JP2017139168A - Positive electrode for nonaqueous electrolyte secondary battery - Google Patents

Positive electrode for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2017139168A
JP2017139168A JP2016020222A JP2016020222A JP2017139168A JP 2017139168 A JP2017139168 A JP 2017139168A JP 2016020222 A JP2016020222 A JP 2016020222A JP 2016020222 A JP2016020222 A JP 2016020222A JP 2017139168 A JP2017139168 A JP 2017139168A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016020222A
Other languages
Japanese (ja)
Inventor
誠之 廣岡
Masayuki Hirooka
誠之 廣岡
智仁 関谷
Tomohito Sekiya
智仁 関谷
山田 將之
Masayuki Yamada
將之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2016020222A priority Critical patent/JP2017139168A/en
Publication of JP2017139168A publication Critical patent/JP2017139168A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode for a nonaqueous electrolyte secondary battery, high in capacity and excellent in high-temperature storage characteristics at temperatures of 80°C or more.SOLUTION: A positive electrode for a nonaqueous electrolyte secondary battery of the present invention includes a positive electrode mixture containing: a positive electrode active material which is represented by general composition formula LiNiMO(where, M contains at least one or more elements selected from among Co, Mn, Al, Mg, Zr, Mo, Ti, Si, Fe, P, F, and Cl, and 0≤x≤0.1 and 0≤y≤0.5 are satisfied) and which has a specific surface area (BET value) of 0.01-1.0 m/g; and carbon. The content of the carbon in the positive electrode mixture is 2.5 wt.% or more and 10.0 wt.% or less, and the porosity of the positive electrode mixture is 1-10%.SELECTED DRAWING: Figure 1

Description

本発明は、非水電解質二次電池用正極に関するものである。   The present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery.

近年、電子機器が高性能化したことで各種センサーやカメラなどが小型化し、多方面での活用が計画されるようになった。リチウムイオン電池は、特に車載機器用途やインフラ用途への展開が期待されるが、それら用途に適用するには高い温度耐久性が求められる。   In recent years, as the performance of electronic devices has increased, various sensors and cameras have been miniaturized, and various applications have been planned. Lithium ion batteries are expected to be developed especially for in-vehicle equipment applications and infrastructure applications, but high temperature durability is required to be applied to these applications.

しかしながら、リチウム二次電池においては、正極活物質であるリチウム含有遷移金属酸化物と電解液との副反応が高温で加速されて、正極表面から遷移金属が溶出したり、副反応物が堆積したりすることで高抵抗化し、高温での保存寿命が急激に低下するという問題点がある。また、正極合剤に含まれるバインダが電解液によって膨潤して、体積が膨張する。その結果、正極内の電子伝導経路が減少することで高抵抗化し、高温での保存寿命が急激に低下するという問題点もある。   However, in lithium secondary batteries, the side reaction between the lithium-containing transition metal oxide, which is the positive electrode active material, and the electrolyte is accelerated at a high temperature, and the transition metal is eluted from the surface of the positive electrode or the side reaction product is deposited. The resistance increases, and the shelf life at high temperatures decreases rapidly. Moreover, the binder contained in the positive electrode mixture is swollen by the electrolytic solution, and the volume is expanded. As a result, there is a problem that the electron conduction path in the positive electrode is reduced to increase the resistance, and the shelf life at high temperature is drastically reduced.

例えば、特許文献1には、LiMnを基にした正極活物質を含有する正極に炭酸リチウムを含有させ、カーボンブラック量を適正化することにより、優れた高温保存特性を発揮することが可能であると示されている。 For example, Patent Document 1 discloses that excellent high-temperature storage characteristics can be exhibited by adding lithium carbonate to a positive electrode containing a positive electrode active material based on LiMn 2 O 4 and optimizing the amount of carbon black. It is shown to be possible.

また、特許文献2には、正極活物質にポリアニオン系材料を用い、負極活物質にLiTi12、SiO又はSnO、又はこれらの複合材料を用いることで、120℃の充放電を可能とするリチウムイオン電池の技術が示されている。 In Patent Document 2, a polyanionic material is used as the positive electrode active material, and Li 4 Ti 5 O 12 , SiO X or SnO x , or a composite material thereof is used as the negative electrode active material, thereby charging and discharging at 120 ° C. The technology of a lithium ion battery that enables this is shown.

特開2001−167767号公報JP 2001-167767 A 特開2013−84521号公報JP2013-84521A

しかし、特許文献1に記載された正極活物質はLiCOの添加により、Mn溶出が抑制されるものの、LiCOとHFの反応によって、COが発生することから、特に80℃以上の高温保存によってセルの膨れが発生する場合がある。 However, the addition of the positive electrode active material Li 2 CO 3 as described in Patent Document 1, although the Mn elution is suppressed by reaction Li 2 CO 3 and HF, since the CO 2 is generated, in particular 80 ° C. Cell swelling may occur due to the above high-temperature storage.

また、特許文献2に記載されたリチウムイオン電池は、高温保存特性が高くなるが、平均電圧が約3V以下と低いことから電池のエネルギー密度が小さくなるという問題がある。   Moreover, although the lithium ion battery described in Patent Document 2 has high temperature storage characteristics, there is a problem that the energy density of the battery becomes small because the average voltage is as low as about 3 V or less.

本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、特に正極内の電子伝導経路が減少することによって高抵抗化する現象に着目し、高抵抗化抑制を図ることで高温保存特性を向上した非水電解質二次電池用正極を提供することである。   The present invention has been made in view of the above points. The object of the present invention is to suppress the increase in resistance by focusing on the phenomenon that the resistance increases due to a decrease in the electron conduction path in the positive electrode. It is providing the positive electrode for nonaqueous electrolyte secondary batteries which improved the high temperature storage characteristic.

上記課題を解決する本発明の非水電解質二次電池用正極は、
一般組成式Li1+xNi1-y (式1)
(式中、MはCo、Mn、Al、Mg、Zr、Mo、Ti、Baのうち少なくとも一種以上の元素を含み、0≦x≦0.1、0≦y≦0.5)
で表される比表面積(BET値)0.01m/g〜1.0m/gのリチウム含有ニッケル層状酸化物からなる正極活物質と、カーボンとを含む正極合剤を有し、
該正極合剤における前記カーボンの含有量が2.5重量%以上10.0重量%以下でかつ前記正極合剤の空隙率が1〜10%であることを特徴とする。
The positive electrode for a non-aqueous electrolyte secondary battery of the present invention that solves the above problems is
General composition formula Li 1 + x Ni 1- y My O 2 (Formula 1)
(Wherein M includes at least one element of Co, Mn, Al, Mg, Zr, Mo, Ti, and Ba, 0 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.5)
Has in a positive electrode active material consisting of the specific surface area (BET value) 0.01m 2 /g~1.0m 2 / g lithium-containing nickel layered oxide, a positive electrode mixture containing carbon,
The content of the carbon in the positive electrode mixture is 2.5 wt% or more and 10.0 wt% or less, and the porosity of the positive electrode mixture is 1 to 10%.

本発明によれば、高容量であり、かつ80℃以上の高温保存特性に優れる非水電解質二次電池用正極を提供することができる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode for nonaqueous electrolyte secondary batteries which is high capacity | capacitance and excellent in the high temperature storage characteristic of 80 degreeC or more can be provided. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

実施例におけるリチウムイオン二次電池の概略図。The schematic of the lithium ion secondary battery in an Example.

本発明は、正極活物質にリチウム複合酸化物を用いる非水電解質二次電池用正極に関するものであり、詳しくは、高温保存特性向上のための正極としての合剤組成に関するものである。特に、本発明に係る正極は、車載、インフラ用途の小型カメラやセンサー等の80℃以上の高温で作動すべき非水電解質二次電池において、優れた高温保存特性を発揮することができる。   The present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery using a lithium composite oxide as a positive electrode active material, and specifically relates to a mixture composition as a positive electrode for improving high-temperature storage characteristics. In particular, the positive electrode according to the present invention can exhibit excellent high-temperature storage characteristics in a non-aqueous electrolyte secondary battery that should operate at a high temperature of 80 ° C. or higher, such as a small camera or sensor for in-vehicle or infrastructure applications.

以下、この発明に係る正極活物質、正極合剤の製造方法、および正極合剤を用いた非水電解質電池について説明する。尚、この発明における正極合剤の製造方法、および正極合剤を用いた非水電解質電池は、下記に示したものに限定されず、その要旨を変更しない範囲内において適宜変更して実施できるものである。   Hereinafter, a positive electrode active material, a method for producing a positive electrode mixture, and a nonaqueous electrolyte battery using the positive electrode mixture according to the present invention will be described. In addition, the manufacturing method of the positive electrode mixture in this invention and the nonaqueous electrolyte battery using the positive electrode mixture are not limited to those shown below, and can be implemented with appropriate modifications within the scope not changing the gist thereof. It is.

本発明に係る非水電解質二次電池用正極は、
一般組成式Li1+xNi1-y (式1)
(式中、MはCo、Mn、Al、Mg、Zr、Mo、Ti、Baのうち少なくとも一種以上の元素を含み、0≦x≦0.1、0≦y≦0.5)
で表される比表面積(BET値)0.01m/g〜1.0m/gのリチウム含有ニッケル層状酸化物からなる正極活物質と、カーボンとを含む正極合剤を有し、
該正極合剤における前記カーボンの含有量が2.5重量%以上10.0重量%以下でかつ前記正極合剤の空隙率が1〜10%であることを特徴とする。
The positive electrode for a non-aqueous electrolyte secondary battery according to the present invention is
General composition formula Li 1 + x Ni 1- y My O 2 (Formula 1)
(Wherein M includes at least one element of Co, Mn, Al, Mg, Zr, Mo, Ti, and Ba, 0 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.5)
Has in a positive electrode active material consisting of the specific surface area (BET value) 0.01m 2 /g~1.0m 2 / g lithium-containing nickel layered oxide, a positive electrode mixture containing carbon,
The content of the carbon in the positive electrode mixture is 2.5 wt% or more and 10.0 wt% or less, and the porosity of the positive electrode mixture is 1 to 10%.

本発明に係る非水電解質二次電池用正極を用いることによって、高容量であり、かつ高温保存特性に優れる非水電解質二次電池を得ることができる。   By using the positive electrode for a non-aqueous electrolyte secondary battery according to the present invention, a non-aqueous electrolyte secondary battery having a high capacity and excellent high-temperature storage characteristics can be obtained.

上記した正極活物質は、粒子状であり、1次粒子が凝集した2次粒子や、1次粒子により構成され、個々の形状は略球形である。上記形状は、走査型電子顕微鏡により所定領域に存在する粒子を観察することにより確認することができる。   The positive electrode active material described above is in the form of particles, and is composed of secondary particles in which primary particles are aggregated or primary particles, and each shape is substantially spherical. The above shape can be confirmed by observing particles present in a predetermined region with a scanning electron microscope.

粒子は、大きさの分布が単一のピークを有するものを用いてもよく、また、比較的大きな粒と、大きな粒の間を埋める比較的小さな粒とからなる、大きさの分布が二つのピークを有するものを用いてもよい。例えば、粒子の直径は、5μm以上50μm以下の範囲であることが好ましく、また、5μm以上15μm以下の範囲と、20μm以上50μm以下の範囲にそれぞれピークを有するように分布していることがより好ましい。このように、粒子径が大小2つのピークを有する粒度分布の粒子を混ぜることにより、大径の粒子同士の間に小径の粒子を入り込ませることができ、空隙率1〜10%とするための高圧縮時に大径の粒子が割れてしまうのを防ぐことができる。上記粒度分布は、レーザー回折散乱式粒度分布測定装置、により測定することができる。   Particles with a size distribution having a single peak may be used, and there are two size distributions consisting of a relatively large particle and a relatively small particle that fills between large particles. You may use what has a peak. For example, the particle diameter is preferably in the range of 5 μm to 50 μm, and more preferably distributed so as to have peaks in the range of 5 μm to 15 μm and in the range of 20 μm to 50 μm. . Thus, by mixing particles having a particle size distribution having two large and small particles, the small particles can be inserted between the large particles, and the porosity is 1 to 10%. It is possible to prevent the large-diameter particles from breaking during high compression. The particle size distribution can be measured by a laser diffraction / scattering particle size distribution measuring apparatus.

上記した正極活物質は、金属溶出を抑える観点から、非水電解液との界面を小さくする必要がある。そのため、BET比表面積が小さい方が有利であるが、粒子のBET比表面積が小さすぎると、積層した際の密度が小さく、そのために電池容量が小さくなったり、高負荷における放電特性が低下したりするという問題が生じる。このため、BET比表面積Sは0.01≦S≦1.0[m/g]であることが好ましい。BET比表面積は、多分子層吸着の理論式であるBET式を用いて表面積を測定して求められる。具体的には、窒素吸着法による比表面積測定装置を用いてBET比表面積を求めた。 The positive electrode active material described above needs to reduce the interface with the non-aqueous electrolyte from the viewpoint of suppressing metal elution. Therefore, it is advantageous that the BET specific surface area is small. However, if the BET specific surface area of the particles is too small, the density at the time of lamination is small, so that the battery capacity becomes small or the discharge characteristics at high load deteriorate. Problem arises. For this reason, it is preferable that the BET specific surface area S is 0.01 <= S <= 1.0 [m < 2 > / g]. The BET specific surface area can be obtained by measuring the surface area using the BET formula, which is a theoretical formula for multimolecular layer adsorption. Specifically, the BET specific surface area was determined using a specific surface area measuring device by a nitrogen adsorption method.

上記の一般組成式(1)において、Liに関するxは、0≦x≦0.1であることが好ましく、0≦x≦0.03であることがより好ましい。xが0に満たない場合には、十分な電池容量が得られない。また、粒成長が抑制されて表面積は大きくなることから、金属溶出が起こり易くなる。一方、xが0.1を超える場合には大量の酸素欠損が生じる。酸素が欠損しているために、構造が崩壊しやすくなり、サイクル寿命が短くなる。さらに、正極活物質の粒子表面のリチウムが多いために、このような正極活物質を用いて調製した正極合剤スラリーはゲル状となり、形成した正極合剤層の抵抗が高くなったり、電池反応の際にガスが発生するおそれがある。Liに関するxの値は、誘導結合プラズマ発光分析によって定量することができる。   In the general composition formula (1), x relating to Li is preferably 0 ≦ x ≦ 0.1, and more preferably 0 ≦ x ≦ 0.03. When x is less than 0, sufficient battery capacity cannot be obtained. Further, since the grain growth is suppressed and the surface area is increased, metal elution is likely to occur. On the other hand, when x exceeds 0.1, a large amount of oxygen deficiency occurs. The lack of oxygen makes the structure easy to collapse and the cycle life is shortened. Furthermore, since there is a lot of lithium on the surface of the positive electrode active material particles, the positive electrode mixture slurry prepared using such a positive electrode active material becomes a gel, and the resistance of the formed positive electrode mixture layer is increased or the battery reaction is increased. There is a risk that gas will be generated during this process. The value of x for Li can be quantified by inductively coupled plasma emission spectrometry.

上記の一般組成式(1)において、M(Co、Mn、Al、Mg、Zr、Mo、Ti、Ba)に関するyは、0≦y≦0.5であることが好ましい。Co、Mn、Al、Mg、Zr、Mo、Ti、Baに関しては、Niの一部と置き換えることで種々の電池特性を改善することができる。また、Si、Fe、P、F、Clなどは不可避的に不純物として含有する場合がある。   In the above general composition formula (1), y regarding M (Co, Mn, Al, Mg, Zr, Mo, Ti, Ba) is preferably 0 ≦ y ≦ 0.5. Regarding Co, Mn, Al, Mg, Zr, Mo, Ti, and Ba, various battery characteristics can be improved by replacing part of Ni. Moreover, Si, Fe, P, F, Cl, etc. may inevitably be contained as impurities.

MとしてCo、Mnの添加は、充放電特性およびサイクル特性を向上する効果が大きい。MとしてMgの添加は、リチウム含有ニッケル層状酸化物の構造を安定化させ、耐熱性を向上させる効果がある。しかしながら、過剰に添加すると、リチウム含有コバルト酸化物の結晶格子が歪んで、電池の容量低下とともに、Liの移動度低下による負荷特性の低下を引き起こすおそれがある。また、Mgを過剰に含有した場合には、充放電サイクルに伴ってMgが溶出して電池の寿命低下を招くおそれがあるという問題があるため、AlとMgの添加量yは、0<y≦0.1が好ましく、0.005≦y≦0.01であることがより好ましい。   Addition of Co and Mn as M has a great effect of improving charge / discharge characteristics and cycle characteristics. The addition of Mg as M has the effect of stabilizing the structure of the lithium-containing nickel layered oxide and improving the heat resistance. However, if it is added excessively, the crystal lattice of the lithium-containing cobalt oxide is distorted, which may cause a decrease in battery capacity and a decrease in load characteristics due to a decrease in Li mobility. In addition, when Mg is excessively contained, there is a problem that Mg may elute with a charge / discharge cycle and the life of the battery may be reduced. Therefore, the addition amount y of Al and Mg is 0 <y. ≦ 0.1 is preferable, and 0.005 ≦ y ≦ 0.01 is more preferable.

MとしてAlの添加は、6配位のNiイオンとAlイオンのイオン半径がほぼ同等であることから、Niのサイトに置換されてリチウム含有ニッケル層状酸化物の構造を安定化させ、金属溶出を抑制する効果がある。また、耐熱性を向上させる効果がある。しかし、Mgと同様に過剰に添加すると、リチウム含有コバルト酸化物の結晶格子が歪んで、電池の容量低下とともに、Liの移動度低下による負荷特性の低下を引き起こすおそれがある。Alの添加量yは、0<y≦0.1が好ましく、0<y≦0.01であることがより好ましい。   When Al is added as M, the ionic radii of 6-coordinate Ni ions and Al ions are almost the same, so the structure of the lithium-containing nickel layered oxide is stabilized by replacing the Ni radii, and metal elution is performed. There is an inhibitory effect. Moreover, there exists an effect which improves heat resistance. However, if it is added excessively as in the case of Mg, the crystal lattice of the lithium-containing cobalt oxide is distorted, and there is a possibility that the load characteristics are lowered due to the lowered mobility of Li as well as the capacity of the battery. The addition amount y of Al is preferably 0 <y ≦ 0.1, and more preferably 0 <y ≦ 0.01.

Zrの添加は、低充電状態の電位を高め出力を向上する効果に加え、充放電サイクル寿命を向上させる効果がある。Zrの量yは、0<y≦0.1が好ましく、0.001≦y≦0.005がより好ましい。0.1を超えると、正極活物質の粒子の成長が抑制され、小さくなってしまう。このような小さな粒子を用いて正極活物質の層を形成すると、その密度が小さいために、十分な電池容量が得られない。また、表面積は大きくなることから、Co溶出が起こり易くなる。Mo、Ti、Ba等は、Zrと同様な効果を発現させることができる。   The addition of Zr has the effect of improving the charge / discharge cycle life in addition to the effect of increasing the potential of the low charge state and improving the output. The amount y of Zr is preferably 0 <y ≦ 0.1, and more preferably 0.001 ≦ y ≦ 0.005. When it exceeds 0.1, the growth of particles of the positive electrode active material is suppressed and becomes small. When the layer of the positive electrode active material is formed using such small particles, the density is small, and thus a sufficient battery capacity cannot be obtained. Moreover, since the surface area becomes large, Co elution is likely to occur. Mo, Ti, Ba and the like can exhibit the same effect as Zr.

上記した正極活物質は、その表面に、Li、Zr、Ti、Al、Mg、Ni、Mn、Zn、およびPよりなる群から選択される少なくとも1種の元素を含む酸化物、またはフッ化物で被覆されていてもよい。この場合には、充放電サイクルによる劣化抑制効果が向上することに加えて、Co溶出抑制効果も向上する。被覆は、高温時に発生したフッ酸を吸収して正極活物質に対するダメージを抑制することができ、抵抗の上昇を抑制して高温保存後の電力量回復率を向上させることができる。ただし、上記被覆する酸化物またはフッ化物の量が多すぎると、抵抗が大きくなって電池容量が減少する。従って、被覆する酸化物またはフッ化物に含まれる上記元素の原子数は、一般組成式(1)からなる正極活物質の分子数の10mol%以下とすることが好ましい。   The positive electrode active material described above is an oxide or fluoride containing at least one element selected from the group consisting of Li, Zr, Ti, Al, Mg, Ni, Mn, Zn, and P on the surface thereof. It may be coated. In this case, in addition to improving the deterioration suppressing effect due to the charge / discharge cycle, the Co elution suppressing effect is also improved. The coating can absorb hydrofluoric acid generated at a high temperature and suppress damage to the positive electrode active material, and can suppress an increase in resistance and improve a power recovery rate after high-temperature storage. However, if the amount of the oxide or fluoride to be coated is too large, the resistance increases and the battery capacity decreases. Therefore, the number of atoms of the element contained in the oxide or fluoride to be coated is preferably 10 mol% or less of the number of molecules of the positive electrode active material having the general composition formula (1).

<非水電解質二次電池用正極の作製>
本発明に係る非水電解質二次電池用正極は、上記した正極活物質と、バインダと、導電助剤であるカーボンとを、溶媒に分散させた正極合剤スラリーを調製し、この正極合剤スラリーを正極集電体の表面に塗布して正極合剤層を形成し、乾燥後にプレスすることにより作製される。
<Preparation of positive electrode for nonaqueous electrolyte secondary battery>
A positive electrode for a non-aqueous electrolyte secondary battery according to the present invention is prepared by preparing a positive electrode mixture slurry in which a positive electrode active material, a binder, and carbon as a conductive additive are dispersed in a solvent. The slurry is applied to the surface of the positive electrode current collector to form a positive electrode mixture layer, and is produced by pressing after drying.

上記した正極活物質は、例えば、Li化合物、Ni化合物、M化合物などを適当な割合で混合した混合物粉末を焼成することにより作製できるが、特に限定されることなく、共沈法等によりLiを除く前駆体の水酸化物をLi化合物と混合して焼成することによって作成することも可能である。   The above-described positive electrode active material can be produced by firing a mixture powder in which Li compound, Ni compound, M compound, etc. are mixed at an appropriate ratio, but is not particularly limited, and Li can be formed by a coprecipitation method or the like. It is also possible to prepare by excluding precursor hydroxide mixed with Li compound and baking.

Li化合物としてはLiOHやLiCO、またはLiClを用いることができる。また、Ni化合物、M化合物としては、これらの元素の水酸化物や酸化物などを用いる。合成時の温度は800〜1000℃であり、温度の保持時間は5〜48時間、加熱冷却速度rは1≦r≦5℃/min、合成時の雰囲気は大気、より好ましくは酸素雰囲気が好ましい。 As the Li compound, LiOH, Li 2 CO 3 , or LiCl can be used. In addition, as Ni compounds and M compounds, hydroxides or oxides of these elements are used. The temperature during synthesis is 800 to 1000 ° C., the temperature holding time is 5 to 48 hours, the heating / cooling rate r is 1 ≦ r ≦ 5 ° C./min, and the atmosphere during synthesis is air, more preferably oxygen atmosphere. .

一般組成式(1)においては、酸素濃度が低いと、Li添加量が多い場合に酸素脱離が起きやすくなる。Niが一部Liサイトに遷移しやすいことがわかった。酸素濃度は、酸素濃度を80%以上とすることが好ましい。このように焼成雰囲気を調整することで、酸素欠損やNiの遷移が抑制され、粉末XRDにおけるスペクトルから、空間群R3−mに帰属される層状岩塩構造であり、かつ(104)面に帰属する回折強度に対する、(003)面に帰属する回折強度の比率が1.5以上となる。上記製造方法により、高容量、かつ高温保存特性の高いリチウム含有ニッケル層状酸化物にすることができる。   In the general composition formula (1), when the oxygen concentration is low, oxygen desorption tends to occur when the amount of added Li is large. It was found that some Ni was likely to transition to the Li site. The oxygen concentration is preferably 80% or more. By adjusting the firing atmosphere in this manner, oxygen deficiency and Ni transition are suppressed, and from the spectrum in the powder XRD, it is a layered rock salt structure belonging to the space group R3-m and belonging to the (104) plane. The ratio of the diffraction intensity attributed to the (003) plane to the diffraction intensity is 1.5 or more. By the above production method, a lithium-containing nickel layered oxide having a high capacity and high temperature storage characteristics can be obtained.

上記した正極活物質の表面に、Li、Zr、Ti、Al、Mg、Ni、Mn、Zn、およびPよりなる群から選択される少なくとも1種の元素を含む酸化物、またはフッ化物を被覆するには、例えば次の手順で行う。   The surface of the positive electrode active material is covered with an oxide or fluoride containing at least one element selected from the group consisting of Li, Zr, Ti, Al, Mg, Ni, Mn, Zn, and P. For example, the following procedure is used.

Zr、Ti、Al、Mg、Ni、Mn、Zn酸化物を被覆する場合には、pH値が9以上11以下、温度が60以上80℃以下に調整された水酸化ナトリウムないしは水酸化リチウム水溶液中に正極活物質の粉末を入れて撹拌し分散させた後、被覆元素の硝酸塩ないしは硫酸塩を滴下する。このときpH値が変化しないように、アンモニア水を同時に滴化することで共沈物が生成される。その後、共沈物と正極活物質の粉末を5時間以上が撹拌しつづけ、随時水酸化ナトリウムないしは水酸化リチウムでpH値が変動しないように調整する。特にNi,Mn等の共沈物を得る場合には水溶液中の溶存酸素を窒素で置換することがより好ましい。次に、吸引ろ過によって、共沈物が付着した正極活物質の粉末と水溶液を分離し、超純水で洗浄、乾燥させる。この正極活物質の粉末を焼成することによってZr、Ti、Al、Mg、Ni、Mn、Zn酸化物による被覆層が形成された粒子が得られる。   When coating with Zr, Ti, Al, Mg, Ni, Mn, and Zn oxide, in a sodium hydroxide or lithium hydroxide aqueous solution adjusted to a pH value of 9 to 11 and a temperature of 60 to 80 ° C. The positive electrode active material powder is put into and stirred and dispersed, and then the nitrate or sulfate of the covering element is dropped. At this time, a coprecipitate is generated by simultaneously dropping ammonia water so that the pH value does not change. Thereafter, the coprecipitate and the positive electrode active material powder are continuously stirred for 5 hours or longer, and adjusted so that the pH value does not fluctuate with sodium hydroxide or lithium hydroxide as needed. In particular, when obtaining a coprecipitate such as Ni and Mn, it is more preferable to replace the dissolved oxygen in the aqueous solution with nitrogen. Next, the positive electrode active material powder and the aqueous solution to which the coprecipitate is adhered are separated by suction filtration, washed with ultrapure water, and dried. By firing the powder of the positive electrode active material, particles having a coating layer formed of Zr, Ti, Al, Mg, Ni, Mn, and Zn oxide are obtained.

Zr、Ti、Al、Mg、Ni、Mn、Zn酸化物を被覆する場合の他の方法としては、所望の元素のアルコキシドをアルコール溶媒に溶解させ、温度が60℃以上80℃以下で撹拌、乾燥させることで正極活物質の粒子表面に付着させ、焼成する方法もある。   As another method for coating Zr, Ti, Al, Mg, Ni, Mn, and Zn oxide, an alkoxide of a desired element is dissolved in an alcohol solvent, and stirred and dried at a temperature of 60 ° C. to 80 ° C. There is also a method of adhering to the particle surface of the positive electrode active material and firing.

Liを含むZr、Ti、Al、Mg、Ni、Mn、Zn、P酸化物を粒子表面に被覆させる場合には、上記いずれかの方法で正極活物質の粒子表面に被覆元素の前駆体を付着させた後、LiOHやLiCOを混ぜて焼成すればよい。 When covering the particle surface with Zr, Ti, Al, Mg, Ni, Mn, Zn, or P oxide containing Li, the precursor of the coating element is attached to the particle surface of the positive electrode active material by any of the above methods. Then, LiOH or Li 2 CO 3 may be mixed and fired.

また、例えばAlFのようなフッ化物を被覆する場合は、pH値が9以上11以下、温度が60以上80℃以下に調整された水酸化ナトリウムないしは水酸化リチウム水溶液中に正極活物質の粉末を入れて撹拌し分散させた後、窒化アルミニウム水和物を入れる。そこへフッ化アンモニウム水溶液を少しずつ滴化し、5時間以上撹拌した後、ろ過、乾燥させ、不活性ガス雰囲気中で焼成すればよい。 For example, when a fluoride such as AlF 3 is coated, the positive electrode active material powder in an aqueous solution of sodium hydroxide or lithium hydroxide adjusted to a pH value of 9 to 11 and a temperature of 60 to 80 ° C. After stirring and dispersing, aluminum nitride hydrate is added. The ammonium fluoride aqueous solution is gradually dropped into the solution, stirred for 5 hours or longer, filtered, dried, and fired in an inert gas atmosphere.

被覆を行う際の焼成温度は400〜600℃であることが好ましく、焼成時間は5〜24時間であることが好ましい。焼成雰囲気は酸化物を得る場合は、空気または酸素などの酸化雰囲気、フッ化物を得る場合は窒素などの不活性雰囲気中であることが好ましい。   The firing temperature at the time of coating is preferably 400 to 600 ° C., and the firing time is preferably 5 to 24 hours. The firing atmosphere is preferably an oxidizing atmosphere such as air or oxygen when obtaining an oxide, and an inert atmosphere such as nitrogen when obtaining a fluoride.

バインダとしては、非水電解質二次電池内で化学的に安定でありかつ、100℃で1週間電解液に浸漬したときの膨潤度が1〜1.2である、熱可塑性樹脂、熱硬化性樹脂のいずれを用いてもよい。例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体またはそのNa+イオン架橋体、エチレン−メタクリル酸共重合体またはそのNa+イオン架橋体、エチレン−アクリル酸メチル共重合体またはそのNa+イオン架橋体、エチレン−メタクリル酸メチル共重合体またはそのNa+イオン架橋体、ポリイミドアミドなどが使用可能である。これらを単独で使用してもよく、また、2種以上を併用してもよい。これらの中では、非水電解質二次電池での安定性や、特性への影響などを考慮すると、PVDFまたはアクリル系、ポリイミドアミド系の材料が好ましい。正極合剤に占めるバインダの質量は、0.2〜5%であることが好ましい。   As the binder, a thermoplastic resin that is chemically stable in a non-aqueous electrolyte secondary battery and has a swelling degree of 1 to 1.2 when immersed in an electrolytic solution at 100 ° C. for 1 week, thermosetting Any of the resins may be used. For example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene- Perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin), polychlorotri Fluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer (ECT E), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer or its Na + ion crosslinked product, ethylene- Methacrylic acid copolymer or its Na + ion crosslinked body, ethylene-methyl acrylate copolymer or its Na + ion crosslinked body, ethylene-methyl methacrylate copolymer or its Na + ion crosslinked body, polyimide amide, etc. can be used. . These may be used alone or in combination of two or more. Among these, considering the stability in the nonaqueous electrolyte secondary battery and the influence on the characteristics, PVDF, acrylic materials, and polyimideamide materials are preferable. The mass of the binder in the positive electrode mixture is preferably 0.2 to 5%.

導電助剤としてのカーボンは、例えば、天然黒鉛や人造黒鉛などのグラファイト、単層または多層のカーボンナノチューブ、グラフェン、フラーレン、VGCF、アセチレンブラック、ケッチェンブラック(商品名)、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック、炭素繊維などが使用可能である。これらを単独で使用してもよく、また、2種以上を併用してもよい。例えば、粒子状のものの場合、1次粒子のみに制限されず、2次粒子や鎖状構造などの集合体の形態を有するものも用いることができる。   Carbon as a conductive aid includes, for example, graphite such as natural graphite and artificial graphite, single-walled or multi-walled carbon nanotubes, graphene, fullerene, VGCF, acetylene black, ketjen black (trade name), channel black, furnace black, Carbon black such as lamp black and thermal black, carbon fiber, and the like can be used. These may be used alone or in combination of two or more. For example, in the case of particles, those having a form of aggregate such as secondary particles and chain structures are not limited to primary particles.

正極合剤におけるカーボンの含有量は、2.5重量%以上10.0重量%以下である。
2.5重量%未満であると、高温保存後の電子伝導パスが不足して、電池特性にばらつきが生じるといった問題が生じる。また10.0重量%を超えると、電極密度が低下することにより、高温保存特性が低下する。
The carbon content in the positive electrode mixture is 2.5 wt% or more and 10.0 wt% or less.
If it is less than 2.5% by weight, there will be a problem that the electron conduction path after high-temperature storage is insufficient and the battery characteristics vary. On the other hand, if the content exceeds 10.0% by weight, the high-temperature storage characteristics deteriorate due to a decrease in electrode density.

カーボンのDBP給油量(油がストラクチャの空隙にどの程度保持されるかという値)は、100(ml/100g)以上であることにより、2.5〜10.0重量%の少量添加で高温保存後の電子伝導性を充分に確保することが可能となる。特に、カーボンのDBP給油量は、150(ml/100g)以上500(ml/100g)以下のカーボンを2.5重量%以上10.0重量%以下添加することが好ましく、5重量%以上10.0重量%以下がさらに好ましく、バインダの膨潤による電子の伝導パスの消失を抑制することができる。   Carbon DBP oil supply (value of how much oil is retained in the voids of the structure) is 100 (ml / 100g) or more, so it can be stored at high temperature with a small addition of 2.5 to 10.0% by weight. It becomes possible to secure sufficient electron conductivity later. In particular, it is preferable to add carbon of 150 (ml / 100 g) or more and 500 (ml / 100 g) or less to 2.5 wt% or more and 10.0 wt% or less. It is more preferably 0% by weight or less, and the disappearance of the electron conduction path due to the swelling of the binder can be suppressed.

正極合剤層に占める正極活物質の質量は、85〜95%であることが好ましい。正極活物質の含有比率が85%より小さいと電池容量が小さくなり、逆に、95%より大きいと導電助剤の量が相対的に少なくなって、高温保存後の電子伝導経路が減少して、正極の抵抗が極めて高くなる。正極合剤層の空隙率は1〜10%であり、好ましくは5〜10%である。空隙率を1〜10%にすることで、電解液との接触面積が低減されるだけでなく、高温保存後の膨潤の影響を受けにくくなるため高温保存特性が向上する。   The mass of the positive electrode active material in the positive electrode mixture layer is preferably 85 to 95%. When the content ratio of the positive electrode active material is less than 85%, the battery capacity becomes small. Conversely, when the content ratio is more than 95%, the amount of the conductive auxiliary agent becomes relatively small, and the electron conduction path after high temperature storage decreases. The resistance of the positive electrode becomes extremely high. The porosity of the positive electrode mixture layer is 1 to 10%, preferably 5 to 10%. By setting the porosity to 1 to 10%, not only the contact area with the electrolytic solution is reduced, but also the high temperature storage characteristics are improved because it is less susceptible to swelling after high temperature storage.

上記した正極活物質、バインダ、および導電助剤(カーボン)などを含む正極合剤を、N−メチル−2−ピロリドン(以下、NMPと記載)に分散させてスラリー状の合剤組成物(正極合剤スラリー)を調製する。この合剤組成物を正極集電体の片面または両面に塗布した後、NMPを蒸発させ、さらにプレス処理を行って集電体表面に正極合剤層を形成する。プレス処理は、正極合剤層の厚みや密度を調節するためのもので、例えば、ロールプレス機や油圧プレス機を用いて行うことができる。このようにして作製された正極合剤層の密度は3.5g/cm以上、4.5g/cm以下とし、かつ空隙率を1〜10%にすることが好ましい。正極の作製方法は上記に限定されず、他の作製方法によってもよい。なお、空隙率は、各材料の真密度、体積、重量、構成比率から算出することができる。 A positive electrode mixture containing the above-described positive electrode active material, binder, conductive additive (carbon) and the like is dispersed in N-methyl-2-pyrrolidone (hereinafter referred to as NMP) to form a slurry mixture composition (positive electrode) A mixture slurry) is prepared. After this mixture composition is applied to one or both sides of the positive electrode current collector, NMP is evaporated, and a press treatment is performed to form a positive electrode mixture layer on the current collector surface. The press treatment is for adjusting the thickness and density of the positive electrode mixture layer, and can be performed using, for example, a roll press machine or a hydraulic press machine. The density of the positive electrode mixture layer thus prepared is preferably 3.5 g / cm 3 or more and 4.5 g / cm 3 or less, and the porosity is preferably 1 to 10%. The method for manufacturing the positive electrode is not limited to the above, and other manufacturing methods may be used. The porosity can be calculated from the true density, volume, weight, and composition ratio of each material.

正極集電体の材料は、非水電解質二次電池において化学的に安定な電子伝導体であれば特に限定されない。例えば、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、チタン、炭素、導電性樹脂などの他に、アルミニウム、アルミニウム合金、ステンレス鋼の表面に炭素層またはチタン層を形成した複合材などを用いることができる。上記材料の中では、軽量で導電性が高いことから、アルミニウムまたはアルミニウム合金が好ましい。正極集電体の材料としては、例えば、前記材料のフォイル、フィルム、シート、ネット、パンチングシート、ラス体、多孔質体、発泡体、繊維群の成形体なども使用できる。また、正極集電体の表面に、表面処理を施して凹凸を付けることもできる。正極集電体の厚みは特に限定されないが、1〜500μmが好ましい。   The material of the positive electrode current collector is not particularly limited as long as it is a chemically stable electron conductor in the nonaqueous electrolyte secondary battery. For example, in addition to aluminum, aluminum alloy, stainless steel, nickel, titanium, carbon, conductive resin, etc., aluminum, aluminum alloy, a composite material in which a carbon layer or a titanium layer is formed on the surface of stainless steel, or the like can be used. . Among these materials, aluminum or aluminum alloy is preferable because it is lightweight and has high conductivity. As a material of the positive electrode current collector, for example, a foil, a film, a sheet, a net, a punching sheet, a lath body, a porous body, a foamed body, a molded body of a fiber group, or the like of the above materials can be used. Further, the surface of the positive electrode current collector can be roughened by surface treatment. Although the thickness of a positive electrode electrical power collector is not specifically limited, 1-500 micrometers is preferable.

集電体の表面に正極合剤組成物を塗布する方法としては、スピンコーティング、ディッピング、スクリーン印刷などの各種の方法を用いることができる。   As a method for applying the positive electrode mixture composition to the surface of the current collector, various methods such as spin coating, dipping, and screen printing can be used.

非水電解質二次電池は、本発明に係る非水電解質二次電池用正極を有する。正極電極以外の構成、構造については特に制限はなく、従来と同様の非水電解質二次電池が有する公知のものを用いることができる。   The nonaqueous electrolyte secondary battery has the positive electrode for a nonaqueous electrolyte secondary battery according to the present invention. There is no restriction | limiting in particular about a structure and structure other than a positive electrode, The well-known thing which the nonaqueous electrolyte secondary battery similar to the past has can be used.

[実施例1]
<正極の作製>
正極活物質として、一般組成式LiNi0.8Co0.15Al0.05の比表面積0.6m/gのリチウム含有ニッケル層状酸化物の粉末92.5質量部と、導電助剤としてのカーボン5質量部と、結着剤としてポリフッ化ビニリデン2.5質量部とを混合し、さらにNMPを加えて粘度を調節して正極合剤スラリーを調製した。
[Example 1]
<Preparation of positive electrode>
As a positive electrode active material, 92.5 parts by mass of a lithium-containing nickel layered oxide powder having a specific surface area of 0.6 m 2 / g of the general composition formula LiNi 0.8 Co 0.15 Al 0.05 O 2 , and a conductive auxiliary agent As a binder, 5 parts by mass of carbon and 2.5 parts by mass of polyvinylidene fluoride as a binder were mixed, and NMP was added to adjust the viscosity to prepare a positive electrode mixture slurry.

正極合剤スラリーを、ベーカー式アプリケーターを用いて、ギャップ(隙間)を100μmに調整して、厚さ15μmのアルミニウム箔による正極集電体に塗布した後、80℃で1時間乾燥させて正極合剤層を形成した。正極合剤層が形成された正極集電体を、直径15mmの円盤状に加工した後、正極合剤の空隙率が10%となるようにプレスし、真空乾燥機にて100℃で20時間乾燥させた。このような工程により正極を作製した。   The positive electrode mixture slurry was applied to a positive electrode current collector made of aluminum foil having a thickness of 15 μm by adjusting the gap (gap) to 100 μm using a baker type applicator, and then dried at 80 ° C. for 1 hour to form a positive electrode mixture. An agent layer was formed. After processing the positive electrode current collector on which the positive electrode mixture layer is formed into a disk shape having a diameter of 15 mm, the positive electrode mixture is pressed so that the porosity of the positive electrode mixture is 10%, and then is vacuum dried at 100 ° C. for 20 hours. Dried. A positive electrode was produced by such a process.

<負極の作製>
所定の厚さの金属リチウム圧延板を直径16mmの円盤状に加工して負極を作製した。
<Production of negative electrode>
A metal lithium rolled plate having a predetermined thickness was processed into a disk shape having a diameter of 16 mm to produce a negative electrode.

<非水電解液>
体積比で1:2のエチレンカーボネートとジエチルカーボネートを混合した溶媒に、六フッ化リン酸リチウム(LiPF)を1モル濃度(mol/l)となるように溶解させて非水電解液を調製した。
<Non-aqueous electrolyte>
A non-aqueous electrolyte is prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) at a molar concentration (mol / l) in a solvent in which ethylene carbonate and diethyl carbonate having a volume ratio of 1: 2 are mixed. did.

<電池の組立>
上記説明の正極、負極、および非水電解液を用いて、扁平形の非水電解質二次電池を組み立てた。図1は、組み立てた非水電解質二次電池1の断面を模式的に示したものである。組み立ては次のように行った。
<Battery assembly>
A flat nonaqueous electrolyte secondary battery was assembled using the positive electrode, negative electrode, and nonaqueous electrolyte described above. FIG. 1 schematically shows a cross section of the assembled nonaqueous electrolyte secondary battery 1. The assembly was performed as follows.

ステンレススチール製の容器13の側面に絶縁リング8を挿入した後、負極4、セパレータ3、正極2の順番に積層し、さらに、非水電解液をセパレータ3に含浸させた。セパレータ3としては、ポリプロピレン製の微多孔膜を用いた。正極2の上に、アルミニウム製の押さえ板5と板ばね6を順に重ね、絶縁パッキン9を介してステンレススチール製の蓋7を乗せ、絶縁スリーブ10を介して、ボルト12とナット11により締め付け、扁平形の非水電解質二次電池を構成した。   After inserting the insulating ring 8 into the side surface of the stainless steel container 13, the negative electrode 4, the separator 3, and the positive electrode 2 were stacked in this order, and the nonaqueous electrolyte was impregnated in the separator 3. As the separator 3, a microporous film made of polypropylene was used. An aluminum pressing plate 5 and a leaf spring 6 are sequentially stacked on the positive electrode 2, a stainless steel lid 7 is placed on the insulating packing 9, and tightened with bolts 12 and nuts 11 on the insulating sleeve 10. A flat nonaqueous electrolyte secondary battery was constructed.

正極2は、押さえ板5と板ばね6を介して蓋7に電気的に接続され、負極4は、容器13を介してボルト12に電気的に接続されている。これにより、蓋7およびボルト12を端子として、電池内部から電気エネルギーを取り出せる。   The positive electrode 2 is electrically connected to the lid 7 via the pressing plate 5 and the leaf spring 6, and the negative electrode 4 is electrically connected to the bolt 12 via the container 13. Thereby, electrical energy can be taken out from the inside of the battery using the lid 7 and the bolt 12 as terminals.

[実施例2]
実施例1の正極活物質を用いて、正極合剤の空隙率が8%となるようにプレスした以外は、上記実施例1と同様の手順で実施例2にかかる非水電解質二次電池を作製した。
[Example 2]
The nonaqueous electrolyte secondary battery according to Example 2 was subjected to the same procedure as in Example 1 except that the positive electrode active material of Example 1 was pressed so that the porosity of the positive electrode mixture was 8%. Produced.

[実施例3]
実施例1の正極活物質を用いて、正極合剤における正極活物質含有率が88質量部、カーボン含有率が8質量部、ポリフッ化ビニリデン4質量部となるように調整して、上記実施例1と同様の手順で実施例3にかかる非水電解質二次電池を作製した。
[Example 3]
Using the positive electrode active material of Example 1, the positive electrode active material content in the positive electrode mixture was adjusted to 88 parts by mass, the carbon content was adjusted to 8 parts by mass, and 4 parts by mass of polyvinylidene fluoride. A non-aqueous electrolyte secondary battery according to Example 3 was produced in the same procedure as in Example 1.

[実施例4]
実施例1の正極活物質を比表面積0.54m/gのLiNi0.75Co0.15Al0.05Mg0.05に替えて、上記実施例1と同様の手順で実施例4にかかる非水電解質二次電池を作製した。
[Example 4]
The positive electrode active material of Example 1 was replaced with LiNi 0.75 Co 0.15 Al 0.05 Mg 0.05 O 2 having a specific surface area of 0.54 m 2 / g, and the same procedure as in Example 1 was used. A non-aqueous electrolyte secondary battery according to No. 4 was produced.

[実施例5]
実施例1の正極活物質を比表面積0.4m/gのLiNi0.8Co0.1Mn0.1に替えて、上記実施例1と同様の手順で実施例5にかかる非水電解質二次電池を作製した。
[Example 5]
The positive electrode active material of Example 1 was replaced with LiNi 0.8 Co 0.1 Mn 0.1 O 2 having a specific surface area of 0.4 m 2 / g, and the same procedure as in Example 1 was followed. A water electrolyte secondary battery was produced.

[実施例6]
実施例1の正極活物質を比表面積0.51m/gのLiNi0.87Co0.1Mn0.01Al0.01Mg0.01に替えて、上記実施例1と同様の手順で実施例6にかかる非水電解質二次電池を作製した。
[Example 6]
The positive electrode active material of Example 1 was replaced with LiNi 0.87 Co 0.1 Mn 0.01 Al 0.01 Mg 0.01 O 2 having a specific surface area of 0.51 m 2 / g, and the same as in Example 1 above. A nonaqueous electrolyte secondary battery according to Example 6 was produced according to the procedure.

[実施例7]
pH値が9以上11以下、温度が60以上80℃以下に調整された水酸化リチウム水溶液中に、実施例1の正極活物質を撹拌し分散させた後、Al(NO・9HOを滴下した。このときpH値が変化しないように、アンモニア水を同時に滴化することでAl(OH)共沈物が生成された。その後、5時間以上が撹拌しつづけ、随時水酸化リチウムでpH値が変動しないように調整した。次に、吸引ろ過によって、Al(OH)が付着した正極活物質の粉末と水溶液を分離し、超純水で洗浄、80℃で24時間真空乾燥させた。この粉末を400℃で10時間、大気雰囲気で焼成した。このような工程により正極活物質表面に形成された酸化物被膜において、Alが、正極活物質に対するモル比率で、1mol%含有された比表面積0.72m/gの正極活物質を作製した。この正極活物質を用いて、実施例1と同様の手順で実施例7にかかる非水電解質二次電池を作製した。
[Example 7]
The positive electrode active material of Example 1 was stirred and dispersed in an aqueous lithium hydroxide solution adjusted to a pH value of 9 to 11 and a temperature of 60 to 80 ° C., and then Al (NO 3 ) 3 · 9H 2. O was added dropwise. At this time, Al (OH) 3 coprecipitate was produced by simultaneously dropping ammonia water so that the pH value did not change. Thereafter, stirring was continued for 5 hours or longer, and the pH value was adjusted so as not to fluctuate with lithium hydroxide as needed. Next, the powder and aqueous solution of the positive electrode active material to which Al (OH) 3 was adhered were separated by suction filtration, washed with ultrapure water, and vacuum-dried at 80 ° C. for 24 hours. The powder was fired at 400 ° C. for 10 hours in an air atmosphere. In the oxide film formed on the surface of the positive electrode active material by such a process, a positive electrode active material having a specific surface area of 0.72 m 2 / g containing 1 mol% of Al in a molar ratio with respect to the positive electrode active material was produced. Using this positive electrode active material, a non-aqueous electrolyte secondary battery according to Example 7 was fabricated in the same procedure as in Example 1.

[実施例8]
ジルコニウムイソプロポキシドをイソプロピルアルコール溶媒に溶解させ、実施例1の正極活物質と共に温度が60℃で10時間撹拌させ、80℃で乾燥させて正極活物質の粉末を得た。そして、この正極活物質の粉末を400℃、大気雰囲気で10時間焼成した。このような工程により正極活物質の表面に形成された酸化物被膜において、Zrが、正極活物質に対するモル比率で、1mol%含有された比表面積0.68m/gの正極活物質を作製した。この正極活物質を用いて、実施例1と同様の手順で実施例8にかかる非水電解質二次電池を作製した。
[Example 8]
Zirconium isopropoxide was dissolved in an isopropyl alcohol solvent, stirred with the positive electrode active material of Example 1 at a temperature of 60 ° C. for 10 hours, and dried at 80 ° C. to obtain a positive electrode active material powder. The positive electrode active material powder was fired at 400 ° C. in an air atmosphere for 10 hours. In the oxide film formed on the surface of the positive electrode active material by such a process, a positive electrode active material having a specific surface area of 0.68 m 2 / g in which 1 mol% of Zr was contained in a molar ratio with respect to the positive electrode active material was produced. . Using this positive electrode active material, a non-aqueous electrolyte secondary battery according to Example 8 was produced in the same procedure as in Example 1.

[実施例9]
pH値が9以上11以下、温度が60℃に調整された水酸化リチウム水溶液中に実施例1の正極活物質を撹拌し分散させた後、窒化アルミニウム水和物を入れる。そこへフッ化アンモニウム水溶液を少しずつ滴化し、10時間以上撹拌した後、吸引ろ過し、超純水で洗浄してから80℃で24時間真空乾燥させた。この粉末を窒素ガス雰囲気中で10時間焼成した。このような工程により正極活物質の表面に形成されたAlFが、正極活物質に対するモル比率で、1mol%含有された比表面積0.66m/gの正極活物質を作製した。この正極活物質を用いて、実施例1と同様の手順で実施例9にかかる非水電解質二次電池を作製した。
[Example 9]
The positive electrode active material of Example 1 is stirred and dispersed in an aqueous lithium hydroxide solution adjusted to a pH value of 9 or more and 11 or less and a temperature of 60 ° C., and then aluminum nitride hydrate is added. Ammonium fluoride aqueous solution was dropped into the solution little by little, stirred for 10 hours or more, suction filtered, washed with ultrapure water, and then vacuum dried at 80 ° C. for 24 hours. This powder was fired in a nitrogen gas atmosphere for 10 hours. A positive electrode active material having a specific surface area of 0.66 m 2 / g in which 1 mol% of AlF 3 formed on the surface of the positive electrode active material by such a process was contained at a molar ratio to the positive electrode active material was produced. Using this positive electrode active material, a nonaqueous electrolyte secondary battery according to Example 9 was produced in the same procedure as in Example 1.

[実施例10]
実施例1の正極活物質を用いて、正極合剤における正極活物質含有率が92.7質量部、カーボン含有量を3質量部、ポリフッ化ビニリデン4.3質量部とし、正極合剤の空隙率が6%となるようにプレスした以外は、上記実施例1と同様の手順で実施例10にかかる非水電解質二次電池を作製した。
[Example 10]
Using the positive electrode active material of Example 1, the positive electrode active material content in the positive electrode mixture was 92.7 parts by mass, the carbon content was 3 parts by mass, and the polyvinylidene fluoride was 4.3 parts by mass. A nonaqueous electrolyte secondary battery according to Example 10 was produced in the same procedure as in Example 1 except that the pressing was performed so that the rate was 6%.

[比較例1]
実施例1の正極活物質の代わりにLiCoOを用いて、正極合剤の空隙率が13%となるようにプレスした以外は、上記実施例1と同様の手順で比較例1にかかる非水電解質二次電池を作製した。
[Comparative Example 1]
The non-aqueous solution according to Comparative Example 1 was prepared in the same manner as in Example 1 except that LiCoO 2 was used instead of the positive electrode active material of Example 1 and the positive electrode material mixture was pressed so that the porosity was 13%. An electrolyte secondary battery was produced.

[比較例2]
実施例1の正極活物質の代わりにLiMnOを用いて、正極合剤の空隙率が18%となるようにプレスした以外は、上記実施例1と同様の手順で比較例2にかかる非水電解質二次電池を作製した。
[Comparative Example 2]
The same procedure as in Example 1 was applied to Comparative Example 2 except that Li 2 MnO 4 was used instead of the positive electrode active material of Example 1 and the positive electrode mixture was pressed so that the porosity of the positive electrode mixture was 18%. A non-aqueous electrolyte secondary battery was produced.

[比較例3]
実施例1の正極活物質の代わりにLiNi1/3Co1/3Mn1/3を用いて、正極合剤の空隙率が20%となるようにプレスした以外は、上記実施例1と同様の手順で比較例3にかかる非水電解質二次電池を作製した。
[Comparative Example 3]
Example 1 except that LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used instead of the positive electrode active material of Example 1 and the positive electrode mixture was pressed so that the porosity of the positive electrode mixture was 20%. A non-aqueous electrolyte secondary battery according to Comparative Example 3 was produced in the same procedure as described above.

[比較例4]
実施例1の正極活物質を用いて、正極合剤の空隙率が15%となるようにプレスした以外は、上記実施例1と同様の手順で比較例4にかかる非水電解質二次電池を作製した。
[Comparative Example 4]
A non-aqueous electrolyte secondary battery according to Comparative Example 4 was prepared in the same procedure as in Example 1 except that the positive electrode active material of Example 1 was pressed so that the porosity of the positive electrode mixture was 15%. Produced.

[比較例5]
実施例1の正極活物質を用いて、正極合剤における正極活物質含有率が92.8質量部、カーボン含有率を2質量部、ポリフッ化ビニリデン5.2質量部とし、正極合剤の空隙率が12%となるようにプレスした以外は、上記実施例1と同様の手順で比較例5にかかる非水電解質二次電池を作製した。
[Comparative Example 5]
Using the positive electrode active material of Example 1, the positive electrode active material content in the positive electrode mixture was 92.8 parts by mass, the carbon content was 2 parts by mass, and polyvinylidene fluoride was 5.2 parts by mass. A non-aqueous electrolyte secondary battery according to Comparative Example 5 was produced in the same procedure as in Example 1 except that pressing was performed so that the rate was 12%.

実施例1〜10の正極活物質の組成、および正極活物質の表面を被覆した元素と正極活物質の含有量とカーボン含有量および空隙率を表1に示す。そして、比較例1〜5の正極活物質の組成、および正極活物質の含有量とカーボン含有量および空隙率を表1に示す。   Table 1 shows the compositions of the positive electrode active materials of Examples 1 to 10, the elements covering the surface of the positive electrode active material, the contents of the positive electrode active material, the carbon content, and the porosity. Table 1 shows the compositions of the positive electrode active materials of Comparative Examples 1 to 5, the positive electrode active material content, the carbon content, and the porosity.

Figure 2017139168
Figure 2017139168

<電池の評価>
実施例1〜10および比較例1〜5の非水電解質二次電池について、次の要領で電気化学特性と高温保存特性、および正極の金属溶出量を評価した。
<Battery evaluation>
About the nonaqueous electrolyte secondary battery of Examples 1-10 and Comparative Examples 1-5, the electrochemical characteristic and the high temperature storage characteristic, and the metal elution amount of the positive electrode were evaluated in the following manner.

<電気化学特性の評価>
室温(25℃)にて、負荷率0.1Cの電流で電池電圧が4.2V vs Li/Li+となるまで定電流で充電を行い、その後、4.2V vs Li/Li+の定電圧で電流が負荷率0.01Cとなるまで充電した。その後、1時間放置し、負荷率0.1Cの電流で電池電圧が2.5Vとなるまで定電流で放電を行った。この工程を2サイクル繰り返して、最後の放電曲線から初期の電力量(Wh)を評価した。電力量の算出は2.5V放電時の放電容量が1/2となる電圧と容量の積によって求めた。
<Evaluation of electrochemical characteristics>
At room temperature (25 ° C.), the battery is charged with a constant current until the battery voltage becomes 4.2 V vs Li / Li + at a load factor of 0.1 C, and then a constant voltage of 4.2 V vs Li / Li + The battery was charged until the current reached a load factor of 0.01C. Thereafter, the battery was left for 1 hour and discharged at a constant current until the battery voltage reached 2.5 V at a current of 0.1 C load factor. This process was repeated 2 cycles, and the initial electric energy (Wh) was evaluated from the last discharge curve. The amount of electric power was calculated by the product of the voltage and the capacity at which the discharge capacity at 2.5V discharge becomes 1/2.

<高温保存特性の評価>
室温での電気化学特性の評価の後、1時間放置し、負荷率0.1Cの電流で電池電圧が4.2V vs Li/Li+となるまで定電流で充電を行い、その後、4.2V vs Li/Li+の定電圧で電流が負荷率0.01Cとなるまで充電した。
<Evaluation of high-temperature storage characteristics>
After the evaluation of the electrochemical characteristics at room temperature, the battery is left for 1 hour and charged at a constant current until the battery voltage becomes 4.2 V vs Li / Li + with a current with a load factor of 0.1 C, and then 4.2 V The battery was charged at a constant voltage of vs Li / Li + until the current reached a load factor of 0.01C.

その後、正極を取り出し、体積比で1:2のエチレンカーボネートとジエチルカーボネートを混合した溶媒に、六フッ化リン酸リチウム(LiPF)を1モル濃度(mol/l)となるように溶解させて非水電解液2mLと共に、密閉容器の中で100℃にて48時間保存した。 Thereafter, the positive electrode was taken out, and lithium hexafluorophosphate (LiPF 6 ) was dissolved in a solvent in which ethylene carbonate and diethyl carbonate having a volume ratio of 1: 2 were mixed so as to have a molar concentration (mol / l). It was stored at 100 ° C. for 48 hours in a sealed container together with 2 mL of non-aqueous electrolyte.

次に、正極を密閉容器から取り出して、再び実施例に記載の方法で非水電解質二次電池を組み立て直し、室温(25℃)にて、負荷率0.1Cの電流で電池電圧が2.5Vとなるまで定電流で放電を行った。   Next, the positive electrode is taken out from the sealed container, and the non-aqueous electrolyte secondary battery is reassembled again by the method described in the examples, and the battery voltage is set to 2. at a current of a load factor of 0.1 C at room temperature (25 ° C.). Discharge was performed at a constant current until 5V was reached.

さらに、負荷率0.1Cの電流で電池電圧が4.2V vs Li/Li+となるまで定電流で充電を行い、その後、4.2V vs Li/Li+の定電圧で電流が負荷率0.01Cとなるまで充電した。その後、1時間放置し、負荷率0.05Cの電流で電池電圧が2.5Vとなるまで定電流で放電を行った。最後の放電曲線から保存試験後の電力量(Wh)を評価した。その評価結果を表2に示す。 Furthermore, the battery is charged at a constant current until the battery voltage becomes 4.2 V vs Li / Li + with a current of 0.1 C load factor, and then the current becomes a load factor of 0 with a constant voltage of 4.2 V vs Li / Li +. The battery was charged until .01C was reached. Thereafter, the battery was left for 1 hour and discharged at a constant current until the battery voltage reached 2.5 V at a current of 0.05 C load factor. The amount of electric power (Wh) after the storage test was evaluated from the last discharge curve. The evaluation results are shown in Table 2.

<金属溶出量の評価>
上記の高温保存特性の評価で使用した、非水電解液2mLに酸を加えて加熱し有機物を除去した。その後、水で希釈して、誘導結合プラズマ発光分析で正極活物質に含まれる金属量の定量し、金属溶出量を算出した。その評価結果を表2に示す。
<Evaluation of metal elution amount>
An acid was added to 2 mL of the non-aqueous electrolyte used in the evaluation of the above high-temperature storage characteristics and heated to remove organic substances. Then, it diluted with water, the amount of metals contained in the positive electrode active material was quantified by inductively coupled plasma emission spectrometry, and the amount of metal elution was calculated. The evaluation results are shown in Table 2.

Figure 2017139168
Figure 2017139168

表2に示した結果から以下のことが分かる。
実施例1〜10では、金属溶出量が1原子量%よりも少なかったことに対し、比較例1〜5では、金属溶出量が1原子量%よりも高くなっていることがわかる。
From the results shown in Table 2, the following can be understood.
In Examples 1 to 10, the metal elution amount was less than 1 atomic weight%, whereas in Comparative Examples 1 to 5, the metal elution amount was higher than 1 atomic weight%.

このことは次のように考えられる。実施例1〜10では、正極活物質にNiを含有する層状酸化物が用いられており、この正極活物質は、表面に酸素との結合力が高いNiOを形成することで金属の溶出を抑制している。他方、比較例1〜3は正極活物質にNiを含まないもしくは含んでいても少ないために、金属溶出が大きくなった。比較例1と2の正極活物質の表面では不均化反応や還元が容易に起こり、CoやMnが大量に溶出する。比較例3も正極活物質にNiが少ないためにNi、Co、Mnがほぼ同じ比率で溶出した。比較例4と5は、正極合剤の空隙率が10%よりも高いため、非水電解液との反応面積が大きくなり、金属溶出量が増加した。   This is considered as follows. In Examples 1 to 10, a layered oxide containing Ni is used as the positive electrode active material, and this positive electrode active material suppresses metal elution by forming NiO having a high binding force with oxygen on the surface. doing. On the other hand, since Comparative Examples 1 to 3 did not contain or contained Ni in the positive electrode active material, metal elution was increased. On the surfaces of the positive electrode active materials of Comparative Examples 1 and 2, disproportionation reaction and reduction easily occur, and Co and Mn are eluted in large amounts. In Comparative Example 3, Ni, Co, and Mn were eluted at almost the same ratio because Ni was less in the positive electrode active material. In Comparative Examples 4 and 5, since the porosity of the positive electrode mixture was higher than 10%, the reaction area with the nonaqueous electrolytic solution was increased, and the metal elution amount was increased.

また、上記実験では保存温度を100℃としたが、これを80℃にすると金属溶出量は小さくなるので、実施例と比較例の差は小さくなる。なお、温度を80℃未満、例えば60℃とすると、正極活物質や空隙率による金属溶出量の差はさらに小さくなり、本発明の効果は極めて小さくなる。   In the above experiment, the storage temperature was 100 ° C. However, when the storage temperature is 80 ° C., the metal elution amount becomes small, so the difference between the example and the comparative example becomes small. When the temperature is less than 80 ° C., for example, 60 ° C., the difference in the amount of metal elution due to the positive electrode active material and the porosity is further reduced, and the effect of the present invention becomes extremely small.

また、実施例1〜10では、電力量回復率が80%を超えたのに対し、比較例1〜5では、電力量回復率が80%を下回っていることがわかる。これは、実施例1〜10の正極活物質の金属溶出が少ないことに加えて、導電助剤であるカーボンの含有量が多く、かつ正極合剤の空隙率が小さいことに起因する。   Moreover, in Examples 1-10, while the electric energy recovery rate exceeded 80%, in Comparative Examples 1-5, it turns out that the electric energy recovery rate is less than 80%. This is due to the fact that the metal content of the positive electrode active material of Examples 1 to 10 is small, the content of carbon as the conductive additive is large, and the porosity of the positive electrode mixture is small.

カーボン含有量が5質量部以上では、高温保存時のバインダの膨潤による電子伝導経路の消失が軽減された。また、正極合剤の空隙率が10%以下に小さくなったことで、高温保存時の電解液との副反応を抑制するだけでなく、バインダの膨潤による電極構造の崩壊を抑制できた。   When the carbon content was 5 parts by mass or more, the disappearance of the electron conduction path due to the swelling of the binder during high temperature storage was reduced. Further, since the porosity of the positive electrode mixture was reduced to 10% or less, not only the side reaction with the electrolytic solution during high temperature storage but also the collapse of the electrode structure due to the swelling of the binder could be suppressed.

以上の効果によって、正極活物質の電気的接触が保たれて電力量が低下しなくなった。他方で、比較例1〜5は、カーボンの含有量が少なく、かつ空隙率が高いことから、正極活物質の電気的接触を失って、高抵抗化して電力量が大きく低下した。   Due to the above effects, the electrical contact of the positive electrode active material was maintained, and the amount of power did not decrease. On the other hand, Comparative Examples 1 to 5 have a low carbon content and a high porosity, so the electrical contact of the positive electrode active material was lost, the resistance was increased, and the amount of power was greatly reduced.

上記の通り、種々の実施の形態及び変形例について説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。   As described above, various embodiments and modifications have been described, but the present invention is not limited to these contents. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1 非水電解質二次電池
2 正極
3 セパレータ
4 負極
5 押さえ板
6 板ばね
7 蓋
8 絶縁リング
9 絶縁パッキン
10 絶縁スリーブ
11 ナット
12 ボルト
13 容器
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Positive electrode 3 Separator 4 Negative electrode 5 Holding plate 6 Leaf spring 7 Lid 8 Insulating ring 9 Insulating packing 10 Insulating sleeve 11 Nut 12 Bolt 13 Container

Claims (5)

一般組成式Li1+xNi1-y (式1)
(式中、MはCo、Mn、Al、Mg、Zr、Mo、Ti、Baのうち少なくとも一種以上の元素を含み、0≦x≦0.1、0≦y≦0.5)
で表される比表面積(BET値)0.01m/g〜1.0m/gのリチウム含有ニッケル層状酸化物からなる正極活物質と、カーボンとを含む正極合剤を有し、
該正極合剤における前記カーボンの含有量が2.5重量%以上10.0重量%以下でかつ前記正極合剤の空隙率が1〜10%であることを特徴とする非水電解質二次電池用正極。
General composition formula Li 1 + x Ni 1- y My O 2 (Formula 1)
(Wherein M includes at least one element of Co, Mn, Al, Mg, Zr, Mo, Ti, and Ba, 0 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.5)
Has in a positive electrode active material consisting of the specific surface area (BET value) 0.01m 2 /g~1.0m 2 / g lithium-containing nickel layered oxide, a positive electrode mixture containing carbon,
The nonaqueous electrolyte secondary battery, wherein the carbon content in the positive electrode mixture is 2.5 wt% or more and 10.0 wt% or less, and the porosity of the positive electrode mixture is 1 to 10%. Positive electrode.
前記正極活物質の粒子表面は、Li、Zr、Ti、Al、Mg、Ni、Mn、Zn、Pよりなる群から選択される少なくとも1種の元素を含む酸化物またはフッ化物で被覆されており、前記被覆する酸化物またはフッ化物に含まれる元素の原子数は、前記正極活物質の分子数の10mol%以下であることを特徴とする請求項1に記載の非水電解質二次電池用正極。   The particle surface of the positive electrode active material is coated with an oxide or fluoride containing at least one element selected from the group consisting of Li, Zr, Ti, Al, Mg, Ni, Mn, Zn, and P. 2. The positive electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the number of atoms of the element contained in the oxide or fluoride to be coated is 10 mol% or less of the number of molecules of the positive electrode active material. . 前記正極活物質は、略球形の粒子形状を有し、粒度分布は、粒子の直径が5μm以上15μm以下の範囲と、20μm以上50μm以下の範囲にそれぞれピークを有することを特徴とすることを特徴とする請求項1又は請求項2に記載の非水電解質二次電池用正極。   The positive electrode active material has a substantially spherical particle shape, and the particle size distribution has peaks in a particle diameter range of 5 μm to 15 μm and a range of 20 μm to 50 μm, respectively. The positive electrode for a nonaqueous electrolyte secondary battery according to claim 1 or 2. 前記正極合剤は、100℃で1週間電解液に浸漬したときの膨潤度が1〜1.2であるバインダを含むことを特徴とする請求項1から請求項3のいずれか一項に記載の非水電解質二次電池用正極。   The said positive electrode mixture contains the binder whose swelling degree is 1-1.2 when immersed in electrolyte solution at 100 degreeC for 1 week, It is any one of Claims 1-3 characterized by the above-mentioned. Positive electrode for non-aqueous electrolyte secondary battery. 請求項1から請求項4のいずれか一項に記載の非水電解質二次電池用正極を有する非水電解質二次電池。   The nonaqueous electrolyte secondary battery which has a positive electrode for nonaqueous electrolyte secondary batteries as described in any one of Claims 1-4.
JP2016020222A 2016-02-04 2016-02-04 Positive electrode for nonaqueous electrolyte secondary battery Pending JP2017139168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016020222A JP2017139168A (en) 2016-02-04 2016-02-04 Positive electrode for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016020222A JP2017139168A (en) 2016-02-04 2016-02-04 Positive electrode for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2017139168A true JP2017139168A (en) 2017-08-10

Family

ID=59564958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016020222A Pending JP2017139168A (en) 2016-02-04 2016-02-04 Positive electrode for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2017139168A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009160A1 (en) * 2017-07-05 2019-01-10 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive electrode active material
CN110534700A (en) * 2018-05-23 2019-12-03 三星Sdi株式会社 Positive electrode and its manufacturing method and lithium rechargeable battery for lithium rechargeable battery
WO2020149244A1 (en) * 2019-01-18 2020-07-23 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
JP2020167000A (en) * 2019-03-29 2020-10-08 Tdk株式会社 Electrode and nonaqueous electrolyte secondary battery
JPWO2019117282A1 (en) * 2017-12-15 2021-01-07 株式会社Gsユアサ Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US11296327B2 (en) 2018-04-16 2022-04-05 Toyota Jidosha Kabushiki Kaisha Positive electrode active material, positive electrode, lithium-ion secondary battery, and method of producing positive electrode active material
CN116741974A (en) * 2023-08-15 2023-09-12 宁波容百新能源科技股份有限公司 Positive electrode material, preparation method thereof and lithium ion battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11411210B2 (en) 2017-07-05 2022-08-09 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery, process for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the positive electrode active material
WO2019009160A1 (en) * 2017-07-05 2019-01-10 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive electrode active material
JP7296044B2 (en) 2017-12-15 2023-06-22 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPWO2019117282A1 (en) * 2017-12-15 2021-01-07 株式会社Gsユアサ Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US11296327B2 (en) 2018-04-16 2022-04-05 Toyota Jidosha Kabushiki Kaisha Positive electrode active material, positive electrode, lithium-ion secondary battery, and method of producing positive electrode active material
CN110534700A (en) * 2018-05-23 2019-12-03 三星Sdi株式会社 Positive electrode and its manufacturing method and lithium rechargeable battery for lithium rechargeable battery
CN110534700B (en) * 2018-05-23 2024-01-05 三星Sdi株式会社 Positive electrode for rechargeable lithium battery, method of manufacturing the same, and rechargeable lithium battery
JP2020115438A (en) * 2019-01-18 2020-07-30 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
JP7254531B2 (en) 2019-01-18 2023-04-10 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2020149244A1 (en) * 2019-01-18 2020-07-23 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
JP7243381B2 (en) 2019-03-29 2023-03-22 Tdk株式会社 Electrodes and non-aqueous electrolyte secondary batteries
JP2020167000A (en) * 2019-03-29 2020-10-08 Tdk株式会社 Electrode and nonaqueous electrolyte secondary battery
CN116741974A (en) * 2023-08-15 2023-09-12 宁波容百新能源科技股份有限公司 Positive electrode material, preparation method thereof and lithium ion battery
CN116741974B (en) * 2023-08-15 2023-11-17 宁波容百新能源科技股份有限公司 Positive electrode material, preparation method thereof and lithium ion battery

Similar Documents

Publication Publication Date Title
JP6560917B2 (en) Positive electrode material and non-aqueous electrolyte secondary battery using the positive electrode material
JP6120765B2 (en) Non-aqueous electrolyte secondary battery positive electrode material and method for producing the same, non-aqueous electrolyte secondary battery
JP5972513B2 (en) Cathode and lithium battery using the same
JP6611438B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2017139168A (en) Positive electrode for nonaqueous electrolyte secondary battery
JP2020504416A (en) Positive active material for lithium secondary battery, method for producing the same, electrode including the same, and lithium secondary battery including the electrode
CN105981210B (en) Nonaqueous electrolyte secondary battery
JP6059019B2 (en) Nonaqueous electrolyte secondary battery
JP2008270175A (en) Cathode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5276795B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
WO2013151209A1 (en) Cathode active material for lithium ion capacitor and method for manufacturing same
JP2014527267A (en) Bimodal type negative electrode active material and lithium secondary battery including the same
JP2019040875A (en) Method for manufacturing positive electrode active material for lithium secondary battery, and lithium secondary battery including the positive electrode active material
JP2012181975A (en) Nonaqueous secondary battery
JP6068247B2 (en) Positive electrode material for non-aqueous electrolyte lithium ion secondary battery and non-aqueous electrolyte lithium ion secondary battery using the positive electrode material
JP6369126B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP7262419B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5836461B1 (en) Positive electrode material for lithium secondary battery
JP2009212021A (en) Electrode for electrochemical element, nonaqueous secondary battery, and battery system
JPWO2015056412A1 (en) Lithium ion secondary battery
KR100950312B1 (en) Negative active material for lithium secondary battery, method of preparing same and lithium secondary battery comprising same
WO2013129376A1 (en) Active material for non-aqueous electrolyte secondary cell, electrode for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and method for producing active material for non-aqueous electrolyte secondary cell
CN109964345B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5846453B2 (en) Method for producing positive electrode active material
JP6468025B2 (en) Non-aqueous lithium secondary battery