JP6611438B2 - Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery - Google Patents

Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6611438B2
JP6611438B2 JP2015017849A JP2015017849A JP6611438B2 JP 6611438 B2 JP6611438 B2 JP 6611438B2 JP 2015017849 A JP2015017849 A JP 2015017849A JP 2015017849 A JP2015017849 A JP 2015017849A JP 6611438 B2 JP6611438 B2 JP 6611438B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrolyte secondary
secondary battery
electrode material
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015017849A
Other languages
Japanese (ja)
Other versions
JP2016143539A5 (en
JP2016143539A (en
Inventor
誠之 廣岡
將之 山田
智仁 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Maxell Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Holdings Ltd filed Critical Maxell Holdings Ltd
Priority to JP2015017849A priority Critical patent/JP6611438B2/en
Priority to PCT/JP2015/075062 priority patent/WO2016121156A1/en
Publication of JP2016143539A publication Critical patent/JP2016143539A/en
Publication of JP2016143539A5 publication Critical patent/JP2016143539A5/ja
Application granted granted Critical
Publication of JP6611438B2 publication Critical patent/JP6611438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水電解質二次電池用正極材料及びその製造方法、並びに非水電解質二次電池に関する。   The present invention relates to a positive electrode material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery.

近年、携帯電話、ノート型パソコン等のポータブル電子機器に搭載されている非水電解質二次電池には、より長時間の駆動時間を確保するため、高容量化が求められている。   In recent years, non-aqueous electrolyte secondary batteries mounted on portable electronic devices such as mobile phones and notebook computers are required to have a higher capacity in order to ensure a longer driving time.

例えば、充電終止電圧を高めることによって高エネルギー密度化、高出力化が可能となることが知られているが、正極劣化の加速や電池の安全性の低下が問題となっている。これらの問題の原因は、主に電解液と正極材料との界面で起こる副反応によるところが大きく、正極表面の化学状態を変化させることによって改善が図られている。   For example, it is known that increasing the end-of-charge voltage can increase the energy density and increase the output, but acceleration of the deterioration of the positive electrode and the decrease in battery safety are problems. The cause of these problems is largely due to side reactions occurring at the interface between the electrolytic solution and the positive electrode material, and improvement is achieved by changing the chemical state of the positive electrode surface.

例えば、特開2011−96626号公報(特許文献1)には、高リチウム含有遷移金属酸化物粒子を正極材料として用いたリチウムイオン電池は、正極材料の中心部から最表面部に向かって結晶構造を層状岩塩構造からスピネル構造へと徐々に変化させることで、Li基準で4.8Vもの高電圧充放電における負荷特性、放電容量、及び充放電効率等の電池諸特性を向上させ得ることが提案されている。   For example, in Japanese Patent Application Laid-Open No. 2011-96626 (Patent Document 1), a lithium ion battery using high lithium-containing transition metal oxide particles as a positive electrode material has a crystal structure from the central part of the positive electrode material toward the outermost surface part. It is proposed that the battery characteristics such as load characteristics, discharge capacity, and charge / discharge efficiency in high voltage charge / discharge as high as 4.8V based on Li can be improved by gradually changing the layer structure from the layered rock salt structure to the spinel structure. Has been.

また、米国特許第5,693,435号明細書(特許文献2)には、Li含有コバルト酸化物粒子を正極材料として用いたリチウムイオン電池において、正極材料の最表面のみを還元させることによって、Li基準で4.4Vの充電終止電圧での室温充放電サイクルによる劣化を抑制できることが報告されている。   In addition, in US Pat. No. 5,693,435 (Patent Document 2), in a lithium ion battery using Li-containing cobalt oxide particles as a positive electrode material, by reducing only the outermost surface of the positive electrode material, It has been reported that deterioration due to a room temperature charge / discharge cycle at a charge end voltage of 4.4 V on the basis of Li can be suppressed.

特開2011−96626号公報JP 2011-96626 A 米国特許第5,693,435号明細書US Pat. No. 5,693,435

しかし、特許文献1に記載された高リチウム含有遷移金属酸化物粒子を正極材料として用いたリチウムイオン電池は、高電圧充電によって高容量化できるものの、Li含有容量が多いことから他のLi含有遷移金属酸化物よりも真密度が低くなる。加えて、平均充放電電位が低いために、体積当たりのエネルギー密度と出力密度を向上させることが難しいという問題がある。   However, the lithium ion battery using the high lithium-containing transition metal oxide particles described in Patent Document 1 as a positive electrode material can be increased in capacity by high-voltage charging, but other Li-containing transitions have a large Li-containing capacity. True density is lower than metal oxide. In addition, since the average charge / discharge potential is low, there is a problem that it is difficult to improve the energy density per volume and the output density.

また、特許文献2に記載されたリチウム含有コバルト酸化物粒子を正極材料として用いたリチウムイオン電池は、真密度が高いことに加え、広範囲の充電状態において電位が高いことから、高い充電終止電圧で充放電することで、高エネルギー化及び高出力化が期待できる。しかしながら、高温環境下で高電圧を保持し続けることによって、Coの溶出が促進されてしまい、正極材料の構造破壊が起こるという問題を生ずる。   Moreover, since the lithium ion battery using the lithium-containing cobalt oxide particles described in Patent Document 2 as a positive electrode material has a high true density and a high potential in a wide range of charged states, it has a high charge end voltage. By charging and discharging, high energy and high output can be expected. However, by continuing to maintain a high voltage in a high temperature environment, Co elution is promoted, resulting in a problem that the positive electrode material is structurally broken.

そこで本発明は、充電終止電圧の上昇により、体積当たりのエネルギー密度及び出力密度を向上させつつ、高温環境下でCoが溶出することを抑制することができる非水電解質二次電池用正極材料及びその製造方法、並びにその正極材料を用いた非水電解質二次電池を提供することを目的とする。   Accordingly, the present invention provides a positive electrode material for a non-aqueous electrolyte secondary battery that can suppress the elution of Co in a high temperature environment while improving the energy density per volume and the output density by increasing the charge end voltage. It is an object of the present invention to provide a non-aqueous electrolyte secondary battery using the manufacturing method and the positive electrode material.

上記課題を解決するため、本発明者らが鋭意研究を行った結果、所定の組成を有するリチウム含有コバルト酸化物の粒子の最表面を特定構造とすることによって課題が解決されることを見出し、発明を完成した。すなわち、本発明の要旨は以下の通りである。   In order to solve the above problems, the present inventors conducted extensive research and found that the problem is solved by making the outermost surface of lithium-containing cobalt oxide particles having a predetermined composition a specific structure. Completed the invention. That is, the gist of the present invention is as follows.

(1)一般組成式Li1+xCo1−y2−δ(式中、MはNi、Mn、Al、Mg、Zr、V、W、Mo、Cr、Bi、Cu、Ti、Si、Fe、P、F及びClからなる群より選択される1種以上の元素であり、0≦x≦0.1、0≦y≦0.1、0≦δ≦0.02である)で表されるリチウム含有コバルト酸化物を含有する粒子を含み、前記粒子の最表面は、スピネル構造を有している非水電解質二次電池用正極材料。
(2)ラマンスペクトルにおいて、650cm−1〜700cm−1の範囲にショルダーピークを有する上記(1)に記載の非水電解質二次電池用正極材料。
(3)粒子が、Li、Zr、Ti、Al、Mg、Ni、Mn、Zn及びPからなる群より選択される1種以上の元素を含む酸化物又はフッ化物によってさらに被覆され、前記元素の原子数が、リチウム含有コバルト酸化物の分子数の10%以下である上記(1)又は(2)に記載の非水電解質二次電池用正極材料。
(4)上記(1)に記載の非水電解質二次電池用正極材料の製造方法であって、
リチウム含有コバルト酸化物を合成する工程と、
合成したリチウム含有コバルト酸化物に対して、LiCO及び/又はLiOHを混合する工程と、
950℃以上1100℃以下の温度範囲で、2時間以上20時間以内のアニール処理を行う工程とを含む前記非水電解質二次電池用正極材料の製造方法。
(5)上記(1)に記載の非水電解質二次電池用正極材料の製造方法であって、
リチウム含有コバルト酸化物の原料にLiCO及び/又はLiOHを混合する工程と、
950℃以上1100℃以下の温度範囲で、5時間以上48時間以内のアニール処理を行う工程とを含む前記非水電解質二次電池用正極材料の製造方法。
(6)上記(1)〜(3)のいずれかに記載の非水電解質二次電池用正極材料を含む正極と、負極と、セパレータと、非水電解質とを備える非水電解質二次電池。
(7)正極が、上記(1)〜(3)のいずれかに記載の非水電解質二次電池用正極材料に加えて、一般組成式Li1+aNi1−b−c−dCoMnM’2−e(式中、M’はAl、Mg、Zr、V、W、Mo、Cr、Ti、B、Si、Fe、P、F、S及びClからなる群より選択される1種以上の元素であり、0≦a≦0.05、0≦b≦0.02、0.01≦c≦0.03、0.001≦d≦0.03、0≦e≦0.01である)で表されるリチウム含有ニッケル・コバルト・マンガン酸化物を、前記リチウム含有ニッケル・コバルト・マンガン酸化物及びリチウム含有コバルト酸化物の合計に対し5質量%以上50質量%以下の割合で含む上記(6)に記載の非水電解質二次電池。
(8)室温で且つ0.1C以下の負荷率で5Vまで充電したときの正極の充電曲線を電圧で微分することによって得られるdQ/dV曲線の最も高電位に確認されるピークの電位が、4.64V以上である上記(6)又は(7)に記載の非水電解質二次電池。
(1) General composition formula Li 1 + x Co 1-y M y O 2-δ (where M is Ni, Mn, Al, Mg, Zr, V, W, Mo, Cr, Bi, Cu, Ti, Si, One or more elements selected from the group consisting of Fe, P, F and Cl, and 0 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.1, and 0 ≦ δ ≦ 0.02. The positive electrode material for nonaqueous electrolyte secondary batteries containing the particle | grains containing the lithium containing cobalt oxide by which the outermost surface of the said particle | grain has a spinel structure.
(2) in the Raman spectrum, the positive electrode material for a nonaqueous electrolyte secondary battery according to (1) having a shoulder peak in the range of 650cm -1 ~700cm -1.
(3) The particles are further coated with an oxide or fluoride containing one or more elements selected from the group consisting of Li, Zr, Ti, Al, Mg, Ni, Mn, Zn, and P; The positive electrode material for a nonaqueous electrolyte secondary battery according to (1) or (2), wherein the number of atoms is 10% or less of the number of molecules of the lithium-containing cobalt oxide.
(4) A method for producing a positive electrode material for a nonaqueous electrolyte secondary battery according to (1) above,
Synthesizing a lithium-containing cobalt oxide;
A step of mixing Li 2 CO 3 and / or LiOH with respect to the synthesized lithium-containing cobalt oxide;
A method for producing the positive electrode material for a non-aqueous electrolyte secondary battery, comprising a step of performing an annealing treatment within a temperature range of 950 ° C. to 1100 ° C. for 2 hours to 20 hours.
(5) A method for producing a positive electrode material for a nonaqueous electrolyte secondary battery according to (1) above,
Mixing Li 2 CO 3 and / or LiOH with a lithium-containing cobalt oxide raw material;
A method for producing the positive electrode material for a non-aqueous electrolyte secondary battery, comprising a step of performing an annealing treatment within a temperature range of 950 ° C. to 1100 ° C. for 5 hours to 48 hours.
(6) A nonaqueous electrolyte secondary battery comprising a positive electrode including the positive electrode material for a nonaqueous electrolyte secondary battery according to any one of (1) to (3), a negative electrode, a separator, and a nonaqueous electrolyte.
(7) In addition to the positive electrode material for nonaqueous electrolyte secondary batteries according to any one of (1) to (3) above, the positive electrode has a general composition formula Li 1 + a Ni 1-bcd Co b Mn c M ′ d O 2-e (wherein M ′ is selected from the group consisting of Al, Mg, Zr, V, W, Mo, Cr, Ti, B, Si, Fe, P, F, S and Cl) One or more elements, 0 ≦ a ≦ 0.05, 0 ≦ b ≦ 0.02, 0.01 ≦ c ≦ 0.03, 0.001 ≦ d ≦ 0.03, 0 ≦ e ≦ 0. The lithium-containing nickel / cobalt / manganese oxide represented by 01) is in a proportion of 5% by mass to 50% by mass with respect to the total of the lithium-containing nickel / cobalt / manganese oxide and the lithium-containing cobalt oxide. The nonaqueous electrolyte secondary battery according to (6) above.
(8) The peak potential confirmed at the highest potential of the dQ / dV curve obtained by differentiating the charge curve of the positive electrode with voltage when charged to 5 V at a room temperature and a load factor of 0.1 C or less, The nonaqueous electrolyte secondary battery according to (6) or (7), which is 4.64 V or more.

本発明によれば、高容量であり、かつ高温、高電圧での連続充電特性に優れる非水電解質二次電池用正極材料を提供することができる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode material for nonaqueous electrolyte secondary batteries which is high capacity | capacitance and excellent in the continuous charge characteristic at high temperature and a high voltage can be provided. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

実施例1、2及び3、並びに比較例1及び2の非水電解質二次電池用正極材料のラマンスペクトルを示す図である。It is a figure which shows the Raman spectrum of the positive electrode material for nonaqueous electrolyte secondary batteries of Examples 1, 2, and 3 and Comparative Examples 1 and 2. 実施例1並びに比較例1及び2の非水電解質二次電池用正極材料のX線回折測定結果を示す図である。It is a figure which shows the X-ray-diffraction measurement result of the positive electrode material for nonaqueous electrolyte secondary batteries of Example 1 and Comparative Examples 1 and 2. 本発明に係る非水電解質二次電池の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the nonaqueous electrolyte secondary battery which concerns on this invention.

以下、本発明に係る非水電解質二次電池用正極材料及びその製造方法、並びにその正極材料を用いた非水電解質二次電池について説明する。なお、本発明は下記に示したものに限定されず、その要旨を変更しない範囲内において適宜変更して実施することができる。   Hereinafter, a positive electrode material for a non-aqueous electrolyte secondary battery according to the present invention, a manufacturing method thereof, and a non-aqueous electrolyte secondary battery using the positive electrode material will be described. In addition, this invention is not limited to what was shown below, In the range which does not change the summary, it can change suitably and can implement.

本発明に係る非水電解質二次電池用正極材料は、
一般組成式Li1+xCo1−y2−δ (1)
(式中、MはNi、Mn、Al、Mg、Zr、V、W、Mo、Cr、Bi、Cu、Ti、Si、Fe、P、F及びClからなる群より選択される1種以上の元素であり、0≦x≦0.1、0≦y≦0.1、0≦δ≦0.02である)で表されるリチウム含有コバルト酸化物を含有する粒子を含み、その最表面は、スピネル構造を有していることを特徴とする。ここで、粒子の最表面とは、粒子の表面部分の厚さ100nm以内の領域をいう。上記正極材料を用いることによって、高容量であり、かつ高温・高電圧での連続充電が可能な非水電解質二次電池が得られる。
The positive electrode material for a non-aqueous electrolyte secondary battery according to the present invention is
General composition formula Li 1 + x Co 1-y M y O 2-δ (1)
Wherein M is one or more selected from the group consisting of Ni, Mn, Al, Mg, Zr, V, W, Mo, Cr, Bi, Cu, Ti, Si, Fe, P, F and Cl Element containing particles containing lithium-containing cobalt oxide represented by 0 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.1, and 0 ≦ δ ≦ 0.02. It has a spinel structure. Here, the outermost surface of the particle refers to a region having a thickness within 100 nm of the surface portion of the particle. By using the positive electrode material, a nonaqueous electrolyte secondary battery having a high capacity and capable of continuous charging at a high temperature and a high voltage can be obtained.

上記正極材料を用いて非水電解質二次電池の正極を作製するには、上記正極材料を、バインダ、導電助剤等とともに溶媒に分散させた正極合剤スラリーを調製し、この正極合剤スラリーを正極集電体の表面に塗布して正極合剤層を形成することにより行うことができる。   In order to produce a positive electrode of a nonaqueous electrolyte secondary battery using the positive electrode material, a positive electrode mixture slurry is prepared by dispersing the positive electrode material in a solvent together with a binder, a conductive auxiliary agent, and the like. Can be applied to the surface of the positive electrode current collector to form a positive electrode mixture layer.

本発明に係る非水電解質二次電池用正極材料は粒子状であり、1次粒子が凝集した2次粒子や、1次粒子により構成され、個々の形状は略球形であり得る。上記形状は、走査型電子顕微鏡により所定領域に存在する粒子を観察することによって確認することができる。粒子の直径は、5μm以上50μm以下の範囲であることが好ましく、さらには5μm以上15μm以下の範囲と、20μm以上50μm以下の範囲にそれぞれピークを有するように分布していることがより好ましい。複数のピークを有することによって、正極合剤層における粒子の充填状態が改善される。上記粒度分布は、レーザー回折散乱式粒度分布測定装置により測定することができる。   The positive electrode material for a non-aqueous electrolyte secondary battery according to the present invention is in the form of particles, is composed of secondary particles in which primary particles are aggregated, or primary particles, and each shape may be substantially spherical. The above shape can be confirmed by observing particles existing in a predetermined region with a scanning electron microscope. The diameter of the particles is preferably in the range of 5 μm to 50 μm, more preferably distributed so as to have peaks in the range of 5 μm to 15 μm and in the range of 20 μm to 50 μm. By having a plurality of peaks, the packing state of the particles in the positive electrode mixture layer is improved. The particle size distribution can be measured by a laser diffraction / scattering particle size distribution measuring apparatus.

本発明に係る非水電解質二次電池用正極材料は、Coの溶出を抑える観点から、非水電解質との界面を小さくする必要がある。そのため、BET比表面積が小さい方が有利であるが、粒子のBET比表面積が小さ過ぎると、積層した際の密度が小さくなり、そのために電池容量が小さくなったり、高負荷における放電特性が低下したりするという問題が生じる。このため、BET比表面積Sは、0.01≦S≦1.0[m/g]の範囲内であることが好ましい。BET比表面積は、多分子層吸着の理論式であるBET式を用いて表面積を測定して求められる。具体的には、窒素吸着法による比表面積測定装置を用いてBET比表面積を求めることができる。 The positive electrode material for a non-aqueous electrolyte secondary battery according to the present invention needs to reduce the interface with the non-aqueous electrolyte from the viewpoint of suppressing Co elution. Therefore, it is advantageous to have a small BET specific surface area. However, if the BET specific surface area of the particles is too small, the density at the time of stacking will be small, so that the battery capacity will be reduced and the discharge characteristics at high load will be reduced. Problem arises. For this reason, it is preferable that the BET specific surface area S is in the range of 0.01 ≦ S ≦ 1.0 [m 2 / g]. The BET specific surface area can be obtained by measuring the surface area using the BET formula, which is a theoretical formula for multimolecular layer adsorption. Specifically, the BET specific surface area can be obtained using a specific surface area measuring apparatus by a nitrogen adsorption method.

前記一般組成式(1)において、Liに関するxは、0≦x≦0.1であり、0≦x≦0.03であることがより好ましい。xが0に満たない場合には、正極材料の粒子が小さくなり、粒子の直径が5μmを下回ってしまう。このような小さな粒子を用いて正極合剤層を形成すると、その密度が小さいために、十分な電池容量が得られない。また、表面積は大きくなることから、Coの溶出が起こり易くなる。一方、xが0.1を超える場合には大量の酸素欠損が生じる。このため、低充電状態における電位が低下して、低充電状態での出力低下を起こす。また、酸素が欠損しているために、構造が崩壊し易くなり、サイクル寿命が短くなる。さらに、正極材料の粒子表面におけるリチウムが多いために、このような正極材料を用いて調製した正極合剤スラリーはゲル状となり、形成した正極合剤層の抵抗が高くなったり、電池反応の際にガスが発生したりするため好ましくない。   In the general composition formula (1), x related to Li is 0 ≦ x ≦ 0.1, and more preferably 0 ≦ x ≦ 0.03. When x is less than 0, the particles of the positive electrode material become small, and the diameter of the particles is less than 5 μm. When such a small particle is used to form the positive electrode mixture layer, the density is small, and thus a sufficient battery capacity cannot be obtained. Further, since the surface area is increased, Co elution is likely to occur. On the other hand, when x exceeds 0.1, a large amount of oxygen deficiency occurs. For this reason, the potential in the low charge state is lowered, and the output is lowered in the low charge state. In addition, since the oxygen is deficient, the structure is easily collapsed and the cycle life is shortened. Furthermore, since there is a large amount of lithium on the particle surface of the positive electrode material, the positive electrode mixture slurry prepared using such a positive electrode material becomes a gel, and the resistance of the formed positive electrode mixture layer is increased, or during the battery reaction. This is not preferable because gas is generated.

Liに関するxが、0≦x≦0.1の範囲であることは、化学両論組成よりもわずかにLiが過剰な状態であることを意味している。このような状態では、4.5V以上の高電圧における構造崩壊を伴う相転移現象が抑制され、Coの溶出が防止される。正極材料のCoの平均価数は、2.8以上且つ3.3以下であることが好ましい。Coの価数は、誘導結合プラズマ発光分析とヨード滴定から計算され、LiとCoの原子数比及び酸素量を定量することによって得ることができる。   X in the range of 0 ≦ x ≦ 0.1 means that Li is slightly in excess of the stoichiometric composition. In such a state, a phase transition phenomenon accompanied by structural collapse at a high voltage of 4.5 V or higher is suppressed, and Co elution is prevented. The average valence of Co in the positive electrode material is preferably 2.8 or more and 3.3 or less. The valence of Co is calculated from inductively coupled plasma emission analysis and iodometric titration, and can be obtained by quantifying the atomic ratio of Li and Co and the amount of oxygen.

前記一般組成式(1)において、M(Ni、Mn、Al、Mg、Zr、V、W、Mo、Cr、Bi、Cu、Ti、Si、Fe、P、F及びCl)に関するyは、0≦y≦0.1である。Ni、Mn、Al、Mg、Zr、V、W、Mo、Cr、Bi、Cu及びTiに関しては、Coの一部と置き換えることで種々の電池特性を改善することができる。また、Si、Fe、P、F及びCl等は不可避的に不純物として含有する場合がある。   In the general composition formula (1), y related to M (Ni, Mn, Al, Mg, Zr, V, W, Mo, Cr, Bi, Cu, Ti, Si, Fe, P, F, and Cl) is 0. ≦ y ≦ 0.1. Regarding Ni, Mn, Al, Mg, Zr, V, W, Mo, Cr, Bi, Cu, and Ti, various battery characteristics can be improved by replacing part of Co. Moreover, Si, Fe, P, F, Cl, etc. may be inevitably contained as impurities.

MとしてのNiの添加は、Co溶出を抑制する効果が大きくなるため好ましい。他の元素置換によっても、リチウム含有コバルト酸化物の構造を安定化させCo溶出を抑制する効果は得られるものの、充放電容量が低下するという問題がある。一方でNiは、本発明の範囲内であれば、添加量の増減による充放電容量の変化は極めて小さく、電池を高容量に維持しながらCo溶出を抑制する添加元素として好ましい。Niの添加量yは、0<y≦0.1であることが好ましく、電位の低下を抑制するためには、0<y≦0.05であることがより好ましい。   The addition of Ni as M is preferable because the effect of suppressing Co elution is increased. Although other element substitution can stabilize the structure of the lithium-containing cobalt oxide and suppress the Co elution, there is a problem that the charge / discharge capacity decreases. On the other hand, if Ni is within the range of the present invention, the change in charge / discharge capacity due to the increase / decrease of the addition amount is extremely small, and Ni is preferable as an additive element for suppressing Co elution while maintaining the battery at a high capacity. The addition amount y of Ni is preferably 0 <y ≦ 0.1, and more preferably 0 <y ≦ 0.05 in order to suppress a decrease in potential.

MとしてのMgの添加は、Li及びCoのサイトに置換されることで、リチウム含有コバルト酸化物の構造を安定化させ、Coの溶出を抑制する効果が大きくなることに加え、耐熱性を向上させる効果があるため好ましい。過剰に添加すると、リチウム含有コバルト酸化物の結晶格子が歪んで、電池の容量低下とともに、Liの移動度低下による負荷特性の低下を引き起こす恐れがある。また、Mgを過剰に含有した場合には、充放電サイクルに伴ってMgが溶出して電池の寿命低下を招くという問題があるため、Mgの添加量yは、0<y≦0.1であることが好ましく、0.005≦y≦0.01であることがより好ましい。   Addition of Mg as M replaces Li and Co sites, stabilizes the structure of the lithium-containing cobalt oxide, increases the effect of suppressing Co elution, and improves heat resistance It is preferable because of the effect of If it is added excessively, the crystal lattice of the lithium-containing cobalt oxide is distorted, which may cause a decrease in battery capacity and a decrease in load characteristics due to a decrease in Li mobility. Further, when Mg is excessively contained, there is a problem that Mg is eluted with a charge / discharge cycle and the life of the battery is reduced. Therefore, the added amount y of Mg is 0 <y ≦ 0.1. Preferably, there is more preferably 0.005 ≦ y ≦ 0.01.

MとしてのAlの添加は、6配位のCoイオンとAlイオンのイオン半径がほぼ同等であることから、Coのサイトに置換されてリチウム含有コバルト酸化物の構造を安定化させ、Coの溶出を抑制する効果がある。また、耐熱性を向上させる効果がある。しかし、Mgと同様に、過剰に添加すると、リチウム含有コバルト酸化物の結晶格子が歪んで、電池の容量低下とともに、Liの移動度低下による負荷特性の低下を引き起こす恐れがある。Alの添加量yは、0<y≦0.1であることが好ましく、0<y≦0.01であることがより好ましい。   Addition of Al as M has almost the same ionic radius of 6-coordinate Co ions and Al ions, so it is replaced with Co sites to stabilize the structure of lithium-containing cobalt oxides and elution of Co There is an effect to suppress. Moreover, there exists an effect which improves heat resistance. However, like Mg, if added excessively, the crystal lattice of the lithium-containing cobalt oxide is distorted, which may cause a decrease in battery capacity and a decrease in load characteristics due to a decrease in Li mobility. The addition amount y of Al is preferably 0 <y ≦ 0.1, and more preferably 0 <y ≦ 0.01.

Zrの添加は、低充電状態の電位を高め出力を向上する効果に加え、4.3V以上での高電圧充放電サイクル寿命を向上させる効果がある。Zrの量yは、0<y≦0.1であることが好ましく、0.001≦y≦0.005であることがより好ましい。0.005を超えると、正極材料粒子の成長が抑制され、粒子が小さくなる場合がある。このような小さな粒子を用いて正極合剤層を形成すると、その密度が小さいために、十分な電池容量が得られない恐れがある。また、表面積が大きくなることから、Co溶出が起こり易くなる。Mn、V、W、Mo、Cr、Ti等は、Zrと同様の効果を発現させることができる。   The addition of Zr has the effect of improving the high voltage charge / discharge cycle life at 4.3 V or higher in addition to the effect of increasing the potential in the low charge state and improving the output. The amount y of Zr is preferably 0 <y ≦ 0.1, and more preferably 0.001 ≦ y ≦ 0.005. When it exceeds 0.005, the growth of the positive electrode material particles is suppressed, and the particles may be small. When such a small particle is used to form the positive electrode mixture layer, there is a possibility that sufficient battery capacity cannot be obtained due to its low density. Further, since the surface area is increased, Co elution is likely to occur. Mn, V, W, Mo, Cr, Ti, and the like can exhibit the same effects as Zr.

Biの添加は、粒成長を促進し、高電圧においてもCo溶出反応を抑制する効果がある、Biの量yは、特に0.001≦y≦0.005であることが好ましい。0.005を超えると異相が発現し、電気化学的特性が低下する恐れがある。   The addition of Bi promotes grain growth and has an effect of suppressing the Co elution reaction even at a high voltage. The amount y of Bi is particularly preferably 0.001 ≦ y ≦ 0.005. If it exceeds 0.005, a heterogeneous phase appears and the electrochemical characteristics may be deteriorated.

前記一般組成式(1)において、酸素に関するδは、0≦δ≦0.02である。酸素の脱離による結晶構造の崩壊はCo溶出の一原因と考えられる。ヨード滴定とICPから算出されるδが0.02以下であれば酸素欠損は十分に小さくなる。   In the general composition formula (1), δ relating to oxygen is 0 ≦ δ ≦ 0.02. The collapse of the crystal structure due to the desorption of oxygen is considered to be one cause of Co elution. If δ calculated from iodometric titration and ICP is 0.02 or less, oxygen deficiency is sufficiently small.

本発明に係る非水電解質二次電池用正極材料は、一般組成式(1)で表される、リチウム含有コバルト酸化物の粒子の中心部が空間群R3−mに帰属される層状岩塩構造であり、最表面である厚さ100nm以内の領域において空間群Fd3mに帰属されるスピネル構造に段階的に変化している。層状岩塩構造とスピネル構造は格子整合性があるため、酸素の配置はそのままで、段階的にLiとCo及びMを含む金属元素の配置が異なるため、二種類の構造に明確な境界は形成されず、Liの拡散への影響は小さい。さらに、構造安定なスピネル構造が最外殻に存在することで、不均化反応や、還元によるCo溶出等の電解液との副反応に起因するリチウム含有コバルト酸化物粒子表面の劣化が抑制される。その結果、高温、高電圧の連続充電特性が飛躍的に向上する。このような効果が得られるリチウム含有コバルト酸化物の粒子表面のラマンスペクトルにおいては、650cm−1〜700cm−1の範囲にショルダーピークを有する。本発明においてショルダーピークとは、ラマンスペクトルにおいて、約590cm−1に発現するピーク形状が左右非対称であり、且つ、そのピークトップから700cm−1の間に、バックグラウンドよりも高いスペクトル強度が保持された部分をいう。ラマンスペクトルの測定方法の一例を示すと、波長532nm、強度0.7mW〜1.0mWのレーザーをリチウム含有コバルト酸化物の粒子表面の一点に照射し、発生するラマン散乱光をCCDで検出器することによって得ることができる。 The positive electrode material for a non-aqueous electrolyte secondary battery according to the present invention has a layered rock salt structure in which the central part of the lithium-containing cobalt oxide particles represented by the general composition formula (1) belongs to the space group R3-m. There is a stepwise change to a spinel structure belonging to the space group Fd3m in the region of the thickness of 100 nm or less which is the outermost surface. Since the lamellar rock salt structure and the spinel structure are lattice-matched, the arrangement of oxygen remains the same, and the arrangement of metallic elements including Li, Co, and M is gradually changed, so a clear boundary is formed between the two types of structures. However, the influence on the diffusion of Li is small. Furthermore, the presence of a structure-stable spinel structure in the outermost shell suppresses deterioration of the surface of the lithium-containing cobalt oxide particles due to a disproportionation reaction or a side reaction with an electrolytic solution such as Co elution by reduction. The As a result, the continuous charging characteristics at high temperature and high voltage are dramatically improved. In the Raman spectrum of the particle surface of the lithium-containing cobalt oxide that provides such an effect, it has a shoulder peak in the range of 650 cm −1 to 700 cm −1 . The shoulder peak in the present invention, in the Raman spectrum, the peak shape is asymmetrical expressed in about 590 cm -1, and, in between the peak top of the 700 cm -1, higher spectral intensity than the background is held Refers to the part. An example of a Raman spectrum measurement method is as follows. A laser beam having a wavelength of 532 nm and an intensity of 0.7 mW to 1.0 mW is irradiated to one point on the particle surface of lithium-containing cobalt oxide, and the generated Raman scattered light is detected by a CCD. Can be obtained.

本発明に係る非水電解質二次電池用正極材料は、粒子が、Li、Zr、Ti、Al、Mg、Ni、Mn、Zn及びPからなる群より選択される1種以上の元素を含む酸化物又はフッ化物によってさらに被覆されていても良い。この場合には、充放電サイクルによる劣化抑制効果が向上することに加えて、Co溶出抑制効果も向上する。ただし、被覆する酸化物又はフッ化物の量が多過ぎると、抵抗が大きくなって電池容量が減少する恐れがある。したがって、被覆する酸化物又はフッ化物に含まれる上記元素は、一般組成式(1)で表されるリチウム含有コバルト酸化物の分子数の10%以下であることが好ましい。   The positive electrode material for a non-aqueous electrolyte secondary battery according to the present invention is an oxide in which particles contain one or more elements selected from the group consisting of Li, Zr, Ti, Al, Mg, Ni, Mn, Zn, and P. It may be further coated with a product or fluoride. In this case, in addition to improving the deterioration suppressing effect due to the charge / discharge cycle, the Co elution suppressing effect is also improved. However, if the amount of oxide or fluoride to be coated is too large, the resistance may increase and the battery capacity may decrease. Therefore, the element contained in the oxide or fluoride to be coated is preferably 10% or less of the number of molecules of the lithium-containing cobalt oxide represented by the general composition formula (1).

<非水電解質二次電池用正極材料の作製>
本発明に係る非水電解質二次電池用正極材料は、例えば、Li化合物、Co化合物、M化合物等を適当な割合で混合した混合物粉末を焼成することにより作製することができる。その他、特に限定されることなく、共沈法等により得られるLiを除く前駆体の水酸化物をLi化合物と混合し焼成することによって作製することも可能である。
<Preparation of positive electrode material for nonaqueous electrolyte secondary battery>
The positive electrode material for a non-aqueous electrolyte secondary battery according to the present invention can be produced, for example, by firing a mixture powder in which a Li compound, a Co compound, an M compound, and the like are mixed at an appropriate ratio. In addition, there is no particular limitation, and it is also possible to manufacture by mixing a precursor hydroxide excluding Li obtained by a coprecipitation method or the like with a Li compound and baking.

Li化合物としては、LiOH、LiCO又はLiCl等を用いることができる。また、Co化合物、M化合物としては、これらの元素の水酸化物や酸化物等を用いることができる。合成時の温度は800℃〜1100℃であり、温度の保持時間は5時間〜48時間、加熱冷却速度rは1≦r≦5℃/分、合成時の雰囲気は大気又は酸素雰囲気とすることが好ましい。 As the Li compound, LiOH, Li 2 CO 3, LiCl, or the like can be used. Further, as the Co compound and the M compound, hydroxides or oxides of these elements can be used. The temperature during synthesis is 800 ° C. to 1100 ° C., the temperature holding time is 5 hours to 48 hours, the heating / cooling rate r is 1 ≦ r ≦ 5 ° C./min, and the atmosphere during synthesis is air or oxygen atmosphere. Is preferred.

次に、粒子の最表面をスピネル構造化するためには、例えば次のような手順で行うことができる。まず、合成後のリチウム含有コバルト酸化物に対して、LiCO及び/又はLiOHを混合する。分子量比0.5%以上10%以下の割合で混合することが好ましい。次に、950℃以上1100℃以下の温度範囲で、2時間以上20時間以内のアニール処理を行う。このときの、加熱冷却速度rは1≦r≦5℃/分とすることが好ましく、アニール処理時の雰囲気は大気又は酸素雰囲気とし、圧力は大気圧以下とすることが好ましい。 Next, in order to make the outermost surface of the particles into a spinel structure, for example, the following procedure can be used. First, the lithium-containing cobalt oxide after combining, mixing Li 2 CO 3 and / or LiOH. It is preferable to mix at a molecular weight ratio of 0.5% to 10%. Next, annealing is performed at a temperature range of 950 ° C. to 1100 ° C. for 2 hours to 20 hours. At this time, the heating / cooling rate r is preferably 1 ≦ r ≦ 5 ° C./min, the atmosphere during annealing is an air or oxygen atmosphere, and the pressure is preferably atmospheric pressure or lower.

別の方法として、まず、リチウム含有コバルト酸化物の合成時に、リチウム含有コバルト酸化物の原料に対しLiCO及び/又はLiOHを余分に混合する。分子量比0.5%以上10%以下の割合で混合することが好ましい。次に、950℃以上1100℃以下の温度範囲で、5時間以上48時間以内のアニール処理を行うことによって粒子の最表面をスピネル構造化することができる。このときの、加熱冷却速度rは1≦r≦5℃/分とすることが好ましい。 As another method, first, during the synthesis of the lithium-containing cobalt oxide, Li 2 CO 3 and / or LiOH is excessively mixed with the raw material of the lithium-containing cobalt oxide. It is preferable to mix at a molecular weight ratio of 0.5% to 10%. Next, the outermost surface of the particle can be formed into a spinel structure by performing an annealing treatment within a temperature range of 950 ° C. to 1100 ° C. for 5 hours to 48 hours. At this time, the heating / cooling rate r is preferably 1 ≦ r ≦ 5 ° C./min.

上述のアニール処理によって、リチウム含有コバルト酸化物の表面のリチウムと酸素が蒸発してスピネル構造化する。   By the above-described annealing treatment, lithium and oxygen on the surface of the lithium-containing cobalt oxide are evaporated to form a spinel structure.

一般組成式(1)においては、酸素濃度が低いと、Li添加量が多い場合に酸素脱離が起き易くなる。またMとしてNiを使用した場合は、Niが一部Liサイトに遷移し易いことが分かった。酸素濃度は、Li及びNiの含有量に応じて適宜調整することが可能であり、例えば、一般組成式(1)のLiに関わるxが0.1であり、Niに関わるyが0.05である場合は、酸素濃度を20%以上とすることが好ましい。このように焼成雰囲気を調整することで、酸素欠損やNiの遷移が抑制され、粉末XRDにおけるスペクトルにおいて、空間群R3−mに帰属される層状岩塩構造が観測され、且つ(104)面に帰属する回折強度に対する(003)面に帰属する回折強度の比率が1.5以上30以下となる。上記製造方法により、容量、出力、耐熱性、高電圧での保存、高電圧での連続充電特性が向上した非水電解質二次電池用正極材料を得ることができる。   In the general composition formula (1), when the oxygen concentration is low, oxygen desorption easily occurs when the amount of Li addition is large. Moreover, when Ni was used as M, it turned out that Ni is easy to transfer to Li site partially. The oxygen concentration can be adjusted as appropriate according to the contents of Li and Ni. For example, x related to Li in the general composition formula (1) is 0.1, and y related to Ni is 0.05. In this case, the oxygen concentration is preferably 20% or more. By adjusting the firing atmosphere in this manner, oxygen deficiency and Ni transition are suppressed, and in the spectrum of the powder XRD, a layered rock salt structure belonging to the space group R3-m is observed, and it belongs to the (104) plane. The ratio of the diffraction intensity attributed to the (003) plane to the diffraction intensity is 1.5 to 30. By the above production method, a positive electrode material for a non-aqueous electrolyte secondary battery having improved capacity, output, heat resistance, storage at a high voltage, and continuous charge characteristics at a high voltage can be obtained.

本発明に係る非水電解質二次電池用正極材料において、粒子を、Li、Zr、Ti、Al、Mg、Ni、Mn、Zn及びPからなる群より選択される1種以上の元素を含む酸化物又はフッ化物でさらに被覆するには、例えば次の手順で行う。   In the positive electrode material for a non-aqueous electrolyte secondary battery according to the present invention, the particles are oxidized containing at least one element selected from the group consisting of Li, Zr, Ti, Al, Mg, Ni, Mn, Zn, and P. In order to further coat with a product or fluoride, for example, the following procedure is used.

Zr、Ti、Al、Ni、Mn、Zn酸化物を被覆する場合には、pH値が9以上11以下、温度が60℃以上80℃以下に調整された水酸化ナトリウムないしは水酸化リチウム水溶液中に非水電解質二次電池用正極材料の粉末を撹拌し分散させた後、被覆元素の硝酸塩ないしは硫酸塩を滴下する。このときpH値が変化しないように、アンモニア水を同時に滴化することで共沈物が生成される。その後、共沈物と正極材料粉末を5時間以上撹拌しつづけ、随時水酸化ナトリウムないしは水酸化リチウムでpH値が変動しないように調整する。特にNi、Mn等の共沈物を得る場合には水溶液中の溶存酸素を窒素で置換することがより好ましい。次に、吸引ろ過によって、共沈物が付着した正極材料粉末と水溶液を分離し、超純水で洗浄、乾燥させる。この粉末を焼成することによってZr、Ti、Al、Ni、Mn、Zn酸化物による被覆層が形成された非水電解質二次電池用正極材料が得られる。   When coating with Zr, Ti, Al, Ni, Mn, and Zn oxide, in an aqueous solution of sodium hydroxide or lithium hydroxide adjusted to a pH value of 9 to 11 and a temperature of 60 ° C. to 80 ° C. After the powder of the positive electrode material for a non-aqueous electrolyte secondary battery is stirred and dispersed, the covering element nitrate or sulfate is dropped. At this time, a coprecipitate is generated by simultaneously dropping ammonia water so that the pH value does not change. Thereafter, the coprecipitate and the positive electrode material powder are continuously stirred for 5 hours or more, and adjusted so that the pH value does not fluctuate with sodium hydroxide or lithium hydroxide as needed. In particular, when obtaining a coprecipitate such as Ni and Mn, it is more preferable to replace the dissolved oxygen in the aqueous solution with nitrogen. Next, the positive electrode material powder to which the coprecipitate is adhered and the aqueous solution are separated by suction filtration, washed with ultrapure water, and dried. By firing this powder, a positive electrode material for a non-aqueous electrolyte secondary battery in which a coating layer of Zr, Ti, Al, Ni, Mn, and Zn oxide is formed can be obtained.

Zr、Ti、Al、Ni、Mn、Zn酸化物を被覆する他の方法としては、所望の元素のアルコキシドをアルコール溶媒に溶解させ、温度が60℃以上80℃以下で撹拌、乾燥させることで非水電解質二次電池用正極材料に付着させ、焼成する方法もある。   As another method for coating Zr, Ti, Al, Ni, Mn, and Zn oxide, an alkoxide of a desired element is dissolved in an alcohol solvent, and is stirred and dried at a temperature of 60 ° C. or higher and 80 ° C. or lower. There is also a method of adhering to a positive electrode material for a water electrolyte secondary battery and baking.

また、Liを含むZr、Ti、Al、Ni、Mn、Zn、P酸化物を被覆する場合には、上記のいずれかの方法で非水電解質二次電池用正極材料の粒子表面に被覆元素の前駆体を付着させた後、LiOHやLiCOを混ぜて焼成すれば良い。 In addition, when coating Zr, Ti, Al, Ni, Mn, Zn, and P oxide containing Li, any of the above methods may be used to coat the surface of the particles of the positive electrode material for a non-aqueous electrolyte secondary battery. After attaching the precursor, LiOH or Li 2 CO 3 may be mixed and fired.

また、例えばAlFのようなフッ化物を被覆する場合は、pH値が9以上11以下、温度が60℃以上80℃以下に調整された水酸化ナトリウムないしは水酸化リチウム水溶液中に非水電解質二次電池用正極材料の粉末を撹拌し分散させた後、窒化アルミニウム水和物を入れる。そこへフッ化アンモニウム水溶液を少しずつ滴下し、5時間以上撹拌した後、ろ過、乾燥させ、不活性ガス雰囲気中で焼成すれば良い。 For example, when a fluoride such as AlF 3 is coated, a non-aqueous electrolyte solution is added in an aqueous solution of sodium hydroxide or lithium hydroxide adjusted to a pH value of 9 to 11 and a temperature of 60 ° C. to 80 ° C. The powder of the positive electrode material for the next battery is stirred and dispersed, and then aluminum nitride hydrate is added. Ammonium fluoride aqueous solution is dripped little by little, and after stirring for 5 hours or more, it may be filtered, dried, and fired in an inert gas atmosphere.

被覆を行う際の焼成温度は400℃以上600℃以下であることが好ましく、焼成時間は5時間以上24時間以下とすることが好ましい。焼成雰囲気は、酸化物を得る場合は空気又は酸素等の酸化雰囲気、フッ化物を得る場合は窒素等の不活性雰囲気とすることが好ましい。   The firing temperature at the time of coating is preferably 400 ° C. or more and 600 ° C. or less, and the firing time is preferably 5 hours or more and 24 hours or less. The firing atmosphere is preferably an oxidizing atmosphere such as air or oxygen when obtaining an oxide, and an inert atmosphere such as nitrogen when obtaining a fluoride.

上記非水電解質二次電池用正極材料を用いて正極を作製するには、上記正極材料を、バインダ、導電助剤等と混合して溶媒に分散させて正極合剤スラリーを調製し、この正極合剤スラリーを正極集電体の表面に塗布して正極合剤層を形成することにより行う。   In order to produce a positive electrode using the positive electrode material for a non-aqueous electrolyte secondary battery, the positive electrode material is mixed with a binder, a conductive auxiliary agent, etc., and dispersed in a solvent to prepare a positive electrode mixture slurry. The mixture slurry is applied to the surface of the positive electrode current collector to form a positive electrode mixture layer.

バインダとしては、非水電解質二次電池内で化学的に安定なものであれば、熱可塑性樹脂、熱硬化性樹脂のいずれを用いても良い。例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体又はそのNaイオン架橋体、エチレン−メタクリル酸共重合体又はそのNaイオン架橋体、エチレン−アクリル酸メチル共重合体又はそのNaイオン架橋体、エチレン−メタクリル酸メチル共重合体又はそのNaイオン架橋体等が適用可能である。これらを単独で使用しても良く、また、2種以上を併用しても良い。これらの中では、非水電解質二次電池での安定性や、特性への影響等を考慮すると、PVDF又はアクリル系の材料が特に好ましく用いられる。 As the binder, any one of a thermoplastic resin and a thermosetting resin may be used as long as it is chemically stable in the nonaqueous electrolyte secondary battery. For example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin) , Polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrif Oroechiren copolymer (ECTFE), vinylidene fluoride - hexafluoropropylene - tetrafluoroethylene copolymer, vinylidene fluoride - perfluoromethyl vinyl ether - tetrafluoroethylene copolymer, ethylene - acrylic acid copolymer or its Na + Ionic crosslinked body, ethylene-methacrylic acid copolymer or its Na + ion crosslinked body, ethylene-methyl acrylate copolymer or its Na + ion crosslinked body, ethylene-methyl methacrylate copolymer or its Na + ion crosslinked body Etc. are applicable. These may be used alone or in combination of two or more. Among these, PVDF or acrylic materials are particularly preferably used in consideration of stability in the nonaqueous electrolyte secondary battery, influence on characteristics, and the like.

導電助剤としては、非水電解質二次電池内で化学的に安定なものであれば、無機材料、有機材料のいずれでも良い。例えば、天然黒鉛や人造黒鉛等のグラファイト、単層又は多層のカーボンナノチューブ、グラフェン、フラーレン、VGCF、アセチレンブラック、ケッチェンブラック(商品名)、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、炭素繊維、金属繊維等の導電性繊維、アルミニウム粉等の金属粉末、フッ化炭素、酸化亜鉛、チタン酸カリウム等からなる導電性ウィスカー、酸化チタン等の導電性金属酸化物、ポリフェニレン誘導体等の有機導電性材料等が使用可能である。これらを単独で使用しても良く、また、2種以上を併用しても良い。これらの中では、導電性の高い黒鉛と、吸液性に優れたカーボンブラックが好ましい。   As the conductive assistant, any inorganic material or organic material may be used as long as it is chemically stable in the nonaqueous electrolyte secondary battery. For example, graphite such as natural graphite and artificial graphite, single or multi-walled carbon nanotubes, graphene, fullerene, VGCF, acetylene black, ketjen black (trade name), carbon such as channel black, furnace black, lamp black, thermal black, etc. Conductive fiber such as black, carbon fiber, metal fiber, metal powder such as aluminum powder, conductive whisker made of carbon fluoride, zinc oxide, potassium titanate, conductive metal oxide such as titanium oxide, polyphenylene derivative, etc. The organic conductive material or the like can be used. These may be used alone or in combination of two or more. Among these, graphite having high conductivity and carbon black excellent in liquid absorption are preferable.

導電助剤の形態としては、例えば、粒子状である場合、1次粒子のみに制限されず、2次粒子や鎖状構造等の集合体の形態を有するものも用いることができる。このような集合体の形態を有する導電助剤の場合、取り扱いがより容易であり、正極の生産性を高めることができる。   As a form of the conductive auxiliary agent, for example, when it is in the form of particles, it is not limited to only the primary particles, and those having the form of aggregates such as secondary particles and chain structures can also be used. In the case of a conductive additive having such an aggregate form, it is easier to handle and the productivity of the positive electrode can be increased.

正極合剤層に占める正極材料の質量は、85%〜99%であることが好ましい。正極材料の含有比率が85%より小さいと電池容量が小さくなり、逆に、99%より大きいと導電助剤の量が相対的に少なくなって正極の抵抗が高くなる恐れがある。   The mass of the positive electrode material in the positive electrode mixture layer is preferably 85% to 99%. If the content ratio of the positive electrode material is less than 85%, the battery capacity becomes small. Conversely, if the content ratio is more than 99%, the amount of the conductive auxiliary agent is relatively small and the resistance of the positive electrode may be increased.

上記正極材料として、一般式(1)で表される非水電解質二次電池用正極材料のみを用いても良いが、他の正極材料と組み合わせても良い。組み合わせる正極材料としては、例えば、一般組成式Li1+aNi1−b−c−dCoMnM’2−e (2)
(式中、M’はAl、Mg、Zr、V、W、Mo、Cr、Ti、B、Si、Fe、P、F、S及びClからなる群より選択される1種以上の元素であり、0≦a≦0.05、0≦b≦0.02、0.01≦c≦0.03、0.001≦d≦0.03、0≦e≦0.01である)で表されるリチウム含有ニッケル・コバルト・マンガン酸化物が挙げられる。このリチウム含有ニッケル・コバルト・マンガン酸化物を組み合わせる場合、リチウム含有ニッケル・コバルト・マンガン酸化物及びリチウム含有コバルト酸化物の合計に対し5質量%以上50質量%以下の割合で含むことが好ましい。
As the positive electrode material, only the positive electrode material for the non-aqueous electrolyte secondary battery represented by the general formula (1) may be used, but may be combined with other positive electrode materials. Examples of the positive electrode material to be combined include, for example, the general composition formula Li 1 + a Ni 1-bcd Co b Mn c M ′ d O 2-e (2)
(Wherein M ′ is one or more elements selected from the group consisting of Al, Mg, Zr, V, W, Mo, Cr, Ti, B, Si, Fe, P, F, S and Cl. 0 ≦ a ≦ 0.05, 0 ≦ b ≦ 0.02, 0.01 ≦ c ≦ 0.03, 0.001 ≦ d ≦ 0.03, and 0 ≦ e ≦ 0.01. Lithium-containing nickel-cobalt-manganese oxides. When combining the lithium-containing nickel / cobalt / manganese oxide, the lithium-containing nickel / cobalt / manganese oxide and the lithium-containing cobalt oxide are preferably contained in a proportion of 5% by mass or more and 50% by mass or less.

一般式(2)で表されるような正極材料を組み合わせることで、非水電解質二次電池としての電気化学特性や安全性を向上させることができる。   By combining the positive electrode material represented by the general formula (2), the electrochemical characteristics and safety as a nonaqueous electrolyte secondary battery can be improved.

正極合剤層に占めるバインダの質量は、0.2質量%〜5質量%とすることが好ましい。また、正極合剤層に占める導電助剤の質量は、0.5質量%〜8質量%とすることが好ましい。   The mass of the binder in the positive electrode mixture layer is preferably 0.2% by mass to 5% by mass. Moreover, it is preferable that the mass of the conductive support agent which occupies for a positive mix layer shall be 0.5 mass%-8 mass%.

正極材料としての本発明に係る非水電解質二次電池用正極材料、バインダ及び導電助剤等を含む正極合剤を、N−メチル−2−ピロリドン(以下、NMPと記載)等に分散させて正極合剤スラリーを調製する。この正極合剤スラリーを正極集電体の片面又は両面に塗布した後、NMPを蒸発させ、さらにプレス処理を行って集電体表面に正極合剤層を形成する。プレス処理は、正極合剤層の厚みや密度を調節するためのもので、例えば、ロールプレス機や油圧プレス機を用いて行うことができる。このようにして作製された正極合剤層の密度は、3.5g/cm以上4.5g/cm以下であることが好ましい。正極の作製方法は上記に限定されず、他の作製方法によっても良い。 A positive electrode material mixture including a positive electrode material for a nonaqueous electrolyte secondary battery according to the present invention as a positive electrode material, a binder, a conductive auxiliary agent, and the like is dispersed in N-methyl-2-pyrrolidone (hereinafter referred to as NMP) or the like. A positive electrode mixture slurry is prepared. After this positive electrode mixture slurry is applied to one or both surfaces of the positive electrode current collector, NMP is evaporated, and a press treatment is performed to form a positive electrode mixture layer on the current collector surface. The press treatment is for adjusting the thickness and density of the positive electrode mixture layer, and can be performed using, for example, a roll press machine or a hydraulic press machine. The density of the positive electrode mixture layer produced in this way is preferably 3.5 g / cm 3 or more and 4.5 g / cm 3 or less. The method for manufacturing the positive electrode is not limited to the above, and other manufacturing methods may be used.

正極集電体の材料は、非水電解質二次電池において化学的に安定な電子伝導体であれば特に限定されない。例えば、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、チタン、炭素、導電性樹脂等の他に、アルミニウム、アルミニウム合金、ステンレス鋼の表面に炭素層又はチタン層を形成した複合材等を用いることができる。上記材料の中では、軽量で導電性が高いことから、アルミニウム又はアルミニウム合金が好ましい。正極集電体の材料としては、例えば、前記材料のフォイル、フィルム、シート、ネット、パンチングシート、ラス体、多孔質体、発泡体、繊維群の成形体等も使用できる。また、正極集電体の表面に、表面処理を施して凹凸を付けることもできる。正極集電体の厚みは特に限定されないが、1μm〜500μmとすることが好ましい。   The material of the positive electrode current collector is not particularly limited as long as it is a chemically stable electron conductor in the nonaqueous electrolyte secondary battery. For example, in addition to aluminum, aluminum alloy, stainless steel, nickel, titanium, carbon, conductive resin, etc., aluminum, aluminum alloy, a composite material in which a carbon layer or a titanium layer is formed on the surface of stainless steel, or the like can be used. . Among these materials, aluminum or aluminum alloy is preferable because it is lightweight and has high conductivity. As a material of the positive electrode current collector, for example, a foil, a film, a sheet, a net, a punching sheet, a lath body, a porous body, a foamed body, a molded body of a fiber group, or the like of the above materials can be used. Further, the surface of the positive electrode current collector can be roughened by surface treatment. The thickness of the positive electrode current collector is not particularly limited, but is preferably 1 μm to 500 μm.

集電体表面に正極合剤スラリーを塗布する方法としては、スピンコーティング、ディッピング、スクリーン印刷等の各種の方法を用いることができる。   As a method for applying the positive electrode mixture slurry to the current collector surface, various methods such as spin coating, dipping, and screen printing can be used.

本発明に係る非水電解質二次電池は、本発明に係る非水電解質二次電池用正極材料を正極材料とする正極を有する。正極以外の構成、構造については特に制限はない。   The nonaqueous electrolyte secondary battery according to the present invention has a positive electrode using the positive electrode material for a nonaqueous electrolyte secondary battery according to the present invention as a positive electrode material. There are no particular restrictions on the configuration and structure other than the positive electrode.

本発明に係る非水電解質二次電池用正極材料はCoO(O1構造)への転移が起こりにくい。例えば、負極にリチウム金属を用い、正極に本発明に係る非水電解質二次電池用正極材料を用いた非水電解質二次電池に対して、室温において0.1C以下で5Vまで充電を行い、このときの正極の充電曲線を、電圧で微分して得られたdQ/dV曲線において、最も高電位側に現れるO1構造への相転移開始に起因するピークの電位は、4.64V以上となる。このことは、本発明に係る非水電解質二次電池用正極材料がCoO(O1構造)へ転移しにくいことを示している。 The positive electrode material for a non-aqueous electrolyte secondary battery according to the present invention is less likely to transition to CoO 2 (O1 structure). For example, for a non-aqueous electrolyte secondary battery using a lithium metal as a negative electrode and a positive electrode material for a non-aqueous electrolyte secondary battery according to the present invention as a positive electrode, charging to 5 V at 0.1 C or less at room temperature, In the dQ / dV curve obtained by differentiating the charge curve of the positive electrode at this time, the peak potential due to the start of the phase transition to the O1 structure that appears on the highest potential side is 4.64 V or higher. . This indicates that the positive electrode material for a non-aqueous electrolyte secondary battery according to the present invention is not easily transferred to CoO 2 (O1 structure).

次に、実施例及び比較例に基づき本発明をさらに詳細に説明するが、これらに限定されるものではない。   Next, although this invention is demonstrated further in detail based on an Example and a comparative example, it is not limited to these.

(実施例1)
<正極材料の合成>
Li化合物としてLiCO、Co化合物としてCoを適当な混合割合で乳鉢に収容して混合した後、ペレット状に固め、マッフル炉を用いて、大気圧の大気雰囲気中にて、950℃で24時間熱処理を行った。
Example 1
<Synthesis of positive electrode material>
Li 2 CO 3 as the Li compound and Co 3 O 4 as the Co compound were mixed in a mortar at an appropriate mixing ratio, then solidified into a pellet shape, and using a muffle furnace in an atmospheric atmosphere at atmospheric pressure, Heat treatment was performed at 950 ° C. for 24 hours.

次に、ペレットを粉砕し、そのリチウム含有コバルト酸化物に対して、Li CO を分子量比で1.5%加え、乳鉢を用いて混ぜ、管状電気炉を用いて酸素ガス雰囲気中(酸素ガス流量0.5L/分)にて、1000℃で10時間のアニール処理を行うことで、一般組成式LiCoOで表されるリチウム含有コバルト酸化物の粒子からなる非水電解質二次電池用正極材料を合成した。 Next, the pellets are pulverized, and Li 2 CO 3 is added to the lithium-containing cobalt oxide by 1.5% in a molecular weight ratio, mixed using a mortar, and in an oxygen gas atmosphere (oxygen) using a tubular electric furnace. A positive electrode for a non-aqueous electrolyte secondary battery comprising lithium-containing cobalt oxide particles represented by the general composition formula LiCoO 2 by performing an annealing treatment at 1000 ° C. for 10 hours at a gas flow rate of 0.5 L / min) The material was synthesized.

組成は、ICP(Inductivity Coupled Plasma:誘導結合プラズマ発光分析)法及びヨード滴定法により測定した。粒子サイズは、レーザー回折散乱式粒度分布測定装置により測定し、平均直径が20μmであることを確認した。また、窒素吸着法による比表面積測定装置を用いてBET比表面積を求めた結果、比表面積は0.15m/gであった。 The composition was measured by an ICP (Inductivity Coupled Plasma) method and an iodometric titration method. The particle size was measured with a laser diffraction / scattering particle size distribution analyzer, and it was confirmed that the average diameter was 20 μm. Moreover, as a result of calculating | requiring the BET specific surface area using the specific surface area measuring apparatus by a nitrogen adsorption method, the specific surface area was 0.15 m < 2 > / g.

ここで、実施例1に係る非水電解質二次電池用正極材料のラマンスペクトルを、波長532nm、強度0.8mW、照射時間30秒で粒子表面の一点にレーザー照射して測定した。図1に示すように、実施例1に係る非水電解質二次電池用正極材料のラマンスペクトルには、650cm−1〜700cm−1の範囲にショルダーピークが確認された。スピネル構造であるLT−LiCoOやCoのスペクトルが重なった結果として図1に示すようなショルダーピークが発現したものと考えられ、スピネル構造が存在していることが確認された。また、実施例1に係る非水電解質二次電池用正極材料のX線回折を測定した。図2に示したX線回折測定結果から、空間群R3−mに帰属される層状岩塩構造であり、異相が確認されなかった。このことから、ラマンスペクトルで確認されたスピネル構造は、長距離秩序がなく、粒子の最表面に格子歪を持った状態で存在していると思われた。 Here, the Raman spectrum of the positive electrode material for a non-aqueous electrolyte secondary battery according to Example 1 was measured by irradiating a point on the particle surface with laser at a wavelength of 532 nm, an intensity of 0.8 mW, and an irradiation time of 30 seconds. As shown in FIG. 1, the Raman spectrum of the positive electrode material for a nonaqueous electrolyte secondary cell according to example 1, a shoulder peak was confirmed in the range of 650cm -1 ~700cm -1. It is considered that a shoulder peak as shown in FIG. 1 appears as a result of overlapping spectra of LT-LiCoO 2 and Co 3 O 4 having a spinel structure, and it was confirmed that a spinel structure was present. Moreover, the X-ray diffraction of the positive electrode material for nonaqueous electrolyte secondary batteries according to Example 1 was measured. From the X-ray diffraction measurement result shown in FIG. 2, it was a layered rock salt structure belonging to the space group R3-m, and no heterogeneous phase was confirmed. This suggests that the spinel structure confirmed by the Raman spectrum does not have long-range order and exists in a state having lattice strain on the outermost surface of the particle.

<正極の作製>
正極材料として、上記一般組成式LiCoOのリチウム含有コバルト酸化物の粉末を、バインダとしてPVDFを含有したNMP溶液中に分散させて混合液を調製した。NMP溶液の質量に占めるPVDFの質量は10%である。また、上記組成のリチウム含有コバルト酸化物とNMP溶液の質量比は、95:5とした。この混合液に、導電助剤としてカーボンブラックを2.5質量部添加し、乳鉢内で混練し、さらにNMPを加えて粘度を調節して正極合剤スラリーを調製した。
<Preparation of positive electrode>
As a positive electrode material, a lithium-containing cobalt oxide powder of the above general composition formula LiCoO 2 was dispersed in an NMP solution containing PVDF as a binder to prepare a mixed solution. The mass of PVDF in the mass of the NMP solution is 10%. The mass ratio of the lithium-containing cobalt oxide having the above composition and the NMP solution was 95: 5. To this mixed solution, 2.5 parts by mass of carbon black as a conductive assistant was added, kneaded in a mortar, and NMP was added to adjust the viscosity to prepare a positive electrode mixture slurry.

正極合剤スラリーを、ベーカー式アプリケーターを用いて、ギャップ(隙間)を200μmに調整して、厚さ15μmのアルミニウム箔による正極集電体に塗布した後、80℃で1時間乾燥させて正極合剤層を形成した。正極合剤層が形成された正極集電体を、直径15mmの円盤状に加工した後、約30MPaの圧力でプレスし、さらに真空乾燥機にて100℃で20時間乾燥させた。このような工程により正極を作製した。   The positive electrode mixture slurry was applied to a positive electrode current collector made of aluminum foil having a thickness of 15 μm using a baker-type applicator, and then dried at 80 ° C. for 1 hour. An agent layer was formed. The positive electrode current collector on which the positive electrode mixture layer was formed was processed into a disk shape having a diameter of 15 mm, then pressed at a pressure of about 30 MPa, and further dried at 100 ° C. for 20 hours in a vacuum dryer. A positive electrode was produced by such a process.

<負極の作製>
所定の厚さの金属リチウム圧延板を直径16mmの円盤状に加工して負極を作製した。
<Production of negative electrode>
A metal lithium rolled plate having a predetermined thickness was processed into a disk shape having a diameter of 16 mm to produce a negative electrode.

<非水電解質>
体積比で1:2のエチレンカーボネートとジエチルカーボネートを混合した溶媒に、六フッ化リン酸リチウム(LiPF)を1モル濃度(mol/l)となるように溶解させて非水電解質を調製した。
<Nonaqueous electrolyte>
A non-aqueous electrolyte was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) at a molar concentration (mol / l) in a solvent in which ethylene carbonate and diethyl carbonate having a volume ratio of 1: 2 were mixed. .

<非水電解質二次電池の組立>
上記の正極、負極及び非水電解質を用いて、扁平形の電池を組み立てた。図3は、組み立てた非水電解質二次電池1の断面を模式的に示したものである。組み立ては次のように行った。
<Assembly of nonaqueous electrolyte secondary battery>
A flat battery was assembled using the above positive electrode, negative electrode, and non-aqueous electrolyte. FIG. 3 schematically shows a cross section of the assembled nonaqueous electrolyte secondary battery 1. The assembly was performed as follows.

ステンレススチール製の容器13の側面に絶縁リング8を挿入した後、負極4、セパレータ3、正極2の順番に積層し、さらに、非水電解質をセパレータ3に含侵させた。セパレータ3としては、ポリプロピレン製の微多孔膜を用いた。正極2の上に、アルミニウム製の押さえ板5と板ばね6を順に重ね、絶縁パッキン9を介してステンレススチール製の蓋7を乗せ、絶縁スリーブ10を介して、ボルト12とナット11により締め付け、扁平型の電池を構成した。   After the insulating ring 8 was inserted into the side surface of the stainless steel container 13, the negative electrode 4, the separator 3, and the positive electrode 2 were laminated in this order, and the nonaqueous electrolyte was impregnated into the separator 3. As the separator 3, a microporous film made of polypropylene was used. An aluminum pressing plate 5 and a leaf spring 6 are sequentially stacked on the positive electrode 2, a stainless steel lid 7 is placed via an insulating packing 9, and tightened with a bolt 12 and a nut 11 via an insulating sleeve 10, A flat battery was constructed.

正極2は、押さえ板5と板ばね6を介して蓋7に電気的に接続され、負極4は、容器13を介してボルト12に電気的に接続されている。これにより、蓋7及びボルト12を端子として、電池内部から電気エネルギーを取り出すことができる。   The positive electrode 2 is electrically connected to the lid 7 via the pressing plate 5 and the leaf spring 6, and the negative electrode 4 is electrically connected to the bolt 12 via the container 13. Thereby, electrical energy can be taken out from the inside of the battery using the lid 7 and the bolt 12 as terminals.

(実施例2)
実施例1の正極材料の合成条件を変えて、CoとLiCOの混合比がLi/Co=1.03となる割合で混合し、電気炉を用いて大気雰囲気中にて、1000℃で20時間熱処理を行うことで、正極材料として一般組成式LiCoOで表されるリチウム含有コバルト酸化物の粒子からなる正極材料を合成した。この正極材料を用いて、上記実施例1と同様の手順で実施例2に係る非水電解質二次電池を作製した。
(Example 2)
The synthesis conditions of the positive electrode material of Example 1 were changed, and the mixture ratio of Co 3 O 4 and Li 2 CO 3 was mixed at a ratio of Li / Co = 1.03, and was used in an air atmosphere using an electric furnace. A positive electrode material composed of lithium-containing cobalt oxide particles represented by the general composition formula LiCoO 2 was synthesized as a positive electrode material by heat treatment at 1000 ° C. for 20 hours. Using this positive electrode material, a nonaqueous electrolyte secondary battery according to Example 2 was fabricated in the same procedure as in Example 1 above.

実施例1と同様にラマンスペクトルを評価した結果、図1に示すような650cm−1〜700cm−1の範囲にショルダーピークが確認された。 Results of the evaluation of the Raman spectrum in the same manner as in Example 1, a shoulder peak was confirmed in the range of 650cm -1 ~700cm -1 as shown in FIG.

(実施例3)
実施例1のアニール処理条件を変えて、Li CO を分子量比で10%加えて、乳鉢を用いて混ぜ、管状電気炉を用いて酸素ガス雰囲気中(酸素ガス流量0.5L/分)にて、1000℃で10時間熱処理を行うことで、正極材料として一般組成式Li1.05CoO1.98で表されるリチウム含有コバルト酸化物の粒子からなる正極材料を合成した。この正極材料を用いて、上記実施例1と同様の手順で実施例3に係る非水電解質二次電池を作製した。
Example 3
The annealing conditions of Example 1 were changed, Li 2 CO 3 was added at a molecular weight ratio of 10%, mixed using a mortar, and in an oxygen gas atmosphere using a tubular electric furnace (oxygen gas flow rate 0.5 L / min) Then, a positive electrode material composed of lithium-containing cobalt oxide particles represented by a general composition formula Li 1.05 CoO 1.98 was synthesized as a positive electrode material by performing heat treatment at 1000 ° C. for 10 hours. Using this positive electrode material, a nonaqueous electrolyte secondary battery according to Example 3 was fabricated in the same procedure as in Example 1 above.

実施例1と同様にラマンスペクトルを評価した結果、図1に示すような650cm−1〜700cm−1の範囲にショルダーピークが確認された。 Results of the evaluation of the Raman spectrum in the same manner as in Example 1, a shoulder peak was confirmed in the range of 650cm -1 ~700cm -1 as shown in FIG.

(実施例4)
実施例1にNi化合物としてNi(OH)を添加して、それ以外は実施例1と同様の手順で、正極材料として一般組成式LiCo0.95Ni0.05で表されるリチウム含有コバルト酸化物を合成した。この正極材料を用いて、上記実施例1と同様の手順で実施例4に係る非水電解質二次電池を作製した。
(Example 4)
Lithium represented by the general composition formula LiCo 0.95 Ni 0.05 O 2 as the positive electrode material is the same as that of Example 1 except that Ni (OH) 2 is added to Example 1 as the Ni compound. Containing cobalt oxide was synthesized. Using this positive electrode material, a nonaqueous electrolyte secondary battery according to Example 4 was fabricated in the same procedure as in Example 1 above.

(実施例5)
実施例4と同様の手順で、正極材料として一般組成式LiCo0.98Ni0.02で表されるリチウム含有コバルト酸化物を合成した。この正極材料を用いて、上記実施例1と同様の手順で実施例5に係る非水電解質二次電池を作製した。
(Example 5)
A lithium-containing cobalt oxide represented by the general composition formula LiCo 0.98 Ni 0.02 O 2 was synthesized as a positive electrode material in the same procedure as in Example 4. Using this positive electrode material, a nonaqueous electrolyte secondary battery according to Example 5 was fabricated in the same procedure as in Example 1 above.

(実施例6)
実施例4で用いたNi化合物に代えて、Mg化合物としてMg(OH)を用い、それ以外は実施例1と同様の手順で、正極材料として一般組成式LiCo0.99Mg0.01で表されるリチウム含有コバルト酸化物を合成した。この正極材料を用いて、上記実施例1と同様の手順で実施例6に係る非水電解質二次電池を作製した。
(Example 6)
Instead of the Ni compound used in Example 4, Mg (OH) 2 was used as the Mg compound, and the general composition formula LiCo 0.99 Mg 0.01 O was used as the positive electrode material in the same procedure as in Example 1 except that. A lithium-containing cobalt oxide represented by 2 was synthesized. Using this positive electrode material, a non-aqueous electrolyte secondary battery according to Example 6 was fabricated in the same procedure as in Example 1 above.

(実施例7)
実施例4で用いたNi化合物に代えて、Al化合物としてAl(OH)を用い、それ以外は実施例1と同様の手順で、正極材料として一般組成式Li1.01Co0.97Al0.03で表されるリチウム含有コバルト酸化物を合成した。この正極材料を用いて、上記実施例1と同様の手順で実施例7に係る非水電解質二次電池を作製した。
(Example 7)
Instead of the Ni compound used in Example 4, Al (OH) 3 was used as the Al compound, and the other procedures were the same as in Example 1 except that the general composition formula Li 1.01 Co 0.97 Al was used as the positive electrode material. A lithium-containing cobalt oxide represented by 0.03 O 2 was synthesized. Using this positive electrode material, a nonaqueous electrolyte secondary battery according to Example 7 was fabricated in the same procedure as in Example 1 above.

(実施例8)
実施例4で用いたNi化合物に代えて、Bi化合物としてBi(OH)を用い、それ以外は実施例1と同様の手順で、正極材料として一般組成式Li1.01Co0.995Bi0.005で表されるリチウム含有コバルト酸化物を合成した。この正極材料を用いて、上記実施例1と同様の手順で実施例8に係る非水電解質二次電池を作製した。
(Example 8)
Instead of the Ni compound used in Example 4, Bi (OH) 2 was used as the Bi compound, and the other procedures were the same as in Example 1 except that the general composition formula Li 1.01 Co 0.995 Bi was used as the positive electrode material. A lithium-containing cobalt oxide represented by 0.005 O 2 was synthesized. Using this positive electrode material, a nonaqueous electrolyte secondary battery according to Example 8 was fabricated in the same procedure as in Example 1 above.

(実施例9)
実施例4で用いたNi化合物に代えて、V化合物としてVを用い、それ以外は実施例1と同様の手順で、正極材料として一般組成式Li1.01Co0.970.03で表されるリチウム含有コバルト酸化物を合成した。この正極材料を用いて、上記実施例1と同様の手順で実施例9に係る非水電解質二次電池を作製した。
Example 9
Instead of the Ni compound used in Example 4, V 2 O 5 was used as the V compound, and the other procedures were the same as in Example 1 except that the general composition formula Li 1.01 Co 0.97 V 0 was used as the positive electrode material. A lithium-containing cobalt oxide represented by 0.03 O 2 was synthesized. Using this positive electrode material, a nonaqueous electrolyte secondary battery according to Example 9 was produced in the same procedure as in Example 1 above.

(実施例10)
実施例4で用いたNi化合物に代えて、Ti化合物としてTiOを用い、それ以外は実施例1と同様の手順で、正極材料として一般組成式Li1.01Co0.97Ti0.03で表されるリチウム含有コバルト酸化物を合成した。この正極材料を用いて、上記実施例1と同様の手順で実施例10に係る非水電解質二次電池を作製した。
(Example 10)
Instead of the Ni compound used in Example 4, TiO 2 was used as the Ti compound, and the other procedures were the same as in Example 1 except that the general composition formula Li 1.01 Co 0.97 Ti 0.03 was used as the positive electrode material. A lithium-containing cobalt oxide represented by O 2 was synthesized. Using this positive electrode material, a nonaqueous electrolyte secondary battery according to Example 10 was fabricated in the same procedure as in Example 1 above.

(実施例11)
実施例4で用いたNi化合物に代えて、Mn化合物としてMn(OH)を用い、それ以外は実施例1と同様の手順で、正極材料として一般組成式Li1.01Co0.99Mn0.01で表されるリチウム含有コバルト酸化物を合成した。この正極材料を用いて、上記実施例1と同様の手順で実施例11に係る非水電解質二次電池を作製した。
(Example 11)
Instead of the Ni compound used in Example 4, Mn (OH) 2 was used as the Mn compound, and the other procedures were the same as in Example 1 except that the general composition formula Li 1.01 Co 0.99 Mn was used as the positive electrode material. A lithium-containing cobalt oxide represented by 0.01 O 2 was synthesized. Using this positive electrode material, a nonaqueous electrolyte secondary battery according to Example 11 was fabricated in the same procedure as in Example 1 above.

(実施例12)
実施例4で用いたNi化合物に代えて、Zr化合物としてZrOを用い、それ以外は実施例1と同様の手順で、正極材料として一般組成式Li1.01Co0.995Zr0.005で表されるリチウム含有コバルト酸化物を合成した。この正極材料を用いて、上記実施例1と同様の手順で実施例12に係る非水電解質二次電池を作製した。
Example 12
Instead of the Ni compound used in Example 4, ZrO 2 was used as the Zr compound, and the other procedures were the same as in Example 1 except that the general composition formula Li 1.01 Co 0.995 Zr 0.005 was used as the positive electrode material. A lithium-containing cobalt oxide represented by O 2 was synthesized. Using this positive electrode material, a nonaqueous electrolyte secondary battery according to Example 12 was fabricated in the same procedure as in Example 1 above.

(実施例13)
実施例4で用いたNi化合物に加えて、Mg化合物としてMg(OH)を用い、それ以外は実施例1と同様の手順で、正極材料として一般組成式Li1.01Co0.97Ni0.02Mg0.01で表されるリチウム含有コバルト酸化物を合成した。この正極材料を用いて、上記実施例1と同様の手順で実施例13に係る非水電解質二次電池を作製した。
(Example 13)
In addition to the Ni compound used in Example 4, Mg (OH) 2 was used as the Mg compound, and the other procedures were the same as in Example 1 except that the general composition formula Li 1.01 Co 0.97 Ni was used as the positive electrode material. A lithium-containing cobalt oxide represented by 0.02 Mg 0.01 O 2 was synthesized. Using this positive electrode material, a nonaqueous electrolyte secondary battery according to Example 13 was fabricated in the same procedure as in Example 1 above.

(実施例14)
実施例13で用いたNi、Mg化合物に加えて、Zr化合物としてZrOを用い、それ以外は実施例1と同様の手順で、正極材料として一般組成式LiCo0.965Ni0.02Mg0.01Zr0.005で表されるリチウム含有コバルト酸化物を合成した。この正極材料を用いて、上記実施例1と同様の手順で実施例14に係る非水電解質二次電池を作製した。
(Example 14)
In addition to the Ni and Mg compounds used in Example 13, ZrO 2 was used as the Zr compound, and the other procedures were the same as in Example 1 except that the general composition formula LiCo 0.965 Ni 0.02 Mg 0 was used as the positive electrode material. A lithium-containing cobalt oxide represented by .01 Zr 0.005 O 2 was synthesized. Using this positive electrode material, a nonaqueous electrolyte secondary battery according to Example 14 was fabricated in the same procedure as in Example 1 above.

(実施例15)
実施例13と同様の手順で、正極材料として一般組成式Li1.01Co0.97Ni0.02Mg0.01で表されるリチウム含有コバルト酸化物を合成した。次に、pH値が9以上11以下、温度が60℃以上80℃以下に調整された水酸化リチウム水溶液中に上記非水電解質二次電池用正極材料粉末を撹拌し分散させた後、Al(NO・9HOを滴下した。このときpH値が変化しないように、アンモニア水を同時に滴下することでAl(OH)共沈物が生成された。その後、5時間以上撹拌しつづけ、随時水酸化リチウムでpH値が変動しないように調整した。次に、吸引ろ過によって、Al(OH)が付着した正極材料粉末と水溶液を分離し、超純水で洗浄、80℃で24時間真空乾燥させた。この粉末を400℃で10時間、大気雰囲気で焼成した。このような工程により、正極材料の表面に形成された酸化物被膜におけるAlの原子数が、リチウム含有コバルト酸化物の分子数の1%である酸化物被覆の正極材料を作製した。この正極材料を用いて、実施例1と同様の手順で実施例15に係る非水電解質二次電池を作製した。
(Example 15)
A lithium-containing cobalt oxide represented by a general composition formula Li 1.01 Co 0.97 Ni 0.02 Mg 0.01 O 2 was synthesized as a positive electrode material in the same procedure as in Example 13. Next, the positive electrode material powder for a nonaqueous electrolyte secondary battery is stirred and dispersed in an aqueous lithium hydroxide solution adjusted to have a pH value of 9 or more and 11 or less and a temperature of 60 ° C. or more and 80 ° C. or less. NO 3) was added dropwise 3 · 9H 2 O. At this time, Al (OH) 3 coprecipitate was produced by simultaneously dropping ammonia water so that the pH value would not change. Thereafter, stirring was continued for 5 hours or longer, and the pH value was adjusted so as not to fluctuate with lithium hydroxide as needed. Next, the positive electrode material powder to which Al (OH) 3 was adhered and the aqueous solution were separated by suction filtration, washed with ultrapure water, and vacuum-dried at 80 ° C. for 24 hours. The powder was fired at 400 ° C. for 10 hours in an air atmosphere. By such a process, an oxide-coated positive electrode material in which the number of Al atoms in the oxide film formed on the surface of the positive electrode material was 1% of the number of molecules of the lithium-containing cobalt oxide was produced. Using this positive electrode material, a nonaqueous electrolyte secondary battery according to Example 15 was fabricated in the same procedure as in Example 1.

(実施例16)
実施例13と同様の手順で、正極材料として一般組成式Li1.01Co0.97Ni0.02Mg0.01で表されるリチウム含有コバルト酸化物を合成した。次に、ジルコニウムイソプロポキシドをイソプロピルアルコール溶媒に溶解させ、上記非水電解質二次電池用正極材料粉末と共に60℃で10時間撹拌し、80℃で乾燥させた。この粉末を400℃、大気雰囲気で10時間焼成した。このような工程により、正極材料の表面に形成された酸化物被膜におけるZrの原子数が、リチウム含有コバルト酸化物の分子数の1%である酸化物被覆の正極材料を作製した。この正極材料を用いて、実施例1と同様の手順で実施例16に係る非水電解質二次電池を作製した。
(Example 16)
A lithium-containing cobalt oxide represented by a general composition formula Li 1.01 Co 0.97 Ni 0.02 Mg 0.01 O 2 was synthesized as a positive electrode material in the same procedure as in Example 13. Next, zirconium isopropoxide was dissolved in an isopropyl alcohol solvent, stirred at 60 ° C. for 10 hours together with the positive electrode material powder for a non-aqueous electrolyte secondary battery, and dried at 80 ° C. This powder was fired at 400 ° C. in an air atmosphere for 10 hours. Through such a process, an oxide-coated positive electrode material in which the number of Zr atoms in the oxide film formed on the surface of the positive electrode material was 1% of the number of molecules of the lithium-containing cobalt oxide was produced. Using this positive electrode material, a nonaqueous electrolyte secondary battery according to Example 16 was produced in the same procedure as in Example 1.

(実施例17)
実施例13と同様の手順で、正極材料として一般組成式Li1.01Co0.97Ni0.02Mg0.01で表されるリチウム含有コバルト酸化物を合成した。次に、pH値が9以上11以下、温度が60℃に調整された水酸化リチウム水溶液中に上記非水電解質二次電池用正極材料粉末を撹拌し分散させた後、窒化アルミニウム水和物を入れた。そこへフッ化アンモニウム水溶液を少しずつ滴下し、10時間以上撹拌した後、吸引ろ過し、超純水で洗浄してから80℃で24時間真空乾燥させた。この粉末を窒素ガス雰囲気中で10時間焼成した。このような工程により、正極材料表面に形成されたAlF被膜におけるAlの原子数が、リチウム含有コバルト酸化物の分子数の1%であるフッ化物被覆の正極材料を作製した。この正極材料を用いて、実施例1と同様の手順で実施例17に係る非水電解質二次電池を作製した。
(Example 17)
A lithium-containing cobalt oxide represented by a general composition formula Li 1.01 Co 0.97 Ni 0.02 Mg 0.01 O 2 was synthesized as a positive electrode material in the same procedure as in Example 13. Next, after stirring and dispersing the positive electrode material powder for a non-aqueous electrolyte secondary battery in a lithium hydroxide aqueous solution adjusted to a pH value of 9 or more and 11 or less and a temperature of 60 ° C., aluminum nitride hydrate was added. I put it in. Ammonium fluoride aqueous solution was dropped there little by little, and after stirring for 10 hours or more, suction filtration was performed, followed by washing with ultrapure water, followed by vacuum drying at 80 ° C. for 24 hours. This powder was fired in a nitrogen gas atmosphere for 10 hours. By such a process, a fluoride-coated positive electrode material in which the number of Al atoms in the AlF 3 coating formed on the surface of the positive electrode material was 1% of the number of molecules of the lithium-containing cobalt oxide was produced. Using this positive electrode material, a nonaqueous electrolyte secondary battery according to Example 17 was fabricated in the same procedure as in Example 1.

実施例1〜17の正極材料の組成、及び正極材料の表面を被覆した元素について表1に一覧表示する。   Table 1 lists the compositions of the positive electrode materials of Examples 1 to 17 and elements covering the surface of the positive electrode material.

(比較例1)
実施例1とはアニール処理条件を変えて、Li CO を分子量比で0%加え、乳鉢を用いて混ぜ、管状電気炉を用いて酸素ガス雰囲気中(酸素ガス流量0.5mL/分)にて、1000℃で10時間熱処理を行うことで、正極材料として一般組成式Li0.98CoOで表されるリチウム含有コバルト酸化物の粒子からなる非水電解質二次電池用正極材料を合成した。この正極材料を用いて、実施例1と同様の手順で比較例1に係る非水電解質二次電池を作製した。
(Comparative Example 1)
The annealing treatment conditions were changed from Example 1, Li 2 CO 3 was added at a molecular weight ratio of 0%, mixed using a mortar, and in an oxygen gas atmosphere using a tubular electric furnace (oxygen gas flow rate 0.5 mL / min) Then, a positive electrode material for a non-aqueous electrolyte secondary battery composed of lithium-containing cobalt oxide particles represented by the general composition formula Li 0.98 CoO 2 is synthesized as a positive electrode material by performing a heat treatment at 1000 ° C. for 10 hours. did. Using this positive electrode material, a non-aqueous electrolyte secondary battery according to Comparative Example 1 was produced in the same procedure as in Example 1.

実施例1と同様にラマンスペクトルを評価した結果、図1に示すように、650cm−1〜700cm−1の範囲のショルダーピークは発現せず、一般的なリチウム含有コバルト酸化物のラマンスペクトルとなった。また、図2に示したX線回折測定結果からも、空間群層R3−mに帰属される層状岩塩構造であることが確認され、粒子の中心から表面にかけて異相がないことが確認された。 As a result of evaluating the Raman spectrum in the same manner as in Example 1, as shown in FIG. 1, a shoulder peak in the range of 650 cm −1 to 700 cm −1 does not appear, and a Raman spectrum of a general lithium-containing cobalt oxide is obtained. It was. Also, from the X-ray diffraction measurement result shown in FIG. 2, it was confirmed that the layered rock salt structure belongs to the space group layer R3-m, and it was confirmed that there was no heterogeneous phase from the center of the particle to the surface.

(比較例2)
実施例1とはアニール処理条件を変えて、Li CO を分子量比で1.5%加え、乳鉢を用いて混ぜ、マッフル炉を用いて大気雰囲気中にて、1000℃で10時間熱処理を行うことで、正極材料として一般組成式LiCoOで表されるリチウム含有コバルト酸化物の粒子からなる非水電解質二次電池用正極材料を合成した。この正極材料を用いて、実施例1と同様の手順で比較例2に係る非水電解質二次電池を作製した。
(Comparative Example 2)
The annealing process conditions were changed from Example 1, Li 2 CO 3 was added at a molecular weight ratio of 1.5%, mixed using a mortar, and heat-treated at 1000 ° C. for 10 hours in an air atmosphere using a muffle furnace. As a result, a positive electrode material for a non-aqueous electrolyte secondary battery composed of lithium-containing cobalt oxide particles represented by the general composition formula LiCoO 2 was synthesized as a positive electrode material. Using this positive electrode material, a nonaqueous electrolyte secondary battery according to Comparative Example 2 was produced in the same procedure as in Example 1.

実施例1と同様にラマンスペクトルを評価した結果、図1に示すように、650cm−1〜700cm−1の範囲のショルダーピークは発現せず、典型的なリチウム含有コバルト酸化物のラマンスペクトルとなった。また、図2に示したX線回折測定結果からも、空間群層R3−mに帰属される層状岩塩構造であることが確認され、粒子の中心から表面にかけて異相がないことが確認された。 As a result of evaluating the Raman spectrum in the same manner as in Example 1, as shown in FIG. 1, a shoulder peak in the range of 650 cm −1 to 700 cm −1 does not appear, and a Raman spectrum of a typical lithium-containing cobalt oxide is obtained. It was. Also, from the X-ray diffraction measurement result shown in FIG. 2, it was confirmed that the layered rock salt structure belongs to the space group layer R3-m, and it was confirmed that there was no heterogeneous phase from the center of the particle to the surface.

(比較例3)
実施例1とはアニール処理条件を変えて、Li CO を分子量比で6%加え、乳鉢を用いて混ぜ、マッフル炉を用いて大気雰囲気中にて、1000℃で10時間熱処理を行うことで、正極材料として一般組成式Li1.10CoO1.95で表されるリチウム含有コバルト酸化物の粒子からなる非水電解質二次電池用正極材料を合成した。この正極材料を用いて、実施例1と同様の手順で比較例3に係る非水電解質二次電池を作製した。
(Comparative Example 3)
Change the annealing conditions from Example 1, add 6% of Li 2 CO 3 by molecular weight ratio, mix using a mortar, and heat-treat at 1000 ° C. for 10 hours in an air atmosphere using a muffle furnace. Thus, a positive electrode material for a non-aqueous electrolyte secondary battery composed of lithium-containing cobalt oxide particles represented by the general composition formula Li 1.10 CoO 1.95 was synthesized as a positive electrode material. Using this positive electrode material, a non-aqueous electrolyte secondary battery according to Comparative Example 3 was produced in the same procedure as in Example 1.

(比較例4)
実施例4のアニール処理を実施せずに合成して、正極材料として一般組成式Li0.99Co0.95Ni0.05で表されるリチウム含有コバルト酸化物の粒子からなる非水電解質二次電池用正極材料を合成した。この正極材料を用いて、実施例1と同様の手順で比較例4に係る非水電解質二次電池を作製した。
(Comparative Example 4)
Non-water consisting of lithium-containing cobalt oxide particles represented by the general composition formula Li 0.99 Co 0.95 Ni 0.05 O 2 as a positive electrode material, synthesized without carrying out the annealing treatment of Example 4 A positive electrode material for an electrolyte secondary battery was synthesized. Using this positive electrode material, a nonaqueous electrolyte secondary battery according to Comparative Example 4 was produced in the same procedure as in Example 1.

(比較例5)
実施例4のアニール処理条件を変えて、Li CO を分子量比で1.0%加え、乳鉢を用いて混ぜ、管状電気炉を用いて酸素ガス雰囲気中(酸素ガス流量0.5L/分)にて、1000℃で10時間熱処理を行うことで、正極材料として一般組成式Li0.97Co0.95Ni0.05で表されるリチウム含有コバルト酸化物の粒子からなる非水電解質二次電池用正極材料を合成した。この正極材料を用いて、実施例1と同様の手順で比較例5に係る非水電解質二次電池を作製した。
(Comparative Example 5)
The annealing treatment conditions of Example 4 were changed, Li 2 CO 3 was added at a molecular weight ratio of 1.0%, mixed using a mortar, and in an oxygen gas atmosphere using a tubular electric furnace (oxygen gas flow rate 0.5 L / min) ), A non-aqueous solution comprising lithium-containing cobalt oxide particles represented by the general composition formula Li 0.97 Co 0.95 Ni 0.05 O 2 as a positive electrode material by performing a heat treatment at 1000 ° C. for 10 hours. A positive electrode material for an electrolyte secondary battery was synthesized. Using this positive electrode material, a non-aqueous electrolyte secondary battery according to Comparative Example 5 was produced in the same procedure as in Example 1.

(比較例6)
実施例6のアニール処理を実施せずに合成して、正極材料として一般組成式LiCo0.99Mg0.01で表されるリチウム含有コバルト酸化物の粒子からなる非水電解質二次電池用正極材料を合成した。この正極材料を用いて、実施例1と同様の手順で比較例6に係る非水電解質二次電池を作製した。
(Comparative Example 6)
A non-aqueous electrolyte secondary battery composed of lithium-containing cobalt oxide particles represented by the general composition formula LiCo 0.99 Mg 0.01 O 2 as a positive electrode material, synthesized without performing the annealing treatment of Example 6 A positive electrode material was synthesized. Using this positive electrode material, a nonaqueous electrolyte secondary battery according to Comparative Example 6 was produced in the same procedure as in Example 1.

(比較例7)
実施例6のアニール処理を実施せずに合成して、正極材料として一般組成式LiCo0.99Mg0.01で表されるリチウム含有コバルト酸化物の粒子からなる非水電解質二次電池用正極材料を合成した。次に、実施例15と同様の手順でこの正極材料の表面に、Alの原子数がリチウム含有コバルト酸化物の分子数の1%であるAl酸化物を被覆した後、実施例1と同様の手順で比較例7に係る非水電解質二次電池を作製した。
(Comparative Example 7)
A non-aqueous electrolyte secondary battery composed of lithium-containing cobalt oxide particles represented by the general composition formula LiCo 0.99 Mg 0.01 O 2 as a positive electrode material, synthesized without performing the annealing treatment of Example 6 A positive electrode material was synthesized. Next, after coating the surface of the positive electrode material with Al oxide in which the number of Al atoms is 1% of the number of lithium-containing cobalt oxide in the same procedure as in Example 15, the same as in Example 1 A nonaqueous electrolyte secondary battery according to Comparative Example 7 was produced according to the procedure.

(比較例8)
実施例13のアニール処理を実施せずに合成して、正極材料として一般組成式Li1.01Co0.97Ni0.02Mg0.01で表されるリチウム含有コバルト酸化物の粒子からなる非水電解質二次電池用正極材料を合成した。次に、実施例15と同様の手順でこの正極材料の表面に、Alの原子数がリチウム含有コバルト酸化物の分子数の1%であるAl酸化物を被覆した後、実施例1と同様の手順で比較例8に係る非水電解質二次電池を作製した。
(Comparative Example 8)
Lithium-containing cobalt oxide particles represented by the general composition formula Li 1.01 Co 0.97 Ni 0.02 Mg 0.01 O 2 as a positive electrode material synthesized without carrying out the annealing treatment of Example 13 A positive electrode material for a non-aqueous electrolyte secondary battery was synthesized. Next, after coating the surface of the positive electrode material with Al oxide in which the number of Al atoms is 1% of the number of lithium-containing cobalt oxide in the same procedure as in Example 15, the same as in Example 1 A nonaqueous electrolyte secondary battery according to Comparative Example 8 was produced according to the procedure.

比較例1〜8の正極材料の組成、及び正極材料の表面を被覆した元素について表1に一覧表示する。

Figure 0006611438
Table 1 lists the compositions of the positive electrode materials of Comparative Examples 1 to 8 and elements covering the surface of the positive electrode material.
Figure 0006611438

<非水電解質二次電池の評価>
実施例1〜17及び比較例1〜8の各非水電解質二次電池について、次の要領で初期充電容量とサイクル特性、保存試験及び連続充電特性を測定した。
<Evaluation of non-aqueous electrolyte secondary battery>
About each nonaqueous electrolyte secondary battery of Examples 1-17 and Comparative Examples 1-8, initial charge capacity and cycle characteristics, a storage test, and continuous charge characteristics were measured in the following manner.

<初期充電容量の測定>
室温(25℃)にて、負荷率0.05Cの電流で電池電圧が4.45Vとなるまで定電流で充電を行い、その後、4.45V vs Li/Liの定電圧で電流が負荷率0.005Cになるまで充電した。その測定結果を表2に示す。
<Measurement of initial charge capacity>
At room temperature (25 ° C.), the battery is charged at a constant current until the battery voltage reaches 4.45 V at a current of 0.05 C, and then the current is applied at a constant voltage of 4.45 V vs Li / Li +. The battery was charged until it reached 0.005C. The measurement results are shown in Table 2.

<サイクル特性の評価>
初期充電終了後、1時間放置し、負荷率0.05Cの電流で電池電圧が2.5Vとなるまで定電流で放電を行った。この工程を2サイクル繰り返し、1日放置して初期化した。
<Evaluation of cycle characteristics>
After completion of the initial charging, the battery was left for 1 hour and discharged at a constant current until the battery voltage reached 2.5 V at a current of 0.05 C load. This process was repeated for 2 cycles and left to initialize for 1 day.

エージング後に、負荷率0.2Cの定電流で充電を開始し、電池電圧が4.5V vs Li/Liになるまで充電し、その後4.5V vs Li/Liの定電圧で電流が負荷率0.02Cになるまで充電した。その後、1時間放置し、負荷率0.2Cの電流で電池電圧が2.5Vとなるまで定電流で放電を行った。上記充放電サイクルを50サイクル繰り返し、50サイクル目の放電容量を1サイクル目の放電容量と比較した。 After aging, charging is started at a constant current of 0.2C load factor, charging is performed until the battery voltage reaches 4.5V vs Li / Li + , and then the current is loaded at a constant voltage of 4.5V vs Li / Li +. The battery was charged until the rate reached 0.02C. Thereafter, the battery was left for 1 hour, and discharged at a constant current until the battery voltage reached 2.5 V at a load factor of 0.2 C. The charge / discharge cycle was repeated 50 times, and the discharge capacity at the 50th cycle was compared with the discharge capacity at the first cycle.

<保存特性の評価>
初期充電終了後、1時間放置し、負荷率0.05Cの電流で電池電圧が2.5Vとなるまで定電流で放電を行った。この工程を2サイクル繰り返し、1日放置して初期化した。
<Evaluation of storage characteristics>
After completion of the initial charging, the battery was left for 1 hour and discharged at a constant current until the battery voltage reached 2.5 V at a current of 0.05 C load. This process was repeated for 2 cycles and left to initialize for 1 day.

次に、負荷率0.05Cの定電流で充電を開始し、電池電圧が4.5V vs Li/Liになるまで充電し、その後4.5V vs Li/Liの定電圧で電流が負荷率0.005Cになるまで充電した電池を60℃の恒温槽に7日間放置した後、負荷率0.05Cの電流で電池電圧が2.5Vとなるまで定電流で放電を行った。 Next, charging is started at a constant current of a load factor of 0.05 C, charging is performed until the battery voltage becomes 4.5 V vs Li / Li + , and then the current is loaded at a constant voltage of 4.5 V vs Li / Li + The battery charged to a rate of 0.005 C was left in a constant temperature bath at 60 ° C. for 7 days, and then discharged at a constant current until the battery voltage reached 2.5 V at a load factor of 0.05 C.

さらに、負荷率0.05Cの定電流で充電を開始し、電池電圧が4.45V vs Li/Liになるまで充電し、その後4.45V vs Li/Liの定電圧で電流が負荷率0.005Cになるまで充電した。その後、1時間放置し、負荷率0.05Cの電流で電池電圧が2.5Vとなるまで定電流で放電を行った。試験最後の放電容量が、初期化後の放電容量の80%以上である場合を○、80%未満の場合を×として評価した。その評価結果を表2に示す。 Furthermore, charging is started at a constant current of a load factor of 0.05 C, charging is performed until the battery voltage becomes 4.45 V vs Li / Li + , and then the current is applied at a constant voltage of 4.45 V vs Li / Li +. The battery was charged until it reached 0.005C. Thereafter, the battery was left for 1 hour and discharged at a constant current until the battery voltage reached 2.5 V at a current of 0.05 C load factor. The case where the final discharge capacity of the test was 80% or more of the discharge capacity after initialization was evaluated as ◯, and the case where it was less than 80% was evaluated as x. The evaluation results are shown in Table 2.

<連続充電特性の評価>
初期充電終了後、1時間放置し、負荷率0.05Cの電流で電池電圧が2.5Vとなるまで定電流で放電を行った。この工程を2サイクル繰り返し、1日放置して初期化した。
<Evaluation of continuous charging characteristics>
After completion of the initial charging, the battery was left for 1 hour and discharged at a constant current until the battery voltage reached 2.5 V at a current of 0.05 C load. This process was repeated for 2 cycles and left to initialize for 1 day.

電池を60℃の恒温槽に30分間放置した後、60℃の環境を保ったまま、負荷率0.05Cの定電流で充電を開始し、電池電圧が4.5V vs Li/Liになるまで充電した。電流値が減衰した後、さらに4.5V vs Li/Liの定電圧で、電流値が再び負荷率0.05Cに上昇するまで連続充電を行い、充電を開始した時点から再び0.05Cに到達するまでの時間を測定した。その測定結果を表2に示す。

Figure 0006611438
After leaving the battery in a constant temperature bath at 60 ° C. for 30 minutes, charging is started at a constant current with a load factor of 0.05 C while maintaining the environment at 60 ° C., and the battery voltage becomes 4.5 V vs Li / Li + . Until charged. After the current value decays, the battery is continuously charged at a constant voltage of 4.5 V vs Li / Li + until the current value rises again to the load factor of 0.05 C. From the time when charging is started, the charge is again increased to 0.05 C. The time to reach was measured. The measurement results are shown in Table 2.
Figure 0006611438

表2に示した結果から以下のことが分かる。
実施例1、2及び3と、比較例1及び2に係る非水電解質二次電池は、いずれも初期充放電容量が188mAh/g〜189mAh/gであり、サイクル試験後の容量維持率は80%を下回った。一方で、保存試験の結果と連続充電特性に差がみられた。実施例1、2及び3の場合は、保存試験後の容量維持率が80%以上となるが、比較例1及び2の場合は、80%未満となった。また、連続充電特性に関しては、実施例1、2及び3は比較例1及び2の4倍程度となっていた。このような保存試験の結果及び連続充電特性に生じた差は、複数の劣化モードによるものと考えられるが、特に実施例1、2及び3の場合は、構造安定なスピネル構造が最外殻に存在することで、リチウム含有コバルト酸化物特有の電解液との副反応による、不均化や還元によるCo溶出が抑制されたことに起因していると考えられる。
From the results shown in Table 2, the following can be understood.
The non-aqueous electrolyte secondary batteries according to Examples 1, 2, and 3 and Comparative Examples 1 and 2 each have an initial charge / discharge capacity of 188 mAh / g to 189 mAh / g, and the capacity retention rate after the cycle test is 80 %. On the other hand, there was a difference between the results of the storage test and the continuous charge characteristics. In Examples 1, 2, and 3, the capacity retention after the storage test was 80% or more, but in Comparative Examples 1 and 2, it was less than 80%. Regarding the continuous charging characteristics, Examples 1, 2, and 3 were about four times as long as Comparative Examples 1 and 2. The difference between the results of the storage test and the continuous charging characteristics is considered to be due to a plurality of deterioration modes. In particular, in the case of Examples 1, 2, and 3, the structurally stable spinel structure is the outermost shell. It is considered that the presence of the Co-elution due to disproportionation or reduction due to a side reaction with the electrolytic solution peculiar to the lithium-containing cobalt oxide is suppressed.

比較例3に係る非水電解質二次電池は、リチウム含有量を増加させたことにより、連続充電特性は飛躍的に向上したものの、酸素欠損により、初期充電容量、サイクル特性の低下が著しく、また保存試験の結果も悪く、実施例1、2及び3と比較して連続充電特性だけが良いというバランスの悪い特性となることが分かった。   In the nonaqueous electrolyte secondary battery according to Comparative Example 3, although the continuous charge characteristics were dramatically improved by increasing the lithium content, the initial charge capacity and the cycle characteristics were significantly decreased due to oxygen deficiency. The results of the storage test were also poor, and it was found that the unbalanced characteristic was that only the continuous charging characteristic was good as compared with Examples 1, 2, and 3.

実施例4と比較例4及び5は、いずれもCoの5%をNiで置き換えた組成の正極材料を用いた非水電解質二次電池である。初期充電容量、サイクル特性、保存試験の結果に差は見られなかったものの、連続充電特性に関しては、実施例4が比較例4及び5に対して4倍程度向上し、582時間となった。このように、Coを一部Niに置き換えた場合では、構造安定なスピネル構造が最外殻に存在することで無置換の場合と比較してさらに特性改善が図れることが分かった。   Example 4 and Comparative Examples 4 and 5 are all nonaqueous electrolyte secondary batteries using a positive electrode material having a composition in which 5% of Co is replaced by Ni. Although there was no difference in the initial charge capacity, cycle characteristics, and storage test results, the continuous charge characteristics were about 4 times better than Comparative Examples 4 and 5 in terms of continuous charge characteristics, reaching 582 hours. Thus, it was found that when Co was partially replaced by Ni, the structural stability of the spinel structure was present in the outermost shell, so that the characteristics could be further improved compared to the case of no substitution.

実施例6と比較例6はいずれもCoの1%をMgで置き換えた組成の正極材料を用いた非水電解質二次電池である。Ni置換と同様に、Coの一部をMgに置き換えた場合も、構造安定なスピネル構造が最外殻に存在することで無置換の場合と比較してさらに特性改善が図れることが分かった。   Example 6 and Comparative Example 6 are non-aqueous electrolyte secondary batteries using a positive electrode material having a composition in which 1% of Co is replaced with Mg. Similar to Ni substitution, it was found that even when a part of Co was replaced with Mg, the structural stability of the spinel structure was present in the outermost shell, so that the characteristics could be further improved compared to the case of no substitution.

Ni、Mg以外の元素Mでも効果があり、実施例7〜12に示すように、Al、Bi、V、Ti、Mn、Zrで置換した場合も、構造安定なスピネル構造が最外殻に存在することで無置換の場合と比較してさらに特性改善が図れることが分かった。なお、Mに関しては、Mn、V、Tiに代えて、Cr、Mo、Wを用いても、同様の効果を上げることができる。また、これらの元素を適宜混合して用いることもできる。   An element M other than Ni and Mg is also effective. As shown in Examples 7 to 12, even when substituted with Al, Bi, V, Ti, Mn, and Zr, a structure-stable spinel structure exists in the outermost shell. As a result, it was found that the characteristics could be further improved as compared with the case of no substitution. Regarding M, the same effect can be obtained by using Cr, Mo, W instead of Mn, V, Ti. Moreover, these elements can also be mixed and used suitably.

実施例13及び14は、複数のMによりCoの一部を数%の割合で置き換えた正極材料を用いた非水電解質二次電池である。特にNi、Mg及びZrを組み合わせた場合の連続充電特性は飛躍的に向上し、650時間を超えることが分かった。   Examples 13 and 14 are non-aqueous electrolyte secondary batteries using a positive electrode material in which a part of Co is replaced by a plurality of M at a ratio of several percent. In particular, it has been found that the continuous charge characteristics when Ni, Mg and Zr are combined are dramatically improved and exceed 650 hours.

Mの添加に加えて、実施例15〜17に示すように、表面にAlや、ZrO、又はAlF等の金属酸化物及びフッ化物を被覆した正極材料を用いることで、サイクル特性が向上し、また表2に示した全ての特性において優れた非水電解質二次電池が得られることが明らかとなった。一方、表面に酸化物を被覆した場合でも、スピネル構造化されなかった比較例7及び8の場合は、連続充電特性が劣ることが分かった。 In addition to the addition of M, as shown in Examples 15 to 17, by using a positive electrode material coated with metal oxide and fluoride such as Al 2 O 3 , ZrO 2 , or AlF 3 on the surface, the cycle The characteristics were improved, and it was revealed that a nonaqueous electrolyte secondary battery excellent in all the characteristics shown in Table 2 was obtained. On the other hand, even when the surface was coated with an oxide, it was found that the continuous charge characteristics were inferior in the case of Comparative Examples 7 and 8 that were not spinel structured.

以上記載したように、本発明によれば、高容量であり、且つ高温における高電圧での連続充電特性に優れた非水電解質二次電池を提供することができる。実施例に記載した全ての非水電解質二次電池において、室温で0.1C以下の負荷率で5Vまで充電したときの正極の充電曲線を電圧で微分することによって得られるdQ/dV曲線の最も高電位に確認されるピークの電位が4.64V以上であることが確認された。このような特徴を有する本発明に係る非水電解質二次電池は、正極電位がリチウム基準で4.4V以上になるまで充電した際のCo溶出抑制効果に優れている。   As described above, according to the present invention, it is possible to provide a nonaqueous electrolyte secondary battery that has a high capacity and is excellent in continuous charge characteristics at a high voltage at a high temperature. In all the nonaqueous electrolyte secondary batteries described in the examples, the most of the dQ / dV curve obtained by differentiating the charging curve of the positive electrode with voltage when charged to 5 V at a load factor of 0.1 C or less at room temperature. It was confirmed that the peak potential confirmed to be a high potential was 4.64 V or more. The non-aqueous electrolyte secondary battery according to the present invention having such characteristics is excellent in the Co elution suppressing effect when charged until the positive electrode potential becomes 4.4 V or higher with respect to lithium.

1 非水電解質二次電池
2 正極
3 セパレータ
4 負極
5 押さえ板
6 板ばね
7 蓋
8 絶縁リング
9 絶縁パッキン
10 絶縁スリーブ
11 ナット
12 ボルト
13 容器
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Positive electrode 3 Separator 4 Negative electrode 5 Holding plate 6 Leaf spring 7 Lid 8 Insulating ring 9 Insulating packing 10 Insulating sleeve 11 Nut 12 Bolt 13 Container

Claims (4)

一般組成式Li1+xCo1−y2−δ(式中、MはNi、Mn、Al、Mg、Zr、V、W、Mo、Cr、Bi、Cu、Ti、Si、Fe、P、F及びClからなる群より選択される1種以上の元素であり、0≦x≦0.1、0≦y≦0.1、0≦δ≦0.02である)で表されるリチウム含有コバルト酸化物を含有する粒子を含み、前記粒子の最表面は、スピネル構造を有し、ラマンスペクトルにおいて、650cm−1〜700cm−1の範囲にショルダーピークを有する非水電解質二次電池用正極材料、及び、一般組成式Li1+aNi1−b−c−dCoMnM’2−e(式中、M’はAl、Mg、Zr、V、W、Mo、Cr、Ti、B、Si、Fe、P、F、S及びClからなる群より選択される1種以上の元素であり、0≦a≦0.05、0≦b≦0.02、0.01≦c≦0.03、0.001≦d≦0.03、0≦e≦0.01である)で表される化物を含む正極と、
負極と、
セパレータと、
非水電解質と
を備え、前記酸化物を、前記化物及びリチウム含有コバルト酸化物の合計に対し5質量%以上50質量%以下の割合で含む、
非水電解質二次電池。
General composition formula Li 1 + x Co 1-y M y O 2-δ (where M is Ni, Mn, Al, Mg, Zr, V, W, Mo, Cr, Bi, Cu, Ti, Si, Fe, P) 1 or more elements selected from the group consisting of F, Cl, and 0 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.1, and 0 ≦ δ ≦ 0.02. comprises particles containing cobalt oxide containing, outermost surface of the particles have a spinel structure, in the Raman spectrum, the positive electrode for a nonaqueous electrolyte secondary battery having a shoulder peak in the range of 650cm -1 ~700cm -1 materials, and the general formula Li 1 + a Ni 1-b -c-d Co b Mn c M 'd O 2-e ( wherein, M' is Al, Mg, Zr, V, W, Mo, Cr, Ti 1 selected from the group consisting of B, Si, Fe, P, F, S and Cl These elements are as follows: 0 ≦ a ≦ 0.05, 0 ≦ b ≦ 0.02, 0.01 ≦ c ≦ 0.03, 0.001 ≦ d ≦ 0.03, 0 ≦ e ≦ 0.01 a positive electrode containing an acid compound represented by some),
A negative electrode,
A separator;
And a nonaqueous electrolyte, comprising the oxide, in a proportion of 50 mass% or more 5% by weight relative to the total of the oxides and lithium-containing cobalt oxides,
Non-aqueous electrolyte secondary battery.
粒子が、Li、Zr、Ti、Al、Mg、Ni、Mn、Zn及びPからなる群より選択される1種以上の元素を含む酸化物又はフッ化物によってさらに被覆され、前記元素の原子数が、リチウム含有コバルト酸化物の分子数の10%以下である請求項1に記載の非水電解質二次電池。   The particles are further coated with an oxide or fluoride containing one or more elements selected from the group consisting of Li, Zr, Ti, Al, Mg, Ni, Mn, Zn and P, and the number of atoms of the elements is The nonaqueous electrolyte secondary battery according to claim 1, which is 10% or less of the number of molecules of the lithium-containing cobalt oxide. 室温で且つ0.1C以下の負荷率で5Vまで充電したときの正極の充電曲線を電圧で微分することによって得られるdQ/dV曲線の最も高電位に確認されるピークの電位が、4.64V以上である請求項1に記載の非水電解質二次電池。   The potential of the peak confirmed at the highest potential of the dQ / dV curve obtained by differentiating the charge curve of the positive electrode with voltage when charged to 5 V at a load factor of 0.1 C or less at room temperature is 4.64 V. The nonaqueous electrolyte secondary battery according to claim 1, which is as described above. 一般組成式Li1+xCo1−y2−δ(式中、MはNi、Mn、Al、Mg、Zr、V、W、Mo、Cr、Bi、Cu、Ti、Si、Fe、P、F及びClからなる群より選択される1種以上の元素であり、0≦x≦0.1、0≦y≦0.1、0≦δ≦0.02である)で表されるリチウム含有コバルト酸化物を含有する粒子を含み、前記粒子の最表面は、スピネル構造を有し、ラマンスペクトルにおいて、650cm−1〜700cm−1の範囲にショルダーピークを有する非水電解質二次電池用正極材料の製造方法であって、
リチウム含有コバルト酸化物を合成する工程と、
合成したリチウム含有コバルト酸化物に対して、LiCO及び/又はLiOHを混合する工程と、
950℃以上1100℃以下の温度範囲で、酸素雰囲気下で2時間以上20時間以内のアニール処理を行う工程とを含む前記非水電解質二次電池用正極材料の製造方法。
General composition formula Li 1 + x Co 1-y M y O 2-δ (where M is Ni, Mn, Al, Mg, Zr, V, W, Mo, Cr, Bi, Cu, Ti, Si, Fe, P) 1 or more elements selected from the group consisting of F, Cl, and 0 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.1, and 0 ≦ δ ≦ 0.02. comprises particles containing cobalt oxide containing, outermost surface of the particles have a spinel structure, in the Raman spectrum, the positive electrode for a nonaqueous electrolyte secondary battery having a shoulder peak in the range of 650cm -1 ~700cm -1 A method of manufacturing a material,
Synthesizing a lithium-containing cobalt oxide;
A step of mixing Li 2 CO 3 and / or LiOH with respect to the synthesized lithium-containing cobalt oxide;
And a step of performing an annealing treatment in an oxygen atmosphere at a temperature range of from 950 ° C. to 1100 ° C. for 2 hours to 20 hours.
JP2015017849A 2015-01-30 2015-01-30 Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery Active JP6611438B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015017849A JP6611438B2 (en) 2015-01-30 2015-01-30 Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
PCT/JP2015/075062 WO2016121156A1 (en) 2015-01-30 2015-09-03 Positive electrode material for nonaqueous electrolyte secondary batteries, method for producing same and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015017849A JP6611438B2 (en) 2015-01-30 2015-01-30 Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2016143539A JP2016143539A (en) 2016-08-08
JP2016143539A5 JP2016143539A5 (en) 2017-12-07
JP6611438B2 true JP6611438B2 (en) 2019-11-27

Family

ID=56542795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015017849A Active JP6611438B2 (en) 2015-01-30 2015-01-30 Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP6611438B2 (en)
WO (1) WO2016121156A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11367875B2 (en) * 2017-08-30 2022-06-21 Murata Manufacturing Co., Ltd. Positive electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and power system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019191837A1 (en) 2018-04-04 2019-10-10 Springpower International Inc. Method to produce cathode materials for li-ion batteries
JP7198600B2 (en) * 2018-07-04 2023-01-04 本田技研工業株式会社 Positive electrode active material particles
JP7041023B2 (en) 2018-07-31 2022-03-23 トヨタ自動車株式会社 Positive electrode active material for lithium-ion batteries and lithium-ion batteries
JP7168373B2 (en) * 2018-08-03 2022-11-09 トヨタ自動車株式会社 Positive electrode active material for lithium-ion batteries
JP6855427B2 (en) * 2018-10-15 2021-04-07 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP7310118B2 (en) * 2018-10-29 2023-07-19 セイコーエプソン株式会社 Manufacturing method of cathode material
CN111564612B (en) * 2020-04-07 2022-09-06 江门市科恒实业股份有限公司 High-thermal-conductivity and high-electrical-conductivity lithium battery positive electrode material and preparation method thereof
CN117597795A (en) * 2021-07-09 2024-02-23 株式会社半导体能源研究所 Positive electrode active material
CN117897829A (en) * 2021-09-13 2024-04-16 松下知识产权经营株式会社 Coated active material, method for producing coated active material, positive electrode material, and battery
WO2023037775A1 (en) * 2021-09-13 2023-03-16 パナソニックIpマネジメント株式会社 Coated active material, method for producing coated active material, positive electrode material and battery
WO2023248053A1 (en) * 2022-06-22 2023-12-28 株式会社半導体エネルギー研究所 Secondary battery, positive electrode active material, and method for producing positive electrode active material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273678A (en) * 1998-03-23 1999-10-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous electrolyte secondary battery using positive electrode active material
JP2000164214A (en) * 1998-11-25 2000-06-16 Japan Storage Battery Co Ltd Now-aqueous electrolyte secondary battery
JP3951715B2 (en) * 2002-01-17 2007-08-01 松下電器産業株式会社 Cathode active material for lithium ion secondary battery and method for producing the same
KR20130050161A (en) * 2011-11-07 2013-05-15 삼성에스디아이 주식회사 Electrode active material, preparation method thereof, and electrode and lithium battery containing the same
JP2014089869A (en) * 2012-10-30 2014-05-15 Sanyo Electric Co Ltd Nonaqueous electrolytic secondary battery
CN105051946B (en) * 2013-02-28 2017-10-13 三洋电机株式会社 Positive electrode for nonaqueous electrolyte secondary battery and the rechargeable nonaqueous electrolytic battery using the positive pole
JP6068247B2 (en) * 2013-04-23 2017-01-25 日立マクセル株式会社 Positive electrode material for non-aqueous electrolyte lithium ion secondary battery and non-aqueous electrolyte lithium ion secondary battery using the positive electrode material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11367875B2 (en) * 2017-08-30 2022-06-21 Murata Manufacturing Co., Ltd. Positive electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and power system

Also Published As

Publication number Publication date
JP2016143539A (en) 2016-08-08
WO2016121156A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
JP6611438B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6560917B2 (en) Positive electrode material and non-aqueous electrolyte secondary battery using the positive electrode material
JP6665060B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
JP6120765B2 (en) Non-aqueous electrolyte secondary battery positive electrode material and method for producing the same, non-aqueous electrolyte secondary battery
JP6888297B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries and its manufacturing method
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP6533734B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP5282170B1 (en) Nonaqueous electrolyte secondary battery
JP6554780B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing the same
JP2016115658A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP7212289B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP2016006762A (en) Positive electrode active material for nonaqueous secondary battery
JP2017139168A (en) Positive electrode for nonaqueous electrolyte secondary battery
JP6068247B2 (en) Positive electrode material for non-aqueous electrolyte lithium ion secondary battery and non-aqueous electrolyte lithium ion secondary battery using the positive electrode material
WO2021251416A1 (en) Positive electrode active material for lithium ion secondary batteries, method for producing said positive electrode active material, and lithium ion secondary battery
JP2015041600A (en) Method of producing lithium-containing composite oxide for lithium ion secondary battery
JP5686459B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery including the positive electrode
JP6274536B2 (en) Method for producing mixed active material for lithium secondary battery, method for producing electrode for lithium secondary battery, and method for producing lithium secondary battery
JP6919250B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, its precursor, and their manufacturing method
JP2006196293A (en) Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN112993237A (en) Negative electrode material for lithium secondary battery and method for manufacturing same
JP2022504835A (en) Lithium transition metal composite oxide and its manufacturing method
JP7177395B2 (en) Positive electrode active material for all-solid-state lithium-ion secondary battery and all-solid-state lithium-ion secondary battery
JP7274125B2 (en) Positive electrode active material for all-solid-state lithium-ion secondary battery and all-solid-state lithium-ion secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191029

R150 Certificate of patent or registration of utility model

Ref document number: 6611438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250