JP5987401B2 - Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery - Google Patents

Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery Download PDF

Info

Publication number
JP5987401B2
JP5987401B2 JP2012073516A JP2012073516A JP5987401B2 JP 5987401 B2 JP5987401 B2 JP 5987401B2 JP 2012073516 A JP2012073516 A JP 2012073516A JP 2012073516 A JP2012073516 A JP 2012073516A JP 5987401 B2 JP5987401 B2 JP 5987401B2
Authority
JP
Japan
Prior art keywords
composite oxide
positive electrode
active material
lithium
metal composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012073516A
Other languages
Japanese (ja)
Other versions
JP2013206679A (en
Inventor
建作 森
建作 森
福井 篤
篤 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012073516A priority Critical patent/JP5987401B2/en
Publication of JP2013206679A publication Critical patent/JP2013206679A/en
Application granted granted Critical
Publication of JP5987401B2 publication Critical patent/JP5987401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水系電解質二次電池用正極活物質とその製造方法および二次電池に関する。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a secondary battery.

近年、携帯電話やノート型パソコンなどの携帯電子機器の普及にともない、高いエネルギー密度を有する小型で軽量な非水系電解質二次電池の開発が強く要望されている。このような二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池は、負極および正極と電解液などで構成され、負極および正極の活物質として、リチウムを脱離および挿入することが可能な材料が用いられている。   In recent years, with the widespread use of portable electronic devices such as mobile phones and laptop computers, there is a strong demand for the development of small and lightweight non-aqueous electrolyte secondary batteries having high energy density. As such a secondary battery, there is a lithium ion secondary battery. A lithium ion secondary battery includes a negative electrode, a positive electrode, an electrolyte, and the like, and a material capable of desorbing and inserting lithium is used as an active material for the negative electrode and the positive electrode.

このようなリチウムイオン二次電池については、現在、研究開発が盛んに行われているところである。この中でも、リチウム金属複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物(LiCoO2)を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。このリチウムコバルト複合酸化物(LiCoO2)を用いたリチウムイオン二次電池では、優れた初期容量特性やサイクル特性を得るための開発がこれまで数多く行われてきており、すでにさまざまな成果が得られている。 Research and development of such lithium ion secondary batteries is being actively conducted. Among these, a lithium ion secondary battery using a lithium metal composite oxide, particularly a lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, as a positive electrode material can obtain a high voltage of 4 V, and thus has high energy. Practical use is progressing as a battery having a high density. In the lithium ion secondary battery using this lithium cobalt composite oxide (LiCoO 2 ), many developments have been made so far to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained. ing.

しかし、リチウムコバルト複合酸化物(LiCoO2)は、原料に希産で高価なコバルト化合物を用いているため、電池のコストアップの原因となる。このため、正極活物質として、リチウムコバルト複合酸化物(LiCoO2)以外を用いることが望まれている。 However, since lithium cobalt complex oxide (LiCoO 2 ) uses a rare and expensive cobalt compound as a raw material, it causes an increase in battery cost. For this reason, it is desired to use materials other than lithium cobalt composite oxide (LiCoO 2 ) as the positive electrode active material.

また、最近は、携帯電子機器用の小型二次電池だけではなく、電力貯蔵用や、電気自動車用などの大型二次電池として、リチウムイオン二次電池を適用することへの期待も高まってきている。このため、正極材料のコストを下げ、より安価なリチウムイオン二次電池の製造を可能とすることは、広範な分野への大きな波及効果が期待できる。   Recently, not only small secondary batteries for portable electronic devices but also expectations for using lithium ion secondary batteries as large secondary batteries for power storage and electric vehicles are increasing. Yes. For this reason, reducing the cost of the positive electrode material and making it possible to manufacture a cheaper lithium ion secondary battery can be expected to have a large ripple effect in a wide range of fields.

リチウムイオン二次電池用正極活物質として新たに提案されている材料としては、コバルトよりも安価なマンガンを用いたリチウムマンガン複合酸化物(LiMn24)や、ニッケルを用いたリチウムニッケル複合酸化物(LiNiO2)を挙げることができる。 Newly proposed materials as positive electrode active materials for lithium ion secondary batteries include lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, which is cheaper than cobalt, and lithium nickel composite oxide using nickel. (LiNiO 2 ).

リチウムマンガン複合酸化物(LiMn24)は、原料が安価である上、熱安定性、特に、発火などについての安全性に優れるため、リチウムコバルト複合酸化物(LiCoO2)の有力な代替材料であるといえるが、理論容量がリチウムコバルト複合酸化物(LiCoO2)のおよそ半分程度しかないため、年々高まるリチウムイオン二次電池の高容量化の要求に応えるのが難しいという欠点を有している。また、45℃以上では、自己放電が激しく、充放電寿命も低下してしまうという問題もある。 Lithium-manganese composite oxide (LiMn 2 O 4 ) is an effective alternative to lithium cobalt composite oxide (LiCoO 2 ) because it is inexpensive and has excellent thermal stability, especially safety with respect to ignition. However, since the theoretical capacity is only about half that of lithium cobalt composite oxide (LiCoO 2 ), it has a drawback that it is difficult to meet the demand for higher capacity of lithium ion secondary batteries that are increasing year by year. Yes. Moreover, at 45 degreeC or more, there exists a problem that self-discharge is intense and a charge / discharge lifetime will also fall.

一方、リチウムニッケル複合酸化物(LiNiO2)は、リチウムコバルト複合酸化物(LiCoO2)とほぼ同じ理論容量を持ち、リチウムコバルト複合酸化物よりもやや低い電池電圧を示す。このため、電解液の酸化による分解が問題になりにくく、より高容量が期待できることから、開発が盛んに行われている。しかし、ニッケルを他の元素で置換せずに、純粋にニッケルのみで構成したリチウムニッケル複合酸化物を正極活物質として用いてリチウムイオン二次電池を作製した場合、リチウムコバルト複合酸化物を正極活物質として用いた場合に比べサイクル特性が劣ってしまう。また、高温環境下で使用されたり保存されたりした場合に、比較的電池性能を損ないやすいという欠点も有している。 On the other hand, lithium nickel composite oxide (LiNiO 2 ) has substantially the same theoretical capacity as lithium cobalt composite oxide (LiCoO 2 ), and shows a slightly lower battery voltage than lithium cobalt composite oxide. For this reason, decomposition | disassembly by oxidation of electrolyte solution does not become a problem, and development is performed actively from expecting higher capacity | capacitance. However, when a lithium-ion secondary battery is manufactured using a lithium nickel composite oxide composed purely of nickel as a positive electrode active material without replacing nickel with other elements, the lithium cobalt composite oxide is used as the positive electrode active material. Cycle characteristics will be inferior compared with the case where it is used as a substance. In addition, when used or stored in a high temperature environment, the battery performance is relatively easily lost.

このような欠点を解決するために、例えば特許文献1では、高温環境下での保存や使用に際して良好な電池性能を維持することのできる正極活物質として、LiwNixCoyz2(0.05≦w≦1.10、0.5≦x≦0.995、0.005≦z≦0.20、x+y+z=1)で表されるコバルトとホウ素が添加されたリチウムニッケル複合酸化物が提案されている。 In order to solve such drawbacks, for example, in Patent Document 1, Li w Ni x Co y B z O 2 is used as a positive electrode active material capable of maintaining good battery performance during storage and use in a high temperature environment. Lithium nickel composite oxidation to which cobalt and boron represented by (0.05 ≦ w ≦ 1.10, 0.5 ≦ x ≦ 0.995, 0.005 ≦ z ≦ 0.20, x + y + z = 1) are added Things have been proposed.

また、特許文献2では、リチウムイオン二次電池の自己放電特性やサイクル特性を向上させることを目的として、LixNiaCobc2(0.8≦x≦1.2、0.01≦a≦0.99、0.01≦b≦0.99、0.01≦c≦0.3、0.8≦a+b+c≦1.2、Mは、Al、V、Mn、Fe、CuおよびZnから選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物が提案されている。 Further, in Patent Document 2, Li x Ni a Co b M c O 2 (0.8 ≦ x ≦ 1.2, 0... Is intended to improve self-discharge characteristics and cycle characteristics of a lithium ion secondary battery. 01 ≦ a ≦ 0.99, 0.01 ≦ b ≦ 0.99, 0.01 ≦ c ≦ 0.3, 0.8 ≦ a + b + c ≦ 1.2, M is Al, V, Mn, Fe, Cu And at least one element selected from Zn) have been proposed.

しかしながら、これらの製造方法によって得られたリチウムニッケル複合酸化物では、リチウムコバルト複合酸化物に比べて充電容量および放電容量がともに高く、サイクル特性も改善されているが、満充電状態で高温環境下に放置しておくと、リチウムコバルト複合酸化物に比べて低い温度からリチウムニッケル複合酸化物の分解による酸素放出を起こすといった問題がある。さらに、高温環境下で不安定となったリチウムニッケル複合酸化物の中のニッケルが、電解液と接触することにより触媒的な働きをし、放出された酸素との反応を促進し発火しやすくなるという安全性の問題がある。   However, the lithium-nickel composite oxides obtained by these production methods have higher charge capacity and discharge capacity and improved cycle characteristics than the lithium-cobalt composite oxide. If left untreated, there is a problem that oxygen release occurs due to decomposition of the lithium nickel composite oxide at a temperature lower than that of the lithium cobalt composite oxide. Furthermore, the nickel in the lithium nickel composite oxide that has become unstable under high-temperature environments acts as a catalyst when in contact with the electrolyte, facilitating the reaction with the released oxygen and facilitating ignition. There is a safety problem.

このような問題を解決するために、例えば特許文献3では、リチウムイオン二次電池正極材料の熱安定性を向上させることを目的として、LiabNicCode(Mは、Al、Mn、Sn、In、Fe、V、Cu、Mg、Ti、Zn、Moからなる群から選択される少なくとも一種の金属であり、かつ0<a<1.3、0.02≦b≦0.5、0.02≦d/c+d≦0.9、1.8<e<2.2の範囲であって、さらにb+c+d=1である)で表されるリチウム金属複合酸化物が提案されている。この場合に添加元素として、Mに例えばアルミニウムを選択した場合、ニッケルからアルミニウムへの置換量を多くすれば正極活物質の分解反応は抑えられ、熱安定性は向上することが確かめられている。しかし、十分な安定性を確保するのに有効なアルミニウムでニッケルを置換すると、充放電反応にともない酸化還元反応に寄与するニッケルの量が減少するため、電池性能として最も重要である初期容量が大きく低下するという問題点を有している。これは、アルミニウムが3価で安定していることから、ニッケルも電荷を合わせるため3価で安定し、酸化還元反応に寄与しない部分が生ずるために容量低下が起こるものと考えられる。 In order to solve such a problem, for example, in Patent Document 3, for the purpose of improving the thermal stability of the positive electrode material of a lithium ion secondary battery, Li a M b Ni c Co d O e (M is Al , Mn, Sn, In, Fe, V, Cu, Mg, Ti, Zn, Mo, and at least one metal selected from the group consisting of 0 <a <1.3, 0.02 ≦ b ≦ 0 .5, 0.02 ≦ d / c + d ≦ 0.9, 1.8 <e <2.2, and b + c + d = 1). Yes. In this case, for example, when aluminum is selected as the additive element, it is confirmed that the decomposition reaction of the positive electrode active material can be suppressed and the thermal stability can be improved by increasing the substitution amount of nickel to aluminum. However, replacing nickel with aluminum, which is effective to ensure sufficient stability, reduces the amount of nickel that contributes to the oxidation-reduction reaction accompanying the charge / discharge reaction, so the initial capacity, which is the most important for battery performance, is large. It has the problem of being lowered. This is presumably because aluminum is stable at trivalent, and nickel is also stable at trivalent because the charges are matched, and a portion that does not contribute to the oxidation-reduction reaction is generated.

近年、携帯電子機器等に用いる小型二次電池に対する高容量化の要求は高まる一方であるが、安全性を確保するために容量を犠牲にすることは、リチウムニッケル複合酸化物の高容量のメリットを失うことになり高容量化の要求に応えられなくなる。また、リチウムイオン二次電池を大型二次電池の用途に適用しようという動きも盛んであり、中でもハイブリッド自動車用、電気自動車用の電源としての期待が大きい。このように自動車用の電源として用いられる場合、安全性に劣るというリチウムニッケル複合酸化物の問題点の解消は大きな課題である。   In recent years, the demand for higher capacity for small secondary batteries used in portable electronic devices and the like has been increasing, but sacrificing capacity to ensure safety is a merit of the high capacity of lithium nickel composite oxide Will not be able to meet the demand for higher capacity. In addition, there is a strong movement to apply lithium ion secondary batteries to large secondary batteries, and expectations are high as power sources for hybrid vehicles and electric vehicles. Thus, when used as a power source for automobiles, it is a big problem to solve the problem of the lithium nickel composite oxide that is inferior in safety.

そこで、安全性を改善するため、正極活物質の周りを異種化合物で被覆し、正極活物質と電解液との直接的な接触を防ぐ方法が提案されている。例えば、非特許文献1では、リチウムニッケル複合酸化物の表面にマグネシウム酸化物をコーティングし熱安定性を向上させることを提案している。しかしながら、かかるリチウムニッケル複合酸化物を正極活物質として用いた二次電池では、充放電容量が低下しており、高容量と安全性の両立という課題を満たしているとは言い難い。   Therefore, in order to improve safety, a method has been proposed in which the positive electrode active material is covered with a different compound to prevent direct contact between the positive electrode active material and the electrolytic solution. For example, Non-Patent Document 1 proposes that the surface of a lithium nickel composite oxide is coated with magnesium oxide to improve thermal stability. However, in a secondary battery using such a lithium nickel composite oxide as a positive electrode active material, the charge / discharge capacity is low, and it is difficult to say that the problem of achieving both high capacity and safety is satisfied.

また、特許文献4では、リチウム二次電池の正極用層相構造酸化物の表面をリチウム転移金属酸化物でコーティングすることが提案されている。この技術では、表面処理用原料溶液を、有機酸とアンモニアでpHを5〜9に調整し、溶液濃度を0.1〜2モル濃度に調節したのち層相構造酸化物を添加して、コーティングされた層相構造酸化物を500〜850℃、3〜48時間で熱処理することにより、リチウム転移金属酸化物で表面を層状にコーティングされた層相構造酸化物からなる正極活物質を得ている。しかしながら、リチウム転移金属酸化物として、LiMn2-XM1X4、LiCo1-XAlX2、LiNi1-XAlX2、LiNi1-X-YCoXAlY2、LiNi1-X-Y-ZCoXM1YM2Z2(M1とM2は、Al、Ni、Co、Fe、Mn、V、Cr、Cu、Ti、W、Ta、MgまたはMo、0≦X<0.5、0≦Y<0.5、0≦Z<0.5)が挙げられているが、これらはリチウムイオンの移動が可能な酸化物であるにもかかわらず、かかる正極活物質を用いても、約8%もの充放電容量の低下が生じている。このように、この提案においても高容量と安全性の両立という課題を満たしているとは言い難い。 Patent Document 4 proposes coating the surface of a layered structure oxide for a positive electrode of a lithium secondary battery with a lithium transition metal oxide. In this technique, the raw material solution for surface treatment is adjusted to pH 5 to 9 with organic acid and ammonia, the solution concentration is adjusted to 0.1 to 2 molar concentration, and then a layer phase structure oxide is added to form a coating. The obtained layer phase structure oxide is heat-treated at 500 to 850 ° C. for 3 to 48 hours to obtain a positive electrode active material composed of a layer phase structure oxide whose surface is coated with a lithium transition metal oxide in a layered manner. . However, as the lithium transition metal oxide, LiMn 2-X M1 X O 4, LiCo 1-X Al X O 2, LiNi 1-X Al X O 2, LiNi 1-XY Co X Al Y O 2, LiNi 1- XYZ Co X M1 Y M2 Z O 2 (M1 and M2 are Al, Ni, Co, Fe, Mn, V, Cr, Cu, Ti, W, Ta, Mg or Mo, 0 ≦ X <0.5, 0 ≦ Y <0.5, 0 ≦ Z <0.5), although these are oxides that can move lithium ions, A reduction in charge / discharge capacity as much as 8% occurs. Thus, it is hard to say that this proposal also satisfies the problem of achieving both high capacity and safety.

さらに、特許文献5では、リチウムニッケル酸化物粒子の表面にコバルト酸リチウム、マンガン酸リチウムなどのリチウム化合物をそれぞれ単独で、メカノフュージョンを用いて添着させた非水電解質リチウムイオン二次電池用正極材料が提案されている。しかしながら、この提案は電解液分解の抑制を目的としたものであって、高容量と安全性の両立を目的としたものではない。また、表面に添着させる態様として層状に被覆させる場合および塊状に点在化させる場合が提案されているが、いずれの態様においても長所と短所を有しており、この観点から見ても高容量と安全性を両立させているとはい言い難い。   Further, in Patent Document 5, a positive electrode material for a non-aqueous electrolyte lithium ion secondary battery in which lithium compounds such as lithium cobaltate and lithium manganate are each independently deposited on the surface of lithium nickel oxide particles using mechanofusion. Has been proposed. However, this proposal is aimed at suppressing decomposition of the electrolytic solution, and is not aimed at achieving both high capacity and safety. Moreover, as a mode of attaching to the surface, a case of covering in a layered form and a case of scattering in a lump form have been proposed, but each aspect has advantages and disadvantages, and high capacity is also seen from this viewpoint. It's hard to say that they are both safe and safe.

以上のように、高い充放電容量と熱安定性および安全性を両立させたリチウム金属複合酸化物は見出されておらず、これらの問題を解決した非水系電解質二次電池が望まれている。   As described above, no lithium metal composite oxide that has both high charge / discharge capacity, thermal stability, and safety has been found, and a nonaqueous electrolyte secondary battery that solves these problems is desired. .

特開平8−45509号公報JP-A-8-45509 特開平8−213015号公報Japanese Patent Laid-Open No. 8-213015 特開平5−242891号公報Japanese Patent Laid-Open No. 5-242891 特開2002−231227号公報JP 2002-231227 A 特開2005−190996号公報JP-A-2005-190996 "Surface Modification of LiSr0.002Ni0.9Co0.1O2 by Overcoating with a Magnesium Oxide", H. J. Kweon et al., Electrochem. Solid-State Lett., Volume 3, Issue 3, pp.128-130(March 2000)"Surface Modification of LiSr0.002Ni0.9Co0.1O2 by Overcoating with a Magnesium Oxide", H. J. Kweon et al., Electrochem. Solid-State Lett., Volume 3, Issue 3, pp.128-130 (March 2000)

本発明は、かかる問題点に鑑みてなされたものであって、熱安定性および安全性が高く、かつ、高い充放電容量をもつという2つの特性を両立させた非水系電解質二次電池を実現することが可能な正極活物質を提供することを目的とする。   The present invention has been made in view of the above problems, and realizes a non-aqueous electrolyte secondary battery that has both thermal stability and safety and high charge / discharge capacity. An object of the present invention is to provide a positive electrode active material that can be used.

本発明者は、正極活物質としてリチウム金属複合酸化物を、非水系電解質二次電池に用いる場合に重要となる充放電容量と安全性の両立について深く検討した結果、リチウム遷移金属複合酸化物を構成する内部の一次粒子及び二次粒子の表面に、リチウムジルコニウム複合酸化物からなる被覆層を形成させることにより高い充放電容量と熱安定性および安全性を両立させることができるとの知見を得て、本発明を完成するに至った。   As a result of a thorough examination of the compatibility between charge / discharge capacity and safety, which is important when the lithium metal composite oxide is used as a positive electrode active material in a non-aqueous electrolyte secondary battery, the present inventor has obtained a lithium transition metal composite oxide. Acquired knowledge that high charge / discharge capacity, thermal stability, and safety can be achieved at the same time by forming a coating layer of lithium-zirconium composite oxide on the surface of the primary and secondary particles inside Thus, the present invention has been completed.

本発明の第一の発明は、層状構造を有するリチウム遷移金属複合酸化物において、一次粒子が凝集して二次粒子が構成され、前記二次粒子の平均粒径が2μmから30μmであり、二次粒子の内部の一次粒子界面の少なくとも一部、及び二次粒子の表面の少なくとも一部においてジルコニウム複合酸化物層からなる緩衝層を有し、遷移金属に対するジルコニウムの原子比が、0.005から0.02であるリチウム遷移金属複合酸化物からなることを特徴とする非水系電解質二次電池用正極活物質である。 A first aspect of the present invention is a lithium transition metal composite oxide having a layered structure, wherein primary particles are aggregated to form secondary particles, and the average particle size of the secondary particles is 2 μm to 30 μm, A buffer layer comprising a zirconium composite oxide layer in at least a part of the primary particle interface inside the secondary particle and at least a part of the surface of the secondary particle , and the atomic ratio of zirconium to transition metal is from 0.005 A positive electrode active material for a non-aqueous electrolyte secondary battery, characterized by comprising a lithium transition metal composite oxide of 0.02.

本発明の第の発明は、前記リチウム遷移金属複合酸化物が、一般式: LizNi1-x-yCoxyZrt2(ただし、0.10≦x≦0.21、0≦y≦0.08、0.97≦z≦1.15、0.005≦t≦0.0、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表される第一の発明に記載の非水系電解質二次電池用正極活物質である。 The second aspect of the present invention, the lithium transition metal composite oxide has the general formula: Li z Ni 1-xy Co x M y Zr t O 2 ( however, 0.10 ≦ x ≦ 0.21,0 ≦ y ≦ 0.08, 0.97 ≦ z ≦ 1.15, 0.005 ≦ t ≦ 0.0 2 , M is at least one selected from Mn, V, Mg, Mo, Nb, Ti and Al Element), the positive electrode active material for a non-aqueous electrolyte secondary battery according to the first invention.

本発明の第の発明は、一次粒子が凝集して二次粒子を構成している多孔性の前駆体である遷移金属複合酸化物の一次粒子表面にジルコニウムを被覆し、このジルコニウムを被覆した遷移金属複合酸化物とリチウム化合物を混合し、700℃〜800℃で4時間〜50時間焼成することを特徴とする非水系電解質二次電池用正極活物質の製造方法である。 In the third aspect of the present invention, zirconium is coated on the surface of primary particles of a transition metal composite oxide, which is a porous precursor in which primary particles are aggregated to form secondary particles. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising mixing a transition metal composite oxide and a lithium compound and firing at 700 ° C. to 800 ° C. for 4 hours to 50 hours.

本発明の第四の発明は、第一または第二の発明に記載の非水系電解質二次電池用正極活物質が、正極に用いられていることを特徴とする二次電池である。
A fourth invention of the present invention is a secondary battery characterized in that the positive electrode active material for a non-aqueous electrolyte secondary battery described in the first or second invention is used for a positive electrode.

従来の発明においては、二次粒子の表面における被覆層形成による熱安定性向上を図っていたが、本発明においては、二次粒子内部の一次粒子表面に高温環境下での酸素放出を抑制するための緩衝層を形成することを特徴としている。すなわち、本発明に係る非水系電解質二次電池用正極活物質は、リチウム遷移金属複合酸化物の二次粒子内及び表面に形成された緩衝層からなることを特徴とする。   In the conventional invention, the thermal stability is improved by forming a coating layer on the surface of the secondary particles. However, in the present invention, the release of oxygen in a high temperature environment is suppressed on the surface of the primary particles inside the secondary particles. For this purpose, a buffer layer is formed. That is, the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is characterized by comprising a buffer layer formed in and on the secondary particles of the lithium transition metal composite oxide.

本発明に係る非水系電解質二次電池用正極活物質は、非水系電解質二次電池の正極材料として適切に用いられる。特に、本発明に係る非水系電解質二次電池用正極活物質を正極材料として用いることで、熱安定性および安全性に優れながら、該二次電池の初期放電容量を、190mAh/g以上とすることが可能となる。   The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is suitably used as a positive electrode material for a non-aqueous electrolyte secondary battery. In particular, by using the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention as a positive electrode material, the initial discharge capacity of the secondary battery is 190 mAh / g or more while being excellent in thermal stability and safety. It becomes possible.

本発明の非水系電解質二次電池用正極活物質の製造方法により、熱安定性および安全性が高く、かつ、高い充放電容量を有するという2つの特性を両立させた非水系電解質二次電池を実現することが可能な正極活物質を提供することができる。   A non-aqueous electrolyte secondary battery that achieves both of the two characteristics of high thermal stability and safety and high charge / discharge capacity by the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention. A positive electrode active material that can be realized can be provided.

また、本発明の非水系電解質二次電池用正極活物質を用いて、非水系電解質二次電池を得ることにより、最近の携帯電子機器等の小型二次電池に対する高容量化の要求を満足するとともに、ハイブリッド自動車用や電気自動車用の大型二次電池に用いられる電源として求められる安全性をも確保することが可能となり、工業上、きわめて有用である。   Further, by using the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, a non-aqueous electrolyte secondary battery is obtained, thereby satisfying the recent demand for higher capacity for small secondary batteries such as portable electronic devices. At the same time, it is possible to ensure the safety required as a power source used for large-sized secondary batteries for hybrid vehicles and electric vehicles, which is extremely useful industrially.

以下、本発明について、一般式: LizNi1-x-yCoxyZrt2(ただし、0.10≦x≦0.21、0≦y≦0.08、0.97≦z≦1.15、0.005≦t≦0.0、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウム金属複合酸化物を用いた場合を中心に説明する。 Hereinafter, the present invention, the general formula: Li z Ni 1-xy Co x M y Zr t O 2 ( however, 0.10 ≦ x ≦ 0.21,0 ≦ y ≦ 0.08,0.97 ≦ z ≦ 1.15, 0.005 ≦ t ≦ 0.0 2 , where M is a lithium metal composite oxide represented by at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al). The explanation will focus on the case where it is used.

1. 二次電池用正極活物質
本発明の層状構造を有するリチウム遷移金属複合酸化物の作製に用いられる遷移金属複合酸化物においては、一次粒子が凝集してできる二次粒子の平均粒径は2μmから30μmである。二次粒子径が小さすぎると二次電池用の極板を作製する際のペースト化においてペースト粘度が高くなりすぎる等の支障が生じ、二次粒子径が大きすぎると、極板の厚みを超えてセパレータの破損の原因となる可能性があり、好ましくない。ここで言う平均粒径とは、レーザー散乱式粒度分布測定装置で計測した粒度分布における平均体積粒径のことである。なお、一次粒子の粒径は、0.1μmから1μmであることが好ましい。
さらに、二次粒子の内部の一次粒子界面及び二次粒子の表面の少なくとも一部においてリチウムジルコニウム複合酸化物層( 以下緩衝層と記載することもある) が形成されている。リチウム遷移金属複合酸化物を構成する一次粒子間及び二次粒子の表面に該緩衝層を形成させることで、非水系電解質二次電池の正極活物質として用いて高温環境になった場合にも、二次粒子表面での電解液との接触を減少させ、かつ二次粒子内部に浸透している電解液との接触も減少させて、熱安定性および安全性が高く、かつ、高い充放電容量を確保することが可能となる。ここで、リチウム遷移金属複合酸化物に含まれる遷移金属の合計量に対するジルコニウムの原子比は、0.005から0.0である。ジルコニウム添加量が少ないと熱安定性が低くなり、また、ジルコニウム添加量が多すぎると、電池材料としての容量低下を招き、好ましくない。
1. Positive electrode active material for secondary battery In the transition metal composite oxide used for producing the lithium transition metal composite oxide having a layered structure of the present invention, the average particle size of secondary particles formed by agglomeration of primary particles is from 2 μm. 30 μm. If the secondary particle size is too small, there will be problems such as paste viscosity becoming too high when making the electrode plate for a secondary battery, and if the secondary particle size is too large, it will exceed the thickness of the electrode plate. This may cause damage to the separator, which is not preferable. The average particle size referred to here is the average volume particle size in the particle size distribution measured with a laser scattering particle size distribution measuring device. The primary particles preferably have a particle size of 0.1 μm to 1 μm.
Further, a lithium zirconium composite oxide layer (hereinafter sometimes referred to as a buffer layer) is formed at the primary particle interface inside the secondary particles and at least a part of the surface of the secondary particles. By forming the buffer layer between the primary particles constituting the lithium transition metal composite oxide and the surface of the secondary particles, even when it becomes a high-temperature environment as a positive electrode active material of a non-aqueous electrolyte secondary battery, Reduces contact with the electrolyte on the surface of the secondary particles and also reduces contact with the electrolyte penetrating the secondary particles, resulting in high thermal stability and safety, and high charge / discharge capacity Can be secured. Here, zirconium atomic ratio of the total amount of transition metal contained in the lithium-transition metal composite oxide is from 0.005 0.0 2. If the amount of zirconium added is small, the thermal stability is lowered, and if the amount of zirconium added is too large, the capacity of the battery material is reduced, which is not preferable.

本発明のリチウム遷移金属複合酸化物は、一般式:LizNi1-x-yCoxyZrt2(ただし、0.10≦x≦0.21、0≦y≦0.08、0.97≦z≦1.10、0.005≦t≦0.0、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるものであることが好ましい。このリチウム遷移金属複合酸化物を構成する二次粒子の内部にリチウムジルコニウム複合酸化物からなる緩衝層が形成された状態にすることが重要である。 Lithium transition metal composite oxide of the present invention have the general formula: Li z Ni 1-xy Co x M y Zr t O 2 ( however, 0.10 ≦ x ≦ 0.21,0 ≦ y ≦ 0.08,0 .97 ≦ z ≦ 1.10, 0.005 ≦ t ≦ 0.0 2 , where M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al) It is preferable that It is important that a buffer layer made of a lithium zirconium composite oxide is formed inside the secondary particles constituting the lithium transition metal composite oxide.

2.二次電池用正極活物質の製造方法
本発明においては、まず、一次粒子が凝集して二次粒子を構成している多孔性の前駆体である遷移金属複合酸化物の一次粒子に水酸化ジルコニウムあるいは酸化ジルコニウムの被覆を施す。被覆方法は、遷移金属複合酸化物にジルコニウムが溶解している溶液を含浸させて乾燥させる方法、遷移金属複合酸化物を水スラリー化し、そのスラリー中にてジルコニウム化合物の加水分解反応により被覆し固液分離後に乾燥させる方法等が挙げられるが、二次粒子の内部まで被覆が施すことができれば方法は問わない。次に、このジルコニウムの被覆を施した遷移金属複合酸化物とリチウム化合物を混合し、700℃〜800℃で4時間〜50時間焼成することにより、リチウム遷移金属複合酸化物が形成されると共に被覆層もリチウムジルコニウム複合酸化物へと変化し、リチウム遷移金属複合酸化物一次粒子間及び二次粒子表面の緩衝層となる。
2. Method for producing positive electrode active material for secondary battery In the present invention, first, zirconium hydroxide is used as the primary particle of transition metal composite oxide, which is a porous precursor in which primary particles are aggregated to form secondary particles. Alternatively, a zirconium oxide coating is applied. The coating method is a method in which a transition metal composite oxide is impregnated with a solution in which zirconium is dissolved and dried. The transition metal composite oxide is slurried in water, and the slurry is coated and solidified by hydrolysis reaction of the zirconium compound. Although the method of drying after liquid separation is mentioned, a method will not be ask | required if a coating can be given even to the inside of a secondary particle. Next, this transition metal composite oxide coated with zirconium and a lithium compound are mixed and fired at 700 ° C. to 800 ° C. for 4 hours to 50 hours to form a lithium transition metal composite oxide and coating The layer also changes to lithium-zirconium composite oxide, and becomes a buffer layer between the primary particles of the lithium transition metal composite oxide and the surface of the secondary particles.

ここで、リチウム化合物としては、水酸化リチウムあるいは炭酸リチウムを用いることが好ましい。また、焼成温度は700℃〜800℃である。焼成温度が低すぎると層状化合物の結晶構造が不完全となり、焼成温度が高すぎると層状化合物における3aサイトと3bサイトのミキシングが起こり、放電容量が低下するために好ましくない。焼成時間は4時間〜50時間である。焼成時間は焼成温度により採用し得る範囲が異なるが、短すぎると層状化合物の結晶構造が不完全となり、長すぎると層状化合物における3aサイトと3bサイトのミキシングが起こり、放電容量が低下するために好ましくない。   Here, it is preferable to use lithium hydroxide or lithium carbonate as the lithium compound. The firing temperature is 700 ° C to 800 ° C. If the calcination temperature is too low, the crystal structure of the layered compound becomes incomplete, and if the calcination temperature is too high, mixing of the 3a site and 3b site in the layered compound occurs and the discharge capacity decreases, which is not preferable. The firing time is 4 hours to 50 hours. The firing time varies depending on the firing temperature, but if it is too short, the crystal structure of the layered compound will be incomplete. If it is too long, mixing of the 3a site and 3b site in the layered compound will occur and the discharge capacity will decrease. It is not preferable.

リチウムジルコニウム複合酸化物緩衝層は、リチウム遷移金属複合酸化物の一次粒子表面を完全に被覆しても部分的に被覆しても熱安定性の向上に寄与するが、完全にかつ厚く被覆すると、リチウムイオンや電子の出入りを阻害するために、電池特性の劣化につながる。従って、緩衝層の厚さは数nmから300nm程度が好ましい。リチウム遷移金属複合酸化物を構成する遷移金属の合計量に対するZrの原子比が0.005から0.03になるように合成すると、電池としての容量をほとんど損なわずに熱安定性を高めることができる。   The lithium-zirconium composite oxide buffer layer contributes to the improvement of thermal stability regardless of whether the primary particle surface of the lithium transition metal composite oxide is completely coated or partially coated. Inhibiting the entry and exit of lithium ions and electrons leads to deterioration of battery characteristics. Therefore, the thickness of the buffer layer is preferably about several nm to 300 nm. When synthesized so that the atomic ratio of Zr with respect to the total amount of transition metals constituting the lithium transition metal composite oxide is 0.005 to 0.03, the thermal stability can be improved without substantially impairing the battery capacity. it can.

(実施例1)
微細な一次粒子(粒径0.1〜0.8μm)から構成される二次粒子であり平均粒径が8μmであるNi0.85Co0.15Oで表される多孔性の金属複合酸化物の粉末40gを、2.5lの純水に加え、撹拌して濃度16g/lのスラリーに調整した。
Example 1
40 g of a porous metal composite oxide powder represented by Ni 0.85 Co 0.15 O which is a secondary particle composed of fine primary particles (particle size 0.1 to 0.8 μm) and has an average particle size of 8 μm. Was added to 2.5 l of pure water and stirred to prepare a slurry having a concentration of 16 g / l.

次に、そのスラリーに硫酸ジルコニウム・四水和物5gを100mlの純水に溶解しておいた溶液を37.5ml加えて4時間攪拌し、加水分解反応により水酸化ジルコニウムを金属複合酸化物の一次粒子界面及び二次粒子表面に析出させた。この添加量は金属複合酸化物を構成するニッケル(Ni)とコバルト(Co)の合計に対するジルコニウム(Zr)の原子比が0.01に相当する。   Next, 37.5 ml of a solution prepared by dissolving 5 g of zirconium sulfate tetrahydrate in 100 ml of pure water was added to the slurry and stirred for 4 hours. It was deposited on the primary particle interface and the secondary particle surface. This addition amount corresponds to an atomic ratio of zirconium (Zr) to 0.01 with respect to the total of nickel (Ni) and cobalt (Co) constituting the metal composite oxide.

ろ過により固液分離を行った水酸化ジルコニウム被覆金属複合酸化物粉を300℃で2時間乾燥させた。得られた被覆金属複合酸化物粉を薄片化して透過電子顕微鏡(TEM)にて組織を観察した結果を図1に示す。さらにエネルギー分散型X線分析装置(EDX)にてZrの分布を分析した結果を図2に示す。微細な一次粒子が凝集してからなる二次粒子において、一次粒子界面にジルコニウムを含む被覆層が形成されている。   The zirconium hydroxide-coated metal composite oxide powder that had been subjected to solid-liquid separation by filtration was dried at 300 ° C. for 2 hours. FIG. 1 shows the result of observing the structure with a transmission electron microscope (TEM) after slicing the obtained coated metal composite oxide powder. Furthermore, the result of having analyzed the distribution of Zr with the energy dispersive X-ray analyzer (EDX) is shown in FIG. In secondary particles formed by agglomeration of fine primary particles, a coating layer containing zirconium is formed at the primary particle interface.

化学分析により被覆金属複合酸化物粉の各元素の品位を確認した。分析結果に基づき被覆金属複合酸化物を構成するニッケル(Ni)とコバルト(Co)とジルコニウム(Zr)の合計に対するリチウム(Li)の原子比が1.065になるように水酸化リチウムの混合比を算出し、その混合比に基づき被覆金属複合酸化物と水酸化リチウムを秤量して混合した。混合後にアルミナボートに移して雰囲気焼成炉内において酸素気流中にて昇温して740℃で20時間保持して焼成した。   The quality of each element of the coated metal composite oxide powder was confirmed by chemical analysis. The mixing ratio of lithium hydroxide so that the atomic ratio of lithium (Li) to the total of nickel (Ni), cobalt (Co) and zirconium (Zr) constituting the coated metal composite oxide is 1.065 based on the analysis result The coating metal composite oxide and lithium hydroxide were weighed and mixed based on the mixing ratio. After mixing, the mixture was transferred to an alumina boat, heated in an oxygen stream in an atmosphere firing furnace, and kept at 740 ° C. for 20 hours for firing.

焼成後に解砕処理を施し、純水中に投入して30分攪拌して水洗を実施した。その後、固液分離して回収した粉末を真空乾燥器内において210℃で10時間真空乾燥させた後に本発明のリチウム遷移金属複合酸化物正極活物質を得た。   Crushing treatment was performed after firing, and the mixture was put into pure water and stirred for 30 minutes, followed by washing with water. Thereafter, the powder recovered by solid-liquid separation was vacuum-dried at 210 ° C. for 10 hours in a vacuum dryer, and the lithium transition metal composite oxide positive electrode active material of the present invention was obtained.

得られた正極活物質を薄片化し透過電子顕微鏡で観察した結果を図3に示す。またEDXでZrの分布を分析した結果を図4に示す。一部Zrの偏析は見られるが、全般に焼成により約500nmに成長したリチウム遷移金属複合酸化物一次粒子の間にZr化合物の緩衝層が形成されている。X線回折装置により得られた回折パターン中に、LiZrOの微弱なパターンが認められたことから、Zr化合物の緩衝層はLiZrOであると考えられる。 The obtained positive electrode active material was sliced and the result of observation with a transmission electron microscope is shown in FIG. The results of analyzing the Zr distribution by EDX are shown in FIG. Although some segregation of Zr is observed, a buffer layer of a Zr compound is generally formed between primary particles of a lithium transition metal composite oxide grown to about 500 nm by firing. Since a weak pattern of Li 2 ZrO 3 was observed in the diffraction pattern obtained by the X-ray diffractometer, it is considered that the buffer layer of the Zr compound is Li 2 ZrO 3 .

得られた正極活物質の初期容量評価は、以下のようにして行った。   The initial capacity evaluation of the obtained positive electrode active material was performed as follows.

正極活物質の粉末70質量%に、アセチレンブラック(電気化学工業株式会社製)20質量%、およびPTFE(ダイキン工業株式会社製)10質量%を混合し、150mgを取り出して、圧力100MPaで直径11mmのペレットを作製し、正極とした。負極としてリチウム金属を用い、電解液には1MのLiClO4を支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液(富山薬品工業株式会社製)を用いた。これらを用いて、露点が−80℃に管理されたAr雰囲気のグローブボックス中で、2032型のコイン電池を作製した。 70% by mass of the positive electrode active material powder was mixed with 20% by mass of acetylene black (manufactured by Denki Kogyo Co., Ltd.) and 10% by mass of PTFE (manufactured by Daikin Kogyo Co., Ltd.), 150 mg was taken out, and the diameter was 11 mm at a pressure of 100 MPa. A pellet was prepared as a positive electrode. Lithium metal was used as the negative electrode, and an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) (made by Toyama Pharmaceutical Co., Ltd.) using 1M LiClO 4 as a supporting salt was used as the electrolyte. Using these, a 2032 type coin battery was produced in an Ar atmosphere glove box whose dew point was controlled at −80 ° C.

作製した電池は、24時間程度、放置し、開回路電圧(OCV;Open Circuit Voltage)が安定した後、正極に対する電流密度を0.5mA/cm2として、カットオフ電圧4.3Vまで充電して、初期充電容量とし、1時間の休止後、カットオフ電圧3.0Vまで放電したときの容量を、初期放電容量とした。 The produced battery is left to stand for about 24 hours, and after the open circuit voltage (OCV) is stabilized, the current density with respect to the positive electrode is set to 0.5 mA / cm 2 and charged to a cutoff voltage of 4.3 V. The initial charge capacity was defined as the capacity when the battery was discharged to a cut-off voltage of 3.0 V after 1 hour of rest.

正極の安全性の評価は、前述と同様な方法で作製した2032型のコイン電池を用いて、以下のように行った。   Evaluation of the safety of the positive electrode was performed as follows using a 2032 type coin battery manufactured by the same method as described above.

まず、カットオフ電圧4.5VまでCCCV充電(定電流−定電圧充電。最初に、充電が定電流で動作し、それから定電圧で充電を終了するという2つのフェーズの充電過程を用いる充電方法)をした後、短絡しないように注意しながら解体して正極を取り出した。得られた正極を3.0mg計り取り、電解液を1.3mg加えてアルミニウム製測定容器に封入し、示差走査熱量計(DSC、BRUCKER社製、DSC3100SA)を用いて昇温速度10℃/minで室温から400℃までの発熱速度を測定し、発熱が増大する温度を発熱開始温度とし、さらに発熱ピーク強度を測定した。そして、後述する比較例1で得られた発熱ピーク強度を100とする相対比を算出した。   First, CCCV charging up to a cutoff voltage of 4.5V (constant current-constant voltage charging. Charging method using a two-phase charging process in which charging starts at a constant current and then ends at a constant voltage) After being disassembled, it was disassembled with care so as not to short-circuit, and the positive electrode was taken out. 3.0 mg of the obtained positive electrode was weighed, 1.3 mg of the electrolyte was added and sealed in an aluminum measurement container, and the temperature rising rate was 10 ° C./min using a differential scanning calorimeter (DSC, manufactured by BRUCKER, DSC3100SA). The exothermic rate from room temperature to 400 ° C. was measured, the temperature at which the exotherm increased was defined as the exothermic start temperature, and the exothermic peak intensity was measured. And the relative ratio which sets the exothermic peak intensity | strength obtained by the comparative example 1 mentioned later as 100 was computed.

以上によって得られた初期放電容量、DSC発熱ピーク温度、および相対比として求めたDSC発熱ピーク強度を表1に示す。   Table 1 shows the initial discharge capacity, the DSC exothermic peak temperature, and the DSC exothermic peak intensity obtained as a relative ratio obtained as described above.

(実施例2)
微細な一次粒子から構成される二次粒子であり平均粒径が8μmであるNi0.85Co0.15Oで表される多孔性の金属複合酸化物の粉末80gを、2.5lの純水に加え、撹拌して濃度32g/lのスラリーに調整した以外は実施例1と同様にして、加水分解反応により金属複合酸化物の一次粒子界面及び二次粒子表面に析出させた。この添加量は金属複合酸化物を構成するニッケル(Ni)とコバルト(Co)の合計に対するジルコニウム(Zr)の原子比が0.005に相当する。実施例1と同様に、得られた被覆金属複合酸化物と水酸化リチウムを混合して焼成し、本発明のリチウム遷移金属複合酸化物正極活物質を得て、充放電特性、熱安定性評価を行った。評価結果を表1に示す。
(Example 2)
80 g of a porous metal composite oxide powder represented by Ni 0.85 Co 0.15 O, which is secondary particles composed of fine primary particles and has an average particle diameter of 8 μm, is added to 2.5 l of pure water, The mixture was precipitated on the primary particle interface and the secondary particle surface of the metal composite oxide by a hydrolysis reaction in the same manner as in Example 1 except that the slurry was adjusted to a slurry having a concentration of 32 g / l. This addition amount corresponds to the atomic ratio of zirconium (Zr) to the total of nickel (Ni) and cobalt (Co) constituting the metal composite oxide being 0.005. In the same manner as in Example 1, the obtained coated metal composite oxide and lithium hydroxide were mixed and fired to obtain a lithium transition metal composite oxide positive electrode active material of the present invention, and charge / discharge characteristics and thermal stability evaluation were obtained. Went. The evaluation results are shown in Table 1.

(実施例3)
微細な一次粒子から構成される二次粒子であり平均粒径が8μmであるNi0.85Co0.15Oで表される多孔性の金属複合酸化物の粉末20gを、2.5lの純水に加え、撹拌して濃度8g/lのスラリーに調整した以外は実施例1と同様にして、加水分解反応により金属複合酸化物の一次粒子界面及び二次粒子表面に析出させた。この添加量は金属複合酸化物を構成するニッケル(Ni)とコバルト(Co)の合計に対するジルコニウム(Zr)の原子比が0.02に相当する。実施例1と同様に、得られた被覆金属複合酸化物と水酸化リチウムを混合して焼成し、本発明のリチウム遷移金属複合酸化物正極活物質を得て、充放電特性、熱安定性評価を行った。評価結果を表1に示す。
(Example 3)
20 g of a porous metal complex oxide powder represented by Ni 0.85 Co 0.15 O, which is a secondary particle composed of fine primary particles and has an average particle diameter of 8 μm, is added to 2.5 l of pure water, Except for stirring to prepare a slurry having a concentration of 8 g / l, it was precipitated on the primary particle interface and the secondary particle surface of the metal composite oxide by a hydrolysis reaction in the same manner as in Example 1. This addition amount corresponds to the atomic ratio of zirconium (Zr) to the total of nickel (Ni) and cobalt (Co) constituting the metal composite oxide being 0.02. In the same manner as in Example 1, the obtained coated metal composite oxide and lithium hydroxide were mixed and fired to obtain a lithium transition metal composite oxide positive electrode active material of the present invention, and charge / discharge characteristics and thermal stability evaluation were obtained. Went. The evaluation results are shown in Table 1.

(実施例4)
焼成時間を4時間とした以外は実施例1と同様にして、本発明のリチウム遷移金属複合酸化物正極活物質を得た。得られた正極活物質を用いて2032型のコイン電池を作製し、充放電特性、熱安定性評価を行った。評価結果を表1に示す。
Example 4
A lithium transition metal composite oxide positive electrode active material of the present invention was obtained in the same manner as in Example 1 except that the firing time was 4 hours. Using the obtained positive electrode active material, a 2032 type coin battery was prepared, and charge / discharge characteristics and thermal stability were evaluated. The evaluation results are shown in Table 1.

(実施例5)
焼成時間を50時間とした以外は実施例1と同様にして、本発明のリチウム遷移金属複合酸化物正極活物質を得た。得られた正極活物質を用いて2032型のコイン電池を作製し、充放電特性、熱安定性評価を行った。評価結果を表1に示す。
(Example 5)
A lithium transition metal composite oxide positive electrode active material of the present invention was obtained in the same manner as in Example 1 except that the firing time was 50 hours. Using the obtained positive electrode active material, a 2032 type coin battery was prepared, and charge / discharge characteristics and thermal stability were evaluated. The evaluation results are shown in Table 1.

(実施例6)
焼成条件を温度700℃とした以外は実施例1と同様にして、本発明のリチウム遷移金属複合酸化物正極活物質を得た。得られた正極活物質を用いて2032型のコイン電池を作製し、充放電特性、熱安定性評価を行った。評価結果を表1に示す。
(Example 6)
A lithium transition metal composite oxide positive electrode active material of the present invention was obtained in the same manner as in Example 1 except that the temperature was set to 700 ° C. Using the obtained positive electrode active material, a 2032 type coin battery was prepared, and charge / discharge characteristics and thermal stability were evaluated. The evaluation results are shown in Table 1.

(実施例7)
焼成条件を温度800℃、とした以外は実施例1と同様にして、本発明のリチウム遷移金属複合酸化物正極活物質を得た。得られた正極活物質を用いて2032型のコイン電池を作製し、充放電特性、熱安定性評価を行った。評価結果を表1に示す。
(Example 7)
A lithium transition metal composite oxide positive electrode active material of the present invention was obtained in the same manner as in Example 1 except that the baking conditions were 800 ° C. Using the obtained positive electrode active material, a 2032 type coin battery was prepared, and charge / discharge characteristics and thermal stability were evaluated. The evaluation results are shown in Table 1.

(実施例8)
微細な一次粒子から構成される二次粒子であり平均粒径が2μmであるNi0.85Co0.15Oで表される多孔性の金属複合酸化物の粉末を用いた以外は、実施例1と同様にして、本発明のリチウム遷移金属複合酸化物正極活物質を得た。得られた正極活物質を用いて2032型のコイン電池を作製し、充放電特性、熱安定性評価を行った。評価結果を表1に示す。
(Example 8)
The same procedure as in Example 1 was performed except that a porous metal composite oxide powder represented by Ni 0.85 Co 0.15 O, which is a secondary particle composed of fine primary particles and has an average particle diameter of 2 μm, was used. Thus, a lithium transition metal composite oxide positive electrode active material of the present invention was obtained. Using the obtained positive electrode active material, a 2032 type coin battery was prepared, and charge / discharge characteristics and thermal stability were evaluated. The evaluation results are shown in Table 1.

(実施例9)
微細な一次粒子から構成される二次粒子であり平均粒径が30μmであるNi0.85Co0.15Oで表される多孔性の金属複合酸化物の粉末を用いた以外は、実施例1と同様にして、本発明のリチウム遷移金属複合酸化物正極活物質を得た。得られた正極活物質を用いて2032型のコイン電池を作製し、充放電特性、熱安定性評価を行った。評価結果を表1に示す。
Example 9
The same procedure as in Example 1 was performed except that a porous metal composite oxide powder represented by Ni 0.85 Co 0.15 O, which is a secondary particle composed of fine primary particles and has an average particle diameter of 30 μm, was used. Thus, a lithium transition metal composite oxide positive electrode active material of the present invention was obtained. Using the obtained positive electrode active material, a 2032 type coin battery was prepared, and charge / discharge characteristics and thermal stability were evaluated. The evaluation results are shown in Table 1.

(比較例1)
ジルコニウム化合物の被覆を行わない金属複合酸化物を用いて、実施例1と同様にしてリチウム遷移金属複合酸化物正極活物質を得た。得られた正極活物質を用いて2032型のコイン電池を作製し、充放電特性、熱安定性評価を行った。評価結果を表1に示す。
(Comparative Example 1)
A lithium transition metal composite oxide positive electrode active material was obtained in the same manner as in Example 1 using a metal composite oxide that was not coated with a zirconium compound. Using the obtained positive electrode active material, a 2032 type coin battery was prepared, and charge / discharge characteristics and thermal stability were evaluated. The evaluation results are shown in Table 1.

(比較例2)
微細な一次粒子から構成される二次粒子であり平均粒径が8μmであるNi0.85Co0.15Oで表される多孔性の金属複合酸化物の粉末10gを、2.5lの純水に加え、撹拌して濃度4g/lのスラリーに調整した以外は実施例1と同様にして、加水分解反応により金属複合酸化物の一次粒子界面及び二次粒子表面に析出させた。この添加量は金属複合酸化物を構成するニッケル(Ni)とコバルト(Co)の合計に対するジルコニウム(Zr)の原子比が0.04に相当する。実施例1と同様に、得られた被覆金属複合酸化物と水酸化リチウムを混合して焼成し、正極活物質を得て、本発明のリチウム遷移金属複合酸化物正極活物質を得た。得られた正極活物質を用いて2032型のコイン電池を作製し、充放電特性、熱安定性評価を行った。評価結果を表1に示す。
(Comparative Example 2)
10 g of a porous metal composite oxide powder represented by Ni 0.85 Co 0.15 O, which is secondary particles composed of fine primary particles and has an average particle diameter of 8 μm, is added to 2.5 l of pure water, It was made to precipitate on the primary particle interface and the secondary particle surface by the hydrolysis reaction in the same manner as in Example 1 except that the slurry was adjusted to a slurry having a concentration of 4 g / l. This addition amount corresponds to the atomic ratio of zirconium (Zr) to the total of nickel (Ni) and cobalt (Co) constituting the metal composite oxide being 0.04. In the same manner as in Example 1, the obtained coated metal composite oxide and lithium hydroxide were mixed and fired to obtain a positive electrode active material, thereby obtaining a lithium transition metal composite oxide positive electrode active material of the present invention. Using the obtained positive electrode active material, a 2032 type coin battery was prepared, and charge / discharge characteristics and thermal stability were evaluated. The evaluation results are shown in Table 1.

(比較例3)
焼成時間を2時間とした以外は実施例1と同様にして、リチウム遷移金属複合酸化物正極活物質を得た。得られた正極活物質を用いて2032型のコイン電池を作製し、充放電特性、熱安定性評価を行った。評価結果を表1に示す。
(Comparative Example 3)
A lithium transition metal composite oxide positive electrode active material was obtained in the same manner as in Example 1 except that the firing time was 2 hours. Using the obtained positive electrode active material, a 2032 type coin battery was prepared, and charge / discharge characteristics and thermal stability were evaluated. The evaluation results are shown in Table 1.

(比較例4)
焼成時間を55時間とした以外は実施例1と同様にして、リチウム遷移金属複合酸化物正極活物質を得た。得られた正極活物質を用いて2032型のコイン電池を作製し、充放電特性、熱安定性評価を行った。評価結果を表1に示す。
(Comparative Example 4)
A lithium transition metal composite oxide positive electrode active material was obtained in the same manner as in Example 1 except that the firing time was 55 hours. Using the obtained positive electrode active material, a 2032 type coin battery was prepared, and charge / discharge characteristics and thermal stability were evaluated. The evaluation results are shown in Table 1.

(比較例5)
焼成条件を温度820℃とした以外は実施例1と同様にして、リチウム遷移金属複合酸化物正極活物質を得た。得られた正極活物質を用いて2032型のコイン電池を作製し、充放電特性、熱安定性評価を行った。評価結果を表1に示す。
(Comparative Example 5)
A lithium transition metal composite oxide positive electrode active material was obtained in the same manner as in Example 1 except that the firing condition was 820 ° C. Using the obtained positive electrode active material, a 2032 type coin battery was prepared, and charge / discharge characteristics and thermal stability were evaluated. The evaluation results are shown in Table 1.

(比較例6)
焼成条件を温度650℃とした以外は実施例1と同様にして、リチウム遷移金属複合酸化物正極活物質を得た。得られた正極活物質を用いて2032型のコイン電池を作製し、充放電特性、熱安定性評価を行った。評価結果を表1に示す。
(Comparative Example 6)
A lithium transition metal composite oxide positive electrode active material was obtained in the same manner as in Example 1 except that the firing conditions were set to a temperature of 650 ° C. Using the obtained positive electrode active material, a 2032 type coin battery was prepared, and charge / discharge characteristics and thermal stability were evaluated. The evaluation results are shown in Table 1.

[評価]
本発明の実施例では、DSC発熱ピーク強度が比較例1に対して、大幅に減少していることがわかる。すなわち、一次粒子界面に被覆層が形成されているため、電解液との接触が抑制されて正極活物質から脱離した酸素との反応が比較的緩やかになったと考えられる。
[Evaluation]
In the example of the present invention, it can be seen that the DSC exothermic peak intensity is significantly reduced as compared with Comparative Example 1. That is, since the coating layer is formed at the primary particle interface, it is considered that the contact with the electrolytic solution is suppressed and the reaction with oxygen desorbed from the positive electrode active material becomes relatively slow.

ジルコニウム添加量が多い比較例2では、初期放電容量が大幅に低下するため好ましくない。焼成温度が高すぎる場合や低すぎる場合も初期放電容量が低下するために好ましくない   In Comparative Example 2 in which the amount of zirconium added is large, the initial discharge capacity is greatly reduced, which is not preferable. When the firing temperature is too high or too low, the initial discharge capacity is lowered, which is not preferable.

実施例1における中間生成物であるジルコニウム化合物被覆金属複合酸化物粉末の断面における透過電子顕微鏡観察像Transmission electron microscope image of the cross section of the zirconium compound-coated metal composite oxide powder as an intermediate product in Example 1 実施例1における中間生成物であるジルコニウム化合物被覆金属複合酸化物粉末の断面におけるEDX面分析像EDX plane analysis image in cross section of zirconium compound-coated metal composite oxide powder as intermediate product in Example 1 実施例1で得られたリチウム遷移金属複合酸化物正極活物質粉末の断面における透過電子顕微鏡観察像Transmission electron microscope image of the cross section of the lithium transition metal composite oxide positive electrode active material powder obtained in Example 1 実施例1で得られたリチウム遷移金属複合酸化物正極活物質粉末の断面におけるEDX面分析像EDX plane analysis image in cross section of positive electrode active material powder of lithium transition metal composite oxide obtained in Example 1

Claims (4)

層状構造を有するリチウム遷移金属複合酸化物において、一次粒子が凝集して二次粒子が構成され、前記二次粒子の平均粒径が2μmから30μmであり、二次粒子の内部の一次粒子界面の少なくとも一部、及び二次粒子の表面の少なくとも一部においてジルコニウム複合酸化物層からなる緩衝層を有し、遷移金属に対するジルコニウムの原子比が、0.005から0.02であるリチウム遷移金属複合酸化物からなることを特徴とする非水系電解質二次電池用正極活物質。 In the lithium transition metal composite oxide having a layered structure, primary particles are aggregated to form secondary particles, and the average particle size of the secondary particles is 2 μm to 30 μm . at least a portion, and has a buffer layer made of zirconium complex oxide layer in at least a part of the surface of the secondary particles, the atomic ratio of zirconium to the transition metal, a lithium transition metal composite from 0.005 0.02 A positive electrode active material for a non-aqueous electrolyte secondary battery, characterized by comprising an oxide. 前記リチウム遷移金属複合酸化物が、一般式: LizNi1-x-yCoxyZrt2(ただし、0.10≦x≦0.21、0≦y≦0.08、0.97≦z≦1.15、0.005≦t≦0.02、MはMn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表される請求項1に記載の非水系電解質二次電池用正極活物質。 The lithium transition metal composite oxide has the general formula: Li z Ni 1-xy Co x M y Zr t O 2 ( however, 0.10 ≦ x ≦ 0.21,0 ≦ y ≦ 0.08,0.97 ≦ z ≦ 1.15, 0.005 ≦ t ≦ 0.02, M is represented by at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al). The positive electrode active material for non-aqueous electrolyte secondary batteries. 一次粒子が凝集して二次粒子を構成している多孔性の前駆体である遷移金属複合酸化物の一次粒子表面にジルコニウムを被覆し、このジルコニウムを被覆した遷移金属複合酸化物とリチウム化合物を混合し700℃〜800℃で4時間〜50時間焼成することを特徴とする非水系電解質二次電池用正極活物質の製造方法。 Zirconium is coated on the primary particle surface of the transition metal composite oxide, which is a porous precursor comprising primary particles agglomerated to form secondary particles, and the transition metal composite oxide coated with zirconium and a lithium compound are coated with zirconium. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising mixing and baking at 700 to 800 ° C. for 4 to 50 hours. 請求項1または2に記載の非水系電解質二次電池用正極活物質が、正極に用いられていることを特徴とする二次電池。 A secondary battery, wherein the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1 or 2 is used for a positive electrode.
JP2012073516A 2012-03-28 2012-03-28 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery Active JP5987401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012073516A JP5987401B2 (en) 2012-03-28 2012-03-28 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012073516A JP5987401B2 (en) 2012-03-28 2012-03-28 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery

Publications (2)

Publication Number Publication Date
JP2013206679A JP2013206679A (en) 2013-10-07
JP5987401B2 true JP5987401B2 (en) 2016-09-07

Family

ID=49525568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073516A Active JP5987401B2 (en) 2012-03-28 2012-03-28 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery

Country Status (1)

Country Link
JP (1) JP5987401B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118901A (en) * 2013-11-12 2015-06-25 信越化学工業株式会社 Positive electrode active material for lithium ion secondary batteries and method for manufacturing the same, and lithium ion secondary battery
JP6639889B2 (en) * 2015-12-10 2020-02-05 日立オートモティブシステムズ株式会社 Rechargeable battery
KR101768374B1 (en) 2016-04-29 2017-08-14 주식회사 엘지화학 Composite transition metal oxide precursor and preparing method thereof, and cathode active material using the same
KR20190003110A (en) 2017-06-30 2019-01-09 삼성전자주식회사 Composite cathode active material, Cathode and Lithium battery containing composite cathode active material and Preparation method thereof
US11081693B2 (en) 2017-08-30 2021-08-03 Samsung Electronics Co., Ltd. Composite cathode active material, method of preparing the same, and cathode and lithium battery including the composite cathode active material
WO2019087503A1 (en) * 2017-10-31 2019-05-09 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing positive electrode active material for nonaqueous electrolyte secondary batteries
JP6744880B2 (en) * 2018-02-06 2020-08-19 Jx金属株式会社 Positive electrode active material for lithium ion battery, method for producing positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
KR20190138196A (en) * 2018-06-04 2019-12-12 삼성전자주식회사 Composite cathode active material, Cathode and Lithium battery containing composite cathode active material and Preparation method thereof
CN110649230B (en) * 2018-06-27 2023-07-25 中国科学院宁波材料技术与工程研究所 Nanometer rivet core-shell structure anode material and preparation method thereof
KR102629462B1 (en) 2018-10-04 2024-01-26 삼성전자주식회사 Composite cathode active material, Cathode and Lithium battery containing composite cathode active material and Preparation method thereof
KR20200046485A (en) * 2018-10-24 2020-05-07 삼성전자주식회사 Composite cathode active material, Cathode and Lithium battery containing composite cathode active material and Preparation method thereof
JP7357499B2 (en) * 2019-09-26 2023-10-06 パナソニックホールディングス株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
JP7399538B2 (en) * 2019-11-28 2023-12-18 エルジー・ケム・リミテッド Method for producing a positive electrode active material for a lithium secondary battery and a positive electrode active material for a lithium secondary battery produced by the method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2855877B2 (en) * 1991-04-17 1999-02-10 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
JP2004311408A (en) * 2003-03-25 2004-11-04 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5036121B2 (en) * 2003-08-08 2012-09-26 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP5482977B2 (en) * 2007-06-15 2014-05-07 戸田工業株式会社 Non-aqueous electrolyte secondary battery lithium cobalt oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
JP2012033389A (en) * 2010-07-30 2012-02-16 Panasonic Corp Cathode active material and manufacturing method thereof, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2013206679A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP6380608B2 (en) Method for producing lithium composite compound particle powder, method for using lithium composite compound particle powder in non-aqueous electrolyte secondary battery
JP6665060B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP6107832B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
KR101587293B1 (en) Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP6167822B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2019186221A (en) Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP6578634B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2016115658A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JPWO2012176471A1 (en) Lithium-containing composite oxide powder and method for producing the same
KR20140111045A (en) Manganese spinel-type lithium transition metal oxide
JP6201146B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2008156163A (en) Spinel type lithium manganese oxide and method for manufacturing the same
JP2006147499A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP6294219B2 (en) Method for producing lithium cobalt composite oxide
JP5109447B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2001122628A (en) Lithium-manganese multi-component oxide particulate composition, method for manufacturing the same and secondary battery
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP5076258B2 (en) Element-substituted lithium manganese composite oxide particulate composition, its production method and its use in secondary batteries
JP2013012336A (en) Secondary battery and charging method of the same
WO2014073701A1 (en) Positive electrode active material, lithium battery, and manufacturing method for positive electrode active material
JP5387631B2 (en) Element-substituted lithium manganese composite oxide particulate composition, its production method and its use in secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160516

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R150 Certificate of patent or registration of utility model

Ref document number: 5987401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150