JP7168373B2 - Positive electrode active material for lithium-ion batteries - Google Patents

Positive electrode active material for lithium-ion batteries Download PDF

Info

Publication number
JP7168373B2
JP7168373B2 JP2018147009A JP2018147009A JP7168373B2 JP 7168373 B2 JP7168373 B2 JP 7168373B2 JP 2018147009 A JP2018147009 A JP 2018147009A JP 2018147009 A JP2018147009 A JP 2018147009A JP 7168373 B2 JP7168373 B2 JP 7168373B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
spinel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018147009A
Other languages
Japanese (ja)
Other versions
JP2020021710A (en
Inventor
悠基 由井
嘉也 牧村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2018147009A priority Critical patent/JP7168373B2/en
Publication of JP2020021710A publication Critical patent/JP2020021710A/en
Application granted granted Critical
Publication of JP7168373B2 publication Critical patent/JP7168373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本願はリチウムイオン電池に用いられる正極活物質等を開示する。 The present application discloses positive electrode active materials and the like used in lithium ion batteries.

特許文献1~3に開示されているように、リチウムイオン電池に用いられる正極活物質として層状岩塩型結晶相を有するコバルト酸リチウムやスピネル型結晶相を有するマンガン酸リチウム等が広く利用されている。一方、近年、非特許文献1に開示されているようなスピネル型結晶相を有するコバルト酸リチウムが開発されており、リチウムイオン電池用の新たな正極活物質として期待されている。 As disclosed in Patent Documents 1 to 3, lithium cobalt oxide having a layered rock salt crystal phase, lithium manganate having a spinel crystal phase, and the like are widely used as positive electrode active materials used in lithium ion batteries. . On the other hand, in recent years, lithium cobaltate having a spinel-type crystal phase as disclosed in Non-Patent Document 1 has been developed, and is expected as a new positive electrode active material for lithium ion batteries.

特開2011-001256号公報JP 2011-001256 A 特開2002-289175号公報JP-A-2002-289175 特開2016-143539号公報JP 2016-143539 A

Eungje Lee et al., ACS Appl. Mater. Interfaces 2016, 8, 27720-27729Eungje Lee et al., ACS Appl. Mater. Interfaces 2016, 8, 27720-27729

本発明者の知見によれば、非特許文献1に開示されたスピネル型結晶相を有するコバルト酸リチウムは、リチウムイオンの挿入及び脱離に伴う格子定数の変化が小さいことから、リチウムイオン電池の正極活物質として適用した場合に、充放電時における正極の体積変化を小さくすることができるものと考えられる。しかしながら、スピネル型結晶相を有するコバルト酸リチウムを正極活物質としてリチウムイオン電池を構成した場合、電池の初回クーロン効率が小さくなる場合がある。 According to the findings of the present inventors, lithium cobalt oxide having a spinel-type crystal phase disclosed in Non-Patent Document 1 has a small change in lattice constant due to the insertion and extraction of lithium ions. It is considered that when applied as a positive electrode active material, the change in volume of the positive electrode during charging and discharging can be reduced. However, when lithium cobalt oxide having a spinel crystal phase is used as a positive electrode active material to form a lithium ion battery, the initial coulombic efficiency of the battery may decrease.

本願は上記課題を解決するための手段の一つとして、リチウムとコバルトとアルミニウムと酸素とを含むスピネル型結晶相を有し、LiCoAl2±δ(0.85≦x<1、0<y≦0.15、0.85<x+y≦1.15)で表される組成を有する、リチウムイオン電池用正極活物質を開示する。 As one means for solving the above problems, the present application has a spinel-type crystal phase containing lithium, cobalt, aluminum, and oxygen, and LiCo x Al y O 2±δ (0.85≦x<1, Disclosed is a cathode active material for a lithium ion battery, having a composition represented by 0<y≦0.15, 0.85<x+y≦1.15).

本発明者の新たな知見によれば、本開示の正極活物質のように、スピネル型のコバルト酸リチウムにおいて特定量のアルミニウムがドープされることで、リチウムイオン電池に適用した場合に、電池の初回クーロン効率が大きく増大する。 According to the new findings of the present inventors, by doping a specific amount of aluminum in the spinel-type lithium cobaltate like the positive electrode active material of the present disclosure, when applied to a lithium ion battery, the battery performance is improved. The initial coulombic efficiency is greatly increased.

リチウムイオン電池10の構成を説明するための概略図である。1 is a schematic diagram for explaining the configuration of a lithium ion battery 10; FIG. リチウムイオン電池システム100の構成を説明するための概略図である。1 is a schematic diagram for explaining the configuration of a lithium ion battery system 100; FIG. リチウムイオン電池システム100における制御フローの一例を説明するための図である。4 is a diagram for explaining an example of a control flow in the lithium ion battery system 100; FIG. 実施例1~5及び比較例1~5に係る正極活物質のX線回折ピークを示す図である。FIG. 2 is a diagram showing X-ray diffraction peaks of positive electrode active materials according to Examples 1 to 5 and Comparative Examples 1 to 5; 実施例1及び比較例1に係る正極活物質のSEM画像を示す図である。1 is a diagram showing SEM images of positive electrode active materials according to Example 1 and Comparative Example 1. FIG. 実施例1及び比較例1に係る正極活物質を用いたリチウムイオン電池の1回目充放電曲線(4.45V-2.5V)を示す図である。1 is a diagram showing first charge-discharge curves (4.45V-2.5V) of lithium ion batteries using positive electrode active materials according to Example 1 and Comparative Example 1. FIG.

1.正極活物質
本開示の正極活物質は、リチウムイオン電池に用いられる正極活物質であって、リチウムとコバルトとアルミニウムと酸素とを含むスピネル型結晶相を有し、LiCoAl2±δ(0.85≦x<1、0<y≦0.15、0.85<x+y≦1.15)で表される組成を有することを特徴とする。
1. Positive electrode active material The positive electrode active material of the present disclosure is a positive electrode active material used in lithium ion batteries, has a spinel crystal phase containing lithium, cobalt, aluminum, and oxygen, and is LiCo x Aly O 2±δ It is characterized by having a composition represented by (0.85≤x<1, 0<y≤0.15, 0.85<x+y≤1.15).

1.1.結晶相
本開示の正極活物質は、リチウムとコバルトとアルミニウムと酸素とを含むスピネル型結晶相を有する。「スピネル型結晶相を有する」とは、X線回折において少なくともスピネル型結晶相に由来する回折ピークが確認されることを意味する。例えば、本開示の正極活物質は、CuKαを線源とするX線回折測定において、2θ=19.8±0.4°、37.3±0.4°、39.0±0.4°、45.3±0.4°、49.7±0.4°、60.1±0.4°、66.1±0.4°及び69.5±0.4°の位置にスピネル型結晶相に由来する回折ピークが確認されることが好ましい。尚、スピネル型のコバルト酸リチウムと、本開示の正極活物質とでは、スピネル型結晶相における結晶格子定数が異なるものと考えられる。すなわち、X線回折や元素分析によって正極活物質の組成を確認したうえで、X線回折によってスピネル型結晶相の結晶格子定数を確認することで、正極活物質における「リチウムとコバルトとアルミニウムと酸素とを含むスピネル型結晶相」の有無を確認することができるものと考えられる。
1.1. Crystal Phase The positive electrode active material of the present disclosure has a spinel-type crystal phase containing lithium, cobalt, aluminum, and oxygen. “Having a spinel-type crystal phase” means that at least a diffraction peak derived from a spinel-type crystal phase is confirmed in X-ray diffraction. For example, the positive electrode active material of the present disclosure has 2θ = 19.8 ± 0.4 °, 37.3 ± 0.4 °, 39.0 ± 0.4 ° in X-ray diffraction measurement using CuKα as a radiation source. , 45.3±0.4°, 49.7±0.4°, 60.1±0.4°, 66.1±0.4° and 69.5±0.4° A diffraction peak derived from the crystal phase is preferably confirmed. It is believed that the spinel-type lithium cobalt oxide and the positive electrode active material of the present disclosure have different crystal lattice constants in the spinel-type crystal phase. That is, after confirming the composition of the positive electrode active material by X-ray diffraction and elemental analysis, by confirming the crystal lattice constant of the spinel-type crystal phase by X-ray diffraction, "lithium, cobalt, aluminum, and oxygen It is thought that it is possible to confirm the presence or absence of a spinel-type crystal phase containing and.

本開示の正極活物質において、スピネル型結晶相は、リチウムとコバルトとアルミニウムと酸素とを含む。言い換えれば、本開示の正極活物質は、スピネル型のコバルト酸リチウムの一部の元素をアルミニウムで置換したものともいえる。これにより、スピネル型結晶相が安定化されるものと考えられる。 In the positive electrode active material of the present disclosure, the spinel crystal phase contains lithium, cobalt, aluminum, and oxygen. In other words, it can be said that the positive electrode active material of the present disclosure is obtained by replacing some elements of spinel-type lithium cobaltate with aluminum. It is believed that this stabilizes the spinel crystal phase.

本開示の正極活物質は上記の特定のスピネル型結晶相を有する。一方で、本開示の正極活物質は、上記課題を解決できる範囲で、スピネル型結晶相に加えて、これ以外の結晶相が含まれていてもよい。例えば、リチウムとコバルトとを含む複合酸化物を合成する場合、スピネル型結晶相とともに熱的に安定な層状岩塩型結晶相する場合があるが、このような場合でもスピネル型結晶相の存在により所望の効果を発揮できる。この点、本開示の正極活物質は、スピネル型結晶相に加えて、層状岩塩型結晶相が含まれていてもよい。好ましくは、本開示の正極活物質は、X線回折測定においてスピネル型結晶相に由来する回折ピークのみが確認される。 The positive electrode active material of the present disclosure has the specific spinel crystal phase described above. On the other hand, the positive electrode active material of the present disclosure may contain crystal phases other than the spinel crystal phase as long as the above problems can be solved. For example, when synthesizing a composite oxide containing lithium and cobalt, a thermally stable layered rock salt crystal phase may be formed together with the spinel crystal phase. can exert the effect of In this regard, the positive electrode active material of the present disclosure may contain a layered rock salt crystal phase in addition to the spinel crystal phase. Preferably, in the positive electrode active material of the present disclosure, only diffraction peaks derived from the spinel crystal phase are confirmed in X-ray diffraction measurement.

1.2.組成
本開示の正極活物質は、LiCoAl2±δ(0.85≦x<1、0<y≦0.15、0.85<x+y≦1.15)で表される組成を有する。本発明者の知見では、スピネル型コバルト酸リチウムにおけるアルミニウムの置換量(ドープ量)が、上記組成式で示される特定の範囲の場合に、電池の初回クーロン効率が顕著に増大する。
1.2. Composition The positive electrode active material of the present disclosure has a composition represented by LiCo x Aly O 2±δ (0.85≦x<1, 0< y ≦0.15, 0.85<x+y≦1.15). have. According to the findings of the present inventors, the initial coulombic efficiency of the battery is significantly increased when the aluminum substitution amount (doping amount) in the spinel-type lithium cobalt oxide is within the specific range indicated by the above composition formula.

クーロン効率のさらなる増大の観点からは、上記組成式におけるxは、より好ましくは0.85≦x≦0.975であり、さらに好ましくは0.85≦x≦0.95であり、特に好ましくは0.85≦x≦0.93である。yはより好ましくは0.025≦y≦0.15であり、さらに好ましくは0.05≦y≦0.15であり、特に好ましくは0.07≦y≦0.15である。 From the viewpoint of further increasing coulombic efficiency, x in the above composition formula is more preferably 0.85 ≤ x ≤ 0.975, still more preferably 0.85 ≤ x ≤ 0.95, and particularly preferably 0.85≦x≦0.93. y is more preferably 0.025≤y≤0.15, still more preferably 0.05≤y≤0.15, and particularly preferably 0.07≤y≤0.15.

本開示の正極活物質においては、Liに対するCo及びAlの合計のモル比が1(x+y=1)であることが好ましいが、Liが多少過剰であったとしても、或いは、Liが多少不足していたとしても、スピネル型結晶相を生成・維持することは可能であり、所望の効果を発揮できる。この点、上記の組成式で示されるように、Liに対するCo及びAlのモル比が0.85超1.15以下(0.85<x+y≦1.15)であればよい。下限が好ましくは0.9以上、より好ましくは0.95以上、上限が好ましくは1.1以下、より好ましくは1.05以下である。 In the positive electrode active material of the present disclosure, the total molar ratio of Co and Al to Li is preferably 1 (x + y = 1), but even if Li is somewhat excessive, or Li is somewhat insufficient, Even if it is, it is possible to generate and maintain the spinel type crystal phase, and the desired effect can be exhibited. In this respect, as shown in the above composition formula, the molar ratio of Co and Al to Li should be more than 0.85 and 1.15 or less (0.85<x+y≦1.15). The lower limit is preferably 0.9 or more, more preferably 0.95 or more, and the upper limit is preferably 1.1 or less, more preferably 1.05 or less.

本開示の正極活物質においては、スピネル型のコバルト酸リチウムの化学両論比からすると、Liに対するOのモル比(O/Li)が2であることが好ましいが、スピネル型結晶相としての化学両論比よりも酸素が過剰となっていても酸素が一部欠損していても、スピネル型結晶相を生成・維持することは可能であり、所望の効果を発揮できる。この点、Liに対するOのモル比(O/Li)は、例えば1.8以上2.2以下とすることが好ましい。或いは、上記の組成式においてδは0.2以下であることが好ましい。 In the positive electrode active material of the present disclosure, the molar ratio of O to Li (O/Li) is preferably 2 from the stoichiometric ratio of spinel-type lithium cobalt oxide, but the stoichiometric ratio as a spinel-type crystal phase Even if the amount of oxygen exceeds the ratio or the amount of oxygen is partially deficient, the spinel crystal phase can be generated and maintained, and the desired effect can be exhibited. In this regard, it is preferable that the molar ratio of O to Li (O/Li) is, for example, 1.8 or more and 2.2 or less. Alternatively, δ in the above composition formula is preferably 0.2 or less.

1.3.形状
本開示の正極活物質の形状や大きさは特に限定されるものではなく、リチウムイオン電池の正極に適用可能なものであればよい。好ましくは粒子状である。
1.3. Shape The shape and size of the positive electrode active material of the present disclosure are not particularly limited as long as they are applicable to the positive electrode of a lithium ion battery. It is preferably particulate.

1.4.効果
本開示の正極活物質は、スピネル型のコバルト酸リチウムにおいて特定量のアルミニウムがドープされることで、アルミニウムを含まない場合と比較して、リチウムイオン電池に適用した場合における電池の初回クーロン効率が大きく増大する。アルミニウムによってスピネル型結晶相が安定化されたためと考えられる。
1.4. Effect The cathode active material of the present disclosure is doped with a specific amount of aluminum in the spinel-type lithium cobaltate, resulting in a higher initial coulombic efficiency of the battery when applied to a lithium-ion battery compared to the case without aluminum. increases significantly. This is probably because the spinel-type crystal phase was stabilized by aluminum.

2.正極活物質の製造方法
本開示の正極活物質は、例えば、リチウム源と、コバルト源と、アルミニウム源とを混合して混合物を得る第1工程と、前記混合物を加熱してスピネル型結晶相を有する複合酸化物を得る第2工程とを経て製造することができる。
2. Method for producing positive electrode active material The positive electrode active material of the present disclosure includes, for example, a first step of mixing a lithium source, a cobalt source, and an aluminum source to obtain a mixture, and heating the mixture to form a spinel crystal phase. It can be produced through a second step of obtaining a composite oxide having.

2.1.第1工程
第1工程においては、リチウム源とコバルト源とアルミニウム源とを混合して混合物を得る。リチウム源としてはリチウム化合物や金属リチウムが挙げられる。リチウム化合物としては、炭酸リチウム、酸化リチウム、水酸化リチウム、酢酸リチウム等が挙げられる。固相法による場合、炭酸リチウムが好ましい。液相法(蒸発乾固法)による場合、酢酸リチウムが好ましい。コバルト源としてはコバルト化合物や金属コバルトが挙げられる。コバルト化合物としては、炭酸コバルト、酸化コバルト、水酸化コバルト、酢酸コバルト等が挙げられる。固相法による場合、酸化コバルトが好ましく、Coがより好ましい。液相法(蒸発乾固法)による場合、酢酸コバルトが好ましい。アルミニウム源としてはアルミニウム化合物や金属アルミニウムが挙げられる。アルミニウム化合物としては、炭酸アルミニウム、酸化アルミニウム、水酸化アルミニウム、酢酸アルミニウム等が挙げられる。固相法による場合、酸化アルミニウムが好ましい。液相法(蒸発乾固法)による場合、酢酸アルミニウムが好ましい。尚、上記の各種化合物は水和物であってもよい。
2.1. First Step In the first step, a lithium source, a cobalt source and an aluminum source are mixed to obtain a mixture. Lithium sources include lithium compounds and metallic lithium. Lithium compounds include lithium carbonate, lithium oxide, lithium hydroxide, lithium acetate, and the like. Lithium carbonate is preferred for the solid phase method. Lithium acetate is preferred when the liquid phase method (evaporation to dryness method) is used. Cobalt sources include cobalt compounds and metallic cobalt. Cobalt compounds include cobalt carbonate, cobalt oxide, cobalt hydroxide, and cobalt acetate. In the solid phase method, cobalt oxide is preferred, and Co 3 O 4 is more preferred. Cobalt acetate is preferred for the liquid phase method (evaporation to dryness method). Aluminum sources include aluminum compounds and metallic aluminum. Aluminum compounds include aluminum carbonate, aluminum oxide, aluminum hydroxide, aluminum acetate and the like. Aluminum oxide is preferred when the solid phase method is employed. Aluminum acetate is preferred for the liquid phase method (evaporation to dryness method). Incidentally, the above various compounds may be hydrates.

混合物におけるリチウムとコバルトとアルミニウムとのモル比は上記の本開示の正極活物質における組成を満たす比率であればよい。 The molar ratio of lithium, cobalt, and aluminum in the mixture may be any ratio that satisfies the composition of the positive electrode active material of the present disclosure.

リチウム源とコバルト源等との混合方法は特に限定されるものではなく、溶媒を用いない乾式混合や溶媒を用いた湿式混合等、種々の方法を採用可能である。第1工程においては、原料を溶解させて溶液からなる混合物(混合溶液)としてもよいし、粉体同士を混ぜ合わせて粉体混合物としてもよい。混合は乳鉢等を用いて人力で行ってもよいし、ボールミル等を用いて機械的に行ってもよい。 The method of mixing the lithium source and the cobalt source is not particularly limited, and various methods such as dry mixing without using a solvent and wet mixing with a solvent can be employed. In the first step, the raw materials may be dissolved to form a mixture (mixed solution) of a solution, or powders may be mixed to form a powder mixture. Mixing may be performed manually using a mortar or the like, or may be performed mechanically using a ball mill or the like.

特に、第1工程においては、液相法(蒸発乾固法)により、原料を溶媒に溶解させて混合溶液を得て、その後、当該混合溶液を蒸発乾固させて固体状の前駆体を得ることが好ましい。この場合に用いられる溶媒としては、水やアルコール等のプロトン性極性溶媒が挙げられる。蒸発乾固後に得られる前駆体は、リチウムとコバルトとアルミニウムとが原子レベルで均一に混ざり合った状態であり、且つ、細かな微粒子状で比表面積が大きい。このような前駆体を後述の第2工程にて加熱・焼成することで、短時間でスピネル型結晶相を生成させることができる。 In particular, in the first step, the raw materials are dissolved in a solvent by a liquid phase method (evaporation to dryness method) to obtain a mixed solution, and then the mixed solution is evaporated to dryness to obtain a solid precursor. is preferred. Solvents used in this case include protic polar solvents such as water and alcohols. The precursor obtained after evaporation to dryness is in a state in which lithium, cobalt, and aluminum are uniformly mixed at the atomic level, and is in the form of fine particles with a large specific surface area. By heating and baking such a precursor in the second step described later, a spinel crystal phase can be generated in a short time.

2.2.第2工程
第2工程においては、第1工程により得られた混合物を加熱してスピネル型結晶相を有する複合酸化物を得る。通常、リチウムとコバルトとの複合酸化物においては、スピネル型結晶相よりも層状岩塩型結晶相のほうが熱に対して安定であることから、第2工程における加熱温度が高過ぎると、スピネル型結晶相よりも層状岩塩型結晶相が生成してしまう。すなわち、上記の混合物において所望のスピネル型結晶相を得る場合は、第2工程における加熱温度を低温とし、また、加熱時間を長時間とすることが好ましい。特に、本発明者の知見では、第2工程における加熱温度を250℃以上600℃以下とすることで、所望のスピネル型結晶相が得られ易い。加熱温度の下限はより好ましくは280℃、さらに好ましくは300℃以上であり、上限がより好ましくは550℃以下、さらに好ましくは510℃以下である。第2工程における加熱時間は、加熱温度によって調整すればよい。例えば、固相法による場合は、1週間以上加熱することで、スピネル型結晶相の結晶性を高めることができる。一方、液相法(蒸発乾固法)による場合は、加熱時間が120時間以下であっても、スピネル型結晶相の結晶性を高めることができる。第2工程における加熱雰囲気は、複合酸化物を生成可能な雰囲気であればよい。例えば、大気雰囲気や酸素雰囲気等とすることができる。
2.2. Second Step In the second step, the mixture obtained in the first step is heated to obtain a composite oxide having a spinel crystal phase. Generally, in the composite oxide of lithium and cobalt, the layered rock salt crystal phase is more stable against heat than the spinel crystal phase, so if the heating temperature in the second step is too high, the spinel crystal A layered rock salt type crystal phase is generated rather than a phase. That is, in order to obtain the desired spinel crystal phase in the above mixture, it is preferable that the heating temperature in the second step is low and the heating time is long. In particular, according to the findings of the present inventors, a desired spinel crystal phase can be easily obtained by setting the heating temperature in the second step to 250° C. or higher and 600° C. or lower. The lower limit of the heating temperature is more preferably 280°C, more preferably 300°C or higher, and the upper limit is more preferably 550°C or lower, still more preferably 510°C or lower. The heating time in the second step may be adjusted according to the heating temperature. For example, in the solid-phase method, the crystallinity of the spinel-type crystal phase can be enhanced by heating for one week or longer. On the other hand, when the liquid phase method (evaporation to dryness method) is used, the crystallinity of the spinel crystal phase can be enhanced even if the heating time is 120 hours or less. The heating atmosphere in the second step may be any atmosphere capable of forming a composite oxide. For example, an air atmosphere, an oxygen atmosphere, or the like can be used.

3.リチウムイオン電池
本開示の技術は、リチウムイオン電池としての側面も有する。図1に本開示のリチウムイオン電池の構成の一例を示す。図1に示すリチウムイオン電池10は、正極1と、負極2と、正極1及び負極2の間に配置された電解質3とを備え、正極1が上記本開示の正極活物質を備えることを特徴とする。
3. Lithium Ion Battery The technology of the present disclosure also has an aspect as a lithium ion battery. FIG. 1 shows an example of the configuration of the lithium ion battery of the present disclosure. The lithium ion battery 10 shown in FIG. 1 includes a positive electrode 1, a negative electrode 2, and an electrolyte 3 disposed between the positive electrode 1 and the negative electrode 2, wherein the positive electrode 1 includes the positive electrode active material of the present disclosure. and

3.1.正極1
正極1は、上記本開示の正極活物質を備えることを除き、従来と同様の構成とすればよい。例えば、正極1は、正極集電体1aと、上記本開示の正極活物質を含む正極活物質層1bとを備える。正極集電体1aは、例えば、各種金属により構成すればよい。正極活物質層1bは正極活物質のほかに任意にバインダーや導電助剤が含まれていてもよい。尚、正極活物質層1bは、上記本開示の正極活物質のほか、上記課題を解決できる範囲で、本開示の正極活物質以外の正極活物質が含まれていてもよい。例えば、層状岩塩型結晶相を有するリチウム金属複合酸化物やオリビン型結晶相を有するリチウム金属リン酸化合物等が挙げられる。本開示の正極活物質は、充放電に伴う活物質の膨張収縮率が小さく、粒子間の界面接触が重要となる固体電池において特に有利である。言い換えれば、本開示のリチウムイオン電池は全固体電池であることが好ましい。リチウムイオン電池として全固体電池を採用する場合、正極活物質層1bには固体電解質が含まれていることが好ましい。固体電解質としては、酸化物固体電解質や硫化物固体電解質等の無機固体電解質が好ましく、硫化物固体電解質がより好ましい。硫化物固体電解質としては、例えば、構成元素としてLi、P及びSを含む固体電解質を用いることができる。具体的には、LiS-P、LiS-SiS、LiI-LiS-SiS、LiI-SiS-P、LiI-LiBr-LiS-P、LiI-LiS-P、LiI-LiO-LiS-P、LiI-LiS-P、LiI-LiPO-P、LiS-P-GeS等が挙げられる。これらの中でも、特に、LiS-Pを含む硫化物固体電解質がより好ましい。固体電解質は1種のみを単独で用いてもよいし、2種以上を混合して用いてもよい。正極1中に硫化物固体電解質を含ませる場合、正極活物質と硫化物固体電解質との界面における高抵抗層の形成等を抑制する観点から、正極活物質の表面にニオブ酸リチウム層等の被覆層が設けられていてもよい。正極活物質以外の構成については、技術常識から自明であることから、これ以上の説明を省略する。
3.1. positive electrode 1
The positive electrode 1 may have the same configuration as the conventional one, except that it includes the positive electrode active material of the present disclosure. For example, the positive electrode 1 includes a positive electrode current collector 1a and a positive electrode active material layer 1b containing the positive electrode active material of the present disclosure. The positive electrode current collector 1a may be made of, for example, various metals. The positive electrode active material layer 1b may optionally contain a binder and a conductive aid in addition to the positive electrode active material. In addition to the positive electrode active material of the present disclosure, the positive electrode active material layer 1b may contain a positive electrode active material other than the positive electrode active material of the present disclosure within a range that can solve the above problems. Examples thereof include lithium metal composite oxides having a layered rock salt crystal phase and lithium metal phosphate compounds having an olivine crystal phase. The positive electrode active material of the present disclosure has a small expansion/shrinkage rate of the active material during charging and discharging, and is particularly advantageous in a solid battery in which interfacial contact between particles is important. In other words, the lithium ion battery of the present disclosure is preferably an all solid state battery. When an all-solid battery is employed as the lithium ion battery, it is preferable that the positive electrode active material layer 1b contains a solid electrolyte. As the solid electrolyte, an inorganic solid electrolyte such as an oxide solid electrolyte or a sulfide solid electrolyte is preferable, and a sulfide solid electrolyte is more preferable. As the sulfide solid electrolyte, for example, a solid electrolyte containing Li, P and S as constituent elements can be used. Specifically, Li 2 SP 2 S 5 , Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Si 2 SP 2 S 5 , LiI—LiBr—Li 2 SP 2 S 5 , LiI-Li 2 SP 2 S 5 , LiI-Li 2 O-Li 2 SP 2 S 5 , LiI-Li 2 SP 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 -GeS 2 and the like. Among these, a sulfide solid electrolyte containing Li 2 SP 2 S 5 is particularly preferred. Solid electrolytes may be used singly or in combination of two or more. When a sulfide solid electrolyte is included in the positive electrode 1, the surface of the positive electrode active material is coated with a lithium niobate layer or the like from the viewpoint of suppressing the formation of a high resistance layer at the interface between the positive electrode active material and the sulfide solid electrolyte. Layers may be provided. Since the configuration other than the positive electrode active material is self-evident from common technical knowledge, further explanation is omitted.

3.2.負極2
負極2は、リチウムイオン電池の負極として公知のものを採用可能である。例えば、負極2は、負極集電体2aと、負極活物質を含む負極活物質層2bとを備える。負極集電体2aは、例えば、各種金属により構成すればよい。負極活物質は、上記本開示の正極活物質よりもリチウムイオンの充放電電位が卑である物質を採用すればよい。負極活物質層2bは負極活物質のほかに任意にバインダーや導電助剤が含まれていてもよい。また、リチウムイオン電池として固体電池を採用する場合、負極活物質層2bには上記した固体電解質が含まれていることが好ましい。負極の構成は、技術常識から自明であることから、これ以上の説明を省略する。
3.2. negative electrode 2
The negative electrode 2 can employ a known negative electrode for lithium ion batteries. For example, the negative electrode 2 includes a negative electrode current collector 2a and a negative electrode active material layer 2b containing a negative electrode active material. The negative electrode current collector 2a may be made of, for example, various metals. As the negative electrode active material, a material having a lithium ion charge/discharge potential that is more base than the positive electrode active material of the present disclosure may be adopted. The negative electrode active material layer 2b may optionally contain a binder and a conductive aid in addition to the negative electrode active material. Moreover, when a solid battery is employed as the lithium ion battery, the negative electrode active material layer 2b preferably contains the solid electrolyte described above. Since the structure of the negative electrode is self-evident from common technical knowledge, further explanation is omitted.

3.3.電解質層3
電解質層3は、上記の正極1と負極2との間でリチウムイオンを伝導するためのものである。電解質層3においては電解液や固体電解質のいずれを採用してもよい。電解液を採用する場合、正極と負極との間にセパレータを配置し、これを電解液に含浸させればよい。一方、固体電解質を採用する場合、正極と負極との間に固体電解質層を配置すればよい。固体電解質層には上記した固体電解質と任意にバインダーとが含まれる。上述の通り、本開示の正極活物質は、充放電に伴う活物質の膨張収縮率が小さく、粒子間の界面接触が重要となる固体電池において特に有利である。この点、上記の電解質層3は酸化物固体電解質や硫化物固体電解質等の無機固体電解質を含む固体電解質層であることが好ましく、硫化物固体電解質を含む層であることがより好ましい。電解質層3の構成は、技術常識から自明であることから、これ以上の説明を省略する。
3.3. electrolyte layer 3
The electrolyte layer 3 is for conducting lithium ions between the positive electrode 1 and the negative electrode 2 . Either an electrolytic solution or a solid electrolyte may be employed in the electrolyte layer 3 . When an electrolytic solution is employed, a separator may be arranged between the positive electrode and the negative electrode and impregnated with the electrolytic solution. On the other hand, when using a solid electrolyte, a solid electrolyte layer may be arranged between the positive electrode and the negative electrode. The solid electrolyte layer contains the solid electrolyte described above and optionally a binder. As described above, the positive electrode active material of the present disclosure has a small expansion/contraction rate of the active material during charging and discharging, and is particularly advantageous in a solid battery in which interfacial contact between particles is important. In this respect, the electrolyte layer 3 is preferably a solid electrolyte layer containing an inorganic solid electrolyte such as an oxide solid electrolyte or a sulfide solid electrolyte, and more preferably a layer containing a sulfide solid electrolyte. Since the structure of the electrolyte layer 3 is self-evident from common technical knowledge, further explanation is omitted.

3.4.その他の構成
リチウムイオン電池10は、上記の正極1、負極2及び電解質層3を備えていればよく、これ以外に必要に応じて端子や電池ケース等が備えられる。これらの構成については技術常識から自明であることから、これ以上の説明を省略する。
3.4. Other Configurations The lithium-ion battery 10 only needs to include the positive electrode 1, the negative electrode 2, and the electrolyte layer 3 described above. Since these configurations are self-evident from common technical knowledge, further explanation is omitted.

3.5.効果
本開示のリチウムイオン電池は、正極において上記本開示の正極活物質が採用されており、初回クーロン効率が高く、且つ、充放電時における正極の体積変化が小さい。本開示のリチウムイオン電池は、一次電池としてだけでなく、二次電池としても好適に用いられる。
3.5. Effect The lithium ion battery of the present disclosure employs the positive electrode active material of the present disclosure in the positive electrode, has a high initial coulombic efficiency, and has a small volume change of the positive electrode during charging and discharging. The lithium ion battery of the present disclosure is suitably used not only as a primary battery but also as a secondary battery.

4.リチウムイオン電池システム
本開示の正極活物質は、従来の正極活物質よりもスピネル型結晶相の安定性に優れ、例えば高電圧型の活物質として機能することができる。この点、本開示の正極活物質を備えるリチウムイオン電池の充放電を行う場合、充放電制御部によって当該リチウムイオン電池の充放電を制御して、放電開始電圧や充電のカットオフ電圧を高電圧とすることが好ましい。
4. Lithium Ion Battery System The positive electrode active material of the present disclosure has a spinel-type crystal phase that is more stable than conventional positive electrode active materials, and can function, for example, as a high-voltage active material. In this regard, when charging and discharging a lithium ion battery including the positive electrode active material of the present disclosure, the charging and discharging of the lithium ion battery is controlled by the charge and discharge control unit, and the discharge start voltage and the charge cutoff voltage are set to a high voltage. It is preferable to

図2にリチウムイオン電池システム100の構成例を概略的に示す。また、図3にリチウムイオン電池システム100における制御フローの一例を示す。図2、3に示すように、リチウムイオン電池システム100は、上記本開示の正極活物質を備えるリチウムイオン電池10と、リチウムイオン電池10の充電及び放電を制御する充放電制御部20と、を備え、充放電制御部20は、リチウムイオン電池10の正極の放電の開始電位又は充電のカットオフ電位を4.0V(vs.Li/Li)以上、好ましくは4.2V(vs.Li/Li)以上、より好ましくは4.3V(vs.Li/Li)以上とすることを特徴とする。 FIG. 2 schematically shows a configuration example of the lithium ion battery system 100. As shown in FIG. 3 shows an example of a control flow in the lithium ion battery system 100. As shown in FIG. As shown in FIGS. 2 and 3, the lithium ion battery system 100 includes a lithium ion battery 10 including the positive electrode active material of the present disclosure, and a charge/discharge control unit 20 that controls charging and discharging of the lithium ion battery 10. In addition, the charge/discharge control unit 20 sets the discharge start potential or charge cutoff potential of the positive electrode of the lithium ion battery 10 to 4.0 V (vs. Li + /Li) or more, preferably 4.2 V (vs. Li + /Li) or more, more preferably 4.3 V (vs. Li + /Li) or more.

充放電制御部20は、上記の通りにリチウムイオン電池10の充電及び放電を制御可能なものであればよい。例えば、電源を用いてリチウムイオン電池10の充電を行う場合、リチウムイオン電池1の正極の電位を逐次測定し、測定した正極の電位が所定の電圧未満の場合は充電を継続し、測定した正極の電位が所定の電圧以上の場合は電源からの電気の供給を停止して、充電を停止するようにすればよい。 The charge/discharge control unit 20 may be any unit that can control charge and discharge of the lithium ion battery 10 as described above. For example, when charging the lithium ion battery 10 using a power supply, the potential of the positive electrode of the lithium ion battery 1 is sequentially measured, and if the measured potential of the positive electrode is less than a predetermined voltage, charging is continued, and the measured positive electrode is equal to or higher than a predetermined voltage, the supply of electricity from the power source is stopped to stop charging.

放電の開始電位についても同様である。すなわち、リチウムイオン電池10の充電後、1回目の放電を行う場合、当該1回目の放電を行う前に正極の電位を測定し、測定した正極の電位が所定の電圧未満の場合は、リチウムイオン電池10の放電を行わずにリチウムイオン電池10の充電を行い、リチウムイオン電池10の充電によって正極の電位が所定の電圧以上となった場合に、1回目の放電を行うようにすればよい。 The same applies to the discharge start potential. That is, when the first discharge is performed after charging the lithium ion battery 10, the potential of the positive electrode is measured before the first discharge, and if the measured potential of the positive electrode is less than a predetermined voltage, lithium ion The lithium ion battery 10 is charged without discharging the battery 10, and when the potential of the positive electrode reaches a predetermined voltage or higher due to the charging of the lithium ion battery 10, the first discharge is performed.

充放電制御部20によってリチウムイオン電池10の充電及び放電を制御する場合、リチウムイオン電池10の放電の開始電位又は充電のカットオフ電位の上限は特に限定されるものではないが、当該電位をあまりに高電位としても効果が小さい。むしろ、電池材料の劣化や分解等が懸念される。この点、充放電制御部20は、リチウムイオン電池10の正極の放電の開始電位又は充電のカットオフ電位を5.3V(vs.Li/Li)以下とすることが好ましい。より好ましくは、5.1V(vs.Li/Li)以下、さらに好ましくは5.0V(vs.Li/Li)以下とする。 When the charging and discharging of the lithium ion battery 10 is controlled by the charge/discharge control unit 20, the upper limit of the discharge start potential or the charge cutoff potential of the lithium ion battery 10 is not particularly limited. Even at a high potential, the effect is small. Rather, there is concern about deterioration and decomposition of battery materials. In this respect, the charge/discharge control unit 20 preferably sets the discharge start potential or charge cutoff potential of the positive electrode of the lithium ion battery 10 to 5.3 V (vs. Li + /Li) or less. More preferably, it is 5.1 V (vs. Li + /Li) or less, and still more preferably 5.0 V (vs. Li + /Li) or less.

1.正極活物質(スピネル型複合酸化物)の合成
(実施例1)
リチウム源として酢酸リチウムと、コバルト源として酢酸コバルトと、アルミニウム源として酢酸アルミニウムとを、プロトン性極性溶媒であるイオン交換水中に溶解させて、混合溶液を得た。得られた混合溶液をスターラーで攪拌しながら、ホットプレートにて250℃に加熱し、蒸発乾固させて、固体状の前駆体を得た。得られた前駆体を大気雰囲気下にて400℃で2時間焼成することで、実施例1に係る正極活物質(LiCo0.9Al0.12±δ)を得た。
1. Synthesis of positive electrode active material (spinel-type composite oxide) (Example 1)
Lithium acetate as a lithium source, cobalt acetate as a cobalt source, and aluminum acetate as an aluminum source were dissolved in deionized water as a protic polar solvent to obtain a mixed solution. The resulting mixed solution was heated to 250° C. on a hot plate while stirring with a stirrer, and evaporated to dryness to obtain a solid precursor. The obtained precursor was sintered at 400° C. for 2 hours in an air atmosphere to obtain a positive electrode active material (LiCo 0.9 Al 0.1 O 2±δ ) according to Example 1.

(実施例2)
前駆体の焼成温度を450℃としたこと以外は実施例1と同様にして、実施例2に係る正極活物質(LiCo0.9Cr0.12±δ)を得た。
(Example 2)
A positive electrode active material (LiCo 0.9 Cr 0.1 O 2±δ ) according to Example 2 was obtained in the same manner as in Example 1, except that the sintering temperature of the precursor was 450°C.

(実施例3)
前駆体の焼成温度を500℃としたこと以外は実施例1と同様にして、実施例3に係る正極活物質(LiCo0.9Cr0.12±δ)を得た。
(Example 3)
A positive electrode active material (LiCo 0.9 Cr 0.1 O 2±δ ) according to Example 3 was obtained in the same manner as in Example 1, except that the sintering temperature of the precursor was 500°C.

(実施例4)
原料組成比をLi:Co:Al=1:0.85:0.15としたこと以外は実施例1と同様にして、実施例4に係る正極活物質(LiCo0.85Al0.152±δ)を得た。
(Example 4)
A positive electrode active material according to Example 4 (LiCo 0.85 Al 0.15 O 2±δ ).

(実施例5)
原料組成比をLi:Co:Al=1:0.95:0.05としたこと以外は実施例1と同様にして、実施例5に係る正極活物質(LiCo0.95Al0.052±δ)を得た。
(Example 5)
A positive electrode active material (LiCo 0.95 Al 0.05 O 2±δ ).

(比較例1)
原料組成比をLi:Co:Al=1:1:0としたこと以外は実施例1と同様にして、比較例1に係る正極活物質(LiCoO2±δ)を得た。
(Comparative example 1)
A cathode active material (LiCoO 2±δ ) according to Comparative Example 1 was obtained in the same manner as in Example 1, except that the raw material composition ratio was Li:Co:Al=1:1:0.

(比較例2)
アルミニウム源に替えてニッケル源として酢酸ニッケルを用い、原料組成をLi:Co:Ni=1:0.9:0.1としたこと以外は実施例1と同様にして、比較例2に係る正極活物質(LiCo0.9Ni0.12±δ)を得た。
(Comparative example 2)
A positive electrode according to Comparative Example 2 was prepared in the same manner as in Example 1 except that nickel acetate was used as the nickel source instead of the aluminum source and the raw material composition was Li: Co: Ni = 1: 0.9: 0.1. An active material (LiCo 0.9 Ni 0.1 O 2±δ ) was obtained.

(比較例3)
アルミニウム源に替えてクロム源として酢酸クロムを用い、原料組成をLi:Co:Cr=1:0.9:0.1としたこと以外は実施例1と同様にして、比較例3に係る正極活物質(LiCo0.9Cr0.12±δ)を得た。
(Comparative Example 3)
A positive electrode according to Comparative Example 3 was prepared in the same manner as in Example 1, except that chromium acetate was used as the chromium source instead of the aluminum source, and the raw material composition was Li:Co:Cr=1:0.9:0.1. An active material (LiCo 0.9 Cr 0.1 O 2±δ ) was obtained.

2.結晶相の確認
実施例1~5及び比較例1~4に係る正極活物質に対してCuKαを線源とするX線回折測定を行い、回折ピークを確認した。図4にX線回折測定結果を示す。図4に示す結果から明らかなように、実施例1~5及び比較例1~4のいずれについてもスピネル型結晶相に由来する回折ピークが確認できた。
2. Confirmation of Crystal Phase X-ray diffraction measurement using CuKα as a radiation source was performed on the positive electrode active materials according to Examples 1 to 5 and Comparative Examples 1 to 4, and diffraction peaks were confirmed. FIG. 4 shows the results of X-ray diffraction measurement. As is clear from the results shown in FIG. 4, diffraction peaks derived from spinel-type crystal phases were confirmed in all of Examples 1-5 and Comparative Examples 1-4.

3.SEM観察
実施例1及び比較例1に係る正極活物質について、その形態をSEMにて観察した。結果を図5に示す。図5に示すように、実施例1のほうが比較例1に比べて粒子が大きく、結晶性が高いものと考えられる。
3. SEM Observation The morphology of the positive electrode active materials according to Example 1 and Comparative Example 1 was observed by SEM. The results are shown in FIG. As shown in FIG. 5, Example 1 is considered to have larger particles and higher crystallinity than Comparative Example 1.

4.電極の作製
得られた正極活物質と導電助剤とバインダーとを、質量比で、正極活物質:導電助剤:バインダー=85:10:5となるように秤量し、NMPとともに湿式混合してスラリーを得た。得られたスラリーをアルミニウム箔上に塗工し、120℃で一晩乾燥させ、正極を得た。
4. Preparation of electrode The positive electrode active material, conductive aid and binder obtained were weighed so that the mass ratio of positive electrode active material: conductive aid: binder = 85: 10: 5, and wet-mixed with NMP. A slurry was obtained. The resulting slurry was applied onto an aluminum foil and dried at 120° C. overnight to obtain a positive electrode.

5.リチウムイオン電池の作製
上記の正極、負極(リチウム箔)、電解液にF置換カーボネート系電解液を用い、正極と負極との間にセパレータを配置し、電解液とともにコイン型電池内に封入して評価用のリチウムイオン電池(CR2032コインセル)を得た。
5. Preparation of lithium ion battery Using F-substituted carbonate-based electrolyte for the above positive electrode, negative electrode (lithium foil), and electrolyte solution, a separator is placed between the positive electrode and the negative electrode, and the electrolyte is enclosed in a coin battery. A lithium ion battery (CR2032 coin cell) was obtained for evaluation.

6.充放電試験
作製したリチウムイオン電池に対して以下の条件で充放電試験を行い、4.45V充電後の充放電1サイクル目におけるクーロン効率を確認した。
CC充電:電流0.1C、終了条件4.45V
CC放電:電流0.1C、終了条件2.5V
6. Charge/Discharge Test A charge/discharge test was performed on the prepared lithium ion battery under the following conditions to confirm the coulombic efficiency in the first charge/discharge cycle after charging at 4.45V.
CC charging: current 0.1C, termination condition 4.45V
CC discharge: current 0.1C, termination condition 2.5V

結果を下記表1に示す。また、参考までに、図6に実施例1及び比較例1についての充放電曲線を示す。 The results are shown in Table 1 below. For reference, FIG. 6 shows charge-discharge curves for Example 1 and Comparative Example 1. As shown in FIG.

Figure 0007168373000001
Figure 0007168373000001

表1に示す結果から明らかなように、実施例1~5は、比較例1~3よりも初回クーロン効率が顕著に増大した。図4及び5に示すように、アルミニウムドープにより、スピネル型結晶相の結晶性が高まるとともに、スピネル型結晶相が安定化したためと考えられる。尚、図6に示すように、実施例1は、比較例1よりも平均電圧が約0.13V高かった。アルミニウムドープにより、スピネル型結晶相の結晶性が高まり、電子伝導度が高くなったためと考えられる。 As is clear from the results shown in Table 1, Examples 1-5 significantly increased the initial coulombic efficiency as compared with Comparative Examples 1-3. As shown in FIGS. 4 and 5, it is believed that the aluminum doping enhanced the crystallinity of the spinel-type crystal phase and stabilized the spinel-type crystal phase. In addition, as shown in FIG. 6, in Example 1, the average voltage was higher than that in Comparative Example 1 by about 0.13V. This is probably because the doping with aluminum enhanced the crystallinity of the spinel crystal phase and increased the electron conductivity.

以上の結果から、スピネル型のコバルト酸リチウムよりも、スピネル型のコバルト酸リチウムの一部の元素を特定量のアルミニウムで置換したほうが、リチウムイオン電池の正極活物質として優れた性能を発揮できることが分かった。 From the above results, it can be concluded that replacing some of the elements of spinel-type lithium cobalt oxide with a specific amount of aluminum can exhibit superior performance as a positive electrode active material for lithium-ion batteries, rather than spinel-type lithium cobalt oxide. Do you get it.

尚、上記実施例では、アルミニウム置換量が0.05~0.15である実施例1~5を示したが、本開示の正極活物質はこの形態に限定されるものではない。上記したように、本開示の技術は、スピネル型のコバルト酸リチウムの一部の元素をアルミニウムで置換することの有効性を見出したものであり、アルミニウム置換量が0.05未満であっても、アルミニウム置換量が0である場合と比較して、所望の効果を発揮できるものと考えられる。 Although Examples 1 to 5 in which the amount of aluminum substitution is 0.05 to 0.15 are shown in the above Examples, the positive electrode active material of the present disclosure is not limited to this form. As described above, the technique of the present disclosure has found the effectiveness of substituting aluminum for some elements of spinel-type lithium cobaltate, and even if the amount of aluminum substitution is less than 0.05 , it is considered that the desired effect can be exhibited as compared with the case where the amount of aluminum substitution is 0.

また、上記実施例では、リチウムとその他金属とのモル比が1になるように調整したが、リチウムに対するその他金属のモル比は、スピネル型結晶相が得られる限りにおいて、これに限定されるものではない。本発明者の知見では、Liに対するその他金属のモル比が0.85超1.15以下であれば、十分な効果を発揮できる。 In the above examples, the molar ratio of lithium to other metals was adjusted to 1, but the molar ratio of other metals to lithium is limited to this as long as a spinel crystal phase can be obtained. is not. According to the findings of the present inventors, sufficient effects can be exhibited if the molar ratio of the other metal to Li is more than 0.85 and 1.15 or less.

本発明に係る正極活物質を用いたリチウムイオン電池は、例えば、携帯機器用の小型電源から車搭載用の大型電源まで、広く利用できる。 INDUSTRIAL APPLICABILITY A lithium ion battery using the positive electrode active material according to the present invention can be widely used, for example, from a small power source for portable equipment to a large power source for vehicles.

1 正極
2 負極
3 電解質層
10 リチウムイオン電池
1 positive electrode 2 negative electrode 3 electrolyte layer 10 lithium ion battery

Claims (1)

正極と、負極と、該正極および該負極の間に配置された電解質とを備え、
正極が正極活物質として、
リチウムとコバルトとアルミニウムと酸素とを含むスピネル型結晶相を有し、
LiCoAl2±δ(0.85≦x<1、0<y≦0.15、0.85<x+y≦1.15、δ≦0.2)で表される組成を有する、正極活物質のみを有する、
リチウムイオン電池。
comprising a positive electrode, a negative electrode, and an electrolyte disposed between the positive electrode and the negative electrode;
The positive electrode as a positive electrode active material,
Having a spinel crystal phase containing lithium, cobalt, aluminum and oxygen,
A positive electrode having a composition represented by LiCo x Al y O 2±δ (0.85≦x<1, 0<y≦0.15, 0.85<x+y≦1.15 , δ≦0.2 ) having only an active material,
Lithium-ion battery.
JP2018147009A 2018-08-03 2018-08-03 Positive electrode active material for lithium-ion batteries Active JP7168373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018147009A JP7168373B2 (en) 2018-08-03 2018-08-03 Positive electrode active material for lithium-ion batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018147009A JP7168373B2 (en) 2018-08-03 2018-08-03 Positive electrode active material for lithium-ion batteries

Publications (2)

Publication Number Publication Date
JP2020021710A JP2020021710A (en) 2020-02-06
JP7168373B2 true JP7168373B2 (en) 2022-11-09

Family

ID=69588755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018147009A Active JP7168373B2 (en) 2018-08-03 2018-08-03 Positive electrode active material for lithium-ion batteries

Country Status (1)

Country Link
JP (1) JP7168373B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019063A (en) 2003-06-24 2005-01-20 Canon Inc Electrode material for lithium secondary battery, electrode structure, and lithium secondary battery
JP2005149957A (en) 2003-11-17 2005-06-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006164758A (en) 2004-12-07 2006-06-22 Seimi Chem Co Ltd Positive electrode material for lithium secondary battery
JP2012089247A (en) 2010-10-15 2012-05-10 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
JP2016143539A (en) 2015-01-30 2016-08-08 日立マクセル株式会社 Positive electrode material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery
JP2020021617A (en) 2018-07-31 2020-02-06 トヨタ自動車株式会社 Cathode active material for lithium ion battery and lithium ion battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173958A (en) * 1997-06-18 1999-03-16 Sony Corp Manufacture of positive electrode active material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019063A (en) 2003-06-24 2005-01-20 Canon Inc Electrode material for lithium secondary battery, electrode structure, and lithium secondary battery
JP2005149957A (en) 2003-11-17 2005-06-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006164758A (en) 2004-12-07 2006-06-22 Seimi Chem Co Ltd Positive electrode material for lithium secondary battery
JP2012089247A (en) 2010-10-15 2012-05-10 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
JP2016143539A (en) 2015-01-30 2016-08-08 日立マクセル株式会社 Positive electrode material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery
JP2020021617A (en) 2018-07-31 2020-02-06 トヨタ自動車株式会社 Cathode active material for lithium ion battery and lithium ion battery

Also Published As

Publication number Publication date
JP2020021710A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
KR101850901B1 (en) All solid lithium secondary battery comprising gel polymer electrolyte and method for manufacturing the same
KR101496533B1 (en) Solid electrolyte material and lithium battery
JP5489723B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5115891B2 (en) Non-aqueous secondary battery comprising a positive electrode active material and a positive electrode including the same
JP2004319129A (en) Anode active material and nonaqueous electrolyte secondary battery using it
KR20180059736A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20200041974A (en) A positive electrode active material for a non-aqueous electrolyte secondary battery and a method for manufacturing the same, and a non-aqueous electrolyte secondary battery using the positive electrode active material
WO2010122819A1 (en) Positive active material and nonaqueous secondary battery equipped with positive electrode including same
JP6840946B2 (en) Solid electrolytes, all-solid-state batteries, and how to make them
KR102314042B1 (en) Composite for anode active material, anode including the composite, lithium secondary battery including the anode, and method of preparing the composite
JP2012089441A (en) Positive electrode active material, and nonaqueous secondary battery with positive electrode containing the same
Zhang et al. Synthesis and characterization of mono-dispersion LiNi0. 8Co0. 1Mn0. 1O2 micrometer particles for lithium-ion batteries
JP6873963B2 (en) Method for manufacturing lithium battery and composite structure
JP4678457B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
CN111066184A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using same
WO2013024739A1 (en) Active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and manufacturing method for active material for non-aqueous electrolyte secondary battery
JP2013247022A (en) Electrode material, method for producing the same, and secondary battery
CN110783565B (en) Positive electrode active material for lithium ion battery and lithium ion battery
JP7168373B2 (en) Positive electrode active material for lithium-ion batteries
JP2021106074A (en) Negative electrode active material
JP2009286669A (en) Manufacturing method of olivine type compound, and lithium-ion secondary battery
JP6966308B2 (en) Positive active material for lithium-ion batteries and their manufacturing methods, lithium-ion batteries, and lithium-ion battery systems
JP7125227B2 (en) Method for producing lithium-containing cobalt oxide having spinel crystal phase
TWI855032B (en) Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, lithium ion secondary battery
JP7271891B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221027

R151 Written notification of patent or utility model registration

Ref document number: 7168373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151