary battery.
JP7417055B2 (en) Electrode for non-aqueous electrolyte secondary battery and method for manufacturing the same
JP6264410B2 (en) Non-aqueous secondary battery positive electrode composition and method for producing the same
JP6273707B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6614196B2 (en) Positive electrode material for non-aqueous secondary battery and non-aqueous secondary battery
JP6156078B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2012178312A (en) Lithium ion secondary battery
JP6911545B2 (en) Negative electrode and non-aqueous electrolyte power storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190916

R150 Certificate of patent or registration of utility model

Ref document number: 6597167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250